集合与常用逻辑用语重要知识点

合集下载

第一章 集合与常用逻辑用语

第一章 集合与常用逻辑用语

第一章集合与常用逻辑用语第一章集合与常用逻辑用语§1.1集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A的任意一个元素都是集合B的元素(若则),则称集合A为集合B的子集,记为AB或BA;如果AB,并且AB,这时集合A称为集合B的真子集,记为AB或BA.4.集合的相等:如果集合A、B同时满足AB、BA,则A=B.5.补集:设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为.6.全集:如果集合S包含所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集,记作AB.8.并集:一般地,由所有属于集合A或者属于B的元素构成的集合,称为A与B的并集,记作AB.9.空集:不含任何元素的集合称为空集,记作.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N,正整数集记作N+或N,整数集记作Z,有理数集记作Q,实数集记作R.二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n个元素的集合的所有子集个数为:,所有真子集个数为:-1三、经典例题导讲[例1] 已知集合M={y|y=x2+1,x∈R},N={y|y =x+1,x∈R},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2}D.{y|y≥1}错解:求M∩N及解方程组得或∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是实数对(x,y),因此M、N是数集而不是点集,M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集.正解:M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}.∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1},∴应选D.注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x ∈R},这三个集合是不同的.[例2] 已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.错解:由x2-3x+2=0得x=1或2.当x=1时,a=2,当x=2时,a=1.错因:上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A.当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴BA又A={x|x2-3x+2=0}={1,2}∴B=或∴C={0,1,2}[例3]已知mA,nB, 且集合A=,B=,又C=,则有:()A.m+nA B. m+nB C.m+nC D.m+n不属于A,B,C中任意一个错解:∵mA,∴m=2a,a,同理n=2a+1,aZ,∴m+n=4a+1,故选C错因是上述解法缩小了m+n的取值范围.正解:∵mA,∴设m=2a1,a1Z, 又∵n,∴n=2a2+1,a2 Z ,∴m+n=2(a1+a2)+1,而a1+a2 Z , ∴m+nB, 故选B.[例4]已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.错解:由x2-3x-10≤0得-2≤x≤5.欲使BA,只须∴p的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设.正解:①当B≠时,即p+1≤2p-1p≥2.由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴2≤p≤3②当B=时,即p+1>2p-1p<2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A是实数集,满足若a∈A,则A,且1?A.⑴若2∈A,则A中至少还有几个元素?求出这几个元素.⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A ? -1∈A ? ∈A ? 2∈A∴A中至少还有两个元素:-1和⑵如果A为单元素集合,则a=即=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈A ? ∈A ? ∈A?A,即1-∈A⑷由⑶知a∈A时,∈A,1-∈A.现在证明a,1-, 三数互不相等.①若a=,即a2-a+1=0,方程无解,∴a≠②若a=1-,即a2-a+1=0,方程无解∴a≠1-③若1-=,即a2-a+1=0,方程无解∴1-≠.综上所述,集合A中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨. [例7] 设集合A={|=,∈N+},集合B={|=,∈N+},试证:AB.证明:任设∈A,则==(+2)2-4(+2)+5(∈N+),∵n∈N*,∴n+2∈N*∴a∈B故①显然,1,而由B={|=,∈N+}={|=,∈N+}知1∈B,于是A≠B②由①、②得AB.点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的非空真子集的个数为()A.16B.14C.15 D.322.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,-2 } B.{-2,-}C.{±2,±} D.{,-}3.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.QC.D.不知道4. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()A.P∩Q=B.P Q C.P=QD.P Q5.若集合M={},N={|≤},则MN=()A.B.C.D.6.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R+=,则实数m的取值范围是_________.7.(06高考全国II卷)设,函数若的解集为A,,求实数的取值范围.8.已知集合A=和B=满足A∩B=,A∩B=,I=R,求实数a,b的值.§1.2.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、“非”分别用符号“”“”“”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p或q;p且q;非p5.四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p则q”“若q 则p ”.7.反证法:欲证“若p则q”,从“非q”出发,导出矛盾,从而知“若p则非q”为假,即“若p则q”为真.8.充分条件与必要条件:①pq:p是q的充分条件;q是p的必要条件;②pq:p是q的充要条件.9.常用的全称量词:“对所有的”、“对任意一个”“对一切”“对每一个”“任给”等;并用符号“”表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、“有的”、“对某个”;并用符号“”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的. (4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明的充要条件是;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一.注:常见关键词的否定:关键词是都是(全是)()至少有一个至多有一个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意。

