风压风量测量说明说明
管道风压、风速、风量测定
仪器中还设有P-N结温度测头,可以在测量风速的同时, 测定气流的温度。这种仪器适用于气流稳定输送清洁空 气,流速小于4m/s的场合。
管道风压、风速、风量测定
四、风道内流量的计算
天竹夭的店
2020年6月27日
管道风压、风速、风量测定
管道风压、风速、风量测定
一、测定位置和测定点
(一) 通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的
真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对 测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形 部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。
1 在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同 心环。 对于圆形风道,测点越多,测量精度越高。
2 矩形风道 可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小 矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。
管道风压、风速、风量测定
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。 当测试现场难于满足要求时,为减少误差可适当增加测点。 但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5
管道风压、风速、风量测定
一、测定位置和测定点
(一)
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面 不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面 (检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这
现场风量、风速、风质测量管理制度
现场风量、风速、风质测量管理制度1. 引言为了确保工作场所的空气质量达到相关标准要求,保障员工的身体健康和工作环境的安全性,公司制定了现场风量、风速、风质测量管理制度。
本制度旨在规范对工作场所中风量、风速以及风质的测量与管理。
2. 适用范围本制度适用于公司内所有工作场所,包括但不限于办公室、车间、实验室和生产线等各类工作场所。
3. 定义•现场风量:指单位时间内某个区域内的空气流动量,通常以立方米/小时(m³/h)来表示。
•风速:指单位时间内空气流动的速度,通常以米/秒(m/s)来表示。
•风质:指空气的质量状况,包括温度、湿度、含氧量等。
4. 现场风量、风速、风质测量设备和方法4.1 现场风量测量设备为了准确测量现场风量,公司将配备以下测量设备:•风速计:用于测量空气流动的速度。
采用高精度风速计,能在不同区域快速测量风速,并实时显示结果。
•静压差计:用于测量风道、管道等区域的静压差。
通过测量静压差,可以计算出风量。
4.2 风速测量方法4.2.1 员工培训所有相关人员在操作风速计前,都需要接受相关培训,掌握正确的操作方法和注意事项。
4.2.2 定点测量在工作场所中的不同位置进行定点测量,记录每个位置的风速,并进行合理的平均处理。
4.2.3 定时测量定时测量各个区域的风速,通过连续多次测量获得平均值,以保证测量结果的准确性。
4.3 风质测量设备和方法公司将配备以下测量设备和方法,以确保工作场所的风质符合相关要求:•温湿度计:用于测量空气的温度和湿度。
温湿度计具有高精度和快速响应的特点,可以实时监测工作环境的温湿度。
•氧气浓度测量仪:用于测量空气中氧气浓度的仪器。
通过监测氧气浓度,可以判断空气中氧气含量是否符合要求。
4.4 测量结果记录和管理所有测量结果需要记录并进行管理,包括测量时间、测量位置、测量数值等信息。
公司将建立相应的风量、风速、风质测量结果数据库,记录和管理所有测量数据。
5. 监测与评估公司将定期对工作场所中的风量、风速以及风质进行监测和评估,确保符合相关标准要求。
通风系统风量风压的测量
