新课标Ⅰ高考数学总复习专题01集合与常用逻辑用语分项练习含解析理
2024年新高考版数学专题1_1.2 常用逻辑用语(分层集训)
2.(2023届福建龙岩一中月考,3)下列命题中,错误的命题是 ( ) A.函数f(x)=x与g(x)=( x )2不是同一个函数 B.命题“∃x∈[0,1],x2+x≥1”的否定为“∀x∈[0,1],x2+x<1”
C.设函数f(x)=
2x 2x , x
2,
x 0,
0,
则f(x)在R上单调递增
2.(2022福建龙岩一模,1)已知a∈R,若集合M={1,a},N={-1,0,1},则“M ⊆N”是“a=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 B
3.(2020天津,2,5分)设a∈R,则“a>1”是“a2>a”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A
A.∀x∈R,∃n∈N*,使得n<x2 B.∀x∈R,∀n∈N*,使得n<x2 C.∃x∈R,∃n∈N*,使得n<x2 D.∃x∈R,∀n∈N*,使得n<x2 答案 D
2.(2015课标Ⅰ,3,5分)设命题p:∃n∈N,n2>2n,则¬p为 ( ) A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 答案 C
4.(2021山东淄博模拟,5)已知a,b∈R,则“ab≠0”的一个必要条件是
()
A.a+b≠0 B.a2+b2≠0
C.a3+b3≠0 答案 B
D. 1 + 1 ≠0
ab
5.(多选)(2021辽宁省实验中学二模,4)下列四个选项中,q是p的充分必要 条件的是 ( )
A.p:
高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)
高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
高考数学专题复习01 集合与常用逻辑用语
专题01 集合与常用逻辑用语1.【2019年全国Ⅰ卷】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =( ) A.}{43x x -<< B.}42{x x -<<- C.}{22x x -<< D.}{23x x << 2.【2019年高考全国Ⅱ卷】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( )A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)3.【2019年高考全国Ⅲ卷】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则AB =( ) A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,2 4.【2018年理新课标I 卷】已知集合,则( ) A. B. C. D.5.【2018年理数全国卷II 】已知集合,则中元素的个数为( )A. 9B. 8C. 5D. 46.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( )A.{}1,3-B.{}1,0C.{}1,3D.{}1,57.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0 8.已知集合{(,)|2,,}A x y x y x y =+≤∈N ,则A 中元素的个数为( )A .1B .5C .6D .无数个 9.已知集合{|1}A x x =<,{|31}x B x =<,则( )A .{}1AB x x => B .A B =RC .{|0}A B x x =<D .A B =∅10.设集合{|12,}A x x x =-≤≤∈N ,集合{2,3}B =,则B A 等于( )A .{1,0,1,2,3}-B .{0,1,2,3}C .}3,2,1{D .{2}11.已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a = ( )A .0B .0或1C .2D .0或1或212.已知集合{}2230,A x x x =+-≤{}2B =<,则A B =( ) A .{}31x x -≤≤ B .{}01x x ≤≤ C .{}31x x -≤<D .{}10x x -≤≤13.已知集合{|A x y =,2{|log 1}B x x =≤,则A B =( )A.1{|}3x x ≤≤-B.{|01}x x <≤ C .{|32}-≤≤x x D .{|2}x x ≤14.设集合{|A x y ==,{|2,x B y y ==3}x ≤,则集合B A C R )(=( ) A .}3|{<x xB .{|3}x x ≤C .{|03}x x <<D .{|03}x x <≤ 15.设集合,,则( ) A. B. C. D. 16.设集合,,则的子集个数为( )A. 4B. 8C. 16D. 3217.设集合,,若,则( ) A. B. C. D. 18.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 的值为 .19.(2016年山东高考)设集合 则=( )(A ) (B )(C ) (D ) 20.已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则)(Q C P R =( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞21.(2016年四川高考)设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( ) A.3 B.4 C.5 D.622.(2016年天津高考)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( ) (A ){1} (B ){4} (C ){1,3}(D ){1,4} 23.(2016年全国I )设集合2{|430}A x x x =-+< ,{|230}B x x =->,则A B = ( )(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)224.(2016年全国II )已知集合,,则( ) (A ) (B ) (C ) (D ) 25.(2016年全国III 高考)设集合S = , 则T S =( )A.[2,3]B.(- ,2] [3,+)C. [3,+)D.(0,2] [3,+)2{|2,},{|10},x A y y x B x x ==∈=-<R A B (1,1)-(0,1)(1,)-+∞(0,)+∞{1,}A =2,3{|(1)(2)0,}B x x x x =+-<∈Z A B ={1}{12},{0123},,,{10123}-,,,,{}{}|(2)(3)0,|0S x x x T x x =--≥=>∞U ∞∞U ∞26.命题“2000,10x x x ∃∈++<R ”的否定为 ( )A .2000,10x x x ∃∈++≥RB .2000,10x x x ∃∈++≤RC .2000,10x x x ∀∈++≥RD .2000,10x x x ∀∉++≥R27.【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈28.(2016年浙江高考) 命题“*x n ∀∈∃∈,R N ,使得2x n ≥”的否定形式是( ) A .*x n ∀∈∃∈,R N ,使得2n x < B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <29.已知命题;命题:,,则下列命题为真命题的是( ) A. B. C. D. 30.【2017山东,理3】已知命题p:;命题q :若a >b ,则,下列命题为真命题的是( )(A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q31.【2017课标II 】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。
专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)
②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.
∵
2x
-
3>0
,
∴
x>
3 2
,
∴
B
=
3 xx>2
.
∴
A∩B
=
{x|1<x<3}∩xx>32 =32,3. [答案] D
2024年高考数学真题分类汇编01:集合与常用逻辑用语
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
二、填空题ห้องสมุดไป่ตู้
10.(2024·上海)设全集U 1, 2,3, 4,5 ,集合 A 2, 4 ,则 A
.
1.A
参考答案:
【分析】化简集合 A ,由交集的概念即可得解.
【解析】因为 A x | 3 5 x 3 5 , B 3, 1, 0, 2,3 ,且注意到1 3 5 2 ,
【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件. 【解析】根据立方的性质和指数函数的性质, a3 b3 和 3a 3b 都当且仅当 a b ,所以二者 互为充要条件. 故选:C.
10. 1, 3, 5
【分析】根据补集的定义可求 A .
【解析】由题设有 A 1,3,5 ,
b
或
a
b
”的(
)条件.
A.必要而不充分条件
B.充分而不必要条件
C.充分且必要条件
D.既不充分也不必要条件
8.(2024·天津)集合 A 1, 2,3, 4 , B 2,3, 4,5 ,则 A B ( )
A.1, 2,3, 4
B.2,3, 4
C.2, 4
D. 1
9.(2024·天津)设 a,b R ,则“ a3 b3 ”是“ 3a 3b ”的( )
【解析】因为 A 1, 2,3, 4,5,9, B x x A ,所以 B 1, 4,9,16, 25,81 ,
则 A B 1, 4,9 , ðA A B 2, 3, 5
故选:D
5.C
【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
【解析】对 A,当 a b 时,则 a b 0 ,
2020高考数学新题型多项选择题专项训练《01 集合与常用逻辑用语》(解析版)
专题01 集合与常用逻辑用语多项选择题1.(2019秋•启东市期末)已知全集U R =,集合A ,B 满足A B Ü,则下列选项正确的有( ) A .A B B =IB .A B B =UC .()U A B =∅I ðD .()U A B =∅I ð【分析】利用A B Ü的关系即可判断.【解答】解:A B Q Ü,A B A ∴=I ,A B B =U ,()U C A B =≠∅I ,()U A C B =∅I , 故选:BD .2.(2019秋•宿迁期末)已知集合[2A =,5),(,)B a =+∞.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .5【分析】利用A B ⊆,求出a 的范围,即可判断. 【解答】解:A B ⊆Q , 2a ∴<,故选:AB .3.(2019秋•临高县校级期末)已知{A =第一象限角},{B =锐角},{C =小于90︒的角},那么A 、B 、C 关系是( )A .B AC =I B .B C C =U C .B A B =ID .A B C ==【分析】可看出,“小于90︒的角“和”第一象限的角“都包含”锐角“,从而可判断出选项B ,C 都正确;而小于90︒的角里边有小于0︒的角,而小于0︒的角里边有第一象限角,从而可判断选项A 错误,而选项D 显然错误,从而可得出正确的选项.【解答】解:Q “小于90︒的角”和“第一象限角”都包含“锐角”,B C ∴⊆,B A ⊆B C C ∴=U ,B A B =I ;Q “小于90︒的角“里边有”第一象限角”,从而B A C ≠I .故选:BC .4.(2019秋•聊城期末)若“2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,则实数k 可以是( ) A .8-B .5-C .1D .4【分析】分别解出” 2340x x +-<”,“ 22(23)30x k x k k -+++>”,根据2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,即可得出. 【解答】解:“2340x x +-<” 43x ⇔-<<. “22(23)30x k x k k -+++>” x k ⇔<,或3x k >+.Q “2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,3k ∴…,或43k -+…,解得:3k …,或7k -…,则实数k 可以是AD . 故选:AD .5.(2019秋•临沂期末)对于①sin 0θ>,②sin 0θ<,③cos 0θ>,④cos 0θ<,⑤tan 0θ>,⑥tan 0θ<,则θ为第二象限角的充要条件为( ) A .①③B .①④C .④⑥D .②⑤【分析】根据三角函数角的符号和象限之间的关系分别进行判断即可. 【解答】解:假设θ为象限角则①sin 0θ>,则θ为第一象限角或θ为第二象限角, ②sin 0θ<,则θ为第三象限角或θ为第四象限角 ③cos 0θ>,则θ为第一象限角或θ为第四象限角 ④cos 0θ<,则θ为第二象限角或θ为第三象限角 ⑤tan 0θ>,则θ为第一象限角或θ为第三象限角 ⑥tan 0θ<,则θ为第二象限角或θ为第四象限角, 若θ为第二象限角,则①④可以④⑥可以, 故选:BC .6.(2019秋•泰安期末)下列选项中,p 是q 的必要不充分条件的是( )A .:37p m <<;q :方程22173x y m m +=--的曲线是椭圆B .:8p a …;q :对[1x ∀∈,3]不等式20x a -…恒成立C .设{}n a 是首项为正数的等比数列,p :公比小于0;q :对任意的正整数n ,2120n n a a -+<D .已知空间向量(0a =r ,1,1)-,(b x =r ,0,1)-,:1p x =;q :向量a r与b r 的夹角是3π【分析】A ,根据椭圆的方程以及充分条件和必要条件的定义进行判断即可;B ,求出,[1x ∀∈,3]不等式20x a -…恒成立等价于2a x …恒成立,即等价于9a …,即可判断; C ,根据等比数列的性质以及充分条件和必要条件的定义进行判断即可;D ,根据空间两向量的夹角大小求出x 的值,再根据充分必要条件的定义即可判断; 【解答】解:A ,若方程22173x y m m +=--的曲线是椭圆,则703073m m m m ->⎧⎪->⎨⎪-≠-⎩,即37m <<且5m ≠, 即“37m <<”是“方程22173x y m m +=--的曲线是椭圆”的必要不充分条件;B ,[1x ∀∈,3]不等式20x a -…恒成立等价于2a x …恒成立,等价于9a …; ∴ “8a …”是“对[1x ∀∈,3]不等式20x a -…恒成立”必要不充分条件;:{}n C a Q 是首项为正数的等比数列,公比为q ,∴当11a =,12q =-时,满足0q <,但此时12111022a a +=-=>,则2120n n a a -+<不成立,即充分性不成立,反之若2120n n a a -+<,则2221110n n a q a q --+< 10a >Q ,22(1)0n q q -∴+<,即10q +<,则1q <-,即0q <成立,即必要性成立,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要不充分条件.D :空间向量(0a =r,1,1)-,(b x =r ,0,1)-, 则001a b =++r r g ,cos a ∴<r,1cos 32||||a b b a b π>====⨯r r r g r r, 解得1x =±,故“1x =”是“向量a r与b r 的夹角是3π”的充分不必要条件.