集合与常用逻辑用语知识点汇总

集合与常用逻辑用语知识点汇总

集合与常用逻辑用语知识点汇总知识点一集合的概念与运算(一)、集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于,符号分别为∈和∉.3.集合的三种表示方法:列举法、描述法、图示法.4.常用数集的符号:实数集记作R;有理数集记作Q;整数集记作Z;自然数集记作N;正整数集记作*N或N .+A B(四)、集合关系与运算的重要结论1.若有限集A中有n个元素,则A的子集有个,真子集有-1个.n2n22.传递性:A ⊆B ,B ⊆C ,则A ⊆C .3.A ∪B =A ⇔B ⊆A ; A ∩B =A ⇔A ⊆B .4.∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ) .知识点二 命题及其关系、充分条件与必要条件(一)、命题的定义可以判断真假用文字或符号表述的语句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

(二)、四种命题及其相互关系 1.四种命题间的关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们具有相同的真假性. (2)两个命题互为逆命题或否命题,它们的真假性无关. (三)、充分条件、必要条件与充要条件的定义1.若p q ;则p 是q 的充分条件,q 是p 的必要条件。

2.若p q 且q p,则p 是q 的充要条件。

3.若有p q ,无q p ,则称p 是q 的充分不必要条件。

4.若有q p , 无p q ,则称p 是q 的必要不充分条件。

5.若无p q 且无q p,则p 是q 的非充分非必要条件。

(四)、充分、必要、充要条件的判断方法1.定义法根据p q ,q p 进行判断,适用于定义、定理判断性问题。

2.转化法根据一个命题与其逆否命题的等价性,把判断、定义的命题转化为其逆否命题再进行判断,适用于条件和结论带有否定词语的命⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒题。

3.集合法根据p、q成立对象的集合间的包含关系进行判断,适用于命题中涉及字母范围的推断问题。

职高 第一章 集合与常用逻辑用语知识点

职高 第一章 集合与常用逻辑用语知识点

第一章集合与常用逻辑用语思维导图1.集合的有关概念(1)一般地,把一些能够确定的对象看成一个整体,就形成一个________,构成集合的每个对象都叫做这个集合的________.(2)集合中的元素的特征是________和________.(3)集合按元素的个数可分为________集和________集.(4)____________________叫做空集,记作________.(5)常用的数集符号2.元素与集合的关系如果a是集合A中的元素,就说元素a属于集合A,记作________,如果a不是集合A中的元素,就说a不属于集合A,记作________.3.集合的表示方法:有________、________和图示法(即文氏图法)三种.4.集合与集合的关系(1)子集:如果集合A中的____________元素都是集合B中的元素,那么集合A叫做集合B的子集,记作______或______,读作____________或____________.任何一个集合A都是它本身的______,即A⊆A.(2)集合相等:如果两个集合的元素__________,则称这两个集合相等,集合A等于集合B,记作______.(3)真子集:如果集合A是集合B的______,并且___________________________,那么集合A叫做集合B的真子集,记作______或______,读作____________或____________.(4)子集、真子集和集合相等的关系①如果A⊆B,则A B或A______B.②如果A⊆B,且B⊆A,则A______B;反之,如果A=B,则__________________.(5)常用结论①若集合A中有n(n∈N+)个元素,则A的子集有______个,真子集有______个,非空真子集有______个.②∅是任何集合的______,是任何非空集合的______.5.集合的运算(1)交集①定义:一般地,给定两个集合A,B,由_________________________________构成的集合,叫做集合A和集合B 的交集,记作______,读作______,即A∩B=______________,如下图阴影部分所示.②性质:A∩A=______,A∩B=______,A∩∅=______,若 A⊆B,则 A∩B=______.(3)补集①全集:一般地,如果在讨论的问题中,每一个集合都是某一个给定集合U的子集,那么就称U为这些集合的______.②定义:如果集合A是全集U的一个子集,由______________________________构成的集合,叫做集合A在U中的补集,记作______,读作__________________,如下图阴影部分所示.③性质:A∩∁UA=______,A∪∁UA=______,∁U(∁UA)=______.6.充要条件(1)当“如果p,那么q”正确时,我们就说p可推出q,记作______,读作“p推出q”.(2)若p⇒q,但q ⇏ p,则称p是q的____________条件.(3)若q⇒p,但p ⇏ q,则称p是q的____________条件.(4)若p⇒q且q⇒p,则称p是q的______条件,记作p⇔q,读作“p 与q等价”或“p与q互为充要条件”.7.子集与推出的关系一般地,设集合A={x|p},B={x|q},那么A⊆B与______等价;A =B与______等价.8.命题:________________________叫做命题.9.命题的真假:当命题给出的判断正确或符合客观实际时,称该命题真,否则称该命题假.“真”“假”常被称为命题的真值,其中______常用1表示,______常用0表示.注:(1)没有真假意义的语句都不是命题.如感叹句、疑问句、祈使句等等.(2)有的语句,尽管现在或将来也未必能判断真假,但它们所作判断是否符合客观实际这一点是确定的,也把它们算作命题.10.量词:常用的量词有“全称量词”和“存在量词”.(1)全称量词是指任意的,常用的全称量词有“所有”“一切”“每一个”“任何”“任意”等,用符号______表示.(2)存在量词是指存在,常用的存在量词有“存在”“有些”“有一个”“至少有一个”等,用符号______表示.(3)全称命题:__________________叫做全称命题.(4)存在命题:__________________叫做存在命题.11.常用的逻辑联结词:且、或、非,符号分别为∧、∨、﹁. 12.简单命题:不含____________的命题.13.复合命题:由简单命题和逻辑联结词构成的命题叫做复合命题.14.几种常见的复合命题设p,q是两个命题,则(1)“p且q”构成一个新命题,记作“______”,读作“______”;(2)“p或q”构成一个新命题,记作“______”,读作“______”;(3)命题p的非(否定)构成一个新命题,记作“______”,读作“______”.15.常用复合命题的真值表:﹁p﹁q。

