Calibration-free augmented reality
虚拟现实与增强现实技术
虚拟现实和增强现实技术提供了全新的交互方式,如手势 识别、语音识别、脑机接口等,使得人机交互更加自然、 便捷和高效。
推动产业发展
随着虚拟现实和增强现实技术的不断发展和普及,将会带 动相关产业的快速发展,如游戏娱乐、教育培训、医疗健 康、工业制造等。
发展趋势预测
融合发展
虚拟现实和增强现实技术将不断融合发展,形成更加自然、真实和沉浸式的用户体验,同 时结合5G、AI等技术,实现更高层次的人机交互和智能化应用。
教育培训领域
模拟实践
远程教育
通过虚拟现实技术,学生可以模拟实 践各种操作和技能,提高学习效果和 实践能力。
虚拟现实和增强现实技术可以打破地 域限制,实现远程教育和在线学习。
场景化教学
利用增强现实技术,教师可以创建生 动的教学场景,帮助学生更好地理解 和掌握知识。
工业设计领域
虚拟原型设计
利用虚拟现实技术,设计师可以 在计算机上创建虚拟原型,进行
目前,Байду номын сангаасR/AR技术已经应用于游戏、影 视、教育、医疗、工业设计等领域,并 取得了显著的成果。同时,随着5G、 AI等技术的融合应用,VR/AR技术的发
展前景将更加广阔。
02
虚拟现实技术
硬件设备
头戴式显示器
提供沉浸式体验,通过头戴设 备将用户的视觉、听觉等感官 隔离,创造出一种身临其境的
虚拟环境。
3D眼镜/头盔
类似于头戴式显示器,但更为 轻便,通常用于手机或电脑的 虚拟现实体验。
空间定位设备
通过红外线、超声波等定位技 术,实现用户在虚拟空间中的 位置追踪。
数据手套
穿戴在用户手上,通过传感器 捕捉手部动作,实现与虚拟环
增强 现实
• 5.1增强现实的概念 • 5.2增强现实的研究现状 • 5.3增强现实和虚拟现实的区别和联系 • 5.4增强现实系统的关键技术 • 5.5增强现实技术的应用领域
5.1 增强现实的概念
• 目前,对于增强现实有两种通用的定义:一种是美国北 卡罗来纳大 学Ronald Azuma于1997年提出的,他认为增强现 实包括虚拟物与 现实结合、实时和三维三个方面的内容;另 一种是1994年保罗•米尔 格拉姆(Paul Milgram)和岸野文郎(Fumio Kishino)提出的现 实—虚拟现实连续体(Reality- Virtuality Continuum),如图5-5所 示。他们将真实环境和虚 拟环境分别作为连续体的两端,位于它们 中间的被称为“混 合实境(Mixed Reality)”。其中靠近真实环境的 是增强现 实(Augmented Reality),靠近虚拟环境的则是扩增虚 境(Augmented Virtuality)。
• (5)培训设施是指黑板、幻灯、投影仪、电视、网络系统、案例分 析场所、教学实验基地等使培训得以顺利进行的基本
• 图5-6所示为增强现实在军事训练中的应用,使用 者在真实的机舱环 境下操作,可以看到机舱内部各部件及自
上一页
返回
5.2 增强现实的研究现状
• 国外专注于增强现实技术的高校与科研机构 一般将重点放在技术核 心部分的算法 、人机交 互方式、软硬件基础平台的研究上,其中比 较著 名的有美国西雅图华盛顿大学的Human Interface Technology Lab,其支持研究的AR Toolkit开源 项目是业内最早的基于矩形识别 标识进行三维 空间注册的成熟增强现实引擎;瑞士洛桑理工学 院的 Computer Vision Laboratory,其基于自然平 面图像与立体物体识 别追踪的三维注册算法被公 认为代表业内的领先水平 ;新加坡国立 大学的 Interactive Multimedia Lab,专注于基于增强现实 技术的人 机交互技术的研究;德国宝马实验室, 正在研究并开发的增强现实 辅助汽车机械维修项 目,目标是实现基于可穿戴计算机的第一视角 增 强现实方案。
增强现实技术的教育研究现状及发展趋势基于中英文期刊文献分析
在技术创新方面,增强现实技术不断取得突破性进展,例如虚实融合技术、 三维注册技术、视觉跟踪技术等。这些技术的不断进步为增强现实产业的快速发 展提供了有力支撑。
应用案例:
1、教育领域:增强现实技术在教育领域的应用已经越来越广泛。例如,通 过增强现实技术将三维模型与实物相结合,帮助学生更加直观地了解知识点;在 语言学习中,增强现实技术可以提供沉浸式的语言环境,提高学习效率和兴趣。
4、不足之处:虽然增强现实技术在教育领域的应用取得了显著的成果,但 仍存在一些不足之处。例如,部分AR应用的设计和开发难度较大,需要较高的技 术水平和专业人员支持;同时,AR技术的应用也面临着设备成本高、普及率低等 问题。
四、研究趋势
根据对中英文期刊文献的分析,结合增强现实技术教育研究的现状,我们展 望其未来的发展趋势和应用前景:
目前,碳纤维增强复合材料技术得到了世界各国的研究机构和企业的广泛。 在碳纤维制备方面,研究人员不断探索新的工艺方法,以提高碳纤维的强度和生 产效率。例如,日本日产公司成功开发出一种新型低成本生产碳纤维的方法,该 方法采用多孔织物为原料,进一步降低了生产成本。此外,碳纤维增强复合材料 的制造工艺也得到了不断优化,使得这种先进材料的性能得到了极大的提升。
3、研究领域多样化:涉及融合教育的学科领域越来越广泛,包括特殊教育、 教育学、心理学、社会学等。
根据对CNKI学术期刊数据的可视化分析,国内融合教育研究的发展趋势如下:
1、政策支持将继续加强:随着社会对公平教育的度提高,政府将加大对融 合教育的支持力度,推动相关政策的出台和实施。
2、实践需求将逐步增加:随着普通学校开始更加积极地接纳残疾儿童,实 践需求将推动融合教育研究的深入发展。
增强现实技术能否促进学习——基于国际英文期刊35项研究的元分析
Marker Tracking and HMD Calibration for a Video-based Augmented Reality Conferencing System
1. uction
Computers are increasingly used to enhance collaboration between people. As collaborative tools become more common the Human-Computer Interface is giving way to a Human-Human Interface mediated by computers. This emphasis adds new technical challenges to the design of Human Computer Interfaces. These challenges are compounded for attempts to support three-dimensional Computer Supported Collaborative Work (CSCW). Although the use of spatial cues and three-dimensional object manipulation are common in face-to-face collaboration, tools for three-dimensional CSCW are still rare. However new 3D interface metaphors such as virtual reality may overcome this limitation. Virtual Reality (VR) appears a natural medium for 3D
