小学三年级数学-乘法除法 速算与巧算

合集下载

小学三年级数学乘法除法 速算与巧算

小学三年级数学乘法除法 速算与巧算

第二讲速算与巧算(二) 一、乘法中的巧算 1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000例1计算①123×4×25 ② 125×2×8×25×5×4 解:①式=123×(4×25) =123×100=12300 ②式=(125×8)×(25×4)×(5×2) =1000×100×10=1000000 2.分解因数,凑整先乘。

例 2计算① 24×25 ② 56×125 ③ 125×5×32×5 解:①式=6×(4×25) =6×100=600 ②式=7×8×125=7×(8×125) =7×1000=7000 ③式=125×5×4×8×5=(125×8)×(5×5×4) =1000×100=100000 3.应用乘法分配律。

例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6 解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) = 67×100=6700 (原式中最后一项67可看成 67×1) 例4 计算① 123×101 ② 123×99 解:①式=123×(100+1)=123×100+123 =12300+123=12423 ②式=123×(100-1) =12300-123=12177 4.几种特殊因数的巧算。

乘除法的速算与巧算

乘除法的速算与巧算
小 学 奥 数 专 题 讲 座
速算与巧算 (二)
专题简析:
乘、除法的巧算方法主要是利用 乘、除法的运算定律和运算性质以及 积、商的变化规律,通过对算式适当 变形,将其中的数转化成整十、整百、 整千…的数,或者使这道题计算中的 一些数变得易于口算,从而使计算简 便。
一、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.
如:12×9=120-12=108 12×99=1200-12=1188 12×999=12000-12=11988
习题6 计算(1) 34×9 (2)67×99
例7 一个偶数乘以5,可以除以2添上0。
如:6×5=30 16×5=80 116×5=580。
习题7 计算(1) 34×5 (2)66×5
习题2 计算(1) 16×25 (2) 40×25
3.应用乘法分配律。
例3 计算① 175×34+175×66 ②67×12+67×35+67×52+67 解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) = 67×100=6700
(原式中最后一项67可看成 67×1)
解:①13÷9+5÷9=(13+5)÷9=18÷9=2 ②21÷5-6÷5=(21-6)÷5=15÷5=3
③2090÷24-482÷24=(2090-482)÷24=1608÷24=67 ④187÷12-63÷12-52÷12=(187-63-52)÷12 =72÷12=6
习题13① 137÷9+2÷9 ②21÷14-7÷14
② 25×125×8×9×4
2.分解因数,凑整先乘。
例 2计算① 24×25 ② 56×125 ③ 125×5×32×5

小学三年级数学:乘、除法速算巧算精要+专项练习!孩子练题需要它

小学三年级数学:乘、除法速算巧算精要+专项练习!孩子练题需要它

小学三年级数学:乘、除法速算巧算精要+专项练习一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。

⑵在连除时,可以交换除数的位置,商不变。

⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。

⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。

②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。

添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。

竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。

小学数学三年级巧算、速算

小学数学三年级巧算、速算

乘除法中的速算、巧算一、1、一个数与10、100、1000……相乘,就是往这个数后面加0、00、000……2、巧算一个数与99相乘,99×1=99 99×2=198 99×8=792通过观察发现一个数与99相乘就是在这个数后面加上00,然后减去此数,即可99×1=100—1=99 99×2=200—2=198 99×8=800—8=7923、通过以上规律,那么一个数与999相乘呢?999×2=2000—2=1998 999×8=8000—8=7992二、巧算两位数与11的乘积。

12×11=132 35×11=385 47×11=517 69×11=759观察上面每一组题,发现俩位数与11相乘,只要把这个俩位数拉开,个位数字做积的个位,十位数字做积的百位;个位数字与十位数字相加的和做积的十位,如果满十的话要向百位进一。