高中数学知识点集合与逻辑用语知识点

高中数学知识点集合与逻辑用语知识点

专题一集合与逻辑用语环节一:集合1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表示集合的关系及运算.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、Venn图法.(4)常用数集:自然数集N;正整数集N*(或N+);整数集Z;有理数集Q;实数集R.(5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、空集.2.集合间的基本关系表示关系文字语言符号语言相等集合A与集合B中的所有元素都相同A=B子集A中任意一个元素均为B中的元素A⊆B或B⊇A真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A⊂B或B⊂A 空集空集是任何集合A的子集,是任何非空集合B的真子集∅⊆A,∅⊂B(B≠∅)3.集合的基本运算并集交集补集符号表示A∪B A∩B若全集为U,则集合A的补集为C U A 图形表示意义{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 1.集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(C U A)=U;A∩(C U A)=∅;C U(C U A)=A.2.判断集合关系的三种方法(1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn图(封闭曲线).3.数形结合思想数轴和Venn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.环节二:命题与充要条件1.理解命题的概念.2.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题若原命题为“若p,则q”,则其逆命题是若q,则p;否命题是若¬p,则¬q;逆否命题是若¬q,则¬p.(2)四种命题间的关系3.充分条件、必要条件与充要条件(1)“若p,则q”为真命题,记作:p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果既有p⇒q,又有q⇒p,记作:p⇔q,则p是q的充要条件,q也是p的充要条件.1.四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.2.命题的充要关系的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:利用A⇒B与¬B⇒¬A,B⇒A与¬A⇒¬B,A⇔B与¬B⇔¬A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A 的必要条件;若A=B,则A是B的充要条件.环节三:简单逻辑联结词,全称量词与存在量词1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.,1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“∧”“∨”“¬p”.(2)命题p∧q、p∨q、¬p的真假判断p q p∧q p∨q¬p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词(1)全称量词“所有的”“任意一个”,用符号“∀”表示.(2)存在量词“存在一个”“至少有一个”,用符号“∃”表示.(3)全称命题含有全称量词的命题,叫做全称命题;“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).(4)特称命题含有存在量词的命题,叫做特称命题;“存在M中的一个x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).3.含有一个量词的命题的否定形式命题命题的否定∀x∈M,p(x)∃x0∈M,¬p(x0)∃x0∈M,p(x0)∀x∈M,¬p(x)1.含逻辑联结词命题真假判断:(1)p∧q中一假即假.(2)p∨q中一真必真.(3)¬p真,p假;¬p假,p真.2.含量词的命题的否定方法是“改量词,否结论”,即把全称量词与存在量词互换,然后否定原命题的结论.3.判断命题的真假要注意:全称命题为真需证明,为假举反例即可;特称命题为真需举一个例子,为假则要证明全称命题为真.。