AugmentedArc 增强现实扁平焊接系统说明书
System is warranted for one year, parts and labor.Issued Jan. 2020 • Index No. TS/2.0Training SolutionsMiller Electric Mfg. LLCAn ITW Welding Company 1635 West Spencer Street P.O. Box 1079Appleton, WI 54912-1079 USAEquipment Sales US and CanadaPhone: 866-931-9730 FAX: 800-637-2315International Phone: 920-735-4554 International FAX: 920-735-4125The industry’s most realistic weldingsimulation solution for classroom training.For beginner to advanced-level weld students, the AugmentedArc system simulates multiple welding processes, blending real-world and computer-generated images into a unique, augmented reality environment.AugmentedArc ®A ugmented Reality Welding SystemComes complete with: AugmentedArc simulator Teacher software(see below for description) Black Infinity ™ AR helmet with premium headgear AugmentedArc router MIG gun with AR nozzle SMAW stingerTIG torch with AR nozzleTwo electrode/filler rods with AR tips Work stand for out-of-position applicationsFive workpieces: t-joint, butt joint, lap joint, pipe-to-plate and butt pipeAugmentedArc simulator and helmet both feature augmented-reality displays.Specially coded workpieces provide a wide range of training applications.Specially designed gun, torch, stinger and filler metal components relay user data to the computer for processing.AugmentedArc work stand allows for training in out-of-position applications.Teacher software is a user-friendly and flexible learning management system (LMS) that allows instructors to manage courses, content andstudents, and maximizes the usefulness of AugmentedArc welding simulators. Create and manage your own welding curriculum-Create quizzes, theory and welding simulation exercises-Use pre-developed exercises or fully customize your own exercise parameters, technique and scoring criteria-Offline mode allows you to manage the content from anywhere Manage student progress-Review the complete history and detailed results of student activities -View real-time results of welding simulations-View statistics and download reports for individual students or entire class2Optimize instructor efficiency by using the Teacher software to create a virtual classroom with customized curriculum, quizzes and weld exercises.Real-time feedback is provided on users’ technique to help correct errors. Reinforce proper welding practices and accelerate skill advancement prior to actual live arc welding in a lab.Reduce overall training time compared to traditional methods, with the realistic live arc welding simulation of the AugmentedArc. Minimize material cost by saving wire, gas and workpieces in this simulation environment allowing students to define their welding skills before beginning live arc welding.Build a larger, more-skilled welding workforce whencomputer-savvy individuals are drawn to welding education programs that increase their success with live arc welding.AugmentedArc ®SystemAugmented Reality DisplaysSpecifications (Subject to change without notice.)CTWDTravel speedAimTravel angleWork angleAugmentedArc displayHelmet’s