金属体积成型杠杆锻件设计

合集下载

杠杆零件的加工工艺及夹具毕业设计

杠杆零件的加工工艺及夹具毕业设计

杠杆零件的加工工艺及夹具设计绪论加工工艺及夹具毕业设计是对所学专业知识的一次巩固,是在进行社会实践之前对所学各课程的一次深入的综合性的总复习,也是理论联系实际的训练;机床夹具已成为机械加工中的重要装备,同时是机械加工不可缺少的部件,在机床技术向高速、高效、精密、复合、智能、环保方向发展的带动下,夹具技术正朝着高精、高效、模块、组合、通用、经济方向发展;机床夹具的设计和使用是促进生产发展的重要工艺措施之一;随着我国机械工业生产的不断发展,机床夹具的改进和创造已成为广大机械工人和技术人员在技术革新中的一项重要任务;2 杠杆加工工艺规程设计零件的作用题目给出的零件是等臂的杠杆;它的主要的作用是用来支承、固定的;要求零件的配合要符合要求;传统的杠杆加工由于加工比较粗糙加工过程比较简单,既耗时又没有科学性此杠杆如果按传统加工工艺来加工由于没有考虑到工件材料及脆塑性能将会影响加工结果,再有加工工艺过程顺序选择也将会影响加工结果;为此,此夹具就是要克服这些缺点;零件的工艺分析由分析零件图可知,杠杆中间的两平面和左右两边的端面要进行切削加工,Φ25、Φ10、Φ8孔的端面为平面,这样可以防止加工的过程中钻头钻偏,可以保证加工的精度和配合的精度;另外,除了Φ10孔以外,对其余的三孔的孔内表面要求较高;要采取必要的措施以保证其表面精度;但这些加工精度可以在正常的生产条件下采用经济的方法保质保量的加工出来;端面和孔的加工可以通过通用的铣床和钻床保证加工精度,而不需要使用高精度的机床,通过钻削、铣削的加工就可以达到要求;杠杆加工的主要问题确定毛坯的制造形式零件的材料灰铸铁HT200,考虑到杠杆零件在工作中的载荷平稳并且处于润滑状态,因此选择润滑效果较好的铸铁,以使金属纤维尽量不被裁断,保证零件工作可靠;由于年产量为4000件,达到大批生产的水平,而且零件的轮廓尺寸不大,铸造表面质量的要求高,故可采用铸造质量稳定的,适合大批生产的金属模铸造;便于铸造和加工工艺过程,而且还可以提高生产率;基面的选择1粗基准的选择;对于本零件而言,按照粗基准的选择原则,选择本零件的加工表面就是宽度为Ф40mm的肩面表面作为加工的粗基准,可用压板对肩台进行加紧,利用一组V形块支承Φ40mm的外轮廓作主要定位,以消除z、z、y、y四个自由度;再以一面定位消除x、x两个自由度,达到完全定位,就可加工Φ25H7的孔;2精基准的选择;主要考虑到基准重合的问题,和便于装夹,采用Φ25H7的孔作为精基准;确定工艺路线1、工艺路线方案一:铸造时效涂底漆工序1:粗精铣宽度为Ф40mm的上下平台和宽度为30mm的平台工序2:粗精铣宽度为Φ30mm的凸台表面工序3:钻孔Ф25H9使尺寸达到Ф23mm;工序4:扩孔钻钻孔Ф25H9使尺寸达到Ф;工序5:铰孔Ф25H9使尺寸达到Ф25H9;工序6 :钻Φ10H7的内孔使尺寸达到;工序7:粗铰Φ10H7内孔使尺寸达到;工序8:精铰Φ10H7内孔使尺寸达到Φ10H7mm;工序9:钻、粗、精铰2×Φ8H7小孔使尺寸达到Φ8H7;工序10:检验入库;2、工艺路线方案二:铸造时效涂底漆工序1:粗精铣宽度为Ф40mm的上下平台和宽度为30mm的平台; 工序2:粗精铣宽度为Φ30mm的凸台表面工序3:钻孔Ф25H9使尺寸达到Ф23mm;工序4:钻2×Ф8H7的小孔使尺寸;工序5:扩孔钻钻孔Ф25H9使尺寸达到Ф;工序6:铰孔Ф25H9使尺寸达到Ф25H9;工序7 :钻Φ10H7的内孔使尺寸达到;工序8:粗铰Φ10H7内孔使尺寸达到;工序9:精铰Φ10H7内孔使尺寸达到Φ10H7mm;工序10:粗铰2×Φ8H7小孔使尺寸达到;工序11:精铰2×Φ8H7小孔使尺寸达到Φ8H7;工序12:检验入库;上述两种工艺方案的特点是:方案一是根据宽度为40mm的上下肩面作为粗基准,Ф25H7孔作为精基准,所以就要加工Ф25孔时期尺寸达到要求的尺寸,那样就保证了2×Ф8小孔的圆跳动误差精度等;而方案二则先粗加工孔Ф25,而不进一步加工就钻Ф8H7,那样就很难保证2×Ф8的圆度跳动误差精度;所以决定选择方案一作为加工工艺路线比较合理;结合方案一的工艺路线,根据工序集中的加工原则,最终制定下面工艺路线:工序一:毛坯准备工步1:铸造毛坯工步2:表面时效热处理工步3:涂底漆工序二:粗精铣宽度为Ф40mm的上下平台和宽度为30mm的平台;工步1:粗精铣宽度为Ф40mm的上平台和宽度为30mm的平台;工步2:粗精铣宽度为Ф40mm的下平台工序三:粗精铣宽度为Φ30mm的凸台表面工序四:钻、扩、粗铰、精铰Ф25H9孔工步1:钻Ф25H9孔工步2:扩Ф25H9孔工步3:粗铰Ф25H9孔工步4:精铰Ф25H9孔工序五:钻、粗铰、精铰2×Ф8H7孔工步1:钻2×Ф8H7孔工步2:粗铰2×Ф8H7孔工步3:精铰2×Ф8H7孔工序六:钻、粗铰、精铰Φ10H7孔工步1:钻Φ10H7孔工步2:粗铰Φ10H7孔工步3:精铰Φ10H7孔工序七:表面去毛刺工序八:检验入库本零件的加工表面有:粗精铣宽度为Φ40mm的上下平台、钻Φ10H7孔、钻2×Ф8+的小孔、粗精铣Φ30凸台的平台;材料为HT200,加工方法选择如下:1、Φ40mm圆柱的上平台:公差等级为IT8~IT10,表面粗糙度为,采用粗铣→精铣的加工方法,并倒R3圆角;2、Φ40mm圆柱的下平台:公差等级为IT8~IT10,表面粗糙度为,采用采用粗铣→精铣的加工方法,并倒R3圆角;3、30mm的凸台上下表面:公差等级为IT13,表面粗糙度为,采用粗铣→精铣的加工方法;4、钻Φ10H7内孔:公差等级为IT7~IT8,表面粗糙度为,平行度为μmA,采用钻孔→粗铰→精铰的加工方法;5、钻Φ25H9内孔:公差等级为IT6~IT8,表面粗糙度为,采用钻孔→扩孔钻钻孔→精铰的加工方法,并倒1×45°内角;6、钻Φ8H7内孔:公差等级为IT6~IT8,表面粗糙度为,采用钻孔→粗铰→精铰的加工方法;由于生产类型为大批生产,故加工设备宜以采用通用机床为主,辅以少量专用机床;其生产方式为以通用机床加专用夹具为主,辅以少量专用机床的流水生产线;工件在各级床上的装卸及各机床间的传送均由人工完后;粗精铣宽度为Ф40mm的上下平台和宽度为30mm的平台;考虑到工件的定位夹紧方案及夹具结构设计等问题,采用立铣,选择X5012立式铣床参考文献:机械制造工艺设计简明手册,主编:李益民,机械工业出版社,刀具选D=2mm的削平型立铣刀参考文献:机械制造工艺设计简明手册,主编:李益民,机械工业出版社、专用夹具、专用量具和游标卡尺;粗精铣宽度为Φ30mm的凸台表面;采用X5021立式铣床,刀具选D=2mm的削平型铣刀,专用夹具、专用量检具和游标卡尺;钻孔Ф25H9使尺寸达到Ф23mm;采用Z535型钻床,刀具选莫氏锥柄麻花钻莫氏锥柄2号刀D=23mm,专用钻夹具,专用检具;扩孔钻钻孔Ф25H9使尺寸达到Ф;采用立式Z535型钻床,刀具选D=的锥柄扩孔钻莫氏锥度3号刀,专用钻夹具和专用检具;铰孔Ф25H9使尺寸达到Ф25H9;采用立式Z535型钻床,刀具选D=25mm的锥柄机用铰刀,并倒1×45°的倒角钻用铰夹具和专用检量具;钻2×Ф8H7的小孔使尺寸达到;采用立式Z518型钻床,刀具选用D=的直柄麻花钻,专用钻夹具和专用检量具;钻Φ10H7的内孔使尺寸达到Φ;采用立式Z518型钻床,刀具选用D=的直柄麻花钻,专用的钻夹具和量检具;粗铰Φ10H7内孔使尺寸达到Φ;采用立式Z518型钻床,刀具选用D=10mm的直柄机用铰刀,专用夹具和专用量检具;精铰Φ10H7内孔使尺寸达到Φ10H7mm;采用立式Z518型钻床,选择刀具D=10mm的精铰刀,使用专用夹具和量检具;粗铰2×Φ8H7小孔使尺寸达到Φ;采用立式Z518型钻床,选择刀具为D=8mm直柄机用铰刀,使用专用夹具和专用量检具;精铰2×Φ8H7小孔使尺寸达到Φ8H7;采用立式Z518型钻床,选择刀具为D=8mm的直柄机用铰刀,使用专用的夹具和专用的量检具参考文献:机械制造工艺设计简明手册,主编:李益民,机械工业出版社; 工序一:毛坯准备工步1:铸造毛坯工步2:表面时效热处理由于毛坯铸造内应力较大,为了消除内应力,减小变形,保证精度的稳定性,铸造后要安排人工时效处理;工步3:涂底漆工序二:粗精铣宽度为Ф40mm的上下平台和宽度为30mm的平台;工步1:粗精铣宽度为Ф40mm的上平台和宽度为30mm的平台;工件材料:HT200,铸造加工要求:粗铣φ40上下端面和宽度为30的平台面机床:XA6132万能立式升降铣床机械加工工艺师手册表刀具:高速钢圆柱型铣刀机械加工工艺师手册表切削用量1确定切削深度根据高速钢圆柱型铣刀GB1115-85,选择铣刀直径50mm,粗铣齿数Z=6,精铣齿数Z=8;查金属机械加工工艺人员手册有,粗铣平面选择ap=3~8mm,精铣平面选择ap=~1mm,因为切削量较小,粗铣平面选择ap=3mm,精铣平面选择ap=1mm;2确定进给量查金属切削手册选取圆柱铣刀铣削铸造件的进给量粗铣fz=z,精铣fz=z;3 确定切削速度由于粗铣铸造件时,切削负荷和载荷较大,查金属切削手册得,粗铣 Vc=15m/min,精铣 Vc=26m/min;4确定铣刀直径和工作台的进给量查金属切削手册得D=50mm,由n=1000V/ πd 