故选:ABC .7.(2019秋•青岛期末)已知集合{(M x =,)|()}y y f x =,若对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:21{(,)|1}M x y y x ==+;{2(,)|M x y y =;3{(,)|}x M x y y e ==;4{(,)|sin 1}M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【分析】根据题意即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r .,结合函数图象进行判断.【解答】解:由题意,对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立 即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r .21y x =+中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以所以1M 不是“互垂点集”集合,y = 所以在2M 中的任意点1(P x ∀,1)y ,在2M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r.所以2M 是“互垂点集”集合,x y e =中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以3M 不是“互垂点集”集合,sin 1y x =+的图象中,将两坐标轴进行任意旋转,均与函数图象有交点,所以所以4M 是“互垂点集”集合, 故选:BD .8.(2019秋•淮安期末)已知函数2()43f x x x =-+,则()0f x …的充分不必要条件是( ) A .[1,3]B .{1,3}C .(-∞,1][3U ,)+∞D .(3,4)【分析】由()0f x …,得2430x x -+…,解得3x …或1x ….由此能求出()0f x …的充分不必要条件.【解答】解:函数2()43f x x x =-+, 由()0f x …,得2430x x -+…, 解得3x …或1x …. ()0f x ∴…的充分不必要条件是{1,3}和(3,4),故选:BD .9.(2019秋•镇江期末)使不等式110x+>成立的一个充分不必要条件是( ) A .2x > B .0x …C .1x <-或1x >D .10x -<<【分析】不等式110x +>,即10x x+>,(1)0x x +>,解得x 范围,即可判断出结论. 【解答】解:不等式110x +>,即10x x+>,(1)0x x ∴+>,解得0x >,或1x <-. 使不等式110x+>成立的一个充分不必要条件是:2x >.及1x <-,或1x >. 故选:AC .10.(2019秋•连云港期末)已知p ,q 都是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,则( ) A .p 是q 的既不充分也不必要条件 B .p 是s 的充分条件 C .r 是q 的必要不充分条件 D .s 是q 的充要条件【分析】由已知可得p r s q ⇒⇒⇒;q r s ⇒⇒,然后逐一分析四个选项得答案. 【解答】解:由已知得:p r s q ⇒⇒⇒;q r s ⇒⇒.p ∴是q 的充分条件;p 是s 的充分条件;r 是q 的充要条件;s 是q 的充要条件.∴正确的是B 、D .故选:BD .11.(2019秋•苏州期末)已知集合{|2}A x ax =…,{2B =,若B A ⊆,则实数a 的值可能是( ) A .1-B .1C .2-D .2【分析】通过集合的包含关系,判断元素的关系,通过选项的代入判断是否成立.【解答】解:因为集合{|2}A x ax =…,{2B =,B A ⊆, 若1a =-,[2A =-,)+∞,符合题意,A 对; 若1a =,(A =-∞,2],符合题意,B 对; 若2a =-,[1A =-,)+∞,符合题意,C 对; 若1a =,(A =-∞,1],不符合题意,D 错; 故选:ABC .12.(2019秋•济宁期末)下列命题中的真命题是( )A .x R ∀∈,120x ->B .*x N ∀∈,2(1)0x ->C .x R ∃∈,1lgx <D .x R ∃∈,tan 2x =【分析】根据指数函数的值域,得到A 项正确;根据一个自然数的平方大于或等于0,得到B 项不正确;根据对数的定义与运算,得到C 项正确;根据正弦函数tan y x =的值域,得D 项正确.由此可得本题的答案. 【解答】解:Q 指数函数2t y =的值域为(0,)+∞∴任意x R ∈,均可得到120x ->成立,故A 项正确;Q 当*x N ∈时,1x N -∈,可得2(1)0x -…,当且仅当1x =时等号 ∴存在*x N ∈,使2(1)0x ->不成立,故B 项不正确;Q 当1x =时,01lgx =<∴存在x R ∈,使得1lgx <成立,故C 项正确;Q 正切函数tan y x =的值域为R∴存在锐角x ,使得tan 2x =成立,故D 项正确故选:ACD .13.(2019秋•薛城区校级月考)已知集合{|1}A x ax ==,{0B =,1,2},若A B ⊆,则实数a 可以为( ) A .12B .1C .0D .以上选项都不对【分析】由子集定义得A =∅或{1}A =或{2}A =,从而1a 不存在,11a=,12a =,由此能求出实数a .【解答】解:Q 集合{|1}A x ax ==,{0B =,1,2},A B ⊆, A ∴=∅或{1}A =或{2}A =,∴1a 不存在,11a=,12a =,解得1a =,或1a =,或12a =. 故选:ABC .14.(2019秋•桥西区校级月考)设集合2{|0}A x x x =+=,则下列表述不正确的是( ) A .{0}A ∈B .1A ∉C .{1}A -∈D .0A ∈【分析】求出集合2{|0}{0A x x x =+==,1}-,利用元素与集合的关系能判断正确结果.【解答】解:集合2{|0}{0A x x x =+==,1}-, 0A ∴∈,1A -∈,{0}A ⊂,{1}A -⊂,1A ∉. AC ∴选项均不正确,BD 选项正确.故选:AC .15.(2019秋•葫芦岛月考)已知集合2{|20}A x x x =-=,则有( ) A .A ∅⊆B .2A -∈C .{0,2}A ⊆D .{|3}A y y ⊆<【分析】可以求出集合A ,根据子集的定义及元素与集合的关系即可判断每个选项的正误. 【解答】解:{0A =Q ,2},A ∴∅⊆,2A -∉,{0,2}A ⊆,{|3}A y y ⊆<.故选:ACD .16.(2019秋•临淄区校级月考)设全集U ,则下面四个命题中是“A B ⊆”的充要条件的命题是( ) A .A B A =IB .U UA B ⊇痧C .U B A =∅I ðD .U A B =∅I ð【分析】根据集合的补集,两个集合的交集、并集的定义,再由充要条件的定义判断哪些选项符合条件. 【解答】解:对于选项A ,由A B A =I ,可得A B ⊆.由A B ⊆ 可得A B A =I ,故选项A ,A B A =I 是命题A B ⊆的充要条件,故A 满足条件.对于选项B ,由S S A B ⊇痧 可得A B ⊆,由A B ⊆ 可得S S A B ⊇痧,故S S A B ⊇痧 是命题A B ⊆的充要条件,故B 满足条件.对于选项C ,由S B A φ=I ð,可得A B ⊆,由A B ⊆ 可得S B A φ=I ð,故S B A φ=I ð 是命题A B ⊆的充要条件,故C 满足条件.对于选项D ,由S A B φ=I ð,可得B A ⊆,不能退出A B ⊆,故选项D ,S A B φ=I ð不是命题A B ⊆的充要条件,故D 不满足条件. 故选:ABC .17.(2019秋•葫芦岛月考)已知集合{||4}A x Z x =∈<,B N ⊆,则( ) A .集合B N N =UB .集合A B I 可能是{1,2,3}C .集合A B I 可能是{1-,1}D .0可能属于B【分析】根据Z ,N 的定义,及集合元素的特点进行逐一判断即可.【解答】解:因为B N ⊆,所以B N N =U ,故A 正确.集合A 中一定包含元素1,2,3,集合B N ⊆,1,2,3都属于集合N ,所以集合A B I 可能是{1,2,3}正确.1-不是自然数,故C 错误.0是最小的自然数,故D 正确. 故选:ABD .18.(2019秋•市中区校级月考)给出下列关系,其中正确的选项是( ) A .{{}}∅∈∅B .{{}}∅∉∅C .{}∅∈∅D .{}∅⊆∅【分析】根据元素与集合的关系,集合并集的运算,空集是任何集合的子集即可判断每个选项的正误. 【解答】解:显然∅不是集合{{}}∅的元素,A ∴错误;∅不是集合{{}}∅的元素,∅是{}∅的元素,∅是任何集合的子集,从而得出选项B ,C ,D 都正确.故选:BCD .19.(2019秋•罗庄区期中)给出下列四个条件:①22xt yt >;②xt yt >;③22x y >;④110x y<<.其中能成为x y >的充分条件的是( ) A .①B .②C .③D .④【分析】首先分清条件与结论,条件是所选答案,结论是x y >,充分性即为所选答案推出x y >. 【解答】解:①.由22xt yt >可知,20t >,故x y >.故①是.②.由xt yt >可知,0t ≠,当0t <时,有x y <;当0t >时,有x y >.故②不是. ③由22x y >,则||||x y >,推不出x y >,故③不是; ④.由110x y <<.由函数1y x=在区间(0,)+∞上单调递减,可得0x y >>,故④是. 故选:AD .20.(2019秋•宁阳县校级期中)若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【分析】求解一元二次不等式,把若220x x --<是2x a -<<的充分不必要条件转化为(1-,2)(2-Ü,)a ,由此得到a 的范围,则答案可求.【解答】解:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-Ü,)a ,则2a …. ∴实数a 的值可以是2,3,4.故选:BCD .21.(2019秋•薛城区校级期中)若集合M N ⊆,则下列结论正确的是( ) A .M N M =IB .M N N =UC .M M N ⊆ID .M N N ⊆U【分析】利用子集、并集、交集的定义直接求解. 【解答】解:Q 集合M N ⊆,∴在A 中,M N M =I ,故A 正确;在B 中,M N N =U ,故B 正确; 在C 中,M M N ⊆I ,故C 正确; 在D 中,M N N ⊆U ,故D 正确. 故选:ABCD .22.(2019秋•凤城市校级月考)下列命题正确的有( ) A .A ∅=∅U B .()U UU A B A B =U U 痧?C .A B B A =I ID .()U U A A =痧【分析】利用集合的交、并、补运算法则直接求解. 【解答】解:在A 中,A A ∅=U ,故A 错误; 在B 中,()()()U U U A B A B =U I 痧?,故B 错误; 在C 中,A B B A =I I 同,故C 正确; 在D 中,()U U A A =痧,故D 正确. 故选:CD .23.(2019秋•北镇市校级月考)已知集合{2M =-,2334x x +-,24}x x +-,若2M ∈,则满足条件的实数x 可能为( ) A .2B .2-C .3-D .1【分析】根据集合元素的互异性2M ∈必有22334x x =+-或224x x =+-,解出后根据元素的互异性进行验证即可.【解答】解:由题意得,22334x x =+-或224x x =+-, 若22334x x =+-,即220x x +-=, 2x ∴=-或1x =,检验:当2x =-时,242x x +-=-,与元素互异性矛盾,舍去; 当1x =时,242x x +-=-,与元素互异性矛盾,舍去. 若224x x =+-,即260x x +-=, 2x ∴=或3x =-,经验证2x =或3x =-为满足条件的实数x . 故选:AC .24.已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈,则( ) A .A B ⊆B .B A ⊆C .A B =D .A B =∅I【分析】利用集合的基本关系可判断集合的关系.【解答】解:已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈, 若x 属于B ,则:233*(2)2*(2)x a b a b a =-=-+-; 2a b -、2a -均为整数,x 也属于A ,所以B 是A 的子集;若x 属于A ,则:322*(3)3*x a b a b =+=+-(a ); 3a b +、a 均为整数,x 也属于B ,所以A 是B 的子集;所以:A B =, 故选:ABC .25.已知集合2{|10}A x x =-=,则下列式子表示正确的有( ) A .{1}A ∈B .1A -⊆C .A ∅⊆D .{1,1}A -⊆【分析】利用集合与集合基本运算求出A 集合,再由集合与集合的关系,元素与集合的关系判断可得答案, 【解答】解:已知集合2{|10}{1A x x =-==-,1},由集合与集合的关系,元素与集合的关系判断可得:以上式子表示正确的有:A ∅⊆,{1,1}A -⊆. 故选:CD .26.已知集合{|13}A x x =-<…,集合{|||2}B x x =…,则下列关系式正确的是( )A .AB =∅IB .{|23}A B x x =-U 剟C .{|1R A B x x =-U …ð或2}x >D .{|23}R A B x x =<I …ð【分析】求解绝对值不等式化简集合B ,再利用交、并、补集的运算性质逐一分析四个选项得答案.【解答】解:{|13}A x x =-<Q …,{|||2}{|22}B x x x x ==-剟?,{|13}{|22}{|12}A B x x x x x x ∴=-<-=-<I I 剟剟,故A 不正确;{|13}{|22}{|23}A B x x x x x x =-<-=-U U 剟剟?,故B 正确;{|2R B x x =<-Q ð或2}x >,{|13}{|2R A B x x x x ∴=-<<-U U …ð或2}{|2x x x >=<-或1}x >-,故C 不正确;{|13}{|2R A B x x x x =-<<-I I …ð或2}{|23}x x x >=<…,故D 正确.∴正确的是B ,D .故选:BD .27.下列命题正确的是( )A .“26x <<”是“24120x x --<”的必要不充分条件B .函数()tan 2f x x =的对称中心是(2k π,0)()k Z ∈C .“x R ∀∈,3210x x -+…”的否定是“x R ∃∈,3210x x -+>”D .设常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x 则12373x x x π++=【分析】A 由24120x x --<,解得26x -<<,可得“26x <<”是“24120x x --<”的充分不必要条件; B 由tan20x =,解得2x k π=,即2k x π=,()k Z ∈,即可得出函数()tan 2f x x =的对称中心; C 取1x =-,则32110x x -+=-<,即可判断出;:sin D x x a =化为sin()32a x π+=,由于常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x ,则2a =,解得即可. 【解答】解:由24120x x --<,解得26x -<<,因此“26x <<”是“24120x x --<”的充分不必要条件,A 不正确;由tan20x =,解得2x k π=,即2k x π=,()k Z ∈因此函数()tan 2f x x =的对称中心是(2k π,0)()k Z ∈,B 正确;取1x =-,则32110x x -+=-<,因此“x R ∀∈,3210x x -+>” C 不正确;sin x x a =化为sin()32a x π+=,由于常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x ,则2a =33x ππ+=,3ππ-,23ππ+,12373x x x π∴++=,D 正确. 