概括为口诀:俩边一拉,中间相加。

三、1、巧算三位数与11相乘。

432×11=4752 168×11=1848口诀:俩边一拉,中间俩加。

注意哦,也是要满十进一的。

2、巧算俩位数与101相乘。

101×45=4545 101×67=6767规律就是积把这个俩位数连续写俩遍。

那么三位数与1001相乘呢?1001×782=782782 自己总结规律四、例题:根据37×3=111,简算下面各题。

37×9=37×3×3=33337×12=37×3×4=44437×33=37×3×11=122137×36=37×3×12=1332五、41×49=?【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用"头同尾合十"的巧算法进行简便计算。

乘除法的速算与巧算

乘除法的速算与巧算
பைடு நூலகம்
• 观察发现“发现:三位数 与1001相乘,积是把这个 三位数连续写两遍。
针对训练六:与101的巧算
(1) 136×1001 (2) 258×1001
② 25×125×8×9×4
基础计算1:
1,计算面各题:
(1):328 ×2
(2):328 ×10
(3):501×20
基础计算2:
三位数相乘计算:
(1):328 ×110 (2):206 ×895 (3):531 ×101
例5 一个数×10,数后添0; 一个数×100,数后添00;
以此类推。
一个数×1000,数后添000; 如:15×10=150
针对训练四:×11的巧算
如 2222×11=
2456×11=
巧算两位数与101相乘
• 一:算一算: • (1) 101 ×43
竖式:
(2)101 ×89
101 × 43 303 404 4343
101 × 89 909 808 8989
» 观察发现“4343、8989”, 两位数与101相乘,积是把这 个两位数连续写两遍。
针对训练五:与101的巧算
(1) 36×101 (3) 39×101 (2) 58×101 (4)42×101
巧算两位数与1001相乘
一:算一算:
(1) 1001 ×132 (2)1001 ×436
竖式:
1001 × 132 2002 3003 1001 132132 1001 × 436 6006 3003 4004 436436
速算与巧算 (一 )
专题简析:
乘、除法的巧算方法主要是利用 乘、除法的运算定律和运算性质以及 积、商的变化规律,通过对算式适当 变形,将其中的数转化成整十、整百、 整千…的数,或者使这道题计算中的 一些数变得易于口算,从而使计算简 便。