得,粗铣:ns=1000×15/×50=min,取ns=96r/min,按机床选取nw=95r/min;由V=nπd/1000=×95×50/1000=min当nw=95r/min时,工作台每分钟的进给量:fm=fz×z×nw=×6×95=min精铣:ns=1000×26/×50=min,取ns=166r/min,按机床选取nw=150r/min;由V=nπd/1000=×50×150/1000=min当nw=150r/min时,工作台每分钟的进给量:fm=fz×z×nw=×8×150=72m/min5计算基本工时查金属切削手册得l=83mm,l1=,l2=3mm粗铣:t=l+l1+l2/fm=83++3/=精铣:t=l+l1+l2/fm=83++3/72=工步2:粗精铣宽度为Ф40mm的下平台工件材料:HT200,铸造加工要求:粗精铣宽度为Ф40mm的下平台机床:XA6132万能立式升降铣床机械加工工艺师手册表刀具:高速钢圆柱型铣刀机械加工工艺师手册表切削用量1确定切削深度根据高速钢圆柱型铣刀GB1115-85,选择铣刀直径50mm,粗铣齿数Z=6,精铣齿数Z=8;查金属机械加工工艺人员手册有,粗铣平面选择ap=3~8mm,精铣平面选择ap=~1mm,因为切削量较小,粗铣平面选择ap=3mm,精铣平面选择ap=1mm;2确定进给量查金属切削手册选取圆柱铣刀铣削铸造件的进给量粗铣fz=z,精铣fz=z;3 确定切削速度由于粗铣铸造件时,切削负荷和载荷较大,查金属切削手册得,粗铣 Vc=15m/min,精铣 Vc=30m/min;4确定铣刀直径和工作台的进给量查金属切削手册得D=50mm,由n=1000V/ πd 得,粗铣:ns=1000×15/×50=min,取ns=96r/min,按机床选取nw=95r/min;由V=nπd/1000=×95×50/1000=min当nw=95r/min时,工作台每分钟的进给量:fm=fz×z×nw=×6×95=min精铣:ns=1000×26/×50=min,取ns=166r/min,按机床选取nw=190r/min;由V=nπd/1000=×50×190/1000=min当nw=190r/min时,工作台每分钟的进给量:fm=fz×z×nw=×8×190=min5计算基本工时查金属切削手册得l=30mm,l1=,l2=3mm粗铣:t=l+l1+l2/fm=30++3/=精铣:t=l+l1+l2/fm=30++3/=工序三:粗精铣宽度为Φ30mm的凸台表面工件材料:HT200,铸造加工要求:粗精铣宽度为Ф40mm的下平台机床:XA6132万能立式升降铣床机械加工工艺师手册表刀具:高速钢圆柱型铣刀机械加工工艺师手册表切削用量1确定切削深度根据高速钢圆柱型铣刀GB1115-85,选择铣刀直径50mm,粗铣齿数Z=6,精铣齿数Z=8;查参考文献有,粗铣平面选择ap=3~8mm,精铣平面选择ap=~1mm,因为切削量较小,粗铣平面选择ap=3mm,精铣平面选择ap=1mm;2确定进给量查金属切削手册选取圆柱铣刀铣削铸造件的进给量粗铣fz=z,精铣fz=z;3 确定切削速度由于粗铣铸造件时,切削负荷和载荷较大,查金属切削手册得,粗铣 Vc=15m/min,精铣 Vc=26m/min;4确定铣刀直径和工作台的进给量查金属切削手册得D=50mm,由n=1000V/ πd 得,粗铣:ns=1000×15/×50=min,取ns=96r/min,按机床选取nw=95r/min;由V=nπd/1000=×95×50/1000=min当nw=95r/min时,工作台每分钟的进给量:fm=fz×z×nw=×6×95=min精铣:ns=1000×26/×50=min,取ns=166r/min,按机床选取nw=150r/min;由V=nπd/1000=×50×150/1000=min当nw=150r/min时,工作台每分钟的进给量:fm=fz×z×nw=×8×150=72m/min5计算基本工时查金属切削手册得l=30mm,l1=,l2=3mm粗铣:t=l+l1+l2/fm=30++3/=则粗铣2Φ30凸台表面:2t=×2=精铣:t=l+l1+l2/fm=30++3/72=则精铣2Φ30凸台表面:2t=×2=工序四:钻、扩、粗铰、精铰Ф25H9孔1、加工余量的确定由参考文献得钻孔余量为,扩孔的余量为,粗铰的余量为,精的余量为;2、切削用量的计算1 钻孔工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f= mm/r,背吃刀量的确定 ap= mm;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=20 m/min由公式:n=1000V/πd得该工序的钻头转速n= r/min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=250 r/min,得该工序的实际钻削速度:V=ndπ/1000=250××23/1000=18m/min2扩孔工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定ap= mm;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=4m/min由公式:n=1000V/πd得该工序的钻头转速n=min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=47 r/min,得该工序的实际钻削速度: V=ndπ/1000=47××1000=min3 粗铰工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定 ap=;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=3m/min由公式:n=1000V/πd得该工序的钻头转速n=min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=47r/min,得该工序的实际钻削速度:V=ndπ/1000=47××1000=min4 精铰工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定 ap=;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=5m/min由公式:n=1000V/πd得该工序的钻头转速n=min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=63r/min,得该工序的实际钻削速度:V=ndπ/1000=63××25/1000=min3、基本工时的计算1基本时间的计算1钻孔工步由机械制造技术基础课程设计课程设计指南表2-26得:T=L/fn=l+l1+l2/fn其中1=54 mm,l2=1 mml1=D×cotkr/2+1~2=×cot56/2+1~2=;f= mm/r n=250 r/min将上述结果代入公式,可得到该公序的基本时间:T=54++1/×250=2扩孔工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中1=54 mm,l3=3 mml1=D-d1 cotkr/2+1~2= f= mm/r n=47r/min将上述结果代入公式,可得到该公序的基本时间:T=54++3/×47=3粗铰工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中l1=;l2=15mm由机械制造技术基础课程设计课程设计指南表2-27得:kr=150、ap=D-d/2=查得l=54mm;f= mm/r;n=47r/min;将上述结果代入公式,可得到该公序的基本时间:T=54++15/×47=4精铰工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中l1=;l2=13mm由机械制造技术基础课程设计课程设计指南表2-27得:kr=150、ap=D-d/2=/2=查得l=54mm;f=r;n=63r/min将上述结果代入公式,可得到该公序的基本时间:T=54++13/×63=2辅助时间的计算由机械制造技术基础课程设计课程设计指南得,辅助时间Ta与基本时间T的关系为:Ta=~T取Ta=,则本工序的辅助时间为:钻孔工步的辅助时间Ta==×=扩孔工步的辅助时间Ta==×=粗铰工步的辅助时间Ta==×=精铰工步的辅助时间Ta==×=3其他时间的计算除了基本时间和辅助时间外,每道工序的单件时间还包括布置工地时间、休息时间和准备时间和终结时间等的总时间Tb,与基本时间和辅助时间的关系为:Tb=×T+Ta则本工序的辅助时间为:钻孔工步Tb=×T+Ta=×+=扩孔工步Tb=×T+Ta=×+=粗铰工步Tb=×T+Ta=×+=精铰工步Tb=×T+Ta=×+=(4)单件总时间的计算钻孔工步总时间Tz=T+Ta+Tb=++=扩孔工步总时间Tz=T+Ta+Tb=++=粗铰工步总时间Tz=T+Ta+Tb=++=精铰工步总时间Tz=T+Ta+Tb=++=即工序四的所用总时间T=+++=工序五:钻、粗铰、精铰2×Ф8H7孔1、加工余量的确定由参考文献得钻孔余量为,粗铰的余量为,精的余量为;2、切削用量的计算1 钻孔工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定ap= mm;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=22m/min由公式:n=1000V/πd得该工序的钻头转速n=1000 r/min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=1000 