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结的表示法是将a放在大括号中,表示一个只含有a这一个元素的集合。

2)描述法中,要注意符号的使用和表达的准确性。

3)在交集与并集的性质中,要注意交集和并集的交换律和结合律。

4)在全集和补集的性质中,要注意补集的定义和符号的使用。

第一章集合和常用逻辑用语1.1 集合的含义和表示集合是由一些元素组成的总体。

元素具有确定性、互异性和无序性。

我们通常用大写的拉丁字母A、B、C等表示集合,用小写拉丁字母a、b、c等表示元素。

如果元素x在集合A中,我们称x属于A,记为x∈A,否则称x不属于A,记作x∉A。

常用的数集有非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

集合的表示法有列举法、描述法和图示法。

列举法是把集合中的元素一一列举出来,然后用一个大括号括上。

描述法是用集合所含元素的公共特征表示集合的方法,可以用语言描述法和数学式子描述法。

图示法是用Venn图表示集合和元素之间的关系。

1.2 集合间的基本关系集合间有“包含”关系和“相等”关系。

如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为A⊆B,例如N⊆Z。

子集的个数为2的n次方(n为集合中元素个数)。

如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。

真子集的个数为2的n次方减1(n为集合中元素个数)。

如果A是B的子集,B也是A的子集,则称A与B相等。

空集是不含任何元素的集合,用∅来表示。

空集∅是任何集合的子集,是任何非空集合的真子集。

1.3 集合的基本运算集合有交集和并集两种基本运算。

交集是指集合A和集合B中共同拥有的元素组成的集合,记为A∩B。

并集是指集合A和集合B中所有元素组成的集合,记为A∪B。

交集和并集有交换律和结合律。

全集是指包含所有元素的集合,通常用U来表示。

补集是指集合A中不属于集合B的元素组成的集合,记为CBA。

高中数学集合与常用逻辑用语知识点总结PPT课件

高中数学集合与常用逻辑用语知识点总结PPT课件

【注意】 (1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种 性质的命题; (2)一个全称量词命题可以包含多个变量; (3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。 如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线 都互相平行”。
2、存在量词与存在量词命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在 量词,并用符号“图片”表示. 【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有 的”等; (2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
2、集合运算中的常用二级结论(1)并集的性质:A∪∅=A;A∪A=A;A∪B= B∪A;A∪B=A⇔B⊆A. (2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. (3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)= (∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
【注意】 (1)从集合的观点看,存在量词命题是陈述某集合中有一些 元素具有某种性质的命题; (2)一个存在量词命题可以包含多个变量; (3)有些命题虽然没有写出存在量词,但其意义具备“存 在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“图片”, 读作“非p”或p的否定.
知识点5 全称量词与存在量词 1、全称量词与全称量词命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常 叫作全称量词,并用符号“图片”表示.
【注意】 (1)全称量词的数量可能是有限的,也可能是无限的,由有 题目而定; (2)常见的全称量词还有“一切”、“任给”等,相应的词 语是“都” (2)全称量词命题:含有全称量词的命题,称为全称量词命 题.