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点

小学三年级数学乘、除法的速算与巧算知识点一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。

⑵在连除时,可以交换除数的位置,商不变。

⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。

⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。

②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。

添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。

竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。

(完整)三年级乘除法速算巧算

(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

小学三年级数学奥数知识点速算与巧算

小学三年级数学奥数知识点速算与巧算

1.快速计算乘法口诀表在小学三年级,学生已经开始学习乘法口诀表。

熟练掌握乘法口诀表是进行速算和巧算的基础。

学生应该掌握1乘以任意数等于该数本身,以及0乘以任意数等于0的原则。

另外,在计算乘法的过程中,还可以利用一些巧妙的方法,如利用乘法交换律和结合律,简化计算的步骤。

2.快速计算除法在小学三年级,学生已经开始学习除法运算。

为了进行快速计算除法,学生需要熟悉乘法和除法之间的关系。

例如,学生可以通过将除法问题转化为乘法问题来进行计算。

另外,学生还需要熟悉常见的除法口诀,如9除以任意数的口诀。

3.快速计算加法与减法在小学三年级,学生已经开始学习加法和减法运算。

为了进行速算和巧算,学生可以借助一些技巧。

例如,学生可以利用补数进行计算,将加法问题转化为减法问题或将减法问题转化为加法问题。

另外,在计算的过程中,学生还可以利用进位和借位的方法简化计算的步骤。

4.快速计算小数在小学三年级,学生已经开始学习小数的运算。

为了进行快速计算小数,学生需要熟悉小数的基本概念,如小数点的意义和小数的大小比较。

另外,在计算小数的过程中,学生还可以利用近似计算和适当舍入的方法简化计算的步骤。

5.快速计算整数问题在小学三年级,学生已经开始学习整数的运算。

为了进行速算和巧算,学生需要熟悉整数的基本概念,如正数、负数和零的概念。

另外,在计算整数的过程中,学生还可以利用相反数的概念简化计算的步骤。

6.快速计算组合问题在小学三年级,学生已经开始学习组合的概念。

为了进行快速计算组合问题,学生需要熟悉排列组合的基本原理,如乘法原理和加法原理。

另外,在计算组合的过程中,学生还可以利用化简问题和分类讨论的方法简化计算的步骤。

7.快速计算面积和周长问题在小学三年级,学生已经开始学习面积和周长的计算。

为了进行速算和巧算,学生需要熟悉面积和周长的基本公式,如长方形的面积和周长的计算公式。

另外,在计算面积和周长的过程中,学生还可以利用化简问题和近似计算的方法简化计算的步骤。

乘除法中的速算与巧算

乘除法中的速算与巧算

乘除法中的速算与巧算知识储备整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。

要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。

1、乘法的运算定律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc2、除法的运算性质(1)a÷b=(a×c)÷(b×c) (c≠0)(2)a÷b=(a÷c)÷(b÷c) (c≠0)(3)a÷b÷c=a÷(b×c)(4)a÷(b÷c)=a÷b×c3、乘除分配性质(1)(a+b)×c=a×c+b×c(2)(a-b)×c=a×c-b×c(3)(a+b)÷c=a÷c+b÷c(4)(a-b)÷c=a÷c-b÷c注意:除数不能为零。

4、两数之和乘以这两数之差的积等于这两个数的平方差。

(a+b)×(a-b)=a2-b25、乘法凑整法:这是利用特殊数的乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。

大家要记住这些结果。

思维引导例1、计算:(1)999+999×999 (2)1111×9999(3)125×25×32 (4)576×422+576+577×576跟踪练习:计算:(1)9999+9999×9999 (2)140×299(3)808×125 (4)461+5×4610+461×49例2、计算:34×172-17×71×2-34跟踪练习:计算:42×68+61×2×34-3×68例3、用简便方法计算:8700÷25÷4跟踪练习:9600÷25÷4例4、用简便方法计算:625÷25跟踪练习:42800÷25例5、简算:29×31跟踪练习:简算:68×72例6、计算:11111×11111跟踪练习:计算:22222×22222例7、计算:63×275÷7÷11跟踪练习:计算:123×456÷789÷456×789÷123例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334跟踪练习:计算:9999×7778+3333×6666例10、计算:98989898×÷÷跟踪练习:计算:199999998×2200220022÷18÷100010001例11、计算:19981999×19991998-19981998×跟踪练习:计算:1997×1999-1996×2000例12、末尾有几个零?跟踪练习:计算:能力对接1、 将相应的序号填入括号中。

小学三年级数学乘法除法速算与巧算(二套)

小学三年级数学乘法除法速算与巧算(二套)