故选:BD .28.有限集合S 中元素的个数记做()card S ,设A ,B 都为有限集合,下列命题中真命题是( )A .AB =∅I 的充要条件是()card A B card =U (A )card +(B )B .A B ⊆的必要条件是card (A )card …(B )C .A B à的充要条件是card (A )card …(B )D .A B =的充要条件是card (A )card =(B )【分析】分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,比如第四个句子元素个数相等,元素不一定相同.【解答】解:?A B =∅I 集合A 与集合B 没有公共元素,A 正确 A B ⊆集合A 中的元素都是集合B 中的元素,B 正确A B à集合A 中至少有一个元素不是集合B 中的元素,因此A 中元素的个数有可能多于B 中元素的个数,C 错误A B =集合A 中的元素与集合B 中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,D 错误故选:AB .29.使“a b <”成立的必要不充分条件是“( )”A .0x ∀>,a b x +…B .0x ∃…,a x b +< C .0x ∀…,a b x <+ D .0x ∃>,a x b +… 【分析】根据不等式的关系结合必要不充分条件分别进行判断即可.【解答】解:若a b <,0x ∀>,则a x b x +<+,a a x <+Q ,a a xb x ∴<+<+,即a b x <+,则a b x +…不一定成立;故A 错误,若a b <,当2a =,4b =,10x ∃=…,有a x b +<成立,反之不一定成立;故B 满足条件.0x ∀…,由a b <得a x b x +<+,0x Q …,a x a ∴+…,即a a x b x +<+…则a b x <+成立,故C 满足条件,若a b <,当2a =,3b =,10x ∃=>,有a x b +…成立,反之不一定成立;故D 满足条件. 故选:BCD .30.在下列结论中正确的是( )A .“p q ∧”为真是“p q ∨”为真的充分不必要条件B .“p q ∧”为假是“p q ∨”为真的充分不必要条件C .“p q ∧”为真是“p ⌝”为假的充分不必要条件D .“p ⌝”为真是“p q ∧”为假的充分不必要条件【分析】利用复合命题真假的判定方法即可判断出结论.【解答】解:“p q ∧”为真是“p q ∨”为真的充分不必要条件,A 正确;“p q ∧”为假是“p q ∨”为真的充分不必要条件,B 不正确;“p q ∧”为真是“p ⌝”为假的充分不必要条件,C 正确;“p ⌝”为真,p 为假⇒ “p q ∧”为假,反之不成立,可能q 为假,p 为真,因此“p ⌝”为真是“p q ∧”为假的充分不必要条件,D 正确.故选:ACD .。
2024年高中数学学业水平考试分类汇编专题01集合与常用逻辑用语
专题01集合与常用逻辑用语考点一:集合的概念1.(2023·江苏)对于两个非空实数集合A 和B ,我们把集合{},,x x a b a A b B =+∈∈∣记作A B *.若集合{}{}0,1,0,1A B ==-,则A B *中元素的个数为()A .1B .2C .3D .4【答案】C【详解】{}{}0,1,0,1A B ==-,则{}0,1,1A B *=-,则A B *中元素的个数为3故选:C考点二:集合间的基本关系1.(2023春·福建)已知全集为U ,M N M ⋂=,则其图象为()A .B .C .D .【答案】A【详解】全集为U ,M N M ⋂=,则有M N ⊆,选项BCD 不符合题意,选项A 符合题意.故选:A考点三:集合的基本运算1.(2023·北京)已知全集{}1,2,3,4U =,集合{}1,2A =,则U A =ð()A .{}1,3B .{}2,3C .{}1,4D .{}3,4【答案】D【详解】因为{1,2,3,4},{1,2}U A ==,所以{}3,4U A =ð;故选:D.2.(2023·河北)设集合{}2,3,4M =,{}3,4,5N =,则M N ⋂=()A .{}2B .{}5C .{}3,4D .{}2,3,4,5【答案】C【详解】根据列举法表示的集合可知,由{}2,3,4M =,{}3,4,5N =,利用交集运算可得{}3,4M N ⋂=.故选:C3.(2023·山西)已知集合{}1216=≤<∣x A x,{53}=-<≤∣B x x ,则A B = ()A .{54}xx -<<∣B .{53}-<≤∣x x C .{03}xx ≤≤∣D .{34}xx ≤<∣【答案】C【详解】解:因为1216x ≤<,即04222x ≤<,所以04x ≤<,所以{}{}|1216|04xA x x x =≤<=≤<,因为{|53}B x x =-<≤所以{}|03A B x x =≤≤ 故选:C4.(2023·江苏)已知集合{}{}2,0,2,0,2,4A B =-=,则A B = ()A .{}0,2B .{}2,2,4-C .{}2,0,2-D .{}2,0,2,4-【答案】A【详解】集合{}{}2,0,2,0,2,4A B =-=,则{}0,2A B =I .故选:A5.(2023春·浙江)已知全集{2,4,6,8,10}U =,集合{2,4}A =,{1,6,8}B =,则()U B A ⋂=ð()A .{2,4}B .{6,8,10}C .{6,8}D .{2,4,6,8,10}【答案】C【详解】因为全集{2,4,6,8,10}U =,集合{2,4}A =,所以{}6,8,10U A =ð,因为{1,6,8}B =,所以(){}6,8U A B = ð,故选:C6.(2023春·湖南)已知集合{}0,1A =,{}1,2,3B =,则A B = ()A .{}1B .{}1,2C .{}0,1D .{}1,2,3【答案】A【详解】由题意得A B = {}1,故选:A7.(2023·广东)设集合{}012M =,,,{}1,0,1N =-,则M N ⋃=()A .{}0,1B .{}0,1,2C .{}1,0,1,2-D .{}1,0,1-【答案】C【详解】因为集合{}012M =,,,{}1,0,1N =-,因此,{}1,0,1,2M N ⋃=-.故选:C.8.(2023春·新疆)已知集合{}{}1,0,1,0,1,2A B =-=,则A B = ()A .{}1,0,1,2-B .{}0,1C .{}1,0,1-D .{}1,1,2-【答案】B【详解】因为集合{}{}1,0,1,0,1,2A B =-=,所以A B = {}0,1.故选:B9.(2022春·天津)已知集合{}1,3A =,{}2,3,4B =,则A B ⋂等于()A .{}1B .{}3C .{}1,3D .{}1,2,3,4【答案】B【详解】集合{}1,3A =,{}2,3,4B =,则A B ⋂等于{}3.故选:B10.(2022·山西)已知集合{1U =,2,3,4},{1A =,3},{1B =,4},则()U A B ⋂=ð()A .{2,3}B .{3}C .{1}D .{1,2,3,4}【答案】B【详解】集合{1U =,2,3,4},{1A =,3},{1B =,4},则{}2,3U C B =,{}3U A C B ⋂=故选:B11.(2022春·辽宁)已知集合{}2,4A =,{}2,3B =,则A B ⋃=().A .{2}B .{2,3}C .{2,4}D .{2,3,4}【答案】D【详解】解:因为{}2,4A =,{}2,3B =,所以{}2,3,4A B = 故选:D12.(2022春·浙江)已知集合{}0,1,2A =,{}1,2,3,4B =,则A B = ()A .∅B .{}1C .{}2D .{}1,2【答案】D【详解】∵{}0,1,2A =,{}1,2,3,4B =,∴{}1,2A B = .故选:D.13.(2022秋·浙江)已知集合P ={0,1,2},Q ={1,2,3},则P ∩Q =()A .{0}B .{0,3}C .{1,2}D .{0,1,2,3}【答案】C【详解】 P ={0,1,2},Q ={1,2,3}∴P ∩Q ={1,2};故选:C.14.(2022春·浙江)已知集合{}{}0,1,2,3,4,1,1,2,3,5A B ==-,则A B = ()A .{}1,5-B .{}1,3C .{}1,2,3D .{}1,0,1,2,3,4,5-【答案】C【详解】由题意中的条件有{1,2,3}A B ⋂=.故选:C15.(2022秋·福建)已知集合{}{}2,0,1,0,1,2A B =-=,则A B = ()A .{}0,1B .{}2,0,1-C .{}0,1,2D .{}2,0,1,2-【答案】A【详解】解:因为集合{}{}2,0,1,0,1,2A B =-=,所以{}0,1A B = ,故选:A.16.(2022秋·广东)已知集合{}0,2,3M =,{}1,3N =,则M N ⋃=()A .{}3B .{}0,1,2C .{}0,1,2,3D .{}0,2,3,1,3【答案】C【详解】依题意M N ⋃={}0,1,2,3.故选:C17.(2022春·贵州)已知集合{}{}1,2,1,3A B ==,则A B = ()A .{}1B .{}2C .{}3D .∅【答案】A【详解】由{}{}1,2,1,3A B ==得,A B = {}1.故选:A.18.(2021·北京)已知集合{}1,4,5A =,{}1,2,3B =,则A B ⋃=()A .{}1,2,3B .{}1,2,3,4C .{}2,3,4,5D .{}1,2,3,4,5【答案】D【详解】{}{}{}1,4,51,2,31,2,3,4,5A B ⋃⋃==.故选:D.19.(2021春·天津)已知集合{}1,2A =,{}1,2,3B =,则A B ⋃等于()A .∅B .{}3C .{}1,2D .{}1,2,3【答案】D【详解】因为{}1,2A =,{}1,2,3B =,则{}1,2,3A B = .故选:D.20.(2021春·河北)已知集合{}1,0,1M =-,{}0,1N =,则M N ⋂=()A .{}0,1B .{}0C .{}1D .{}1,0,1-【答案】A【详解】 集合{}1,0,1M =-,{}0,1N =,{}0,1M N ∴= ,故选:A .21.(2021秋·吉林)设集合{}1,2A =,{}2,3,4B =,则A B = ()A .{}1,2,3,4B .{}1,2C .{}2,3,4D .{}2【答案】D【详解】因为{}1,2A =,{}2,3,4B =,所以{2}A B = ,故选:D22.(2021·吉林)已知集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = ()A .{}1B .{}2C .{}1,2D .{}2,0,1,2-【答案】C【详解】集合{}1,0,1,2A =-,{}2,1,2B =-,则A B = {}1,2.故选:C23.(2021春·浙江)设集合{}1,2,3A =,{}2,3,4B =,则A B = ()A .{}1,3B .{}2,3C .{}1,4D .{}2,4【答案】B【详解】由题意可得{}2,3A B ⋂=.故选:B.24.(2021秋·浙江)已知集合{4,5,6},{3,5,7}A B ==,则A B = ()A .∅B .{5}C .{4,6}D .{3,4,5,6,7}【答案】B【详解】因为{4,5,6},{3,5,7}A B ==,所以{}5A B = .故选:B.25.(2021春·福建)已知集合{}1,3A =-,{}1,0B =-,则A B = ()A .{}1,0,3-B .{}1,0-C .{}1-D .∅【答案】C【详解】由已知{1}A B ⋂=-.故选:C .26.(2021秋·福建)已知集合{}0,1A =,{}1,0B =-,则A B ⋃=()A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-【答案】D【详解】因为{}0,1A =,{}1,0B =-,所以A B ⋃={}1,0,1-,故选:D27.(2021秋·河南)已知全集{1,2,3,4,5,6}U =,集合{1,3,5}A =,则U A =ð()A .{1,3,5}B .{2,4,6}C .{3,4,5}D .{1,3,4,5}【答案】B【详解】由题意U A =ð{2,4,6}.故选:B .28.(2021·湖北)设集合{}1,2,3,4,5A =,{}2,4,6,8B =,则A B = ()A .∅B .{}2C .{}2,4D .{}2,4,8【答案】C【详解】因为集合{}1,2,3,4,5A =,{}2,4,6,8B =,所以A B = {}2,4,故选:C29.(2021秋·广东)设全集U ={}12345,,,,,A ={}12,,则U A =ð()A .{} 12345,,,,B .{} 2345,,,C .{} 345,,D .{} 34,【答案】C【详解】解:因为{}12345U =,,,,,{}12A =,所以{}U 3,4,5A =ð故选:C30.(2021春·贵州)已知集合{}{}1101A B =-=,,,,则A B = ()A .{0}B .{1}C .{2}D .∅【答案】B【详解】集合{}{}1101A B =-=,,,,则{1}A B ⋂=,故选:B考点四:充分条件与必要条件1.(2023·北京)已知a ,b ∈R ,则“0a b ==”是“0a b +=”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】如果0a b ==,则有0a b +=,是充分条件;如果0a b +=,则有a b =-,但不能推出0a b ==,比如1,1,0a b a b ==-+=,不是必要条件;所以“0a b ==”是“0a b +=”的充分不必要条件;故选:A.2.(2023·河北)设,a b R ∈,则“a b >”是“33a b >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【详解】∵函数()3f x x =在(),-∞+∞上单调递增,∴当a b >时,()()f a f b >,即33a b >,反之亦成立,∴“a b >”是“33a b >”的充分必要条件,故选C.3.(2023春·浙江)设x ∈R ,则“|1|1x -<”是“22x x <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由|1|1x -<得02x <<,由22x x <得02x <<,所以“|1|1x -<”是“22x x <”的充要条件,故选:C4.(2023春·福建)“1x =”是“21x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】由1x =可得1x =±,由21x =可得1x =±,所以“1x =”是“21x =”的充要条件.故选:C.5.(2023春·湖南)设p :四棱柱是正方体,q :四棱柱是长方体,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】正方体是特殊的长方体,而长方体不一定是正方体,所以p 是q 的充分不必要条件.故选:A.6.(2022·山西)如果不等式1-<x a 成立的充分不必要条件是1322x <<;则实数a 的取值范围是()A .13,22⎛⎫ ⎪⎝⎭B .13,22⎡⎤⎢⎥⎣⎦C .13,,22∞∞⎛⎫⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭D .13,,22∞∞⎛⎤⎡⎫-⋃+ ⎪⎥⎢⎝⎦⎣⎭【答案】B【详解】1-<x a ,解得:11a x a -<<+,所以11a x a -<<+成立的充分不必要条件是1322x <<,故13<<22x x ⎧⎫⎨⎬⎩⎭是{}1<<1+x a x a -的真子集,所以1123+1>2a a -≤⎧⎪⎪⎨⎪⎪⎩或11<23+12a a -≥⎧⎪⎪⎨⎪⎪⎩,解得:1322a ≤≤,故实数a 的取值范围是13,22⎡⎤⎢⎥⎣⎦.故选:B7.