r/min,得该工序的实际钻削速度: V=ndπ/1000=10××1000=22m/min2 粗铰工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定 ap=;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=11m/min由公式:n=1000V/πd得该工序的钻头转速n=438/min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=450r/min,得该工序的实际钻削速度: V=ndπ/1000=450××1000=min3 精铰工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定 ap=;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=18m/min由公式:n=1000V/πd得该工序的钻头转速n=717/min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=720r/min,得该工序的实际钻削速度: V=ndπ/1000=720××8/1000=min3、基本工时的计算1基本时间的计算1钻孔工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中1=15 mm,l2=2mml1=D×cotkr/2+1~2=×cot56/2+1~2=8mm;f=r n=1000 r/min将上述结果代入公式,可得到该公序的基本时间:T=15+8+1/×1000=则2T=2粗铰工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中l1=;l2=15mm由机械制造技术基础课程设计课程设计指南表2-27得:kr=150、ap=D-d/2=查得l=54mm;f=r;n=450r/min将上述结果代入公式,可得到该公序的基本时间:T=15++15/×450=则2T=1min3精铰工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中l1=;l2=13mm由机械制造技术基础课程设计课程设计指南表2-27得:kr=150、ap=D-d/2=/2=查得l=15mm;f=r;n=720r/min将上述结果代入公式,可得到该公序的基本时间:T=515++13/×720=则2T=2辅助时间的计算由机械制造技术基础课程设计课程设计指南得,辅助时间Ta与基本时间T的关系为:Ta=~T取Ta=,则本工序的辅助时间为:钻孔工步的辅助时间Ta==×=粗铰工步的辅助时间Ta==×1=精铰工步的辅助时间Ta==×=3其他时间的计算除了基本时间和辅助时间外,每道工序的单件时间还包括布置工地时间、休息时间和准备时间和终结时间等的总时间Tb,与基本时间和辅助时间的关系为:Tb=×T+Ta则本工序的辅助时间为:钻孔工步Tb=×T+Ta=×+=粗铰工步Tb=×T+Ta=×1+=精铰工步Tb=×T+Ta=×+=(5)单件总时间的计算钻孔工步总时间Tz=T+Ta+Tb=++=粗铰工步总时间Tz=T+Ta+Tb=1++=精铰工步总时间Tz=T+Ta+Tb=++=即工序四的所用总时间T=++=工序六:钻、粗铰、精铰Φ10H7孔1、加工余量的确定由参考文献得钻孔余量为,粗铰的余量为,精的余量为;2、切削用量的计算1 钻孔工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定ap=;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=22m/min由公式:n=1000V/πd得该工序的钻头转速n=1000 r/min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=1000 r/min,得该工序的实际钻削速度: V=ndπ/1000=10××1000=30m/min2 粗铰工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定 ap=;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=11m/min由公式:n=1000V/πd得该工序的钻头转速n=438/min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=450r/min,得该工序的实际钻削速度: V=ndπ/1000=450××1000=min3 精铰工步由于该材料为HT200,进给量的确定由机械制造技术基础课程设计课程设计指南选取该工步的每转进给量为f=r,背吃刀量的确定 ap=;切削速度的计算:由机械制造技术基础课程设计课程设计指南初选切削速度为V=18m/min由公式:n=1000V/πd得该工序的钻头转速n=717/min,参照机械制造技术基础课程设计课程设计指南所列Z550型立式钻床的主轴转速,取转速n=720r/min,得该工序的实际钻削速度: V=ndπ/1000=720××10/1000=min3、基本工时的计算1基本时间的计算1钻孔工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中1=54 mm,l2=1mml1=D×cotkr/2+1~2=×cot56/2+1~2=;f=r n=250r/min将上述结果代入公式,可得到该公序的基本时间:T=54++1/×250=2粗铰工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中l1=;l2=15mm由机械制造技术基础课程设计课程设计指南表2-27得:kr=150、ap=D-d/2=/2=查得l=54mm;f=r;n=47r/min将上述结果代入公式,可得到该公序的基本时间:T=54++15/×47=3精铰工步由机械制造技术基础课程设计课程设计指南表2-26得:T= L/fn=l+l1+l2/fn其中l1=;l2=13mm由机械制造技术基础课程设计课程设计指南表2-27得:kr=150、ap=D-d/2=查得l=54mm;f=r;n=63r/min将上述结果代入公式,可得到该公序的基本时间:T=54++15/×63=2辅助时间的计算由机械制造技术基础课程设计课程设计指南得,辅助时间Ta与基本时间T的关系为:Ta=~T取Ta=,则本工序的辅助时间为:钻孔工步的辅助时间Ta==×=粗铰工步的辅助时间Ta==×=精铰工步的辅助时间Ta==×=3其他时间的计算除了基本时间和辅助时间外,每道工序的单件时间还包括布置工地时间、休息时间和准备时间和终结时间等的总时间Tb,与基本时间和辅助时间的关系为:Tb=×T+Ta则本工序的辅助时间为:钻孔工步Tb=×T+Ta=×+=粗铰工步Tb=×T+Ta=×+=精铰工步Tb=×T+Ta=×+=(6)单件总时间的计算钻孔工步总时间Tz=T+Ta+Tb=++=粗铰工步总时间Tz=T+Ta+Tb=++=精铰工步总时间Tz=T+Ta+Tb=++=即工序四的所用总时间T=++=工序七:表面去毛刺工序八:检验入库根据该零件的生产纲量为每年产4000件;按一年360天,每天总工作时间为8小时;则每个零件所需的额定时间为:t=360×8×60÷4000=;根据计算所得的机动时间加上每道工序间的辅助时间;所用是实际时间为所以该方案满足生产要求;3 夹具的设计本次的夹具为—工序9:钻、粗、精铰2×Φ8H7小孔使尺寸达到Φ8H7而设计的;本工序所加工的孔是位于Φ30凸台平面内,孔径不大,工件重量较轻、轮廓尺寸不是很大等原因,采用翻转式钻模;确定设计方案这道工序所加工的孔在Φ30凸台平面上,且与土台面垂直,平行度△A=;根据工件结构特点,其定位方案有:工件以Φ25+孔及端面和水平面底、Φ30的凸台分别在台阶定位销、支承钉上实现完全定位;钻Φ8H7mm孔时工件为悬臂,为防止工件加工时变形,采用了螺旋辅助支承,当辅助支承与工件接触后,用螺母锁紧;选择定位元件1选择带台阶面的定位销,作为以φ 25H9孔及其端面的定位元件,定位副配合取基孔值配合;2选择可调支承钉为φ8H7孔外缘毛坯一侧防转定位面的定位元件 ,用锁紧螺母将其锁紧,防止在加工孔时出现扭转,限制工件六个自由度;为增加刚性,在φ8H7的端面增设一螺旋辅助支承,辅助支承与工件接触后,用螺母将其锁紧;计算夹紧力并确定螺杆直径由机床夹具设计手册,实际所需夹紧力K W 与切削力W 之间的关系为: K W WK =,式中的K 为安全系数,0123456 2.8K K K K K K K K == ,M10的六角螺母夹紧力W=3550N;所以,K W WK ==3550×=9940N,选择一个M30的螺旋辅助支承;一是为了承受切削力的冲击,二是为了防止工件在加工时变形,因为钻φ8H7孔时,工件为悬臂定位误差计算1加工φ8H7时孔距尺寸 84± 的定位误差计算,由于基准重合,故 :+=,,上下公差为:=,符合尺寸要求;而基准位移误差为定位孔 φ25H9 与定位销的最大间隙,故:定位销取直径为φ25H9,尽量减少位移误差;故:25-25=0,最大间隙:=,最小间隙:0-0=0 mm;其基准也符合设计要求;由此可知此定位方案能满足尺寸 84± 的定位要求;2加工φ8H7孔时轴线平行度 的定位误差计算,由于基准重合,故 :+=而基准位移误差是定位孔φ25H9与定位面间的垂直度误差;。