通风系统风量风压的测量SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#实验一风管风压、风速、风量的测定一、实验目的在通风除尘工程中,需要对系统中风压、风速及风量进行测定调整,使系统能在正常运行工况下工作。
测量风压、风速及风量的方法有许多种,现场测定一般采用毕托测压管和不同种类的微压计或U型管来进行测量。
通过实验,使学生掌握风管截面的测点布置方法,熟悉风压、风速及风量测量仪表的结构及工作原理,掌握风压、风速及风量的测量方法和计算公式,为专业测试打下基础。
二、实验装置通风系统综合测定实验装置如图1-1所示,该装置由风管、风机及测量箱组成。
图1-1 通风系统综合测定实验装置实验系统的正压管段与负压管段均设有测压孔,可用毕托管直接在测量断面上进行测量。
在风机入口,出口侧各安装有测量风量的测量箱,在箱内安装有标准空气流量喷嘴,为了使测量段的空气流速场较为均匀、在喷咀前后各设有整流板,其穿孔率约为40%,测量箱断面尺寸按空气流速不大于O.76m/s考虑。
I号测量箱,安装有标准喷嘴计3个,其规格为:D100 2个 D50 1个实验系统风量可通过调节多叶调节阀来改变其大小。
三、实验原理及实验方法(一) 毕托管与微压计测量风压、风速及风量空气在风管中流动时,管内空气与管外空气存在有压力差,这个压力差是直接由风管管壁来承受的,称为静压P j ,就空气某一质点来说,所承受的静压的方向为四面八方。
由于空气在风管内流动,形成一定的动压d P ,即为气流的动能。
动压数学表达式 22ρν=d P (Pa )或 gP d 22γν='P (O mmH 2)动压的方向为空气流动的方向。
静压与动压之和称为总压,数学表达式为d j q P P P +=(Pa )在毕托管上有测量总压、静压的测孔,与微压计配合使用,就可测出流体的静压、总压与动压。
静压和总压有正负之分,动压只为正值。
在测量总压和静压时,如数值超过微压计的量程,则采用U 型管压力计。
通风管道风压、风速、风量测定(精)
第八节通风管道风压、风速、风量测定(p235)(熟悉)一、测定位置和测定点(一测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。
测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。
测量断面设在弯头、三通等异形部件前面(相对气流流动方向时,距这些部件的距离应大于2倍管道直径。
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。
测量断面位置示意图见p235图2.8-1。
当测试现场难于满足要求时,为减少误差可适当增加测点。
但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角。
选择测量断面,还应考虑测定操作的方便和安全。
(二测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。
因此,必须在同一断面上多点测量,然后求出该断面的平均值。
1 圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,同心环的划分环数按(236)表2.8-1确定。
对于圆形风道,同心环上各测点距风道内壁距离列于表2.8—2。
测点越多,测量精度越高。
图2.8-2是划分为三个同心环的风管的测点布置图,其他同心环的测点可参照布置。
2 矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,如(p236)图2.8-3矩形风道测点布置图所示。
圆风管测点与管壁距离系数(以管径为基数表2.8-2 二、风道内压力的测定(一原理测量风道中气体的压力应在气流比较平稳的管段进行。
通风管道风压风速风量测定DOC
通风管道风压风速风量测定通风管道在工业生产和建筑物中起着重要的作用。
为确保通风管道的安全和有效,需要对通风管道进行风压、风速、风量测定。
以下是一些测量通风管道的基本方法。
一、风压测量仪器•喜马拉雅差压计•数字多功能仪表步骤1.在通风管道的两边墙壁上钻孔,使孔之间的距离相等。
2.将差压计连接在通风管道上,调整读数到设置零点。
3.打开通风机,记录差压计的读数。
如果差压计涉及到密封效应,需要进行更多调整以得到更准确的读数。
如果机器噪音太大,可以考虑将差压计放置在远离机器的地方。
计算通风管道的压强等于差压计的读数。