external optical sensor captures and sends images of coded devices and workpieces to AugmentedArc simulator Simulator generates three-dimensional images of metal workpieces, augmenting them into a real-world environment Display on simulator replicates the view inside helmet to give real-time feedbackWelding simulation screenVisual graphical aids guide the user to achieve target parametersAdherence to pre-determined or custom welding parameters is monitored, with confirmation when maintained or alerts when exceededRealistic arc sounds from inside helmet speakers accompany the visuals for a truly immersive experiencePost-weld feedback screenUser’s performance is scored, graphed and recorded for playbackPerformance feedback on various parameters is providedVideo is stored and available for replay for student and instructor review via teacher softwareAugmentedArc® Controller 301395Provides the capabilityto link multipleAugmentedArc systemstogether into a virtualclassroom environment. Heavy-Duty Transportation Cases 951775 Includes two heavy-duty cases which provide rugged protection for the complete system during transportation or storage. One case holds helmet and AugmentedArc unit, and the second case holds MIG gun, SMAW stinger, TIG torch, workpieces and work stand.TIG Foot Pedal Kit 286033Includes TIG foot pedal, connection cableand adapter cable.Magnifying Lenses212238 1.50212240 2.00212242 2.50Replacement Components AugmentedArc® Router277397 Stand-alone278181 ClassroomSelect router based on configuration being used. Includes Ethernet cable.Work Stand277266Allows for trainingin out-of-positionapplications.MIG Gun Replacement 301401Note: MIG gun AR nozzle sold separately.MIG Gun AR Nozzle 277269SMAW Stinger Replacement 277268 SMAW Electrode/TIG Filler Rod 277267 Electrode/Filler Rod AR Tip 279460TIG Torch Replacement 301400TIG Torch AR Nozzle 283068Black Infinity™ ARHelmet LED CoverReplacement 276240Replacement Gen III Headgear 271325Headgear with oversized comfort cushionprovides extensive adjustability, settings andenhanced support.Headgear Suspension Pad 271326Enhances comfort of Gen II and III headgear.Magnetic Magnifying Lens Holder 286018WorkpiecesButt Joint Workpiece277274T-Joint Workpiece277270Pipe-to-PlateWorkpiece 277276Butt Pipe Workpiece277275Lap Joint Workpiece277273Shown with TIGtorch AR nozzle(sold separately).Genuine Miller® Accessories and Replacement ComponentsShown with t-jointworkpiece attached(sold separately).Shown with electrode/filler rod and AR tip(sold separately).3Equipment Stock No. Description Qty. Price AugmentedArc ® System 951823 See front page for system components AccessoriesAugmentedArc Controller 301395 For multiple system connectivityHeavy-Duty Transportation Cases 951775 Package including two cases that protect the complete system TIG Foot Pedal Kit 286033Magnifying Lenses 212238 1.50 212240 2.00 212242 2.50 Replacement ComponentsAugmentedArc Router 277397Stand-alone router. With Ethernet cable 278181Classroom router. With Ethernet cable Work Stand 277266 For out-of-position applications MIG Gun 301401 AR nozzle NOT included MIG Gun AR Nozzle 277269SMAW Stinger 277268 Electrode and AR tip NOT