小学三年级数学乘法除法速算与巧算(二套)目录:小学三年级数学乘法除法速算与巧算一小学三年级数学思维训练速算与巧算二二小学三年级数学乘法除法速算与巧算一1.两数的乘积是整十.整百.整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000例1计算①123×4×25 ② 125×2×8×25×5×42.分解因数,凑整先乘.例 2计算① 24×25 ② 56×125 ③ 125×5×32×53.应用乘法分配律.例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6例4 计算① 123×101 ② 123×994.几种特殊因数的巧算.例5一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推:如:15×10=150 15×100=1500 15×1000=15000例6一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;…以此类推.如:12×9=120-12=108 12×99=1200-12=1188 12×999=12000-12=11988例7 222×11 2456×11[分析]为了速算,可以记一句口诀:“两头一拉,中间相加”.2 2 22 4 4 2222×11=24422 4 5 62 7 0 1 62456×11=27016例8.16×5[分析]一个数×5,可以除以“2”添上“0”.16×5=(16÷2) ×10=80例924×15[分析]一个数×15,“加半添0”.24×15=(24+12)×10=360例4 从10到20×之间的两位数相乘(十几×十几)13×14[分析]个位数相加后再加“10”,然后乘“10”,个位数相乘后,所得两个数相加.13×14=182想:(3+4+10)×10=1703×4=12170+12=182例5 62×68 81×89[分析] 62×68,一首数6+1=7,头×头是:7×6=42,尾×尾是2×8=16,42与16在一起:421681×89,一首数8+1=9,头×头9×8=72,尾×尾是1×9=9,因为9小于10,所以72与9相联时,在9的前面添一个0.答案是81×89=7209例6 72×32 68×48[分析] 72×32头乘头+尾是7×3+2=23尾×尾是:2×2=4因为4小于10,所以23与4相联时,在4前边补一个0,答案是: 72×32=2304 68×48头乘头+尾是6×4+8=32尾×尾8×4=64答案是: 68×48=3264练习:14×5 114×5 19×173728×11 1295×11 16×1836×15 72×15 78×7284×86 62×42 31×7143×25×4125×(19×8)50×13×2 25×32×125 125×649×37+9×63 102×4365×99+65 125×79845×123-45×23小学三年级数学思维训练速算与巧算二二第二讲速算与巧算(二)一.乘法中的巧算1.两数的乘积是整十.整百.整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1 计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘.例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律.例3 计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4 计算①123×101 ②123×99解:①式=123×(100+1)=123×100+123 =12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算.例5 一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推.如:15×10=15015×100=150015×1000=15000例6 一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;…以此类推.如:12×9=120-12=10812×99=1200-12=118812×999=12000-12=11988例7 一个偶数乘以5,可以除以2添上0.如:6×5=3016×5=80116×5=580.例8 一个数乘以11,“两头一拉,中间相加”. 如2222×11=244422456×11=27016例9 一个偶数乘以15,“加半添0”.24×15=(24+12)×10=360。

小学数学三年级速算和巧算技巧

小学数学三年级速算和巧算技巧

小学三年级是学生接触数学的关键时期,良好的速算和巧算技巧可以帮助他们更好地理解和掌握数学知识。

下面是一些适合小学三年级学生的速算和巧算技巧:1.知识点梳理:首先,要帮助学生梳理和掌握好基本的数学知识点,如加减法、乘除法的口诀和技巧。

例如,学生可以通过加减法口诀表来熟悉数字之间的加减法关系,并可以用乘法口诀表来快速计算乘法运算。

2.数字分解:学生可以通过数字的分解来进行速算。

例如,对于两位数相加相减的计算,在计算过程中,可以将两位数拆分为个位数和十位数,然后进行运算。

对于乘法,学生可以将一个较大的数拆分为易于计算的数,然后进行运算。

3.近似计算:近似计算是一种巧算的技巧,可以快速得到近似答案。

学生可以将复杂的计算问题简化为简单的计算,然后进行近似计算。

例如,将一个数取近似值,然后进行计算,最后再修正结果。

4.列竖式计算:列竖式计算是一种有效的计算方法,可以帮助学生进行加减乘除法的计算。

学生可以按照正确的步骤进行计算,将数字对齐,并逐位进行运算。

5.快速乘除法:对于较大的乘法和除法问题,学生可以通过一些特殊的规律和技巧进行快速计算。

例如,学生可以利用乘法法则中的分配律和结合律来简化乘法计算,或者通过减法法则中的除法运算来简化除法计算。

6.数量关系的转化:对于一些涉及到数量转化的问题,学生可以通过一些简单的技巧来求解。

例如,将百分数转化为小数,然后进行计算;或者将分数转化为小数,然后进行比较大小等。

7.倍数关系:学生可以通过找到数与数之间的倍数关系来进行速算。

例如,学生可以利用倍数关系快速计算两个数的最小公倍数或最大公约数。

8.抽象问题的转化:对于一些抽象的问题,学生可以尝试将其转化为具体的数学问题进行求解。

例如,对于一些关于物体的问题,可以尝试将其转化为长度、面积或体积的问题进行求解。

通过以上的速算和巧算技巧,小学三年级的学生可以更加灵活地运用数学知识,提高计算速度和准确性。

同时,这些技巧也可以让学生更好地理解数学概念和思维方法,培养他们的数学思维能力。

三年级乘除法速算巧算

三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000例1 计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=1000000分解因数,凑整先乘。