锻造工艺设计学复习知识点

锻造工艺设计学复习知识点

1.体积成形〔锻造、热锻〕:利用外力,通过工具或模具使金属毛坯产生塑性变形,发生金属材料的转移和分配,从而获得具有一定形状、尺寸和内在质量的毛坯或零件的一种加工方法。

2.自由锻:只用简单的通用性工具,或在锻压设备的上、下砧间直接使坯料成形而获得所需锻件的方法。

特点: 1、工具简单,通用性强,操作灵活性大,适合单件和小批锻件,特别是特大型锻件的生产。

2、工具与毛坯局部接触,所需设备功率比生产同尺寸锻件的模锻设备小得多,适应与锻造大型锻件。

3、锻件精度低,加工余量大,生产效率低,劳动强度大3.模锻:利用模具使坯料变形而获得锻件的锻造方法。

通过冲击力或压力使毛坯在一定形状和尺寸的锻模模腔内产生塑性模锻特点: (1)锻件形状较复杂,尺寸精度高; (2)切削余量小,材料利用率高,模锻件本钱较低; (3)与自由锻相比,操作简单,生产率高;(4) 设备投资大,锻模本钱高,生产准备周期长,且模锻件受到模锻设备吨位的限制,适于小型锻件的成批和大量生产。

变形获得锻件4.锻造工艺流程:备料---加热---模锻---切边、冲孔—热处理—酸洗、清理---校正5.锻造用料:碳素钢和合金钢、铝、镁、铜、钛等及其合金。

材料的原始状态:棒料、铸锭、金属粉末和液态金属。

6.一般加热方法:可分为燃料〔火焰〕加热和电加热两大类。

7.钢在加热时的常见缺陷:氧化、脱碳、过热、过烧、裂纹8.自由锻主要工序:镦粗、拔长、冲孔、扩孔9.使坯料高度减小,横截面增大的成形工序称为镦粗。

镦粗分类:完全镦粗、端部镦粗、中间镦粗10.镦粗的变形分析:难变形区、大变形区、小变形区11.镦粗工序主要质量问题:①锭料镦粗后上、下端常保存铸态组织②侧外表易产生纵向或呈45度方向的裂纹③高坯料镦粗时常由于失稳而弯曲。

防止措施: 1、使用润滑剂和预热工具 2、采用凹形毛坯 3、采用软金属垫 4、采用叠镦和套环内镦粗 5、采用反复镦粗拔长的锻造工艺12.使坯料横截面积减小而长度增加的成形工序叫拔长13.在坯料上锻制出透孔或不透孔的工序叫冲孔14.冲孔的质量分析:走样、裂纹、孔冲偏15.减小空心坯料壁厚而增加其内、外径的锻造工序叫扩孔16.采用一定的工模具将坯料弯成所规定的外形的锻造工序称为弯曲17.扭转是将坯料的一局部相对于另一局部绕其轴线旋转一定角度的锻造工序18.按成形方法的不同,模锻工艺可分为开式模锻、闭式模锻、挤压和顶镦四类19.模具形状对金属变形流动的影响:⑴控制锻件的最终形状和尺寸⑵控制金属的流动方向⑶控制塑性变形区⑷提高金属的塑性⑸控制坯料失稳提高成形极限20.开式模锻变形过程:第Ⅰ阶段是由开场模压到金属与模具侧壁接触为止;第Ⅰ阶段完毕到金属充满模膛为止是第Ⅱ阶段;金属充满模膛后,多余金属由桥口流出,此为第Ⅲ阶段。

踏板杠杆锻造工艺及模具设计[1] (2)

踏板杠杆锻造工艺及模具设计[1] (2)
用锻压技术手册.北京:机械工业出版社,2003 [2]朱冬梅.画法几何及机械制图.北京:高等教育出版社,2000 [3]胡亚民,华林主编.锻造工艺过程及模具设计.北京:中国林业出 版社,北京大学出版社,2001 [4]郑少梅.芯轴托架的成型工艺与模具设计.煤矿机械,2008.Vol29. N o11
参考文献 [1]马克思、恩格斯论教育[M].北京:人民教育教出版社,1999. [2]魏艳,张业安.现阶段我国实现教育公平的差距与对策.宁波职 业技术学院学报,2006(6)42- 44. [3]陈智琼,赵正.对课堂教学公平内涵的思考[J].科教文汇,2008 (01)23- 24. [4]何克抗.建构主义—— —革新传统教学的理论基础[J].学科教育, 1998(4):17- 20. [5]David Lebow.Constructivist values for instructional systems design: Five principles toward a new cational Technology R esearch & Development,vol,41, no. 3, 1993, pp. 4- 16. [6]刘家勋,任红.以建构主义为指导的教学设计原则分析[J].辽宁 师范大学学报(社会科学版),2002,(6). [7]赵蒙成.建构主义的教学方法评析[J].外国教育研究,2002,(9). [8]刘书锋,刘学,郝靖.建构主义课堂解[J].全球教育展望,2003, (3). [9]周明亚.试论建构主义课堂的创设与建构主义教师的教学行为. 西安文理学院学报(社会科学版),2008,(3). [10]赵耸婷.建构主义:一种后结构主义学习理论[J].南通师范学院 (哲学社会科学版),2001,(2).