(2022春·浙江)设a ,b 是实数,则“a b >”是“a b >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【详解】对于a b >,比如1,3a b ==-,显然13a b =<=,不能推出a b >;反之,如果a b >,则必有0,a a a b b >∴=>≥;所以“a b >”是“a b >”的必要不充分条件;故选:B.8.(2021·北京)设a R ∈,则“1a =”是“21a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】当1a =时,21a =,充分性成立;反过来,当21a =时,则1a =±,不一定有1a =,故必要性不成立,所以“1a =”是“21a =”的充分而不必要条件.故选:A9.(2021秋·吉林)设x ,R y ∈,则“1x >”是“0x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】若1x >可以得出0x >,但0x >得不出1x >,所以“1x >”是“0x >”的充分不必要条件,故选:A10.(2021春·浙江)“4x =”是“22x x =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【详解】解:若4x =,则422416==,即22x x =成立,故充分性成立;显然2x =时22224==,即22x x =,故由22x x =推不出4x =,故必要性不成立;故“4x =”是“22x x =”的充分不必要条件;故选:A11.(2021秋·浙江)若,a b ∈R ,则“14ab ≥”是“2212a b +≥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【详解】解:当14ab ≥,由于,a b ∈R ,22112242a b ab +≥≥⨯=,故充分性成立;当,a b ∈R ,不妨设1,1a b =-=,2212a b +≥成立,114ab =-≥不成立,故必要性不成立.故“14ab ≥”是“2212a b +≥”的充分不必要条件.故选:A.12.(2021湖北)已知:02p x <<,:13q x -<<,则p 是q 的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分不必要条件【答案】A【详解】由:02p x <<,可得出:13q x -<<,由:13q x -<<,得不出:02p x <<,所以p 是q 的充分而不必要条件,故选:A.13.(2021秋·广西)“0x =”是“20x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】若0x =,则0x =,若20x =,则0x =,则“0x =”是“20x =”的充要条件,故选:C.考点五:全称量词与存在量词1.(2023·河北)设命题p :R α∀∈,sin 1α≥-,则p 的否定是()A .R α∃∈,sin 1α≤-B .R α∃∈,sin 1α<-C .R α∀∈,sin 1α≤-D .R α∀∈,sin 1α<-【答案】B【详解】由题意可知,含有一个量词命题的否定将∀改为∃,并否定结论即可,所以命题p :R α∀∈,sin 1α≥-的否定为“R α∃∈,sin 1α<-”.故选:B2.(2023·江苏)命题“x ∀∈R ,210x x ++>”的否定为()A .x ∀∈R ,210x x ++≤B .x ∃∈R ,210x x ++≤C .x ∃∈R ,210x x ++<D .x ∃∈R ,210x x ++>【答案】B【详解】由题意x ∀∈R ,210x x ++>,否定是x ∃∈R ,210x x ++≤【答案】B【详解】由题意得“x ∃∈R ,210x x ++<”的否定是x ∀∈R ,210x x ++≥,故选:B4.(2023春·新疆)命题“2 0,250x x x ∃>++>”的否定是()A .2 0,250x x x ∀>++≤B .2 0,250x x x ∀≤++>C .2 0,250x x x ∃>++≤D .2 0,250x x x ∃≤++>【答案】A【详解】因为命题“2 0,250x x x ∃>++>”是特称量词命题,故其否定是“2 0,250x x x ∀>++≤”.故选:A5.(2022春·天津)命题“x ∃∈R ,21x x +≥”的否定是()A .x ∃∈R ,21x x +<B .x ∃∈R ,21x x +≤C .x ∀∈R ,21x x +<D .x ∀∈R ,21x x +≤【答案】C【详解】命题“x ∃∈R ,21x x +≥”的否定为“x ∀∈R ,21x x +<”.故选:C6.(2022春·辽宁)如果命题p :()3,x ∀∈+∞,29x >,则p ⌝为().A .p ⌝:()3,x ∃∈+∞,29x >B .p ⌝:()3,x ∀∈+∞,29x <C .p ⌝:()3,x ∃∈+∞,29x ≤D .p ⌝:()3,x ∀∈+∞,29x ≤【答案】C【详解】解:命题p :()3,x ∀∈+∞,29x >,是全称命题,所以p ⌝为:p ⌝:()3,x ∃∈+∞,29x ≤故选:C7.(2022春·浙江)命题“2,210x R x x ∀∈-+>”的否定为()A .2000,210x R x x ∃∈-+>B .2,210x R x x ∀∈-+≥C .2,210x R x x ∀∈-+≤D .2000,210x R x x ∃∈-+≤【答案】D【详解】命题“2,210x R x x ∀∈-+>”的否定为“2000,210x R x x ∃∈-+≤”【答案】C【详解】对于全称量词命题“x M ∀∈,()p x ”,其否定为存在量词命题“x M ∃∈,()p x ⌝”,因此,命题“x ∀∈R ,2210x x -+≥”的否定为“x ∃∈R ,2210x x -+<”,故选:C.。
2025年新高考数学专题 集合与常用逻辑用语 含解析
专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。
其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。
方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。
易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.若A B ⊆,即A 是B 的子集,所以A B A = ,所以(4)正确;根据元素与集合的关系可知{}∅∈∅正确,也即(5)正确.所以正确的个数是4.故选:A易错点二:忽视(漏)空集导致错误(集合中的含参问题)1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A 满足A ⊆B 或A ⊂B,则对集合A 分两种情中的含参问题况讨论:(1)当A=∅时,若集合A 是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。
专题01 集合与常用逻辑用语(知识梳理)(新高考地区专用)(解析版)
专题01 集合与常用逻辑用语(知识梳理)一、集合1、集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用英语大写字母A 、B 、C 、…来表示。
2、元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a 、b 、c 、…来表示。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
3、空集的含义:不含任何元素的集合叫做空集,记为∅。
4、元素与集合的关系:之间只能用“∈”或“∉”符号连接。
(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作A a ∈;(2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作A a ∉。
5、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例:集合},1{a A =,则a 不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例:}2,1,0{有}1,2,0{、}2,0,1{、}0,2,1{、}1,0,2{、}0,1,2{等六种表示方法。
6、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
7、常见的特殊集合:(1)正整数集*N 或+N ;(2)非负整数集N (即自然数集,包括零);(3)整数集Z (包括负整数、零和正整数);(4)有理数集Q (包括整数集Z 和分数集→正负有限小数或无限循环小数);(5)实数集R (包括所有的有理数和无理数);注意:①}{整数=Z (√);}{全体整数=Z (×);②},,0|),{(R y R x y x y x ∈∈=⋅表示坐标轴上的点集;③},,0|),{(R y R x y x y x ∈∈>⋅表示第一、三象限的点集;④},,0|),{(R y R x y x y x ∈∈<⋅表示第二、四象限的点集;⑤对方程组解的集合应是点集,例:⎩⎨⎧=-=+1323y x y x 解的集合)}1,2{(; 例1-1.判断下列说法是否正确,并说明理由。
高考专题复习—集合与常用逻辑用语 第一讲+第二讲(解析版)
高考专题复习—集合与常用逻辑用语(解析版)➱第一讲集合◎基础巩固1.集合的基本概念(1)集合元素的性质:确定性、无序性、互异性.(2)元素与集合的关系①属于,记为∈;②不属于,记为∉.(3)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N +Z Q R(4)集合的表示方法:①列举法;②描述法;③韦恩图.2.集合间的基本关系关系自然语言符号语言Venn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B(或B⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A B 或B A集合相等集合A ,B 中的元素相同或集合A ,B 互为子集A =B3.集合的基本运算基本运算并集交集补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示数学语言{x |x ∈A ,或x ∈B }{x |x ∈A,且x ∈B }{x |x ∈U ,且x ∉A }运算性质A ∪∅=A ;A ∪A =A;A ∪B =B ∪A .A ∩∅=∅;A ∩A =A;A ∩B =B ∩A .A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A.1.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.2.若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)∅={0}.()(2)空集是任何集合的子集,两元素集合是三元素集合的子集.()(3)a在集合A中,可用符号表示为a⊆A.()(4)N⊆N+⊆Z.()(5)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.()答案:(1)×(2)×(3)×(4)×(5)×[小题查验]1.若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A解析:D[由题意知A={0,1,2,3},由a=22,知a∉A.]2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4解析:B[由题意可得:A∩B={2,4},故选B.]3.已知全集U={1,2,3,4,5},A={1,2,4},B={2,5},则(∁U A)∪B=()A.{3,4,5}B.{2,3,5}C.{5}D.{3}解析:B[因为U={1,2,3,4,5},A={1,2,4},所以∁U A={3,5},又B={2,5},所以(∁U A)∪B={2,3,5}.] 4.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析:∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案:(-∞,1]5.(教材改编)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=___________________.答案:{2,4}◎考点探究考点一集合的基本概念(自主练透)[题组集训]1.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为()A .9B .8C .5D .4解析:A[∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1,当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1;所以共有9个,选A.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =()A.92B.98C .0D .0或98解析:D[若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.]3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去.当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-324.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2019=________.解析:由M =N =1,2n =m =m ,2n =1,=0,=12,=2.∴(m -n )2019=-1或0.答案:-1或01.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二集合间的基本关系(师生共研)[典例](1)已知集合A ={x |ax =1},B ={x |x 2-1=0},若A ⊆B ,则a 的取值构成的集合是()A .{-1}B .{1}C .{-1,1}D .{-1,0,1}(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.[解析](1)由题意,得B ={-1,1},因为A ⊆B ,所以当A =∅时,a =0;当A ={-1}时,a =-1;当A ={1}时,a =1.又A 中至多有一个元素,所以a 的取值构成的集合是{-1,0,1}.故选D.(2)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.+1≥-2m -1≤7+1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.[答案](1)D (2){m |m ≤4}[互动探究]本例(1)中若A ={x |ax >1(a ≠0)},B ={x |x 2-1>0},其它条件不变,则a 的取值范围是________.解析:由题意,得B ={x |x >1,或x <-1},对于集合A ,①当a >0时,A |x >1a因为A ⊆B ,所以1a ≥1.又a >0,所以0<a ≤1.②当a <0时,A |x <1a因为A ⊆B ,所以1a ≤-1,又a <0,所以-1≤a <0,综上所述,0<a ≤1,或-1≤a <0.答案:[-1,0)∪(0,1]由集合的关系求参数的关键点由两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且常要对参数进行讨论,注意区间端点的取舍.提醒:解决两个集合的包含关系时,要注意空集的情况.[跟踪训练](1)若集合A ={x |ax 2+ax +1=0}的子集只有两个,则实数a =________.解析:∵集合A 的子集只有两个,∴A 中只有一个元素,即方程ax 2+ax +1=0只有一个根.