使用以下公式计算通风管道的风速: •风速(m/s)= 差压计的读数 * (角度系数 / 因素系数)•风速(英尺/分钟)= 差压计的读数 * (角度系数 / 因素系数) * 196.85其中,角度系数和因素系数根据差压计的型号而异。
二、风速测量仪器•热线风速仪•热膜风速仪步骤1.在通风管道上安装风速仪器。
尽量远离通风系统的进口和出口,以避免干扰。
2.打开通风机,等待五到十分钟,直到温度和湿度稳定。
3.风速仪器将记录并显示当前风速。
计算通风管道的风量等于风速和扇叶面积的乘积。
使用以下公式计算通风管道的风速:•风量(立方米/小时)= 风速 (米/秒) × 扇叶面积 (平方米) × 3600•风量(立方英尺/分钟)= 风速 (英尺/分钟) × 扇叶面积 (平方英尺) ×60三、风量测量仪器•平衡法风量计•流量计步骤1.在通风管道上安装风量计。
平衡法风量计需要根据通风管道的直径进行调整。
2.打开通风机,将通风管道进行平衡,直到读数稳定。
3.查看风量计上的读数。
计算无需计算。
风量计上的读数已经是通风管道的实际风量。
四、对于工业生产和建筑物中的通风管道,测量其风压、风速、风量是十分重要的。
使用合适的仪器和正确的测量方法,可确保通风管道的安全和有效。
不同的测量方法有不同的精度和调整要求,需要选择合适的测量方法和仪器。
通风系统风量、风压的测量
实验一风管风压、风速、风量的测定一、实验目的在通风除尘工程中,需要对系统中风压、风速及风量进行测定调整,使系统能在正常运行工况下工作。
测量风压、风速及风量的方法有许多种,现场测定一般采用毕托测压管和不同种类的微压计或U型管来进行测量。
通过实验,使学生掌握风管截面的测点布置方法,熟悉风压、风速及风量测量仪表的结构及工作原理,掌握风压、风速及风量的测量方法和计算公式,为专业测试打下基础。
二、实验装置通风系统综合测定实验装置如图1-1所示,该装置由风管、风机及测量箱组成。
图1-1 通风系统综合测定实验装置实验系统的正压管段与负压管段均设有测压孔,可用毕托管直接在测量断面上进行测量。
在风机入口,出口侧各安装有测量风量的测量箱,在箱内安装有标准空气流量喷嘴,为了使测量段的空气流速场较为均匀、在喷咀前后各设有整流板,其穿孔率约为40%,测量箱断面尺寸按空气流速不大于O.76m/s考虑。
I号测量箱,安装有标准喷嘴计3个,其规格为:D100 2个 D50 1个实验系统风量可通过调节多叶调节阀来改变其大小。
三、实验原理及实验方法(一) 毕托管与微压计测量风压、风速及风量空气在风管中流动时,管内空气与管外空气存在有压力差,这个压力差是直接由风管管壁来承受的,称为静压P j ,就空气某一质点来说,所承受的静压的方向为四面八方。
由于空气在风管内流动,形成一定的动压d P ,即为气流的动能。
动压数学表达式 22ρν=d P (Pa )或 gP d 22γν='P (O mmH 2)动压的方向为空气流动的方向。
静压与动压之和称为总压,数学表达式为d j q P P P +=(Pa )在毕托管上有测量总压、静压的测孔,与微压计配合使用,就可测出流体的静压、总压与动压。
静压和总压有正负之分,动压只为正值。
在测量总压和静压时,如数值超过微压计的量程,则采用U 型管压力计。
测出空气动压值后,即可求得相应的空气流速。
空气流速 ρdP v 2=(m/s )或 γd P g v '=2(m/s )测出测量断面面积F 及计算出空气的平均流速v 后即可计算空气体积流量L 。
风管风压风速风量测定实验报告册
学生实验报告实验课程名称:风管风压、风速、风量测定开课实验室:建筑设备与环境工程实验研究中心学院年级专业、班级学生姓名学号开课时间至学年第学期风管中风压、风速、风量的测定一.实验目的及任务风管/水管内压力、流速、流量量的测定是建筑环境与设备工程专业学生应该掌握的基本技能之一。
通过本实验要求:1) 掌握用毕托管及微压计测定风管中流动参数的方法。
2) 学会应用工程中常见的测定风管中流量的仪表。
3) 将同一工况下的各种流量测定方法的结果进行比较、分析。
4) 学习管网阻力平衡调节的方法二:测定原理及装置系统的测试拟采用毕托管和微压计测压法进行。