锻模设计(含实例)

锻模设计(含实例)
• 针对热处理工艺不成熟的问题:在制定热处理工艺时,需要充分了解材料的性 质和工艺特点,制定出合理的工艺方案。例如,可以采用适当的淬火和回火工 艺,以获得良好的硬度和耐磨性。
• 针对加工精度不足的问题:在加工锻模时,需要采用高精度的加工设备和方法 ,保证加工精度。例如,可以采用数控加工中心进行加工,以保证尺寸精度和 表面粗糙度符合要求。
自动化制造
通过数控机床和机器人技 术实现锻模的自动化加工 和装配,提高生产效率。
智能化监控
利用传感器和监控系统对 锻模使用过程进行实时监 测和预警,延长使用寿命。
05
锻模设计中的问题与解决方 案
锻模设计中的常见问题
材料选择不当
01
在锻模设计中,材料选择是非常关键的。如果 材料硬度、耐磨性和耐热性等性能不符合要求,
强度计算
根据模具的工作条件和材料特性,进行强度计算,以确保模具在工作过程中不会 发生破坏。
锻模设计的工艺要求
适应工艺要求
锻模设计应满足锻造工艺的要求,如成形件的结构、尺寸、精度等。
材料选择与热处理
根据模具的工作条件和要求,选择合适的材料,并进行相应的热处
锻模设计实例
高强度钢
采用高强度钢作为锻模材料,提高其耐磨性和抗疲劳性能。
硬质合金
在特定区域使用硬质合金材料,增强锻模的耐热性和硬度。
复合材料
利用复合材料的特点,如低热膨胀系数和良好的耐磨性,优化锻模设计。
锻模设计的智能化与自动化
01
02
03
智能化设计
借助人工智能技术,自动 优化锻模设计方案,减少 人为因素导致的误差。
会导致锻模寿命缩短,甚至引发安全事故。
热处理工艺不成熟
03
热处理工艺对锻模的硬度和耐磨性等性能影响 很大,如果工艺不成熟,会导致锻模性能不稳

金属塑性成形工艺设计

金属塑性成形工艺设计
(3)确定变形工步:该锻件系盘类件,应 采用镦粗-终锻工步。
(4)选择修整工序:需安排切边、冲连皮 、校正、热处理(正火或退火)、清理等 修整工序。
3.3.3 冲压工艺设计(自学)
冲压工艺设计包括冲裁、弯曲、拉深等工序中的工 艺设计以及冲压工序选择、模具选择等。
1.冲裁工艺设计 (1)落料模刃口尺寸:
③校正:即为消除锻件在锻后产生的弯曲、扭转等 变形,使之符合锻件图技术要求的工序。
④热处理和清理:模锻件经过修整后,一般还需通 过热处理和清理。
采用正火或退火,细化晶粒; 清理表面缺陷或氧化皮。
7.零件结构的模锻工艺性
①应有合理的分模面,保证锻件从模膛中取 出又利于金属填充、减少余块和易于制模 。
②各表面交接处应避免弧线或曲线, 尽量采用直线或圆,以利于锻制。
③应避免肋板或凸台, 以利于减少余块和简化锻造工艺。
④大件和形状复杂的锻件, 可采用锻-焊、锻-螺纹联接等组合结构, 以利于锻造和机械加工。
8.自由锻工艺设计示例
例:试绘出图示齿轮轴的自由锻件图,并选 择锻造工序和计算坯料尺寸。
安徽工程科技学院机械系
L0=
V坯 = 1.031.27 F0 3.14 0.42
260
mm
即坯料尺寸为φ80×260 。
3.3.2 锤模锻工艺设计
主要内容: 1、绘制模锻件图; 2、计算坯料的重量和尺寸; 3、确定模锻工步; 4、选择锻压设备; 5、设计锻模模膛; 6、确定锻造温度范围、加热和冷却规范。
1.绘制模锻件图
若是拔长,则按锻件的最大截面(最小变形) 处满足锻造比要求来选择坯料尺寸。 最后所确定的坯料直径或边长应为标准值(市 场可买到),再按体积计算坯料的长度,即:

制动器杠杆锻模设计-锻造工艺及模具(CADCAE)设计

制动器杠杆锻模设计-锻造工艺及模具(CADCAE)设计

锻造工艺及模具(CAD/CAE)设计姓名:课题组的分工或贡献:杨晓勇,主要负责锻造工艺制定和锻模设计和动画贾纪业,主要负责二维图、部分三维图及项目报告赵克俭,主要负责查资料和进行相关计算和ppt制作徐磊,主要负责绘制二维零件图和三维图课程名称:锻造工艺及模具设计指导教师:吕知清日期:2013年11月—2013年12月锻造工艺及模具设计摘要:本文主要讲的是制动器杠杆的锻造的设计过程和工艺流程的编制。

由给定的制动器杠杆的零件图及技术要求,运用金属塑性体积成形工艺理论,完成锻件图的设计(冷锻件图和热锻件图)、锻件图CAD设计、模具的CAD设计、工艺设计,并进行体积成形CAE工艺的分析。

前言一、项目报告研究的目的:1、掌握CAD设计的基本原理;2、掌握锻造工艺的方案制定;3、掌握模锻件CAD设计;4、完成项目综合报告。

二、项目主要内容1、零件图二维图及三维建模;2、锻件图设计(三维建模、工程图);3、锻造工艺制定;4、锻模设计;5、锻模三维建模及工程图(三维动画);6、项目研究报告;通过这次课程研究项目的练习,使学生在掌握塑性体积成形工艺理论的基础上,结合CAD、CAE 深入了解并掌握金属塑性流动的基本原理、锻造工艺的模具CAD设计和体积成形CAE工艺分析,使学生具备独立设计体积成形模具的能力,提高综合应用已有知识解决问题的能力,更好地培养专业技术能力和综合素质。

研究报告正文1、制动器杠杆零件图制动器杠杆三维图2、绘制冷锻件图2.1锻件分模面根据零件的特征选定为水平分模2.2锻件的机械加工余量和公差2.2.1形状复杂系数SS====0.55所以形状复杂系数为S2,形状复杂程度一般2.2.2锻件的质量m=ρ*V d=111962*7.85=0.88kg所以锻件质量为0.88kg2.2.3锻件的材质系数零件为45号钢,材质系数取M12.2.4模锻件的精度等级零件的表面加工精度Ra=1.6所以模锻件的精度等级取精密等级所以查表GB/T12362-2003 表16得锻件表面加余量:厚度方向取(1.7 2.2)这里取2mm由以上个数据查GB/T12362-2003表2得错移公差取0.6mm , 残留飞边公差取0.6mm长度,宽度,高度公差由表查得2.3拔模斜度和圆角半径由技术要求得拔模斜度为7°圆角半径为R=3根据加工余量及公差绘制冷锻件图如下:冷锻件图3、设备吨位选择材料为45号钢,分模投影面积为5911.87mm2,约为59cm2锻件长度212mm,根据投影面积计算换算直径和平均宽度为:D件=1.13=8.68cm B均==2.78cm查表4-10,知σ=65MPa,并先按照圆饼类锻件计算锻锤吨位,然后换算成长轴类锻件所需吨位。

杠杆1的铸造工艺设计说明书jiaod

杠杆1的铸造工艺设计说明书jiaod

杠杆1的铸造工艺说明书机自082班徐祥 200811517218一、工艺分析1、审阅零件图纸:零件名称:杠杆1工艺方法:铸造零件材料:HT200零件质量:0.68kg毛坯质量:1.002kg零件轮廓尺寸:97mm×50mm×61mm最小壁厚:6mm生产批量:100件/年,为小批量生产2、零件的技术要求:(1)未注圆角半径为3~5mm;(2)铸件应进行时效处理;(3)在铸造时不允许有气孔、砂眼、缩孔、缩松和夹杂等缺陷(4)铸件应进行清理,保证表面平整;(5)零件加工完后所有棱边应去除毛刺;(6)不加工表面先涂以防锈漆,再涂以绿色油漆。

3、选材的合理性分析杠杆选用材料HT200为灰铸铁,灰铸铁的流动性好,充型能力强,铸造工艺性好,并且灰铸铁价格便宜,用作铸造材料经济实用,这里杠杆1壁厚均匀,在边角处壁厚有所增加,可以较好的防止出现白口组织。

杠杆1主要用来传递力和力矩,使得用较小的力来产生较大的力矩,从而实现对零件的紧固与拆卸。

灰铸铁能够满足其强度和塑性要求。

因此选择HT200作为铸件材料很合理,满足要求。

4、确定毛坯的具体生产方法根据以上信息可知,零件属小批量生产,形状比较简单、壁厚较均匀,且该材料为灰铸铁,考虑到制造生产的经济性。

确定毛坯的生产方法为砂型铸造。

5、审查铸件的结构工艺性铸件轮廓尺寸为97mm×50mm×68mm,查表得砂型铸造的最小壁厚为6mm。

铸件质量为1.002kg,材料为HT200,查表得砂型铸造铸件的临界壁厚为18mm。

由于该铸件是小型铸件,灰铸铁(HT200),流动性好,充型能力好,因此在铸造时不需要设计冒口,也不需要用冷铁,依靠它自身的自补缩能力进行有效的补缩。

在铸造过程中,其主要应克服的缺陷是铸造应力。

因此壁厚越大,圆角尺寸也应增大。

二、工艺方案的确定1、铸造方法的选择由于杠杆1的零件质量为0.68Kg,属于轻型零件;产量为100件,属小批量生产,零件尺寸较小但结构简单,所以毛坯的生产方法为砂型铸造,铸型为湿型,造型方法为手工造型,模型为木模。