当a =0时方程无解.当a ≠0时,Δ=a 2-4a =0,∴a =4.故a =4.答案:4(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ).由于A ⊆B ,如图所示,则a >4,即c =4.答案:4考点三集合的基本运算(多维探究)[命题角度1]求交集、并集1.(文科)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =()A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A[根据集合交集中元素的特征,可以求得A ∩B ={0,2},故选A.]2.(文科)已知集合A ={x |x <2},B ={x |3-2x >0},则()A .A ∩B |x B .A ∩B =∅C .A ∪B |xD .A ∪B =R解析:A[由3-2x >0得x <32,所以A ∩B ={x |x <2}|x |x ,故选A.][命题角度2]集合的交、并、补的综合运算3.(文科)设集合A ={1,2,3,4,5,6},B ={x |2<x <5},则A ∩(∁R B )等于()A .{2,3,4,5}B .{1,2,5,6}C .{3,4}D .{1,6}解析:B[因为∁R B ={x |x ≤2,或x ≥5},A ={1,2,3,4,5,6};所以A ∩(∁R B )={1,2,5,6}.][命题角度3]利用集合的基本运算求参数的取值(范围)4.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =()A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:C[由题意知x =1是方程x 2-4x +m =0的解,代入解得m =3,所以x 2-4x +3=0,解得x =1或x =3,从而B ={1,3}.]5.已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪∁R B =R ,则实数a 的取值范围是________.解析:∁R B ={x |x <1,或x >2},要使A ∪(∁R B )=R ,则a ≥2.答案:[2,+∞)解集合运算问题应注意以下三点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.提醒:Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.考点四集合的新定义问题(师生共研)数学抽象——集合新定义中的核心素养以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个[解析]C[由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.]解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.[跟踪训练]定义一种新的集合运算△:A△B={x|x∈A,且x∉B}.若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4}B.{x|3≤x≤4}C.{x|3<x<4}D.{x|2≤x≤4}解析:B[A={x|1<x<3},B={x|2≤x≤4},由题意知,B△A={x|x∈B,且x∉A}={x|3≤x≤4}.]◎课时作业[基础训练组]1.已知集合A ={1,3,5,7},B ={2,3,4,5},则A ∩B =()A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7}解析:C[A ={1,3,5,7},B ={2,3,4,5},∴A ∩B ={3,5},故选C.]2.集合P ={x |0≤x <3},M ={x ||x |≤3},则P ∩M =()A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}解析:C[集合P ={x |0≤x <3},M ={x ||x |≤3}={x |-3≤x ≤3},则P ∩M ={x |0≤x <3}.]3.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是()A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩∁I SD .(M ∩P )∪∁I S解析:C [图中的阴影部分是M ∩P 的子集,不属于集合S ,属于集合S 的补集的子集,即是∁I S 的子集,则阴影部分所表示的集合是(M ∩P )∩∁I S .故选C.]4.满足{2018}⊆A {2018,2019,2020}的集合A 的个数为()A .1B .2C .3D .4解析:C[满足{2018}⊆A{2018,2019,2020}的集合A 可得:A ={2018},{2018,2019},{2018,2020}.因此满足的集合A 的个数为3.]5.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是()A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析:C[因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].]6.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=()A.0B .(-∞,0)∪12,+∞D .(-∞,0]∪12,+∞解析:D[A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}A ∩B所以∁R (A ∩B )=(-∞,0]∪12,+7.已知A =[1,+∞),B ∈R |12a ≤x ≤2a -A ∩B ≠∅,则实数a 的取值范围是()A .[1,+∞) B.12,1 C.23,+∞D .(1,+∞)解析:A[因为A ∩B ≠∅a -1≥1,a -1≥12a ,解得a ≥1,故选A.]8.函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =()A .(1,2]B .[1,2]C .(-∞,1]∪[2,+∞)D .(-∞,1)∪[2,+∞)解析:D[使x -2有意义的实数x 应满足x -2≥0,∴x ≥2,∴M =[2,+∞),y =ln(1-x )中x 应满足1-x>0,∴x <1,∴N =(-∞,1),所以M ∪N =(-∞,1)∪[2,+∞),故选D.]9.已知集合A ={(x ,y )|x ,y ∈R ,x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,y =4x 2-1},则A ∩B 的元素个数是________.解析:集合A 是以原点为圆心,半径等于1的圆周上的点的集合,集合B 是抛物线y =4x 2-1上的点的集合,观察图像可知,抛物线与圆有3个交点,因此A ∩B 中含有3个元素.答案:310.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]11.对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =3x ,x ∈R },B ={y |y =-(x -1)2+2,x ∈R },则A ⊕B =________.解析:由题意得A ={y |y =3x ,x ∈R }={y |y >0},B ={y |y =-(x -1)2+2,x ∈R }={y |y ≤2},故A -B ={y |y >2},B -A ={y |y ≤0},所以A ⊕B ={y |y ≤0,或y >2}.答案:(-∞,0]∪(2,+∞)12.若A ={x |ax 2-ax +1≤0,x ∈R }=∅,则a 的取值范围是________.解析:∵A ={x |ax 2-ax +1≤0,x ∈R }=∅,∴a =0>0=(-a )2-4a <0,解得0≤a <4.∴a 的取值范围是[0,4).[能力提升组]13.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是()A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}解析:B [易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.]14.设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是()A .2B .3C .4D .5解析:B[当a =0时,无论b 取何值,z =a ÷b =0;当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q ,12,-3个元素.]15.若集合A={x|(a-1)x2+3x-2=0,x∈R}有且仅有两个子集,则实数a的值为________.解析:由题意知,方程(a-1)x2+3x-2=0,x∈R,有一个根,∴当a=1时满足题意,当a≠1时,Δ=0,即9+8(a-1)=0,解得a=-18.答案:1或-1816.某班共有学生40名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项,没有人三项均会.若该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,则该班会其中两项运动的学生人数是________.解析:设同时会打乒乓球和篮球的学生有x人,同时会打乒乓球和排球的学生有y人,同时会打排球和篮球的学生有z人,∵该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,∴该班会打乒乓球或篮球的学生有24人,会打乒乓球或排球的学生有16人,会打篮球或打排球有22人,∴x+y+z=24+16+22-40=22.∴该班会其中两项运动的学生人数是22.答案:22➱第二讲命题、充分条件与必要条件◎基础巩固1.命题的概念可以判断真假、用文字或符号表述的语句叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.1.互为逆否的两个命题具有相同的真假性,互逆的或互否的两个命题真假性没有关系.2.若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(2)若p是q成立的充分条件,则q是p成立的必要条件.()(3)若p是q成立的充要条件,则可记为p⇔q.()(4)命题“若p,则q”的否命题是“若p,则q”.()答案:(1)√(2)√(3)√(4)×[小题查验]1.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:A[因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.] 2.给出命题:“若实数x,y满足x2+y2=0,则x=y=0”,在它的逆命题、否命题、逆否命题中,真命题的个数是()A.0个B.1个C.2个D.3个解析:D[原命题显然正确,其逆命题为:若x=y=0,则x2+y2=0,显然也是真命题,由四种命题之间的关系知,其否命题、逆否命题也都是真命题.故选D.]3.“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:B[直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=14.(教材改编)已知命题:若m>0,则方程x2+x-m=0有实数根.则其逆否命题为_________.答案:若方程x2+x-m=0无实根,则m≤05.下列命题:①若ac2>bc2,则a>b;②若sinα=sinβ,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是________.解析:对于①,∵ac2>bc2,∴c2>0,∴a>b正确;对于②,sin30°=sin150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.答案:①③④◎考点探究考点一命题的四种形式及其关系(自主练透)[题组集训]1.命题p:若a>b,则a-1>b-1,则命题p的否命题为()A.若a>b,则a-1≤b-1B.若a≥b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:C[根据否命题的定义:若原命题为:若p,则q,否命题为:若非p,则非q.∵原命题为:若a>b,则a-1>b-1,∴否命题为:若a≤b,则a-1≤b-1,故选C.]2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:C[根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故选C.]3.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.1.由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.提醒:当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动.2.命题真假的判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题和其逆否命题的等价关系进行判断.考点二充分、必要条件的判断与应用(多维探究)[命题角度1]充分、必要条件的判定1.设p∶0<x<1,q∶2x≥1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:A[q∶2x≥1,解得x≥0.又p∶0<x<1,则p是q的充分不必要条件.]2.函数f(x)在x=x0处导数存在,若p∶f′(x0)=0,q∶x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:C[函数在x=x0处有导数且导数为0,x=x0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x0为函数的极值点,则函数在x=x0处的导数一定为0,所以p是q的必要不充分条件.]3.已知向量a=(-2,m),b m∈R,则“a⊥(a+2b)”是“m=2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件解析:B[∵a=(-2,m),b m∈R,∴a+2b=(4,2m)若a⊥(2a+2b),则-8+2m2=0,解得m=±2,故“a⊥(a+2b)”是“m=2”的必要不充分条件.]命题的充分、必要条件的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:利用A⇒B与非B⇒非A,B⇒A与非A⇒非B,A⇔B与非B⇔非A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[命题角度2]利用充要条件求参数的取值(范围)逻辑推理——充分、必要条件关系中的核心素养充分、必要条件问题中常涉及参数取值(范围)问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.4.已知p:-2≤x≤10,q:(x-a)(x-a-1)>0,若p是q成立的充分不必要条件,则实数a的取值范围是______.[破题关键点]若p是q成立的充分不必要条件,则{x|-2≤x≤10} {x|x>a+1,或x<a},即转化为相对应的集合间的基本关系来求实数a的取值范围.解析:由(x-a)(x-a-1)>0,得x>a+1或x<a,由题意,得{x|-2≤x≤10} {x|x>a+1,或x<a},所以a+1<-2或a>10,即a<-3或a>10.答案:(-∞,-3)∪(10,+∞)[互动探究]本例中,若p:-2<x<10,q:(x-a)(x-a-1)≥0,其他条件不变,则a的取值范围是______.