included SMAW Electrode/TIG Filler Rod 277267 Electrode/Filler Rod AR Tip 279460TIG Torch 301400 Filler rod and AR nozzle NOT included TIG Torch AR Nozzle 283068 Black Infinity ™ AR Helmet LED Cover 276240 Replacement Gen III Headgear 271325 Headgear Suspension Pad 271326 Magnetic Magnifying Lens Holder 286018 WorkpiecesButt Joint Workpiece 277274 T-Joint Workpiece 277270 Pipe-to-Plate Workpiece 277276 Butt Pipe Workpiece 277275 Lap Joint Workpiece 277273Date: Total Quoted Price:Ordering Information©2020 Miller Electric Mfg. LLCDistributed by:Visit us on YouTube for informative videos on:Additional InformationWhat it is https://youtu.be/xCbmFFPSF7oSet up https://youtu.be/AKJfGgRrd2I。
双目相机 根据深度信息计算三维坐标的方法
双目相机根据深度信息计算三维坐标的方法The use of stereo cameras for calculating three-dimensional coordinates based on depth information is a fascinating and challenging task. This technology leverages the disparities between the images captured by the two cameras to estimate the depth of objects in the scene. By aligning and comparing these disparities, the camera system can reconstruct the three-dimensional structure of the environment.双目相机技术的发展为深度信息计算提供了更为准确和可靠的解决方案。
通过利用两个摄像头捕获的图像之间的差异,系统可以计算出物体在场景中的深度。
这种方法结合了视差计算和几何原理,进而实现对物体的三维坐标进行精确测量。
One of the key challenges in utilizing stereo cameras for 3D coordinate calculation is the accurate calibration of the camera system. Ensuring that the two cameras are properly calibrated in terms of their intrinsic and extrinsic parameters is crucial for obtaining precise depth information. Any misalignment or mismatchin the calibration process can introduce errors in the depth calculations and affect the accuracy of the 3D coordinates.在利用双目相机进行三维坐标计算的过程中,正确的相机系统校准显得至关重要。
Electronic Letters on Computer Vision and Image Analysis 5(4)75-82, 2006 Architectural Scen
Abstract In this paper we present a system for the reconstruction of 3D models of architectural scenes from single or multiple uncalibrated images. The partial 3D model of a building is recovered from a single image using geometric constraints such as parallelism and orthogonality, which are likely to be found in most architectural scenes. The approximate corner positions of a building are selected interactively by a user and then further refined automatically using Hough transform. The relative depths of the corner points are calculated according to the perspective projection model. Partial 3D models recovered from different viewpoints are registered to a common coordinate system for integration. The 3D model registration process is carried out using modified ICP (iterative closest point) algorithm with the initial parameters provided by geometric constraints of the building. The integrated 3D model is then fitted with piecewise planar surfaces to generate a more geometrically consistent model. The acquired images are finally mapped onto the surface of the reconstructed 3D model to create a photo-realistic model. A working system which allows a user to interactively build a 3D model of an architectural scene from single or multiple images has been proposed and implemented. Key Words: 3D Model Reconstruction, Range Image, Range Data Registration.