1- 集流器 2-静压环 3-整流器 4-风量测定仪 5电加热器 6流行测压器 7-热电偶 8-均衡器 9-压力测量器 10-实验试件 11-调节阀 12- 风机 13-电机图1:管道内风速测量装置三:实验测试装置及仪器1) 毕托管加微压计测压法测试原理测试过程中,首先选定管内气流比较平稳的断面作为测定界面,为了测断面的静压、全压,经断面划分为若干个等面积圆环或小矩形(本实验为获取较高精度的测试结果,将等面积小矩形设定为100x100mm ),然后用毕托管和微压计测得断面上个测点的静压和风管中心的全压,并计算平均动压P jp 、平均全压P qp ,由此计算P dp 及管中风量L : 静压的测量平均值:j1j2jnj p p p p P n++⋅⋅⋅=;全压的测量平均值q1q2qnq p p p p P n++⋅⋅⋅=qp jp dp P P P =+管内平均流速:dp V ==风管总风量:P L F V =⋅ 式中:n-----------断面上测点数 F ——— 断面面积㎡适用毕托管及微压计测量管内风量是基本方法,精度较高。
本测定装置多功能实验装置,除可测定风管内气流的压力、流速及流量外,还设有电加热器、换热器来测定换热量、空气阻力等。
2) 毕托管、微压计测压适用方法1- 准备好毕托管、微压计和连接胶管,并对微压计进行水平校正和倾斜管中的液面凋零。
风机风量测试方法
风机风量测试方法风机的风量测试是非常重要的,它可以帮助我们了解风机的性能、效率和正常运行状态。
在本文中,我们将介绍风机风量测试的方法和步骤。
直接法:1.测量风机进口和出口的面积:使用测量工具测量风机进口和出口的面积,确保准确无误。
2.确定测试点位置和数量:根据风管系统的结构和布局,选择测试点位置,确保测试点分布均匀且能够反映整个风机系统的风量情况。
3.安装风量测试仪器:在每个测试点上安装适当的风量测试仪器,如风速计、差压传感器等。
4.进行风量测试:启动风机,并记录不同测试点的风速和差压数据。
根据测得的风速和差压数据,计算得到每个测试点的风量。
5.计算总风量:将各个测试点的风量相加,得到整个风机系统的总风量。
间接法:1.测量风压:在风机进口和出口处分别安装差压传感器,测量进口和出口处的静压和总压。
2.计算差压:根据测得的进口和出口处的静压和总压,计算得到差压。
3.使用流量计算公式计算风量:根据差压和测得的进口和出口处的面积,使用流量计算公式计算得到风量。
4.进行多点测试:在不同位置设置多个测量点,重复上述步骤,根据测得的风量数据可以绘制出风量分布图。
无论是直接法还是间接法,都需要注意以下几点:-在测试过程中必须确保风机处于稳定工作状态,避免外界因素对测试结果的干扰。
-测量风速时,需要根据测试点位置来确定合适的风速计使用方式(如静测式或动测式)。
-差压传感器的选用要具有高精度和稳定性,以确保测试结果的准确性。
-在进行风速测量时,应该确保测量仪器的位置和方向是正确的,以避免因误差而导致测试结果的偏差。
-在测试结束后,需要对测试仪器进行校准,以确保下次测试的准确性。
总之,风机风量测试是确保风机正常运行和性能表现的重要手段。
通过选择合适的测试方法和正确的测试步骤,我们可以准确地测量和评估风机的风量,以便及时发现和解决潜在的问题,并保证风机系统的正常运行。
通风系统的风量风压测量
实验一 通风系统的风量风压测量一、实验目的:通过实验掌握通风系统的风量风压测量方法 二、实验内容:选择某一通风系统风管断面进行静压、动压、全压的测量。
计算该断面的平均风速及风量。
三、通风系统全压、静压、动压的测定(一) 毕托管的结构如图1所示,把毕托管按规定放入通风管道内。
测头对准气流。
A 、B 两端分别连接微压计时,A 端测出的压力值为全压,B 端测出的压力值为静压,把A 、B 两端连接在同一个微压计上时,测出的压差值就是动压。
即:q j d P P P -=(二) 倾斜式微压计的工作原理如图2所示。
微压计感受压力或压差时,玻璃管 内液面从零点上升。
其垂直高度,容器内的液面则从零点下降,下降到高度为h 2122F h ZF = (1-1) 式中,F 1——玻璃管断面积;F 2——容器的断面积。
BA图1 毕托管图2 倾斜式微压计原理图因此,两端的液面差1122sin F h h h Z F α⎛⎫=+=+ ⎪⎝⎭ (1-2)被测的压差值 12sin F p h Z g F γγρρα⎛⎫∆==+⎪⎝⎭式中,——液体的密度,kg/m 3 令 12sin a F K F γρα⎛⎫+= ⎪⎝⎭(1-3) 则 a p K Zg ∆= Pa (1-4)由(1-3)可以看出,值是随α角及的变化而变化的。
对应不同的α值及会有不同的值。
在y-1型微压计中,以30.81/kg m γρ=的酒精作为工作介质。
不同的α角所对应的值直接在微压计上标出。
测定的压力值大于大气压力时,应接在M 上。