解析:由(x-a)(x-a-1)≥0,得x≥a+1或x≤a,由题意得{x|-2<x<10} {x|x≥a+1,或x≤a}.所以a+1≤-2,或a≥10,即a≤-3,或a≥10.答案:(-∞,-3]∪[10,+∞)(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.(2)注意利用转化的方法理解充分必要条件:若非p是非q的充分不必要(必要不充分、充要)条件,则p是q的必要不充分(充分不必要、充要)条件.◎课时作业[基础训练组]1.命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是()A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0解析:D[写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.]2.设a ∈R ,则“a >3”是“函数y =log a (x -1)在定义域上为增函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数y =log a (x -1)在定义域(1,+∞)上为增函数,所以a >1,因此“a >3”是“函数y =log a (x -1)在定义域上为增函数”的充分不必要条件.]3.“m =1”是“圆C 1:x 2+y 2+3x +4y +m =0与圆C 2“x 2+y 2=4的相交弦长为23”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[由题意知圆C 1与圆C 2的公共弦所在的直线是3x +4y +m +4=0,故(0,0)到3x +4y +m +4=0的距离d=|m +4|5=4-3=1,即|m +4|=5,解得m =1或m =-9.故m =1是m =1或m =-9的充分不必要条件,故选A.4.已知条件p :|x -4|≤6,条件q :x ≤1+m ,若p 是q 的充分不必要条件,则m 的取值范围是()A .(-∞,-1]B .(-∞,9]C .[1,9]D .[9,+∞)解析:D[由|x -4|≤6,解得-2≤x ≤10,即p :-2≤x ≤10;又q :x ≤1+m ,若p 是q 的充分不必要条件,则1+m ≥10,解得m ≥9.故选D.]5.若x >m 是x 2-3x +2<0的必要不充分条件,则实数m 的取值范围是()A .[1,+∞)B .(-∞,2]C .(-∞,1]D .[2,+∞)解析:C[由x 2-3x +2<0得1<x <2,若x >m 是x 2-3x +2<0的必要不充分条件,则m ≤1,即实数m 的取值范围是(-∞,1].]6.a 2+b 2=1是a sin θ+b cos θ≤1恒成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为a sin θ+b cos θ=a 2+b 2sin (θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.]7.“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数f (x )=3x +m -33在区间[1,+∞)上单调递增且无零点,所以f (1)=31+m -33>0,即m +1>32,解得m >12,故“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点的充分不必要条件,故选A.]8.设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是()A .3B .2C .1D .0解析:B[若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.]9.《左传·僖公十四年》有记载:“皮之不存,毛将焉附?”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的_______条件(将正确的序号填入空格处).①充分条件②必要条件③充要条件④既不充分也不必要条件解析:由题意知“无皮”⇒“无毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分条件.答案:①10.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =bsin B,故a ≤b ⇔sin A ≤sin B.答案:充要11.若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则实数a 的取值范围是_________.解析:由x 2-5x +6≥0得x ≥3或x ≤2,若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则a ≥3,即实数a 的取值范围是[3,+∞).答案:[3,+∞)12.已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若非p 是非q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1,∴命题p |12≤x ≤由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.非p 对应的集合A |x >1或x q 对应的集合B ={x |x >a +1或x <a }.∵非p 是非q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12,即实数a 的取值范围是0,12.答案:0,12[能力提升组]13祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.]14.已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且非q 的一个充分不必要条件是非p ,则a 的取值范围是()A.-2,-12B.12,2C .[-1,2],12∪[2,+∞)解析:C [由4x -1≤-1,移项得4x -1+1≤0,通分得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0.由非q 的一个充分不必要条件是非p ,可知非p 是非q 的充分不必要条件,即p 是q 的必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.设f (x )=x 2+x -a 2+a -3)=-a 2+a +6≥0,1)=-a 2+a +2≥0,2<a <31≤a ≤2∴-1≤a ≤2,故选C.]15.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.解析:对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.答案:①④16.设命题p :2x -1x -1<0,命题q ∶x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x <1,x 2-(2a +1)x +a (a +1)≤0⇒a ≤x ≤a +1.[a ,a +1].≤12,+1≥1,解得0≤a ≤12.答案:0,12。
核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理
核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理1.集合(1)集合的含义与表示①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用Venn图表达集合间的基本关系及集合的基本运算.2.常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.(4)了解逻辑联结词“或”“且”“非”的含义.(5)理解全称量词和存在量词的意义.(6)能正确地对含一个量词的命题进行否定.§1.1 集合及其运算1.集合的基本概念(1)我们把研究对象统称为________,把一些元素组成的总体叫做________.(2)集合中元素的三个特性:________,________, ________.(3)集合常用的表示方法:________和________.2.常用数集的符号数集自然数集正整数集整数集有理数集实数集复数集符号3.元素与集合、集合与集合之间的关系(1)元素与集合之间存在两种关系:如果a是集合A中的元素,就说a________集合A,记作________;如果a不是集合A中的元素,就说a________集合A,记作________.(2)集合与集合之间的关系:表示关系文字语言符号语言相等集合A与集合B中的所有元素都相同__________⇔A=B子集A中任意一个元素均为B中的元素________或________真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素________或________空集空集是任何集合的子集,是任何______的真子集∅⊆A,∅B(B≠∅)结论:集合{a1,a2,…,a n}的子集有______个,非空子集有________个,非空真子集有________个.集合的并集集合的交集集合的补集符号表示若全集为U,则集合A 的补集记为________Venn图表示(阴影部分)意义5.集合运算中常用的结论(1)①A∩B________A;②A∩B________B;③A∩A=________;④A∩∅=________;⑤A∩B________B∩A.(2)①A∪B________A; ②A∪B________B;③A∪A=________;④A∪∅=________;⑤A∪B________B∪A.(3)①∁U(∁U A)=________;②∁U U=________;③∁U∅=________;④A∩(∁U A)=____________;⑤A∪(∁U A)=____________.(4)①A∩B=A⇔________⇔A∪B=B;②A∩B=A∪B⇔____________.(5)记有限集合A,B的元素个数为card(A),card(B),则:card(A∪B)=____________________________;card[∁U(A∪B)]=________________________.自查自纠1.(1)元素集合(2)确定性互异性无序性(3)列举法描述法2.N N*(N+) Z Q R C3.(1)属于a∈A不属于a∉A(2)A⊆B且B⊆A A⊆B B⊇A A B B A非空集合2n2n-1 2n-24.A∪B A∩B∁U A{x|x∈A或x∈B}{x|x∈A且x∈B} {x|x∈U且x∉A}5.(1)①⊆②⊆③A④∅⑤=(2)①⊇ ②⊇ ③A ④A ⑤= (3)①A ②∅ ③U ④∅ ⑤U (4)①A ⊆B ②A =B(5)card(A )+card(B )-card(A ∩B ) card(U )-card(A )-card(B )+card(A ∩B )(2015·安徽)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁UB )=( )A .{1,2,5,6}B .{1}C .{2}D .{1,2,3,4}解:∵∁U B ={1,5,6},∴A ∩(∁U B )={1}.故选B .(2015·陕西)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解:∵M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},∴M ∪N =[0,1].故选A .(2015·全国Ⅱ)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}解:由已知得B ={x |-2<x <1},∴A ∩B ={-1,0}.故选A .已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________.解:根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.故填3.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.解:A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,则其对称轴x =a >0,由对称性知,若A ∩B 中恰含有一个整数,则这个整数为2,∴f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0, 得34≤a <43.故填⎣⎢⎡⎭⎪⎫34,43.类型一 集合的概念(1)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( )A .4B .2C .0D .0或4解:由ax 2+ax +1=0只有一个实数解,可得当a =0时,方程无实数解; 当a ≠0时,Δ=a 2-4a =0,解得a =4.故选A .(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3,2m 2+m=3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,2m 2+m =3,综上知,m =-32.故填-32.【点拨】(1)用描述法表示集合,首先要弄清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.(1)(2015·苏州一模)集合⎩⎨⎧⎭⎬⎫x ∈N *|12x∈Z 中含有的元素个数为( )A .4B .6C .8D .12解:令x =1,2,3,4,5,6,7,8,9,10,11,12,代入验证,得x =1,2,3,4,6,12时,12x∈Z ,即集合中有6个元素.故选B .(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b ,0},则a 2 017+b 2 017=________.解:由已知得b a=0及a ≠0,∴b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =-1,∴a2 017+b2 017=-1.故填-1.类型二 集合间的关系已知集合A ={x |x 2-3x -10≤0}.(1)若B ={x |m +1≤x ≤2m -1},B ⊆A ,求实数m 的取值范围; (2)若B ={x |m -6≤x ≤2m -1},A =B ,求实数m 的取值范围; (3)若B ={x |m -6≤x ≤2m -1},A ⊆B ,求实数m 的取值范围. 解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5}, (1)若B ⊆A ,则①当B =∅,有m +1>2m -1,即m <2,此时满足B ⊆A ;②当B ≠∅,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5, 解得m ∈∅,即不存在实数m 使得A =B .(3)若A ⊆B ,则⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得3≤m ≤4.∴m 的取值范围为[3,4].【点拨】本例主要考查了集合间的关系,“当B ⊆A 时,B 可能为空集”很容易被忽视,要注意这一“陷阱”.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集的个数; (3)当x ∈R 时,若A ∩B =∅,求实数m 的取值范围.解:(1)①当m +1>2m -1,即m <2时,B =∅,满足B ⊆A .②当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5, 可得2≤m ≤3.综上,m 的取值范围是(-∞,3].