可见光相机内参标定
可见光相机内参标定Calibrating the intrinsic parameters of a visible light camera is an essential task in computer vision and image processing. The intrinsic parameters define the internal characteristics of the camera, such as its focal length, principal point, and lens distortion coefficients. Accurate calibration of these parameters is crucial for various applications, including 3D reconstruction, object tracking, and augmented reality.One of the main challenges in camera calibration is to accurately estimate the focal length. The focal length determines the camera's field of view and affects the scale of the captured scene. An incorrect estimation of the focal length can lead to inaccurate measurements and distortions in the reconstructed images. Therefore, it is crucial to calibrate the camera's focal length accurately to ensure reliable and precise results.Another important parameter to calibrate is theprincipal point, which represents the optical center of the camera. Accurate estimation of the principal point iscrucial for correctly aligning the captured images and minimizing image distortions. A misalignment of theprincipal point can result in image warping and misinterpretation of the scene geometry.Lens distortion is another significant factor thatneeds to be calibrated. Lens distortion can cause image distortions, such as barrel or pincushion distortion, which can affect the accuracy of measurements and the quality of the reconstructed images. Calibrating the lens distortion coefficients allows for the correction of these distortions, resulting in more accurate and visually pleasing images.To calibrate the intrinsic parameters of a visiblelight camera, a common approach is to use a calibration target with known geometric properties. The calibration target typically consists of a planar pattern with a gridof points or a set of known 3D points. By capturing imagesof the calibration target from different viewpoints, it is possible to estimate the camera's intrinsic parametersusing various calibration algorithms, such as Zhang's method or the Tsai's method.The calibration process involves capturing multiple images of the calibration target from different viewpoints and extracting corresponding image points and their corresponding 3D world coordinates. These correspondences are then used to estimate the camera's intrinsic parameters using a calibration algorithm. The accuracy of the calibration depends on the number and distribution of the calibration images, as well as the quality of the correspondences.In conclusion, calibrating the intrinsic parameters of a visible light camera is a crucial step in computer vision and image processing tasks. Accurate calibration of the focal length, principal point, and lens distortion coefficients ensures reliable and precise results in applications such as 3D reconstruction and object tracking. The calibration process involves capturing images of a calibration target and estimating the camera's intrinsic parameters using calibration algorithms. It is essential tocarefully select the calibration target, capture a sufficient number of images, and accurately extract correspondences to achieve accurate camera calibration.。
虚拟现实和增强现实ppt课件.ppt
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
虚拟现实有一定的健康和安全的考虑,并且VR智能眼镜不 应只作手机or电脑的附件,必须让设备独立起来、移动起来, 而不是依托手机或电脑,而是真正的一体机,这是多种技术 的综合和应用,是科技在努力的方向,也是整个行业的目标。 到了那个时候,人们的生活方式将会极大的改变!
VR
and 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
一、VR 病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
&
AR的定义
VR(Virtual Reality,即虚拟现实,简称VR): 也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界, 提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以 及时、没有限制地观察三度空间内的事物。
AR
引入病原体侵入机体,消弱机体防御机能,破坏机体内环境的相对稳定性,且在一定部位生长繁殖,引起不同程度的病理生理过程
李先生在广州工作,近来打
算买房,可是一直很忙,没
时间亲自到实地去看房,某
日他在网上看到某房产公司
推出的网上虚拟三维看房,
非常逼真,很快就相中一套
三室住房。 看来,虚拟现
AUGMENTED REALITY