测定的压力值小于大气压时,应接在N 上。
在测定压差值时,压力大的一端接M 上,压力小的一端接N 上。
在通风机的吸入段或压出段进行测量时,测压管与微压计的连接方式见“工业通风”P184图3-4。
(三) 测定断面的选择为了减少气流扰动对测定结果的影响,测定断面应选择在气流平直扰动少的直管段上。
测定断面设在局部构件前,距离要大于3倍以上管道直径,设在局部构件后相隔 距离应大于6倍管道直径。
管道风速传感器如何测量管道风压、风速、风量
管道风速传感器如何测量管道风压、风速、风量风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。
以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。
测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。
测量断面应尽量选择在气流平稳的直管段上。
测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。
当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。
当测试现场难于满足要求时,为减少误差可适当增加测点。
但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。
测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。
如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值最大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。
选择测量断面,还应考虑测定操作的方便和安全。
(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。
因此,必须在同一断面上多点测量,然后求出该断面的平均值。
1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。
2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。
二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。
测试中需测定气体的静压、动压和全压。
测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。
风道风压、风速和风量的测定
风道风压、风速和风量的测定一、实验的目的了解和掌握通风系统风道内风压、风速和风量的测点布置方法及测定方法,测定数据的处理和换算。
从而对通风系统气流分布是否均匀作出理论判断。
二、实验仪器和设备1.U型压力计一台(测量范围在10000Pa)2.倾斜式微压计一台(测量范围在250Pa)3.热球式风速仪一台(测量范围在0.05-30.0m/s)4.毕托管一支5.外径φ10mm,壁后1mm的橡胶管或乳胶管数米。
6.蒸馏水500ml7.纯酒精500ml8.钢卷尺一把,长度值不小于2m三、测试原理及方法1.测试原理风道风压、风速和风量的测定,可以通过毕托管、U型压力计、倾斜式微压计、热球式风速仪等仪器来完成。
毕托管、U型压力计可以测试风道内的全压、动压和静压,由测出的全压可以知道风机工作状况,通风系统的阻力等。
由测出的风道动压可以换算出风道的风量。
也可以用热球式风速仪直接测量风道内风速,由风速换算出风道内风量。
2.测量位置的确定由于风管内速度分布是不均匀的,一般管中心风速最大,越靠近管壁风速越小。
在工程实践中所指的管内气流速度大都是指平均风速。
为了得到断面的平均风速,可采用等截面分环法进行测定。
对圆形风管可将圆管断面划分若干个等面积的同心环,测点布置在等分各小环面积的中心线上,如图1所示,把圆面积分成m个等面积的环形,则:,然后将每个等分环面积再二等分,则此圆周距中心为Y n,与直径交点分别为1、2、3,…n点,这些点就是测点位置。
各小环划分的原则是:环数取决于风管直径,划分的环数越多,测得的结果越接近实际,但不能太多,否则将给测量和计算工作带来极大麻烦,一般参照表5分环。