知识点-集合与常用逻辑用语

知识点-集合与常用逻辑用语

知识点——集合与常用逻辑用语【知识梳理】一、集合及其运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A⊊B(或B⊋A)集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1. 2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.二、命题及其关系、充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系. 3.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,同时q 是p 的必要条件; (2)如果p ⇒q ,但qp ,则p 是q 的充分不必要条件;(3)如果p ⇒q ,且q ⇒p ,则p 是q 的充要条件; (4)如果q ⇒p ,且p q ,则p 是q 的必要不充分条件; (5)如果p q ,且qp ,则p 是q 的既不充分也不必要条件.【知识拓展】1.两个命题互为逆否命题,它们具有相同的真假性. 2.若A ={x |p (x )},B ={x |q (x )},则 (1)若A ⊆B ,则p 是q 的充分条件; (2)若A ⊇B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; (4)若A ⊊B ,则p 是q 的充分不必要条件; (5)若A ⊋B ,则p 是q 的必要不充分条件; (6)若A B 且A ⊉B ,则p 是q 的既不充分也不必要条件.【易错提醒】1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性. 4.空集是任何集合的子集.由条件A ⊆B ,A ∩B =A ,A ∪B =B 求解集合A 时,务必分析研究A =∅的情况. 5.区分命题的否定与否命题,已知命题为“若p ,则q ”,则该命题的否定为“若p ,则q ⌝”,其否命题为“若p ⌝,则q ⌝”.6.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.【必会习题】1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3 B.0或3 C.1或 3 D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2} B.{a|a≤1} C.{a|a≥1} D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|-3<x<5} B.{x|-5<x<5} C.{x|x<-5或x>-3} D.{x|x<-3或x>5} 答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是()A.1 B.2 C.3 D.4答案 D解析满足题意的集合A可以为{a},{a,b},{a,c},{a,b,c},共4个.5.已知集合U=R(R是实数集),A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁U B)等于() A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞)答案 D解析B={x|x2-2x<0}=(0,2),A∪(∁U B)=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D.6.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析ln(x+1)<0,解得0<x+1<1,∴-1<x<0,所以“x<0”是“-1<x<0”的必要不充分条件.7.给出以下四个命题: ①若ab ≤0,则a ≤0或b ≤0; ②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根. 其中原命题、逆命题、否命题、逆否命题全都是真命题的是( ) A .① B .② C .③ D .④ 答案 C8.设U 为全集,对集合A ,B 定义运算“*”,A *B =∁U (A ∩B ),若X ,Y ,Z 为三个集合,则(X *Y )*Z 等于( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z 答案 B解析 ∵X *Y =∁U (X ∩Y ),∴对于任意集合X ,Y ,Z , ( X *Y )*Z =∁U (X ∩Y )*Z =∁U [∁U (X ∩Y )∩Z ]=(X ∩Y )∪∁U Z .9.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________.答案 (-∞,-2)∪[5,+∞) 解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5, ∴5∉M 时,a <-2或a ≥5.10.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a , ∵q 是p 的必要不充分条件,∴a ≤-4,∴a ∈(-∞,-4].11.已知命题p :⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3;∵x 2-2x +1-m 2<0(m >0)⇔[x -(1-m )][x -(1+m )]<0⇔1-m <x <1+m ,∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3,解得m >2.。

集合与常用逻辑用语知识点{知识点)

集合与常用逻辑用语知识点{知识点)

集合与常用逻辑用语知识点考向:这部分属于高考必考和热点内容。

主要以选择题和填空题的形式出现,属于简单题。

分值5分。

第1节:集合的概念与运算一.概念1.集合与元素的关系:∉∈,二者必居其一。

2.集合的分类:有限集,无限集,空集。

3.元素的特征:互异性,无序性,确定性。

4.集合的表示:描述法,列举法,venn 图,区间法(只用于表示实数)。

5.子集:}|{B x A x x B A ∈∈∀⇔⊆有 真子集:}|{00A x B x B x A x x B A ∉∈∃∈∈∀⇔⊂≠但且有集合A 中有n 个元素,则A 的子集有n 2个,非空子集有n 2-1个,真子集有n 2-1个,非空真子集有n 2-2个.6.常见的数集: C Q R Z N N ,,,,,*7. ,A ⊆∅)(非空A A ≠⊂∅二.运算交:}|{B x A x x B A ∈∈=且 并:}|{B x A x x B A ∈∈=或 补:}|{A x U x x A C U ∉∈=且三.运算法则 交换律:,,A B B A A B B A == 结合律:),()(),()(C B A C B A C B A C B A ==分配率:),()()(),()()(C A B A C B A C A B A C B A ==吸收率:A B A B A =⊂ ,摩根定律:)()()(B C A C B A C U U U =,)()()(B C A C B A C U U U =第2节:命题及其关系、充分条件与必要条件一.命题1.命题:可以判断真假的语句叫做命题。