机械压力机杠杆体锻造工艺实践

机械压力机杠杆体锻造工艺实践

其中,打击效率 卵可按下式计算 :
叼 =
图 7 上 模 示 意 图
… … … … … … …
() 8
34 切 边模 的结构 .
式 中 ,G一落 下 部 分 重 量 (g ;G 砧 座 重 量 k) 厂 () k ; g 恢复系数 ,模锻取 0 ~ . .0 。 4 5 变 形行程 计算 :
3 胎模 的设计
31 分 模面 的选择 .
( 2)0 3 2m 0 8 3  ̄ m
( 8 )0 6 2m 0 0 8 ̄ m
经试锻后锻件精度及几何尺寸均符合锻件图要 求。
24 锻造 工艺 . ()锯 切 ( 剪切)下 料 :0 0mm 6 1 或 9 x 0 mm;
()一 火锻造 2
()二 火锻造 3
①模锻 环部 时将坯料半孔 向下放 人锻模焖形
确保飞边槽既能满足需要,又便于加工制造 ( 见图 6 。上、下模的飞边槽各应留 l m的余量。 ) m
/ r 777 77 V//////// /////// )
图 2 冲半 孔 坯 示 意 图 图 6 飞 边槽 示 意 图
度 ( m) m 。
/ 、 / l 、 ,

L —一 ,— ‘—
图 3 脱模 锻 件 图
根据此 式求 得飞边槽 共需 金属 01 g .k 。
孔的连皮重量按下式计算 :
G 连 = ,dH 皮 — r  ̄ r —

× . × 0 … … … … … … ( 78 1_ 5 6 3 )
为了便于锻件从模膛 中较方便地取出,选择锻 件水平投影最大的平 面为分模面 ( 见图 5 ,这也 ) 为锻件在模锻时金属充满模膛及纤维合理分布创造
了 良好 条件 。

设计“杠杆”零件加工工艺规程及钻削Φ20H7孔工序专用夹具

设计“杠杆”零件加工工艺规程及钻削Φ20H7孔工序专用夹具

设计“杠杆”零件加工工艺规程及钻削Φ20H7孔工序专用夹具1杠杆的工艺性剖析1.1杠杆的用途标题给出的零件是杠杆。

它的主要的作用是用来支承、固定的。

1.2杠杆的技术要求杠杆零件技术要求表1.3确定杠杆的消费类型依设计标题知:N=4000件/年,杠杆重量为 1.0kg,杠杆属轻型零件。

该杠杆的消费类型为大批消费2、确定毛坯,绘制毛坯简图2.1选择毛坯零件的资料HT150。

思索到零件在任务中处于润滑形状,采用润滑效果较好的铸铁。

由于年产量为4000件,到达大批消费的水平,而且零件的轮廓尺寸不大,铸造外表质量的要求高,故可采用铸造质量动摇的,外表质量与机械功用均好,适宜大批消费的金属模铸造。

又由于零件的对称特性,故采取两件铸造在一同的方法,便于铸造和加工工艺进程,而且还可以提高消费率。

2.2确定铸造杠杆毛坯尺寸公差及机械加工余量2.2.1公差等级由于杠杆的功用和技术要求。

确定该零件的公差等级为普通级.2.2.2 铸件重量机械加工后杠杆件的重量为1kg,由此可初步估量机械加工前铸件毛坯的重量为1.5kg。

2.2.3铸件的材质系数由于该拨叉资料为HT200,是碳的质量分数大于0.65%的碳素钢,该铸件的采制系数属M2级。

杠杆铸造毛坯尺寸公差及机械加工余量3拟定工艺路途3.1选择定位基准定位基准有粗基准和精基准之分,通常先确定精基准,然后再确定粗基准。

3.1.1粗基准的选择以零件的小头上端面为主要的定位粗基准,以两个小头孔外圆外表为辅佐粗基准。

3.1.2精基准的选择思索要保证零件的加工精度和装夹准确方便,依据〝基准重合〞原那么和〝基准一致〞原那么,以粗加工后的底面为主要的定位精基准,以两个小头孔外圆柱外表为辅佐的定位精基准。

3.1.3外表加工方法确实定依据拔叉零件图上各加工外表的尺寸精度和外表粗糙度,确定加工件各外表的加工方法如表3.2拨叉零件各外表加工方案及加工余量3.3确定工艺路途依据零件的几何外形、尺寸精度及位置精度等技术要求,以及加工方法所能到达的经济精度,在消费纲领已确定的状况下,可以思索采用万能性机床配以公用工卡具,并尽量使工序集中来提高消费率。

锻压成形课程设计

锻压成形课程设计

锻压成形课程设计一、课程目标知识目标:1. 学生能理解锻压成形的基本概念,掌握金属材料在塑性变形过程中的应力-应变关系。

2. 学生能掌握常见锻压工艺的原理及适用范围,了解不同材料的锻压性能特点。

3. 学生能够解释锻压成形过程中可能出现的缺陷,并提出相应的解决措施。

技能目标:1. 学生能够运用数学和物理知识分析锻压成形过程中金属流动和应力分布情况。

2. 学生能够操作简单的锻压设备,完成基础锻压成形实验,具备初步的动手实践能力。

3. 学生能够结合实际案例,设计简单的锻压工艺流程,具备一定的工艺分析和优化能力。

情感态度价值观目标:1. 培养学生热爱专业,树立正确的专业思想,增强对制造业的认同感。

2. 培养学生的团队协作精神,提高沟通与交流能力,使学生能够在团队中发挥积极作用。

3. 培养学生勇于探索、敢于创新的精神,提高面对工程问题时的解决能力和应变能力。

课程性质:本课程为专业基础课程,旨在帮助学生建立锻压成形的基本理论体系,培养实际操作和工艺设计能力。

学生特点:学生已具备一定的物理和数学基础,具有较强的学习能力和动手实践欲望。

教学要求:结合理论教学与实践操作,注重培养学生的工程素养和创新能力,提高学生的综合素质。

通过对课程目标的分解,使学生在掌握基础知识的同时,能够更好地应对工程实际问题。

二、教学内容1. 锻压成形基本概念:包括锻压成形定义、分类、应用范围及特点。

- 教材章节:第一章 锻压成形概述- 内容:锻压成形原理、工艺类型、材料适应性。

2. 金属塑性变形理论:介绍金属在塑性变形过程中的应力-应变关系,阐述塑性变形的基本规律。

- 教材章节:第二章 金属塑性变形理论- 内容:应力、应变、塑性变形、屈服准则、流动应力。

3. 锻压工艺及设备:分析不同锻压工艺的原理、流程、设备及其适用范围。

- 教材章节:第三章 锻压工艺及设备- 内容:锻造、挤压、冲压、模锻、自由锻、锻压设备介绍。

4. 锻压成形缺陷及其控制:探讨锻压成形过程中可能出现的缺陷,分析原因及解决措施。

锻造成型课程设计

锻造成型课程设计

锻造成型课程设计一、课程目标知识目标:1. 学生能够理解并掌握锻造成型的基本概念,包括锻造工艺、锻造设备和锻造材料。

2. 学生能够描述锻造过程中金属流变、温度分布和应力应变等关键参数。

3. 学生能够解释锻造对金属材料组织性能的影响,并了解不同锻造方法的应用领域。

技能目标:1. 学生能够运用锻造工艺知识,分析并解决实际问题,如制定合适的锻造工艺路线。

2. 学生能够操作简易锻造设备,完成指定形状和尺寸的锻件制作。

3. 学生能够运用测量工具和分析方法,评估锻造过程中的变形程度和锻件质量。

情感态度价值观目标:1. 学生培养对锻造工艺的兴趣,认识到锻造在制造业和国家经济发展中的重要性。

2. 学生在团队协作中增强沟通与协作能力,培养工匠精神,尊重劳动者。

3. 学生关注锻造行业的发展趋势,具备环保意识,认识到绿色锻造对可持续发展的重要性。

课程性质:本课程为技术实践类课程,以锻造技术为主线,结合理论知识与实践操作,培养学生对锻造工艺的认识和应用能力。

学生特点:学生为八年级工业技术课程学习者,具备一定的物理和数学基础,对实践活动有较高的兴趣。

教学要求:课程要求学生在理解理论知识的基础上,注重实践操作,通过实际操作和案例分析,提高学生对锻造技术的应用能力。

同时,关注学生的情感态度价值观的培养,提高学生的综合素质。

教学过程中,将目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 锻造基本概念:介绍锻造的定义、分类和基本过程,包括热锻造、冷锻造和温锻造的特点及应用。