表5 测量时不同管径所分环数n 表6 圆管测点位置值图2测压管标定测点位置 图3 矩形风管测点位置为了将测压管准确地放在风管中预定的位置,必须在测压管上作出标志。
由测压端中心线向管柄方向取风管直径的一半即等于R 为刻度中心,如图2所示,再根据计算出来的Y 1、Y 2、Y 3…Y n 值在管柄上逐次标出测点位置。
风量与风压
式中: cp—平均风速(米/秒);
H动cp—动压平均值(Pa)。
根据可计算出管道内风速,Q=υF可计算出管道内风量,式中F为管道截面面积。将所测得的平均动压与静压相加的即为风管平均全压。
最大风量的测量是调整可变排气系统使B箱的静压为零的条件下所测得的风量。此时,A、B箱之间的静压差是在风扇运转中而喷嘴打开时所测出。最大静压的测量是A箱口的风扇处于运转中而喷嘴关闭时所测到的。此情形即造成密闭箱,故其静压可达到最大值。A箱之静压值即其最大静压与大气压之差压。
当风扇在额定电压运转稳定时,其实际测量值即可记录下来。
1。风量
风量是指风扇通风面积与该面积平面速度之积。通风面积是出口面积减去涡舌处的投影面积。
平面速度是气流通过整个平面的气体运动速度,单位是米/秒。平面速度一定时,扇叶叶轮外径越大,通风面积越大,风量则越大。风量越大,冷空气吸热量则越大,空气流动转移时能带走更多的热量,散热效果越明显。
2。风压
风量换算表
静压换算表
网页所显示的特性曲线是在标准大气及固定的操作电压与频率之条件下,静压以风量容积为函数之表现。散热扇的静态效率等于风量之容积乘以静压再除以输入的电能。风扇是包括马达、扇叶与外框,因此其效率包括马达的电机效率,以及扇叶和外框的空气流动效率。
内风速。
五、测定数据的整理计算
对于所测得的全压或静压,只要将各测点的读值平均即为该断面的全压或静压值,但须注意正负。对于动压它永为正值,按上述方法测得某断面各测点的动压值后,必须按以下方法进行数据整理:
因为:
且
所以
为精确计算起见,其动压应计算为:
或
当t=20℃,γ=1.2kg/m3,则:
3.热球式风速仪一台(测量范围在0.05-30.0m/s)
通风系统风量、风压的测量概要
通风系统风量、风压的测量概要通风系统的风量和风压是评估系统工作效率的两个重要指标。
风量是指通风系统中单位时间内流过的空气量,通常以立方米/小时或立方英尺/分钟表示。
风压是指系统中流体的静态压力,通常以帕斯卡或英尺水柱高表示。
本文将介绍通风系统中测量风量和风压的方法和概念。
风量的测量直接侧压法通过单直管或多支直管测量管道中的风速,根据实测风速和管道截面积计算出风量,是一种简便、经济的方法。
但是该方法只适用于低速风场(小于40m/s)。
冷热水法该方法利用水箱来测量通风系统的流量,将冷却水或加热水流经管道,根据流量和温度差计算出风量。
由于需要水箱的支持,该方法要求场地和设备条件较为苛刻。
静压法静压法是一种比较准确的测量方法,常用于大型通风系统的测量。
该方法通过在管道上装置静压孔和静压管来测量管道两侧的静压差,进而计算出风量。
风压的测量静压法静压法可以同时测量风量和风压。
该方法需要安装静压头,根据静压差计算出风压。
具有准确、简便的优点,特别适用于大型通风系统的测量。
动压法动压法通过在管道中安装风速头,将动压差转化为风速,再根据静压差计算出风压。
该方法是测量风压的一种常用方法,但需要关注仪器选择和安装位置的影响。
差压法差压法也是计算风压的一种方法,将差压传感器放在管道上游和下游位置,并测量差压。
该方法对于管道内流体的密度要求不高,但需要关注仪器精度和安装的准确性。
本文介绍了通风系统中测量风量和风压的三种常用方法,包括静压法、动压法和差压法。
不同方法具有不同适用范围和利弊,使用时需要根据具体情况综合考虑。
同时,为了保证测量结果的准确性,还需要注意仪器的选择、安装位置和使用方法等方面的问题。
风机风量风压测定
M3车间发芽南风机与烘干北炉东风机测定过程2007年6月23日,济南风机厂张工、尹工到公司帮助测定两台风机(合同价5000元),具体测定过程如下:一、发芽南风机:1、在风机出风口处均匀开5个测量口,以便将测量仪器比托管放进,风口总长度约1.2米。
2、每个点测9组数据,平均13CM一个点,每个点测量全压P,动压P d,静压P St。
测量时比托管逆气流方向测量值为P全,顺气流方向为P St,两者之差为P d。
测量时比托管同时连在压力计上的读数即为P d,逆气流方向管读数为P全,顺气流方向为P St3、在检测过程中利用YJB—1500补偿微压计(测量范围0~1500P a 上海气象仪器厂)进行比对,分别测量P,动压P d,静压P St ,三者的关系P=P d+P St 。