2.例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3 计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4 计算①123×101②123×99解:①式=123×(100+1)=123×100+123 =12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

三年级计算乘除法速算与巧算教师版

三年级计算乘除法速算与巧算教师版

知识要点二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠ ⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)乘除法速算与巧算两人和倍乘5、15、25、125【例 1】 下面这些题你会算吗?(1)125(408)⨯+ (2)(1004)25-⨯ (3)(1008)25-⨯【分析】 (1)125(408)125401258500010006000⨯+=⨯+⨯=+=(2)(1004)251002542525001002400-⨯=⨯-⨯=-= (3)(1008)251002582525002002300-⨯=⨯-⨯=-=【例 2】 下面这道题怎样算比较简便呢?看谁算的快!2625⨯【分析】 26不能被4整除,但26可以拆成642⨯+,这样2625⨯,可转化为6425⨯⨯再加上225⨯,这样就可速算了. 原式64225=⨯+⨯()642522560050650=⨯⨯+⨯=+=【例 3】 你知道下题怎样快速的计算吗?⑴786 5 ⨯ ⑵12425⨯ ⑶96125 ⨯ ⑷75258⨯⨯ 【分析】 我们刚刚学过了乘 5,25,125的速算法,大显身手练一下吧!⑴7865786(52)2786023930⨯=⨯⨯÷=÷=或 786539325393103930⨯=⨯⨯=⨯= ⑵12425124(254)41240043100⨯=⨯⨯÷=÷=或1242531425311003100⨯=⨯⨯=⨯=⑶9612596(1258)896000812000 ⨯=⨯⨯÷=÷=或 9612512812512100012000⨯=⨯⨯=⨯= ⑷7525825475210015015000⨯⨯=⨯⨯⨯=⨯=【例 4】 计算:813125⨯⨯= 【分析】 根据乘法凑整原则81312581251310001313000⨯⨯=⨯⨯=⨯=去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.【例 5】 为了考察大头儿子的速算能力,小头爸爸给他出了一道题,并且限时一分钟,小朋友,你能做到吗?192564125⨯⨯⨯ 【分析】 把64分成482⨯⨯,用乘法结合律便可速算.原式2541258192=⨯⨯⨯⨯⨯()()()1001000383800000=⨯⨯=【例 6】 计算:1733212525⨯⨯⨯. 【分析】 原式1734812525=⨯⨯⨯⨯()173425812517300000=⨯⨯⨯⨯=()()【例 7】 请快速计算下面各题. ⑴200425⨯ ⑵125792⨯ 【分析】 ⑴200425(20004)2520002542550100⨯=+⨯=⨯+⨯=⑵125792125(8008)1258001258100010010001000(1001)99000⨯=⨯-=⨯-⨯=⨯-=⨯-=【例 8】 456212525548⨯⨯⨯⨯⨯⨯ 【分析】 原式456252541258=⨯⨯⨯⨯⨯⨯()()()456101001000=⨯⨯⨯ 456000000=【例 9】 聪明的你也来试试吧!⑴2415 ⨯ ⑵8475⨯ ⑶3975 ⨯ ⑷56625 ⨯【分析】 ⑴2415(24242)10(2412)10360⨯=+÷⨯=+⨯=⑵8475(214)(253)(213)(425)631006300⨯=⨯⨯⨯=⨯⨯⨯=⨯= ⑶3975 (401)7540751753000752925⨯=-⨯=⨯-⨯=-=⑷56625(78)(1255)(75)(8125)35100035000⨯=⨯⨯⨯=⨯⨯⨯=⨯=【例 10】 请你简便计算.⑴5365⨯ ⑵63815⨯ ⑶3225⨯ ⑷6875⨯【分析】 ⑴5365536(52)2536022680⨯=⨯⨯÷=÷=⑵63815(6386382)109570⨯=+÷⨯= ⑶322532(254)432004800⨯=⨯⨯÷=÷=⑷6875174253173(425)5100⨯=⨯⨯⨯=⨯⨯⨯=【例 11】 计算:125161119⨯-⨯=____________. 【分析】 根据乘法凑整原则整理为125161119⨯-⨯ ()=125829992000100012000100011001⨯⨯-=--=-+=【例 12】 计算:()450002590÷⨯=【分析】()450002590÷⨯()=450005045=450005045=100050=20÷⨯÷÷÷乘9、99、999【例 13】 下面各题怎样算简便呢?⑴129⨯ ⑵1299⨯ ⑶12999⨯【分析】 ⑴利用公式,可以得出结果:12912012108⨯=-=;⑵12991200121188⨯=-=,此题也可用小技巧:“去1添补”法,“补”就是“补数”,和为整十或整百或整千的两个数都可称为互补数.注意:只适用于“两位数乘99”.的补数是88去11112=118812× 99⑶12999120001211988⨯=-=,此题可用小技巧:“去1添补,中间隔9”法. 注意:只适用于“两位数乘999”.中间隔的补数是88去1是12=1198812×【例 14】 计算:123456789876543219⨯=【分析】 原式()21111111119=⨯ 999999999111111111=⨯111111111000000000111111111=- 111111110888888889=【例 15】 算式1234567898765432163⨯值的各位数字之和为 。