- 教材章节:第二章 锻造技术基础2. 锻造工艺:讲解锻造工艺参数、工艺路线设计,以及常见锻造缺陷及其预防措施。

- 教材章节:第三章 锻造工艺及设备3. 锻造设备与工具:介绍常用锻造设备、模具和工具的结构、性能及使用方法。

- 教材章节:第三章 锻造工艺及设备4. 锻造材料:分析锻造用材料的基本要求、选用原则以及锻造过程中材料组织性能变化。

基于数值模拟技术的杠杆锻件成形工艺设计

基于数值模拟技术的杠杆锻件成形工艺设计

基于数值模拟技术的杠杆锻件成形工艺设计一、引言杠杆锻件是一种重要的结构件,在航空、航天、汽车、机械等领域广泛应用。

其成形过程具有高度非线性和多物理场耦合特性,因此需要借助数值模拟技术进行成形工艺设计,以提高成形质量和效率。

二、数值模拟方法1. 有限元方法有限元方法是目前应用最广泛的数值模拟方法之一。

它将复杂的连续体分割成有限个小单元,在每个小单元内建立微分方程,通过求解这些微分方程得到整个系统的行为。

在杠杆锻件成形过程中,可以利用有限元方法对应力、变形、温度等参数进行计算。

2. 计算流体力学方法计算流体力学方法主要用于研究流体在复杂几何结构中的流动和传热问题。

在杠杆锻件成形过程中,可以利用计算流体力学方法对金属流动状态进行模拟,以确定最佳的锻造参数。

3. 计算机辅助工程技术计算机辅助工程技术包括CAD、CAM、CAE等多种软件系统。

其中CAD可以用于绘制杠杆锻件的三维模型,CAM可以生成数控加工程序,CAE可以进行有限元分析和计算流体力学模拟。

三、杠杆锻件成形工艺设计1. 材料选择杠杆锻件通常采用高强度合金钢或不锈钢等金属材料。

在进行成形工艺设计时,需要考虑材料的力学性能、热物性能等因素。

2. 模具设计模具是影响成形质量的重要因素之一。

在进行模具设计时,需要考虑模具的几何结构、温度分布、表面粗糙度等因素。

3. 锻造参数确定锻造参数包括温度、应变速率、应变量等因素。

在进行成形工艺设计时,需要通过数值模拟方法确定最佳的锻造参数组合,以保证成形质量和效率。

4. 工艺优化通过数值模拟方法对不同的工艺方案进行比较分析,可以找到最优的工艺方案。

同时还可以对各个环节进行优化,以提高整个生产过程的效率和质量。

四、数值模拟案例分析以某航空发动机零部件为例,采用有限元方法和计算流体力学方法进行数值模拟,得到了最佳的成形工艺方案。

在锻造过程中,保证了零部件的尺寸精度和表面质量,同时减少了成本和生产周期。

五、结论基于数值模拟技术的杠杆锻件成形工艺设计可以有效提高成形质量和效率。

金属体积成型杠杆锻件设计

金属体积成型杠杆锻件设计

• • • •
②加热:半连续式炉,1220-1240℃ ③模锻:2t模锻锤,拔长,开滚,预锻,终锻。 ④热切边:1600KN切边压力机; ⑤机加工:砂轮机打磨毛刺,钻孔,滚齿。
• ⑥热处理:连续热处理炉,调制,硬度为 Db=3.9~4.2mm • ⑦酸洗槽 • ⑧冷校正:1t夹板锤 • ⑨冷精压:1000KN精压机 • ⑩检验
• • • •
锻件在水平面上的投影面积为7631mm2 锻件的周边长度为490 锻件的体积为127897mm2 锻件的质量为1Kg
三.设备吨位的选择
• 1.总变形面积为S=(7631+490×23) =18901mm2 • G=63KS=63×1×189.01=11907KN • 选用2t双作用模锻锤 • 2.确定飞边槽的型式和尺寸h飞=1.8mm, • H1=4mm,b=10mm,b1=25mm,r=1.5mm • F飞=134mm2
四. 绘制计算毛坯图
• 计算毛坯的计算数据以及毛坯图 • 方法:沿长度方向截取30个面,计算各截 面的面积,按照表格中的公式计算得到 d计,h计,以长度方向为X轴,d计,h计为 Y轴,绘制毛坯图。
五工步选择,工艺设计
• 计算毛坯为两头一杆,应简化为两个简单 的一头一杆计算毛坯来选择制坯工步。
• 由图可知,此锻件应该采用拔长、滚挤制 坯工步。为易于充满型槽,应选方坯料, 先拔长,在开式滚挤。模锻工艺方案为:拔 长—开式滚挤—预锻—终锻。 • 工艺流程 • ①下料:5000KN剪切机冷切。
典型结构锻件部分设计
姓名:
课程名称: 指导教师: 日期:2012年9月-2012年10月
一.零件图及三维图
二.冷锻件图设计
• 1分模位置 根据杠杆的形状,采用折线分 模,图中红线部分

杠杆类零件加工工艺规程及夹具设计说明书

杠杆类零件加工工艺规程及夹具设计说明书

一、加工工序设计因为工序分散可使每个工序使用的设备和夹具比较简单,调整、对刀也比较容易,对操作工人的技术要求水平较低,所以我们采用了工序分散原则。

1)加工余量、工序尺寸和公差的确定a)面的加工余量、工序尺寸和公差的确定粗加工公差等级按参考资料查得为IT11~IT13,按经济原则故选公差等级为IT13,Ra=12.5。

精加工则根据其表面粗糙度的大小选择它的公差等级。

b)根据经济性原则,故粗加工工差等级选择为13级(IT13),半精加工公差等级选择为11级,精加工则按照各孔的表面粗糙度选择。

(注:下表中Φ25粗铰则表示扩孔)2)确定切削用量工序10~401.选择机床,刀具及量具考虑到工件的定位夹紧方案及夹具结构设计等问题。

机床采用X52K立式铣床,刀具选择D为80、Z为10镶齿型端面铣刀,量具则选择测量范围0~200mm、测量精度为0.02mm的游标卡尺。

粗铣精铣采用相同型号的刀具。

2.切削用量的计算a)粗铣B,C面(工序10)工序10:因为这两个工步是在一台机床上经一次走刀加工完成的,所以它们所选用的速度v和进给f一样,背吃刀量ap选择相同。

ap: (背吃刀量即等于粗加工余量)工步一的背吃刀量取Z1,工步二的背吃刀量Z2。

即Z1=2.3mm,Z2=2.3mmf:按机床功率为5~10KW,工件-夹具系统刚度为中等条件选取该工序的每齿进给量fZ=0.1mm/zV:按镶齿铣刀D/Z=80/10的条件选取,铣削速度V可取57.6m/min,由公式N=1000V/ЛD算得N=229.2r/min, 查表得主轴的实际转速N=235 r/min,代入公式V= NЛD /1000算得实际速度V=59 m/minb)粗铣D,E面(工序20)Ap:(背吃刀量等于粗加工余量)工步一的背吃刀量取Z1,工步二的背吃刀量Z2。

即Z1=2.3mm,Z2=2.3mmf:按机床功率为5~10KW,工件-夹具系统刚度为中等条件选取该工序的每齿进给量fZ=0.1mm/zV:按镶齿铣刀D/Z=80/10的条件选取,铣削速度V可取57.6m/min,由公式N=1000V/ЛD算得N=229.2r/min, 查表得主轴的实际转速N=235 r/min,代入公式V= NЛD /1000算得实际速度V=59 m/minc)精铣B,C面(工序30)Ap: (背吃刀量即等于精加工余量)工步一的背吃刀量取Z1,工步二的背吃刀量Z2。