最后将45个检测点计算出动压、静压的平均值,带入(4)的计算公式中。
5、计算风量、风压:Q=φV×F 其中V是上式计算的平均风速,F是风机出口截面积, φ为比托管系数,需每年校验一次,本次使用的比托管系数为0.728,若是S型的系数一般取1.05。
P=P d+P St,P为所测风压,P d为动压,P St为静压。
t实=17℃F=风机转速=822r/min二、烘干北炉东风机检测过程:1、在风机出风口处均匀开5个测量口,以便将测量仪器比托管放进,风口总长度约1.2米。
2、每个点测9组数据,平均13CM一个点,每个点测量全压P,动压P d,静压P St。
3、在检测过程中未利用YJB—1500补偿微压计(测量范围0~1500P a上海气象仪器厂)进行比对,分别测量P,动压P d,静压P St ,三者的关系P=P d+P St。
最后将45个检测点计算出动压、静压的平均值,带入(4)的计算公式中。
5、计算风量、风压:Q=V×F 其中V是上式计算的平均风速,F是风机出口截面积。
P=P d+P St,P为所测风压,P d为动压,P St为静压。
风量风压风速的计算方法
风量风压风速的计算方法一、测定点位置的选择:通风管道内风速及风量的测定,是通过测量压力再换算取得的。
要得到管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面,减少气流扰动对测量结果的影响,也很重要。
测量断面应选择在气流平稳的直管段上。
由于速度分布的不均匀性,压力分布也是不均匀的,因此必须在同一断面上多点测量,然后求出平均值。
圆形风道在同一断面设两个互相垂直的测孔,并将管道断面分成一定数量的等面积同心环。
矩形风道可将风道断面分成若干等面积的小矩形,测点布置在每个小矩形的中心。
二、风道内压力的测定。
测试中需测定气体的静压、动压和全压。
测全压的孔应迎着气流的方向,测静压的孔应垂直于气流的方向,全压和静压之差即为动压。
气体压力的测量通常是用插入风道中的测压管将压力信号取出,常用的仪器是皮托管和压力计。
标准皮托管是一个弯成90°的双层同心圆管。
压力计有U形压力计和倾斜式微型压力计。
皮托管和压力计相配合测出压力。
三、风速的测定。
常用的测定管道内风速的方法有间接式和直读式。
间接式先测得管内某点动压,再算出该点风速。
此法虽然繁琐,由于精度高,在通风测试系统中得到广泛应用。
直读式测速仪是热球式热电风速仪,测头会受到周围空气流速的影响,根据温升的大小即可测出气流的速度。
四、局部吸排风口风速的测定:1,匀速移动法:使用叶轮式风速仪,沿风口断面匀速移动,测得风口平均风速。
2,定点测定法:使用热球式热电风速仪,按风口断面大小,分成若干面积相等的小方块,在小方块的中心测定风速,取其平均值。
五、局部吸排风口风量的测定:1,用动压法测定断面动压,计算出风速,算出风量。
2,用动压法不易找到稳定的测压断面时,使用静压法求得风量。
风量测试方案
风量测试方案一、背景介绍风量测试是指对某一空气系统中的风量进行测量和评估,以确保系统正常运行且达到设计要求。
在建筑、工业生产、暖通空调等领域中,风量测试被广泛应用。
为了保证测试的准确性和可靠性,需要制定一套科学的风量测试方案。
二、测试目的风量测试的主要目的是评估空气系统的性能,包括空气流速、风压、风量等参数,以确保系统的工作效率和室内空气质量符合设计标准。
通过风量测试可以发现系统中可能存在的问题,如漏风、堵塞、风量不均等,并针对性地进行调整和改进。
三、测试设备与方法1. 测试设备风量测试需要使用专业的测试仪器和设备,包括风速仪、风压表、风量计等。
这些设备需要经过校准和检验,确保其精度和准确性,以保证测试结果的可信度。
2. 测试方法风量测试可以采用以下方法之一:(1) 静压法:通过测量管道两端的静压差,推导出风量。
(2) 动压法:通过测量气流中的动压差,反推出风量。
(3) 平均风速法:通过将测试区域划分成多个小区域,分别测量风速并取平均值,计算得到风量。
四、测试步骤1. 确定测试区域:根据需要测试的空气系统,在测试区域内设置合适的测点,覆盖系统的各个关键部位。
2. 安装测试仪器:将风速仪、风压表等测试设备正确安装在相应的位置上,确保测试仪器与被测系统完全连接。
3. 进行测试:根据选定的测试方法,进行相应的测试操作。
根据需要,可以进行静压法、动压法或平均风速法的测试过程。