小学三年级数学速算巧算简便运算指导

小学三年级数学速算巧算简便运算指导

速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。

如: 87655→12345, 46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。

2.互补数先加。

例1巧算下面各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。

例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。

如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。

例 3① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。

例4① 4723-(723+189)② 2356-159-256解:①式=4723-723-189②式=2356-256-159=2100-159=19413.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。

小学数学速算与巧算方法例解

小学数学速算与巧算方法例解

小学数学速算与巧算方法例解小学数学的速算与巧算方法是指通过一些简单、快捷的计算方法,进行数学运算,节省计算时间,提高计算效率。

下面,我将介绍几种常见的小学数学速算与巧算方法。

一、乘法速算方法1.小数×10的整数幂:将小数点向右移动和移动的位数相等,反之向左移动。

例如:0.32×100=322.两位数之积:求两位数相乘,先算个位上的乘积,再算十位上的乘积,最后相加。

3.乘法竖式中的快速乘法:将个位数乘以个位数,再将十位数乘以十位数,分别相加得到乘积的十位和个位,然后将个位数乘以十位数和十位数乘以个位数,再相加得到乘积的百位数。

例如:37×24=8(×2+×7)+(×2+×3)×10+7(×4)=888二、除法速算方法1.短除法:将被除数和除数对齐,逐位进行计算,得到商和余数。

例如:245÷5=49,余0。

2.效果法:遇到末尾数字是5、50、500等以5结尾的除数时,可以先除以10,然后再乘以2、例如:465÷5=93,930÷10=93×2=1863.两个数相除得到循环小数:将被除数和除数进行移位,使得除数变成整数,然后进行计算。

例如:11÷9=1.2222...,可以近似表示为11/9≈1.2三、加法速算方法1.近似法:将大数近似为最接近的整数相加,然后再根据误差进行修正。

例如:387+597≈400+600=1000-13-3=9842.数量法:将两个数分解成数个量的相同数,然后再进行计算。

例如:387+597=400+500+72+97=1000+169=11693.进位借位法:将两个数按位进行计算,向后进位或借位。

例如:387+597=7+7=14,37+57+1=95,3+1=4,所以387+597=984四、减法速算方法1.进退法:将减数和被减数对齐进行计算,遇到退位时向前退位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲速算与巧算(二)
一、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:
5×2=10 25×4=100 125×8=1000
例1计算①123×4×25
② 125×2×8×25×5×4
解:①式=123×(4×25)
=123×100=12300
②式=(125×8)×(25×4)×(5×2)
=1000×100×10=1000000
2.分解因数,凑整先乘。