专利名称:AUGMENTED REALITY发明人:AGOSTINI, Ric,LANG, Scott,LARMOND, Kimberly-Anne,MARTIN, Scott,MCGUIRE,Terence, Patrick,SCOZZARI, Salvatore申请号:US2016/021613申请日:20160309公开号:WO2016/145117A1公开日:20160915专利内容由知识产权出版社提供专利附图:摘要:In a method and system of training, one or more digital assets, such as two-dimensional and three-dimensional computer-generated objects, are superimposed overa live camera view to generate a simulated training scenario, referred to herein as augmented reality ("AR") technology. By leveraging AR technology, a live simulation of real-world events, situations, and skills is generated for which an employee, student, customer, or any type of person in need of training, is being trained. A trainee is thus immersed directly into the training material. The physical environment and working conditions are integrated into the sequence of training material, and it does this live, that is, with immediate feedback from a camera's live screen view. This technique may, by way of examples, also be described as an automated guided tour used to facilitate employee on-boarding and training, or as a guided tour through a warehouse store for its customers.申请人:ALCHEMY SYSTEMS, L.P.地址:78727 US国籍:US代理人:STONE, Jack, D., Jr.更多信息请下载全文后查看。
单目结构光的深度计算原理
单目结构光的深度计算原理Single-camera structured light depth calculation is a method of using a special projector and a single camera to calculate depth information in a scene. The projector emits a known pattern of structured light onto the scene, and the camera captures the reflected light. The depth of the scene can be calculated by analyzing the deformation of the known pattern in the captured image.单目结构光深度计算是利用特殊投影仪和单一摄像头计算场景深度信息的一种方法。
投影仪发出已知的结构光图案到场景上,摄像头捕捉反射光。
通过分析捕获图像中已知图案的变形,可以计算出场景的深度。
One of the key components in single-camera structured light depth calculation is the patterns of structured light projected onto the scene. These patterns can include grids, stripes, or other identifiable patterns. The choice of the pattern depends on the specific application and the requirements for depth resolution and accuracy.单目结构光深度计算中的一个关键组成部分是投射到场景上的结构光图案。
Augmented reality data display methods, devices, e
专利名称:Augmented reality data display methods, devices, equipment, storage media andprograms发明人:侯欣如,▲欒▼青申请号:JP2020572499申请日:20200827公开号:JP2022505002A公开日:20220114专利内容由知识产权出版社提供摘要: The present application provides methods, devices, electronic devices, storage media and programs for displaying augmented reality data. The method is based on the moving position of the virtual target and the position data of the AR device when it is detected that the position data of the augmented reality device is acquired and the AR device satisfies a predetermined display condition that triggers the display of the virtual target. It includes determining the display data including the moving state of the virtual target and displaying the augmented reality data including the display data by the AR device. The moving position of the virtual target is characterized by including at least one of a predetermined initial position of the virtual target, a predetermined end point position of the virtual target, and a position of the virtual target in the current moving state.申请人:ベイジン センスタイム テクノロジー デベロップメント カンパニー, リミテッド更多信息请下载全文后查看。
uvw视觉旋转标定方法
uvw视觉旋转标定方法Visual rotation calibration is a crucial technique in computer vision and imaging systems. It is used to establish the relationship between the intrinsic parameters of a camera, such as focal length and principal point, and the extrinsic parameters, which involve the camera's orientation and position in space.视觉旋转标定是计算机视觉和成像系统中的一项关键技术。
它用于建立摄像头的内参数(如焦距和主点)与外参数(涉及摄像头在空间中的方向和位置)之间的关系。
One common method for visual rotation calibration is through the use of a calibration pattern, such as a checkerboard or grid. By capturing images of the pattern from different viewpoints, the system can extract key features and calculate the camera parameters.一种常见的视觉旋转标定方法是通过使用一个标定图案,如棋盘格或网格。
通过从不同角度捕获图案的图像,系统可以提取关键特征并计算摄像头参数。
The accuracy of the calibration process is essential for tasks like 3D reconstruction, object tracking, and augmented reality. Improper calibration can lead to errors in depth estimation, object localization, and image distortion.校准过程的准确性对于3D重建,物体跟踪和增强现实等任务至关重要。
AR增强现实技术ppt课件
ppt课件.
14
智能制造转型 之智能设计
再精确的图纸,也会限制设计师设计理念的 准确表达,影响和客户的沟通。而增强现实 技术,恰恰弥补了这个缺陷。设计师在设计 阶段可以通过增强现实技术将设计师的创意 快速、逼真的融合于现实场景中,使设计师 能对最终产品有直观和切身的感受,利用最 终设计方案的完善。
软件闪退等情况,还有就是电池续航 问题,出现了可视范围非常小的问题,
其他问题就是佩带眼镜的增强现实技 术,出现的交互问题,其需要 佩带眼
镜使用,使用者无法接触屏幕,急需 新的交互方式
商业
03 模式
过于注重单个产品应用,没有形成持 续性的商业模式。需要降低门槛,创 造更多的内容。
人才
02
基于增强现实技术(AR)的人才培养 大有可为。目前AR概念大过产品,需 要更多人才的开发。
ppt课件.
8
定角然将
出实获软具距内这
你以后手
最景取件。离置是
+ APP
面及 机
前 星 云 的 名 称 。
其 他 地 理 信 息 , 确
就 会 自 动 通 过 方 位
对 准 天 上 的 星 空 ,
星 图
终 结 果 。
勾 股 定 理 就 能 很 快 得
前 方 的 景 物 和 物 体 ,
可 以 通 过 摄 像 头 实 时
增强现实 Augmented Reality
ppt课件.