判断为真的语句叫做真命题,判断为假的语句叫做假命题。

真命题为真,假命题一定为假,真命题为假,假命题一定为真。

2.四种命题:原命题:若p 则q ;逆命题:逆命题若q 则p ;否命题:若p ⌝则q ⌝;逆否命题:若q ⌝则p ⌝结论:(1)互为逆否的命题,同真同假; (2)原命题与逆命题,原命题与否命题,它们的真假性没有关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与简易逻辑重要知识点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一)集合
1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用
. 2.集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
集合的性质:
①任何一个集合是它本身的子集,记为A A ;
②空集是任何集合的子集,记为A ;
③空集是任何非空集合的真子集;
如果B A ,同时A B ,那么A=B.
如果C A C B B A ,那么,.
[注]:①Z ={整数}(√)Z ={全体整数}(×)
②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:
S=N ;A=N ,
则C s A={0})
③空集的补集是全集.
④若集合A =集合B ,则C B A =,C A B =C S (C A B )=D (注:C A B =).
3.①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集.
②{(x ,y )|xy <0,x ∈R ,y ∈R 二、四象限的点集.
③{(x ,y )|xy >0,x ∈R ,y ∈R }一、三象限的点集.
[注]:①对方程组解的集合应是点集.
例:1323
y x y x 解的集合{(2,1)}.
②点集与数集的交集是.(例:A={(x ,y )|y =x +1}B={y |y =x 2+1}则A ∩B =)
4.①n 个元素的子集有2n 个.②n 个元素的真子集有2n -1个.③n 个元素的非空真子集有2n
-2个.
5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.
②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.
例:①若325b a b a 或,则应是真命题.
解:逆否:a =2且b =3,则a+b =5,成立,所以此命题为真.
②,且21y x 3y x .
解:逆否:x+y =3x=1或y =2.
21y x 且3y x ,故3y x 是21y x 且的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围.
3.例:若255x x x 或,.
4.集合运算:交、并、补.
5.主要性质和运算律
(1)包含关系:,,,,
,;,;,.
U A A A A U A U A B B C A C A B A A B B A B A A B B I I U U C (2)等价关系:U A B A B A A B B A B U
I U U C (3)集合的运算律:
交换律:.
;A B B A A B B A 结合律:)
()();()(C B A C B A C B A C B A 分配律:.)
()()();()()(C A B A C B A C A B A C B A 0-1律:,,,A A A U A A U A U
I U I U 等幂律:.
,A A A A A A 求补律:A ∩C U A =φA ∪C U A=U?C U U =φ?C U φ=U
反演律:C U (A ∩B)=(C U A)∪(C U B)C U (A ∪B)=(C U A )∩(C U B)
6.有限集的元素个数
定义:有限集A 的元素的个数叫做集合A 的基数,记为card(A)规定card(φ)=0.
基本公式:
(3)card (?U A )=card(U)-card(A)
(二)含绝对值不等式、一元二次不等式的解法及延伸
1.整式不等式的解法
根轴法(零点分段法)
①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;
(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式
是“<0”,则找“线”在x 轴下方的区间.
(自右向左正负相间)
则不等式)0)(0(0022110a a x a x a x a n n n n 的解可以根据各区间的符号确定. 特例①一元一次不等式ax>b 解的讨论;
②一元二次不等式ax 2+box>0(a>0)解的讨论.
二次函数
(0a )的图象
一元二次方程有两相异实根有两相等实根无实根
R
2.分式不等式的解法
(1)标准化:移项通分化为)()
(x g x f >0(或)()
(x g x f <0);)
()
(x g x f ≥0(或)()(x g x f ≤0)的形式,(2)转化为整式不等式(组)
0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f 3.含绝对值不等式的解法
(1)公式法:c b ax ,与)0(c c b ax 型的不等式的解法.
(2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.
4.一元二次方程根的分布
一元二次方程ax 2+bx+c=0(a ≠0)
(1)根的“零分布”:根据判别式和韦达定理分析列式解之.
(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之
.
(三)简易逻辑
1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题:
原命题若p 则q 否命题若┐p则┐q逆命题若q 则p 逆否命题若┐q则┐p互为逆否互逆否互为逆否互互逆否互“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命
题。

构成复合命题的形式:p 或q(记作“p ∨q ”);p 且q(记作“p ∧q ”);非p(记作“┑q ”)。

3、“或”、“且”、“非”的真值判断(1)“非p ”形式复合命题的真假与F 的真假相反;(2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假;(3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.
4、四种命题的形式:
原命题:若P 则q ;逆命题:若q 则p ;
否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)
①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知p q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p q 且q p,则称p 是q 的充要条件,记为p?q.
7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

相关文档
最新文档