(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, ∴A 的非空真子集个数为28-2=254. (3)∵x ∈R ,且A ∩B =∅,∴当B =∅时,即m +1>2m -1,得m <2,满足条件; 当B ≠∅时,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得m >4.综上,m 的取值范围是(-∞,2)∪(4,+∞).类型三 集合的运算(1)已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( )A .∅ B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎦⎥⎤13,1 D .(-∞,1] 解:由题意知,A =(0,1],B =⎝ ⎛⎦⎥⎤-∞,13, ∴A ∪B =(-∞,1].故选D .(2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解:∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩(∁U B )={3}.故填{3}.(3)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,由B ={x |m <x <2},画出数轴,可得m =-1,n =1.故填-1,1.【点拨】(1)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2)在解决有关A ∩B =∅的问题时,往往忽略空集的情况,一定要先考虑A (或B )=∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(1)已知集合A ={x |y =x },B ={x|12<2x<4},则(∁R A )∩B 等于( )A .{x |-1<x <2}B .{x |-1<x <0}C .{x |x <1}D .{x |-2<x <0}解:∵A ={x |y =x }={x |x ≥0},∴∁R A ={x |x <0}.又B =⎩⎨⎧⎭⎬⎫x|12<2x <4={x |-1<x <2},∴(∁R A )∩B ={x |-1<x <0}.故选B .(2)(2015·唐山模拟)集合M ={2,log 3a },N ={a ,b },若M ∩N ={1},则M ∪N =( ) A .{0,1,2} B .{0,1,3} C .{0,2,3}D .{1,2,3}解:∵M ∩N ={1},∴log 3a =1,即a =3,∴b =1.∴M ={2,1},N ={3,1},M ∪N ={1,2,3}.故选D .(3)设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}解:|x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,由A ∩B =∅知,a +1≤1或a -1≥5,解得a ≤0或a ≥6.故选C .类型四 Venn 图及其应用设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )等于( )A.P B.M∩P C.M∪P D.M解:作出Venn图.当M∩P≠∅时,由图知,M-P为图中的阴影部分,则M-(M-P)显然是M∩P.当M∩P=∅时,M-(M-P)=M-M={x|x∈M,且x∉M}=∅=M∩P.故选B.【点拨】这是一道信息迁移题,属于应用性开放问题.“M-P”是我们不曾学过的集合运算关系,根据其元素的属性,借助Venn图将问题简单化.已知集合A={-1,0,4},集合B={x|x2-2x-3≤0,x∈N},全集为U,则图中阴影部分表示的集合是________.解:B={x|x2-2x-3≤0,x∈N}={x|-1≤x≤3,x∈N}={0,1,2,3},图中阴影部分表示的为属于A且不属于B的元素构成的集合,该集合为{-1,4}.故填{-1,4}.类型五和集合有关的创新试题在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 017∈[2];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中正确命题的个数是( )A.1 B.2 C.3 D.4解:∵2 017=403×5+2,∴2 017∈[2],结论①正确;-3=-1×5+2,∴-3∈[2],-3∉[3],结论②不正确;整数可以分为五“类”,这五“类”的并集就是整数集,即Z=[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a,b属于同一“类”,则a=5n+k,b=5m+k,a-b=5(n-m)+0∈[0],反之,若a-b∈[0],则a,b被5除有相同的余数,故a,b属于同一“类”,结论④正确,综上知,①③④正确.故选C.【点拨】(1)以集合语言为背景的新信息题,常见的类型有定义新概念型、定义新运算型及开放型,解决此类信息迁移题的关键是在理解新信息并把它纳入已有的知识体系中,用原来的知识和方法来解决新情境下的问题.(2)正确理解创新定义,分析新定义的表述意义,把新定义所表达的数学本质弄清楚,转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.设S为复数集C的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集,下列命题:①集合S={a+b i|a,b为整数,i为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)解:①对,当a ,b 为整数时,对任意x ,y ∈S ,x +y ,x -y ,xy 的实部与虚部均为整数;②对,当x =y 时,0∈S ;③错,当S ={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T ,T ={0,1},显然T 不是封闭集.因此,真命题为①②.故填①②.1. 首先要弄清构成集合的元素是什么,如是数集还是点集,要明了集合{x |y =f (x )}、{y |y =f (x )}、{(x ,y )|y =f (x )}三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.5.五个关系式A ⊆B ,A ∩B =A ,A ∪B =B ,∁U B ⊆∁U A 以及A ∩(∁U B )=∅是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.6.正难则反原则对于一些比较复杂、比较抽象、条件和结论不明确、难以从正面入手的涉及集合的数学问题,在解题时要调整思路,考虑问题的反面,探求已知与未知的关系,化难为易、化隐为显,从而解决问题.例如:已知A ={x |x 2+x +a ≤0},B ={x |x 2-x +2a -1<0},C ={x |a ≤x ≤4a -9},且A ,B ,C 中至少有一个不是空集,求a 的取值范围.这个问题的反面即是三个集合全为空集,即⎩⎪⎨⎪⎧1-4a <0,1-4(2a -1)≤0,a >4a -9,解得58≤a <3,从而所求a 的取值范围为⎩⎨⎧⎭⎬⎫a|a <58或a ≥3.1.(2015·全国Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2解:A ∩B ={x |x =3n +2,n ∈N }∩{6,8,10,12,14}={8,14}.故选D .2.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1} 解:∵N ={x |0≤x ≤1},M ={-1,0,1},∴M ∩N ={0,1}.故选B .3.(2013·辽宁)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( )A.()0,1B.(]0,2C.()1,2D.(]1,2解:易知A ={}x |1<x <4,∴A ∩B =(]1,2.故选D .4.(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9解:由题意知,x -y =0,-1,-2,1,2.故B 中元素个数为5,故选C . 5.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为( )A .3B .4C .7D .8 解:A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意知,图中阴影部分表示的集合为A ∩B ={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.故选C .6.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的个数是( )A .0B .1C .2D .3解:①(-4)+(-2)=-6∉A ,不正确;②设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,正确;③令A 1={n |n =5k ,k ∈Z },A 2={n |n =2k ,k ∈Z },则A 1,A 2为闭集合,但A 1∪A 2不是闭集合,不正确.故选B .7.(2014·重庆)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解:∵U ={1,2,3,…,9,10},A ={1,2,3,5,8},∴∁U A ={4,6,7,9,10}.∴(∁U A )∩B ={7,9}.故填{7,9}.8.已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个.解:由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}这样的集合,共有6个.故填6.9.(2014·天津)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n },当q =2,n =3时,用列举法表示集合A .解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+2x 2+4x 3,x i ∈M ,i =1,2,3}={0,1,2,3,4,5,6,7}.10.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解:(1)A =⎩⎨⎧⎭⎬⎫x|12≤x ≤3, 当a =-4时,B ={x |-2<x <2},A ∩B =⎩⎨⎧⎭⎬⎫x|12≤x <2,A ∪B ={x |-2<x ≤3}. (2)∁R A =⎩⎨⎧⎭⎬⎫x|x <12或x >3, 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,只须-a ≤12,解得-14≤a <0. 综上可得,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a|a ≥-14. 11.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R },若B ⊆A ,求实数a 的取值范围.解:易知A ={0,-4},若B ⊆A ,则可分以下三种情况:①当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当∅≠B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =A 时,B ={0,-4},由此知0和-4是方程 x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系, 得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上所述,a 的取值范围为{}a |a ≤-1或a =1.(2015·杭州模拟)已知集合A ={x |x 2-3(a +1)x +2(3a +1)<0},B =⎩⎨⎧⎭⎬⎫x|x -2a x -(a 2+1)<0.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 时实数a 的取值范围.解:(1)当a =2时,A ={x |x 2-9x +14<0}=(2,7), B =⎩⎨⎧⎭⎬⎫x|x -4x -5<0=(4,5),∴A ∩B =(4,5).(2)当a ≠1时,B =(2a ,a 2+1);当a =1时,B =∅. 又A ={x |(x -2)[x -(3a +1)]<0},①当3a +1<2,即a <13时,A =(3a +1,2),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a ≥3a+1,a 2+1≤2,解得a =-1;②当a =13时,A =∅,B =⎝ ⎛⎭⎪⎫23,109,B ⊆A 不成立;③当3a +1>2,即a >13时,A =(2,3a +1),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a≥2,a 2+1≤3a +1,或a =1,a ≠1,解得1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}.。
新高考地区专用2024_2025三年高考数学真题分项汇编专题01集合与常用逻辑用语
专题01 集合与常用逻辑用语1.【2024年新高考1卷】若集合M ={x ∣√x <4}, N ={x ∣3x ≥1},则M ∩N =( )A .{x |0≤x <2 }B .{x |13≤x <2 }C .{x |3≤x <16 }D .{x |13≤x <16 }【答案】D【分析】求出集合M,N 后可求M ∩N .【解析】M ={x ∣0≤x <16},N ={x ∣x ≥13},故M ∩N ={x|13≤x <16},故选:D.2.【2024年新高考2卷】已知集合A ={−1,1,2,4},B ={x ||x −1|≤1 },则A ∩B =( )A .{−1,2}B .{1,2}C .{1,4}D .{−1,4} 【答案】B【分析】求出集合B 后可求A ∩B .【解析】B ={x|0≤x ≤2},故A ∩B ={1,2},故选:B. 3.【2024年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4 【答案】B【分析】利用交集的定义可求A B .【解析】由题设有{}2,3A B ⋂=,故选:B .4.【2024年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B =( )A .{3}B .{1,6}C .{5,6}D .{1,3} 【答案】B【分析】依据交集、补集的定义可求()U A B ⋂.【解析】由题设可得{}U 1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.5.【2024年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C【分析】依据集合并集概念求解.【解析】[1,3](2,4)[1,4)A B ==,故选:C.【点睛】本题考查集合并集,考查基本分析求解实力,属基础题.6.【2024年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =( )A .{1,3,5,7}B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C【分析】依据集合交集的运算可干脆得到结果.【解析】因为A {2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B =,故选:C.【点睛】本题考查的是集合交集的运算,较简洁.。
备战(新课标I版)高考数学分项汇编 专题1 集合与常用逻辑用语(含解析)理