姓名:XX 班级:XX 1
引言
据近报 日道谷,歌苹C果EO公S司u一nd直ar对PiAcRha抱i与有谷很歌大虚的拟期现待实,部苹门果副C总E裁O CTliamy CBaovookr 本的 人私也 人曾谈多话次内强容调被对曝光A,R 其技中术一的个兴重趣点。是而谷最歌近的公真布正的目一标项是专A利R—(—增专强为现实), i而Ph非o虚ne拟手现机实设(计V的R)A。R 地图系统,向用户提供周围环境的实时增强现实地 图谷, 歌则认进为一,步从证长实远了来这看一,点增。强现实才是未来的发展趋势,因为它能够带给 人们更多互动体验,而非虚拟现实的隔离。
双相机贴合算法
双相机贴合算法The dual-camera alignment algorithm is a critical technology in the field of computer vision and imaging systems. It involves the precise alignment of two cameras to achieve a seamless and accurate image fusion. This algorithm is essential in various applications, including stereo vision, 3D reconstruction, and augmented reality.双相机贴合算法是计算机视觉和成像系统领域中的一项关键技术。
它涉及两个相机的精确对准,以实现无缝且准确的图像融合。
这种算法在多种应用中至关重要,包括立体视觉、3D重建和增强现实等。
The core of the dual-camera alignment algorithm lies in the calibration process. This involves determining the internal and external parameters of each camera, such as focal length, principal point, and relative position and orientation. By accurately calibrating the cameras, it becomes possible to transform the images captured by them into a common coordinate system.双相机贴合算法的核心在于校准过程。
黑科技关于生活实际
黑科技关于生活实际1.AR—Augement Reality(增强现实)在真实的场景中加入一些虚拟元素。
增强现实(AugmentedReality)技术是一种将虚拟信息与真实世界巧妙融合的技术,广泛运用了多媒体、三维建模、实时跟踪及注册、智能交互、传感等多种技术手段,将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,应用到真实世界中,两种信息互为补充,从而实现对真实世界的“增强”。
2.MR—Mix Reality(混合现实)真实与虚拟结合,所产生新的可视化环境。
并且在新的环境中,现实与虚拟所发生的事情必须是“实时的”。
微软在官网上公布了这款全新的“Holographic”混合现实演示短片,完全由电脑生成的3D环境与现实相融。
3. VR虚拟眼镜最近说起VR眼镜,大家一点都不陌生,它可是能让你“身临其境”的神器,手机秒变3D巨幕,从此再也不用跑去电影院看电影了!无论是看电影还是打游戏,就好像真的进入场景一样,这样的感觉,想想都刺激。
4.水幕秋千让人惊心动魄的水幕秋千通过秋千上方装的监测器,捕捉荡秋千之人的特征、速度等信息,计算水的降落时机,既营造了独特的空间,不会淋湿又非常有趣,水景设计也不再只是简单地流淌。
5.水幕“瀑布”墙把“瀑布”搬进写字楼,科技的进步就是,无论何地都能让你看到壮丽的自然景观,比如把“瀑布”搬进写字楼,长达108英尺、超过700万像素。
6.盛开花蕊会盛开的原因是花蕊灯的部分装有感应装置,它可以让空气充斥到里面让花瓣开放,这样可以为等车的行人遮阳,而且只要人群散去,花瓣就会再度闭合。
7.智能马桶智能马桶颠覆了人们常规对“上厕所”的理解,全套由一整个陶瓷坐体和智能盖板组成,具备便后自动清洗PP、冲洗女性私密部位、暖风烘干、自动除臭等功能,所谓“擦屁股”的事,再也不用麻烦了。
除此之外,还可以通过选择不同的压力按摩,缓解便秘、痔疮等问题。
真是一大神器,据说现在中高端的装修,都开始追求使用智能马桶了。
基于手机平台的“增强现实”技术研究
作者: 简增强
作者机构: 沈阳理工大学
出版物刊名: 美术大观
页码: 127-127页
年卷期: 2013年 第4期
主题词: 科学技术;手机;视觉信息;现实世界;感官体验;专业术语;空间范围;模拟仿真
摘要:增强现实(Augmented Reality),用专业术语来说,把原本在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息、声音、味道、触觉等),通过科学技术模拟仿真后再叠加到现实世界被人类感官所感知,从而达到超越现实的感官体验,这种技术叫作增强现实技术,简称AR技术。
这项技术将虚拟和现实联系起来,它可以结合生活中的很多应用场景产生出新的模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Index Terms—Augmented reality, real-time computer vision, calibration, registration, affine representations, feature tracking, 3D interaction techniques.