4. 数据记录与分析:在测试过程中准确记录所测数据,包括风速、风压、面积等。
根据记录的数据进行分析,计算得到风量,并与设计值进行对比。
5. 结果评估与报告:根据测试结果对系统的性能进行评估,判断是否符合设计要求。
将测试结果整理成报告,包括测试方法、测试数据、评估结果等,并提出针对性的建议和改进措施。
五、注意事项1. 环境条件:测试过程中应注意周围环境的气温、湿度等参数,以确保测试结果的准确性。
2. 安全措施:在进行风量测试时,应注意相关的安全事项,如避免触电、防止仪器损坏等。
风压风速风量仪使用方法
风压风速风量仪使用方法嘿,朋友们!今天咱就来唠唠风压风速风量仪这玩意儿咋用。
你看啊,这风压风速风量仪就像是一个小侦探,能帮咱探测出风的各种秘密呢!它可以准确地测量出风压、风速还有风量,是不是很厉害呀!首先呢,拿到风压风速风量仪后,咱得好好检查检查,看看它是不是完好无损的,就像咱出门前得照照镜子,整理整理衣冠一样。
可别小瞧这一步,万一它有啥小毛病,后面测出来的数据不就不准确啦!然后呢,找个合适的地方把它放好。
这地方可不能随随便便选哦,得是能让风自由流动的,没有太多障碍物的。
你想想,要是周围都是乱七八糟的东西挡着,那风还怎么好好表现自己呀,对吧?接下来,就是启动它啦!就像给汽车点火一样,让它开始工作。
这时候你就可以看到它上面的各种数字和指针开始跳动啦,是不是感觉很神奇?在测量的过程中啊,你得有耐心。
风这东西可不是那么好捉摸的,有时候大有时候小,就像人的心情一样。
所以咱得等它稳定下来,才能得到准确的数据呢。
哎呀,你说这风压风速风量仪是不是就像咱的一个小助手呀,帮咱了解风的情况。
比如说,咱想知道家里通风好不好,用它一测就知道啦。
或者是在一些特殊的工作环境里,它能告诉咱风的情况,保障大家的安全呢。
咱再打个比方,风压风速风量仪就像是一个裁判,能公正地给出风的各项数据。
它不会偏袒风,也不会故意为难风,就是实事求是地把风的真实情况呈现给咱。
使用风压风速风量仪的时候,可别粗心大意哦。
要像爱护自己的宝贝一样爱护它,别摔了它,也别让它沾到水啥的。
这样它才能好好地为咱服务,长时间地陪伴咱呀。
总之呢,风压风速风量仪的使用方法其实并不难,只要咱用心去对待它,按照正确的步骤来操作,它就能发挥出大作用呢!咱就能通过它更好地了解风,利用风,让风为咱的生活和工作带来便利。
所以,还等什么呢,赶紧去试试吧!。
机械通风设备使用方法、测试方法、故障排除
仓储部开展“一专多能”岗位大练兵培训资料之八通风设备的使用方法(规范操作)、测试方法(风压、风量、调试技术)、故障排除一、基本概念和知识1、机械通风:是利用风机产生的压力,将外界空气送入粮堆,实现外界空气置换出粮粒间空气的技术称为机械通风2、静压(H j):垂直作用于风道壁上的单位面积上的压力。
静压力用来克服通风风网的阻力。
静压力通常用毫米水柱计量,现规定用帕来计量。
常用U型管来测量静压力。
3、动压(H d):单位体积气体具有的动能称为动压。
可用毕托管测出。
H d=V2/2·ρ4、全压(H):空气在管道流动时具有的总能量称为全压,其能量为静压和动压两部分H=H j+H d5、气体的压力:是指气体在带为面积容器壁上的垂直作用力。
1标准大气压=760mmHg=101325Pa 1mmH2O=9.8066Pa 约等于9.81Pa 1Pa=1N/m2用U型管测定风管内的压力时,压力计所指示的压力是风管中气体的实际压力与外界大气压力的差值,称为相对压力或表压力。
当风管中的压力大于大气压时,表压力为正值,若风管中的压力低于外界大气压力时,表压力为为负值。
6、气体的密度:单位体积的气体具有的质量称为气体的密度t时的密度公式为ρt=1.293×273÷(273+t)7、机械通风系统分类按通风范围分为全面通风和局部通风按风网类型分为地槽通风系统、地上笼通风系统、单管通风系统、多管通风系统、箱式通风系统、径向通风系统、无风道通风系统按送风方式分为压入式通风、吸出式通风、压人与吸出相结合式通风、环流通风按通风机类型分为离心式通风机通风、轴流式通风机通风、混流式通风机通风8、离心式通风机8.1离心式通风机:主要由叶轮、机壳、进风口、出风口和电机等部件组成。
8.2工作原理:通风机的叶轮在电动机的带动下随机轴高速旋转,叶片间的空气随着叶轮旋转获得离心力,空气在离心力作用下甩出而汇集到机壳,在叶轮吸出口形成真空,同时大气中的空气在大气压力作用下而被吸入叶轮,以补充排出的空气,这样叶轮不停的旋转,则有空气不断的进入风机和从风机中排出。