专题1 集合与常用逻辑用语一.基础题组1. 【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A I ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[【答案】A2. 【2013课标全国Ⅰ,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B =B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B3. 【2012全国,理1】已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10【答案】D4. 【2010新课标,理1】已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≤4,x ∈Z },则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【答案】:D5. 【2009全国卷Ⅰ,理1】设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个【答案】:A6. 【2006全国,理1】设集合M ={x │x 2-x <0},N={x ││x │<2},则( )(A )φ=N ⋂M (B )M N =⋂M (C )M N =⋃M (D )R N =⋃M【答案】B7. 【2015高考新课标1,理3】设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈ 【答案】C【考点定位】本题主要考查特称命题的否定二.能力题组1. 【2011全国新课标,理10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题: p 1:|a +b |>1⇔θ∈[0,23π) p 2:|a +b |>1⇔θ∈(23π,π] p 3:|a -b |>1⇔θ∈[0,3π) p 4:|a -b |>1⇔θ∈(3π,π] 其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4 【答案】A2. 【2011全国,理3】下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b3【答案】:A3. 【2005全国1,理1】设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( )A. 123()I C S S S φ=I UB. 123()I I S C S C S ⊆UC. 123I I I C S C S C S φ=I ID. 123()I I S C S C S ⊆U【答案】C三.拔高题组1. 【2010新课标,理5】已知命题:p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q 1:p1∨p2,q2:p1∧p2,q3:(p1)∨p2和q4:p1∧(p2)中,真命题是( ) A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【答案】:C。
高考数学专题01集合与常用逻辑用语-高考数学试题分项版解析(解析版)
专题1集合与常用逻辑用语1.【2014高考安徽卷文第2题】命题“0||,2≥+∈∀x x R x ”的否定是() A.0||,2<+∈∀x x R x B.0||,2≤+∈∀x x R x C.0||,2000<+∈∃x x R x D.0||,2000≥+∈∃x x R x2.【2014高考北京卷文第1题】若集合A={}0,1,2,4,B={}1,2,3,则A B ⋂=() A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}33.【2014高考北京卷文第5题】设a 、b 是实数,则“a b >”是“22a b >”的()A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件4.【2014高考大纲卷文第1题】设集合M={1,2,4,6,8},N={2,3,5,6,7},则M N 中元素的个数为()A.2B.3C.5D.7 【答案】B 【解析】 试题分析:{1,2,6)MN =.故选B.考点:集合的运算.5.【2014高考福建卷文第1题】若集合}{}{24,3,Px x Q x x =≤<=≥则P Q ⋂等于()}{}{}{}{.34.34.23.23A x x B x x C x x D x x ≤<<<≤<≤≤6.【2014高考福建卷文第5题】命题“[)30,.0x x x ∀∈+∞+≥”的否定是()()()[)[)3333000000.,0.0.,0.0.0,.0.0,.0A x x xB x x xC x x xD x x x ∀∈-∞+<∀∈-∞+≥∃∈+∞+<∃∈+∞+≥7.【2014高考广东卷文第1题】已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =()A.{}0,2B.{}2,3C.{}3,4D.{}3,58.【2014高考湖北卷文第1题】已知全集}7,6,5,4,3,2,1{=U ,集合}6,5,3,1{=A ,则=A C U () A.}6,5,3,1{ B.}7,3,2{ C.}7,4,2{ D.}7,5,2{ 【答案】C 【解析】试题分析:依题意,}7,4,2{=A C U ,故选C. 考点:补集的运算,容易题.9.【2014高考湖北卷文第3题】命题“R ∈∀x ,x x ≠2”的否定是() A.R ∉∀x ,x x ≠2B.R ∈∀x ,x x =2C.R ∉∃x ,x x ≠2D.R ∈∃x ,x x =210.【2014高考湖南卷文第1题】设命题2:,10p x R x ∀∈+>,则p ⌝为()200.,10A x R x ∃∈+>200.,10B x R x ∃∈+≤ 200.,10C x R x ∃∈+<2.,10D x R x ∀∈+≤11.【2014高考湖南卷文第2题】已知集合{|2},{|13}A x x B x x =>=<<,则AB =().{|2}A x x >.{|1}B x x >.{|23}C x x <<.{|13}D x x <<12.【2014高考江苏卷第1题】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= . 【答案】{1,3}- 【解析】由题意得{1,3}A B =-.【考点】集合的运算13.【2014高考江西卷文第2题】设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =().(3,0)A -.(3,1)B --.(3,1]C --.(3,3)D -14.【2014高考江西卷文第6题】下列叙述中正确的是().A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ15.【2014高考辽宁卷文第1题】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =()A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 【答案】D 【解析】试题分析:由已知得,{=0AB x x ≤或}1x ≥,故()UC A B ={|01}x x <<.【考点定位】集合的运算.16.【2014高考全国1卷文第1题】已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N =()A.)1,2(-B.)1,1(-C.)3,1(D.)3,2(-17.【2014高考全国2卷文第1题】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =()A. ∅B.{}2C.{0}D.{2}-18.【2014高考全国2卷文第3题】函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则()A .p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件19.【2014高考山东卷文第2题】设集合{}{},41,022≤≤=<-=x x B x x x A 则=B A () (A )(]2,0(B )()2,1(C )[)2,1(D )()4,120.【2014高考陕西卷文第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则MN =().[0,1]A .(0,1)B .(0,1]C .[0,1)D【答案】D 【解析】试题分析:由{|0,}[0,)M x x x R =≥∈=+∞2{|1,}(1,1)N x x x R =<∈=-所以[0,1)M N =故选D考点:集合间的运算.21.【2014高考四川卷文第1题】已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B ⋂=() A .{1,0}-B .{0,1}C .{2,1,0,1}--D .{1,0,1,2}-22.【2014高考天津卷卷文第3题】已知命题为则总有p e x x p x⌝>+>∀,1)1(,0:() A.1)1(,0000≤+≤∃x ex x 使得 B.1)1(,0000≤+>∃x e x x 使得C.0000,(1)1x x x e ∀>+≤总有D.0000,(1)1x x x e ∀≤+≤总有 【答案】B 【解析】试题分析:因为命题:,p x d ∀的否定为:,p x d ⌝∃⌝,所以命题:0,(1)1,x p x x e p ∀>+>⌝总有为0000,(1)1x x x e ∃>+≤使得,选B. 考点:命题的否定23.【2014高考浙江卷文第1题】设集合{|2}S x x =≥,}5|{≤=x x T ,则S T =()A.]5,(-∞B.),2[+∞C.)5,2(D.]5,2[24.【2014高考浙江卷文第2题】设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的()A.充分不必要条件B.必要不成分条件C.充要条件D.既不充分也不必要条件25.【2014高考重庆卷文第6题】已知命题:p 对任意x R ∈,总有||0x ≥;:1q x =是方程20x +=的根,则下列命题为真命题的是().A p q ∧⌝.B p q ⌝∧.C p q ⌝∧⌝.D p q ∧26.【2014高考重庆卷文第11题】已知集合{3,4,5,12,13},{2,3,5,8,13}A B ==,则A B =_______.【答案】{}3,5,13 【解析】 试题分析:{}{}{}3,4,5,12,132,3,5,8,133,5,13AB ==所以答案应填{}3,5,13. 考点:集合的运算.27.【2014高考上海卷文第15题】设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的() (A )充分条件(B )必要条件(C )充分必要条件(D )既非充分又非必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题01 集合与常用逻辑用语
一.基础题组
1. 【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( )
A .]1,2[--
B . )2,1[- C..]1,1[- D .)2,1[
【答案】A 【解析】由已知得,{1A x x =≤-或}3x ≥,故{}21A
B x x =-≤≤-,选A .
2. 【2013课标全国Ⅰ,理1】已知集合A ={x |x 2-2x >0},B ={x |x ,则( ).
A .A ∩
B =
B .A ∪B =R
C .B ⊆A
D .A ⊆B
【答案】B
【解析】∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:
由图象可以看出A ∪B =R ,故选B.
3. 【2012全国,理1】已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )
A .3
B .6
C .8
D .10
【答案】D
4. 【2010新课标,理1】已知集合A ={x ||x |≤2,x ∈R },B ={x x ∈Z },则A ∩B =( )
A .(0,2)
B .0,2]
C .{0,2}
D .{0,1,2}
【答案】:D
【解析】∵A={-2,-1,0,1,2},B ={0,1,2,3,…,16},∴A∩B={0,1,2}.
5. 【2009全国卷Ⅰ,理1】设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合(A∩B)中的元素共有( )
A.3个
B.4个
C.5个
D.6个
【答案】A
【解析】由题意知A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴(A∩B)={3,5,8}.
∴共3个元素.
6. 【2006全国,理1】设集合M ={x│x 2
-x <0},N={x││x│<2},则( )
(A )φ=N ⋂M (B )M N =⋂M (C )M N =⋃M (D )R N =⋃M
【答案】B
7. 【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )
(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤
(C )2,2n n N n ∀∈≤ (D )2,=2n
n N n ∃∈
【答案】C
【解析】p ⌝:2,2n n N n ∀∈≤,故选C.
【考点定位】本题主要考查特称命题的否定
8. 【2016高考新课标理数1】设集合2{|430}A x x x =-+< ,{|230}B x x =->,则A B =
(A )3
(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2
【答案】D
【解析】 试题分析:因为23{|430}={|13},={|},2
A x x x x x
B x x =+<<<>-所以33={|13}{|}={|3},22
A B x x x x x x <<><<故选D. 【考点】集合的交集运算
【名师点睛】集合是每年高考中的必考题,一般以基础题的形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式,再进行运算,如果是不等式的解集、函数的定义域及值域等有关数集之间的运算,常借助数轴求解.
9.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则( )
A .{|0}A
B x x =<B .A B =R
C .{|1}A B x x =>
D .A B =∅
【答案】A
【考点】集合的运算,指数运算性质
【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.
二.能力题组
1. 【2011新课标,理10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题: p 1:|a +b |>1⇔θ∈0,
23π)p 2:|a +b |>1⇔θ∈(23π,π] p 3:|a -b |>1⇔θ∈0,
3π)p 4:|a -b |>1⇔θ∈(3π,π] 其中的真命题是( )
A .p 1,p 4
B .p 1,p 3
C .p 2,p 3
D .p 2,p 4 【答案】A
【解析】
2. 【2011全国,理3】下面四个条件中,使a >b 成立的充分而不必要的条件是( )
A .a >b +1
B .a >b -1
C .a 2>b 2
D .a 3>b
3 【答案】A
【解析】由>+1,得>;反之不成立。
3. 【2005全国1,理1】设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( )
A. 1
23()I C S S S φ= B. 123()I I S C S C S ⊆ C. 123I I I C S C S C S φ= D. 123()I I S C S C S ⊆
【答案】C
【解析】。