—————————— 3 ——————————
1 INTRODUCTION
T HERE has been considerable interest recently in mixing live video from a camera with computer-generated graphical objects that are registered in a user’s threedimensional environment [1]. Applications of this powerful visualization technique include guiding trainees through complex 3D manipulation and maintenance tasks [2], [3], overlaying clinical 3D data with live video of patients during surgical planning [4], [5], [6], [7], [8], as well as developing three-dimensional user interfaces [9], [10]. The resulting augmented reality systems allow three-dimensional “virtual” objects to be embedded into a user’s environment and raise two issues unique to augmented reality:
• Establishing 3D geometric relationships between physical and virtual objects: The locations of virtual objects must be initialized in the user’s environment before user interaction can take place.
• Rendering virtual objects: Realistic augmentation of a 3D environment can only be achieved if objects are continuously rendered in a manner consistent with their assigned location in 3D space and the camera’s viewpoint.
²²²²²²²²²²²²²²²²
• The authors are with the Computer Science Department, University of Rochester, Rochester, NY 14627-0226. E-mail: {kyros, vallino}@.
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 1, JANUARY-MARCH 1998
1
Calibration-Free Augmented Reality
Kiriakos N. Kutulakos, Member, IEEE, and James R. Vallino, Student Member, IEEE
At the heart of these issues lies the ability to register the camera’s motion, the user’s environment and the embedded virtual objects in the same frame of reference (Fig. 1). Typical approaches use a stationary camera [10] or rely on 3D position tracking devices [11] and precise camera calibration [12] to ensure that the entire sequence of transformations between the internal reference frames of the virtual
ቤተ መጻሕፍቲ ባይዱ
Abstract—Camera calibration and the acquisition of Euclidean 3D measurements have so far been considered necessary requirements for overlaying three-dimensional graphical objects with live video. In this article, we describe a new approach to videobased augmented reality that avoids both requirements: It does not use any metric information about the calibration parameters of the camera or the 3D locations and dimensions of the environment’s objects. The only requirement is the ability to track across frames at least four fiducial points that are specified by the user during system initialization and whose world coordinates are unknown.
Our approach is based on the following observation: Given a set of four or more noncoplanar 3D points, the projection of all points in the set can be computed as a linear combination of the projections of just four of the points. We exploit this observation by 1) tracking regions and color fiducial points at frame rate, and 2) representing virtual objects in a non-Euclidean, affine frame of reference that allows their projection to be computed as a linear combination of the projection of the fiducial points. Experimental results on two augmented reality systems, one monitor-based and one head-mounted, demonstrate that the approach is readily implementable, imposes minimal computational and hardware requirements, and generates real-time and accurate video overlays even when the camera parameters vary dynamically.
This article presents a novel approach to augmented reality whose goal is the development of simple and portable video-based augmented reality systems that are easy to initialize, impose minimal hardware requirements, and can be moved out of the highly-controllable confines of an augmented reality laboratory. To this end, we describe the design and implementation of an augmented reality system that generates fast and accurate augmented displays using live video from one or two uncalibrated camcorders as the only input. The key feature of the system is that it allows operations such as virtual object placement and real-time rendering to be performed without relying on any information about the calibration parameters of the camera, the camera’s motion, or the 3D locations, dimensions, and identities of the environment’s objects. The only requirement is the ability to track across frames at least four fiducial points that are specified by the user during system initialization and whose world coordinates are unknown.