杠杆工艺设计说明书

杠杆工艺设计说明书

一、前言工艺是指制造产品的技巧、方法和程序。

机械制造工艺过程是指在机械制造过程中,凡是直接改变零件形状、尺寸、相对位置和性能等,时期成为成品或半成品的过程。

而《机械制造工艺学》课程设计是运用专业知识解决时间生产问题的一次实践训练的一门课程。

它的主要内容包括:机械加工工艺规程的步骤和方法的制订,定位基准的选择,工艺路线的拟定,加工余量、工序尺寸及工序公差的确定以及工艺过程卡和工艺卡的填写。

二、零件的分析(一)分析杠杆零件图(二) 零件的作用主要是用来支撑、固定的。

要求零件的配合要符合要求。

传统的杠杆加工由于加工比较粗糙、加工过程比较简单、耗时又没有科学性,此杠杆如果按传统的加工工艺来加工由于没有考虑到工件材料及脆塑性能将会影响加工结果,再加工工艺过程顺序选择也将会影响加工结果。

为此,此夹具就是要克服这些缺点。

(三) 零件的工艺分析现分述如下:工件以与Ф28mm孔共同通过的平面为定位基准。

加工表面。

包括粗精铣直径为10mm的孔,其粗糙度均为Ra1.6um,加工平面时先以Ф28mm孔为垂直的铣削平面1,其粗糙度为Ra3.2um。

再以平面1为基准铣削平面2、3、4,粗糙度分别为Ra6.3um、Ra3.2um、Ra3.2um。

以平面1为基准打孔Ф11mm。

最后铣削剩余的8个平面。

达到所需的尺寸和精度要求。

三、工艺规程的设计(一) 确定毛坯的制造形式。

零件的材料45#钢。

根据零件的形状、尺寸精度、生产的经济效益等各方面的详细分析其加工工艺,多采钻床加工。

通过对零件的分析,此工件外形轮廓尺寸小,重量轻,加工要求不高,生产批量不大。

因此在保证质量和提高生产率的前提下,尽量简化结构,做到经济合理。

(二) 确定工艺路线1、工艺路线方案:工序1 下料工序2 钻孔Ф26和Ф9。

工序3 精镗Ф28和Ф10。

工序4 粗铣平面1,平面2。

工序5 精铣平面1,半精铣平面2。

工序6 粗铣平面3,平面4。

工序7 精铣平面3,平面4。

锻压杠杆课设说明书

锻压杠杆课设说明书

目录一.绪论 (2)二.绘制锻件图 (3)三.计算坯料质量和规格 (5)四.拟定锻造工序 (7)五.确定定设备与工具 (8)六.制订加热、冷却和热处理规范 (9)总结 (12)一.绪论锻造是机械制造中常用的成型方法。

锻造是利用锻压机械对金属坯料施加压力使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸的锻件的加工方法。

锻造与冲压同属塑性加工性质统称锻压。

与其他加工方法相比锻造生产率高、锻件的形状尺寸稳定,并有较好的力学性能。

锻件强度和韧性较好,纤维组织合理,因此被广泛运用。

锻造按在加工时的温度可分为冷锻和热锻。

冷锻一般是在室温下加工。

热锻是在高于坯料金属再结晶温度上加工。

有时还处于加热状态,但温度不超过再结晶温度时进行的锻造称为温锻。

锻件在锻造时,由于热变形或冷变形使其组织改变,冷变形是在再结晶温度以下变形,变形过程中无再结晶现象,变形后金属只有加工硬化和残余应力,热变形是在再结晶温度以上的变形,变形后金属具有再结晶组织而无加工硬化,同时消除铸态组织、破碎并改善碳化物的分布。

当锻件达到一定变形程度时,铸态的树枝状晶粒便被击碎,通过再结晶形成新的等轴晶粒,从而提高金属塑性和强度等性能锻造成型方法可分为自由锻、模锻、冷镦、径向锻造、挤压、成型扎制、辊锻、辗扩等。

锻造在机械制造业中有着不可替代的作用,锻造出来的锻件是其他加工方法难以做到的。

同时生产效率也是相当高的,一个国家的锻造水平,反映了这个国家的机械制造水平。

随着我国跻身世界钢铁生产大国的行列,汽车制造业、飞机制造业以及发电设备、轮船制造业的飞速发展,对锻件需求量日益增大,必然促使锻造技术的发展,使锻造业与飞速发展的制造业相适应。

本课程设计锻件主要是利用自由锻进行加工的。

所以主要介绍自由锻,自由锻是利用压力或冲击力是金属在上、下抵铁之间产生塑性变形,从而获得所需锻件形状尺寸的方法。

自由锻分为手工锻造和机械锻造两种。

手工锻造只能生产小型锻件,生产效率也低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 .7 0 .8
1 .1
0 .5
1 .2
0 .6
0 .9 _
0 .4 1 .2
1 .2
0 .4
• 5技术条件①为注模斜度为7°②未注圆角 半径为3mm③允许的错查0.6mm④允许残 留毛边量0.7mm • 根据公差余量,即可绘制冷锻件图,以及三 维图如下所示
d
G
b
346852 . 8
0 .8
• mm宽度公差为 1 . 8 mm • 长度公差为 2 . 5 落差公差 1 . 7 mm 孔径尺寸公差 1 . 6 mm • 错差0.6mm 厚度公差1 . 6 mm 锻件内孔直径的单面机械加工余 量为2mm,锻件内外表面加工余量,零件表面粗糙度按≥1.6计 算 单边余量:厚度方向1.5~2.0mm,水平方向1.5~2.0mm,均取 2mm。精压后锻件机械加工余量为0.75mm,高度公差为0.2mm • 3模锻斜度 零件图上的技术条件中已给出模锻斜度为7°。 • 4圆角半径 锻件高度余量为1.15mm,则倒角的半径为3.15mm 圆整为3mm,其余圆角半径为3mm 查表得:高度公差为1 . 6
四. 绘制计算毛坯图
• 计算毛坯的计算数据以及毛坯图 • 方法:沿长度方向截取30个面,计算各截 面的面积,按照表格中的公式计算得到 d计,h计,以长度方向为X轴,d计,h计为 Y轴,绘制毛坯图。
五工步选择,工艺设计
• 计算毛坯为两头一杆,应简化为两个简单 的一头一杆计算毛坯来选择制坯工步。
• 由图可知,此锻件应该采用拔长、滚挤制 坯工步。为易于充满型槽,应选方坯料, 先拔长,在开式滚挤。模锻工艺方案为:拔 长—开式滚挤—预锻—终锻。 • 工艺流程 • ①下料:5000KN剪切机冷切。
典型结构锻件部分设计
姓名:
课程名称: 指导教师: 日期:2012年9月-2012年10月
一.零件图及三维图
二.冷锻件图设计
• 1分模位置 根据杠杆的形状,采用折线分 模,图中红线部分
• 2.公差和余量 估算零件质量约为0.8Kg 。杠杆材料为45钢,即 材质系数为M1。 G 103608 . 6 S 0 . 299 为三级复杂复杂系数 • 锻件形状复杂系数:
• • • •
锻件在水平面上的投影面积为7631mm2 锻件的周边长度为490 锻件的体积为127897mm2 锻件的质量为1Kg
三.设备吨位的选择
• 1.总变形面积为S=(7631+490×23) =18901mm2 • G=63KS=63×1×189.01=11907KN • 选用2t双作用模锻锤 • 2.确定飞边槽的型式和尺寸h飞=1.8mm, • H1=4mm,b=10mm,b1=25mm,r=1.5mm • F飞=11220-1240℃ ③模锻:2t模锻锤,拔长,开滚,预锻,终锻。 ④热切边:1600KN切边压力机; ⑤机加工:砂轮机打磨毛刺,钻孔,滚齿。
• ⑥热处理:连续热处理炉,调制,硬度为 Db=3.9~4.2mm • ⑦酸洗槽 • ⑧冷校正:1t夹板锤 • ⑨冷精压:1000KN精压机 • ⑩检验
相关文档
最新文档