例 2计算① 24×25
② 56×125
③ 125×5×32×5
解:①式=6×(4×25)
=6×100=600
②式=7×8×125=7×(8×125)
=7×1000=7000
③式=125×5×4×8×5=(125×8)×(5×5×4)
=1000×100=100000
3.应用乘法分配律。

例3 计算① 175×34+175×66
②67×12+67×35+67×52+6
解:①式=175×(34+66)
=175×100=17500
②式=67×(12+35+52+1)
= 67×100=6700
(原式中最后一项67可看成 67×1)
例4 计算① 123×101 ② 123×99
解:①式=123×(100+1)=123×100+123 =12300+123=12423
②式=123×(100-1)
=12300-123=12177
4.几种特殊因数的巧算。

例5一个数×10,数后添0;
一个数×100,数后添00;
一个数×1000,数后添000;
以此类推。

如:15×10=150
15×100=1500
15×1000=15000
例6一个数×9,数后添0,再减此数;
一个数×99,数后添00,再减此数;
一个数×999,数后添000,再减此数;…
以此类推。

如:12×9=120-12=108
12×99=1200-12=1188
12×999=12000-12=11988
例7一个偶数乘以5,可以除以2添上0。

如:6×5=30
16×5=80
116×5=580。

例8 一个数乘以11,“两头一拉,中间相加”。

如 2222×11=24442
例9一个偶数乘以15,“加半添0”.
24×15
=(24+12)×10
=360
因为
24×15
= 24×(10+5)
=24×(10+10÷2)
=24×10+24×10÷2(乘法分配律)
=24×10+24÷2×10(带符号搬家)
=(24+24÷2)×10(乘法分配律)
例10个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25
如15×15=1×(1+1)×100+25=225
25×25=2×(2+1)×100+25=625
35×35=3×(3+1)×100+25=1225
45×45=4×(4+1)×100+25=2025
55×55=5×(5+1)×100+25=3025
65×65=6×(6+1)×100+25=4225
75×75=7×(7+1)×100+25=5625
85×85=8×(8+1)×100+25=7225
95×95=9×(9+1)×100+25=9025
还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。

二、除法及乘除混合运算中的巧算
1.在除法中,利用商不变的性质巧算
商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。

例11计算①110÷5②3300÷25
③ 44000÷125
解:①110÷5=(110×2)÷(5×2)
=220÷10=22
②3300÷25=(3300×4)÷(25×4)
=13200÷100=132
③ 44000÷125=(44000×8)÷(125×8)
=352000÷1000=352
2.在乘除混合运算中,乘数和除数都可以带符号“搬家”。

例12 864×27÷54
=864÷54×27
=16×27
=432
3.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。

例13① 13÷9+5÷9 ②21÷5-6÷5
③2090÷24-482÷24
④187÷12-63÷12-52÷12
解:①13÷9+5÷9=(13+5)÷9
=18÷9=2
②21÷5-6÷5=(21-6)÷5
=15÷5=3
③2090÷24-482÷24=(2090-482)÷24
=1608÷24=67
④187÷12-63÷12-52÷12
=(187-63-52)÷12
=72÷12=6
4.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。

即a×(b÷c)=a×b÷c 从左往右看是去括号,
a÷(b×c)=a÷b÷c 从右往左看是添括号。

a÷(b÷c)=a÷b×c
例14①1320×500÷250
②4000÷125÷8
③5600÷(28÷6)
④372÷162×54
⑤2997×729÷(81×81)
解:① 1320×500÷250=1320×(500÷250)
=1320×2=2640
②4000÷125÷8=4000÷(125×8)
=4000÷1000=4
③5600÷(28÷6)=5600÷28×6
=200×6=1200
④372÷162×54=372÷(162÷54)
=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
=(2997÷81)×(729÷81)=37×9
=333。

相关文档
最新文档