《一元一次不等式和一元一次不等式组》1-4节练习题
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(含答案解析)(4)
一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( ) A . B . C .D .2.若0m n <<,则下列结论中错误的是( ) A .99m n -<-B .m n ->-C .11n m> D .1m n> 3.不等式组211x x ≥-⎧⎨>-⎩的解集是( )A .1x >-B .12x >-C .21x ≥-D .112x -<≤-4.某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有( ) A .2种B .3种C .4种D .5种5.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )A .3B .5C .4或5D .3或516.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有四个整数解,则实数a 的取值范围是( )A .67a <≤B .1821a <≤C .1821a ≤<D .1821a ≤≤7.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b <+的解集为( )A .0x >B .0x <C .1x >-D .1x <-8.若不等式组010a x x ->⎧⎨+>⎩无解,则a 的取值范围是( )A .a≤-1B .a≥-1C .a<-1D .a>-19.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .1010.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .11.下列各数是不等式271x -≥的解的是( ). A .4 B .3 C .2 D .1 12.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( )A .a <bB .3a <3bC .﹣a >﹣bD .a ﹣2>b ﹣2二、填空题13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.14.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x⋅⋅⋅0 1 2 3⋅⋅⋅1y⋅⋅⋅232112⋅⋅⋅x⋅⋅⋅0123⋅⋅⋅2y⋅⋅⋅-3-113⋅⋅⋅则关于x的不等式ax b mx n+>+的解集是______.15.已知a为整数,且340218a<+<,则a的值为____________.16.如图,已知一次函数y=kx+b的图象与正比例函数y=mx的图象相交于点P(﹣3,2),则关于x的不等式mx﹣b≥kx的解集为_____.17.不等式组112251xx⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.18.不等式-3x-1≥-10的正整数解为______________19.一张试卷共20道题,做对一题得5分,做错或不做一题扣1分,小明做了全部试题,若要成绩优秀(注:70分及以上成绩为优秀),那么小明至少要做_________道题.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.如图,已知有甲、乙两个长方形,它们的边长如图所示(m.为正整数....),面积分别为1S、2S.(1)请比较1S与2S的大小:1S_____2S;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m 的代数式表示);②若该正方形的面积为3S ,试探究:3S 与1S 的差(即31S S -)是否为常数?若为常数,求出这个常数:如果不是,请说明理由;(3)若满足条件120n S S <<-的整数n 有且只有8个,直接写出m 的值.22.解不等式组68491153x x x x +>+⎧⎪+⎨≤-⎪⎩,并把不等式组的解在数轴上表示出来.23.已知一次函数y x b =+的图像经过点(1,3)A -. (1)求该函数的表达式; (2)x 取何值时,0y >?24.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 25.某商场销售A 、B 两种型号的计算器,两种计算器的进货价格分别为每台15元,20元.商场销售5台A 型号和1台B 型号计算器,可获利润38元;销售6台A 型号和3台型号计算器,可获利润6元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于1250元的资金购进A 、B 两种型号计算器共70台,且全部售出后至少获利460元.问:最少需要购进A 型号的计算器多少台?最多可购进A 型号的计算器多少台? 26.计算: (1)01(4)2π--- (2)231352x x-+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】解出不等式,在进行判断即可; 【详解】251x -+≥,24x -≥-, 2x ≤,解集表示为:;故答案选C . 【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.C解析:C 【分析】分析各个选项是由m <n<0如何变化得到的,根据不等式的性质即可进行判断. 【详解】A 、由m <n ,根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.两边减去9,得到:m-9<n-9;成立;B 、两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以-1得到-m >-n ;成立;C 、m <n <0,若设m=-2 n=-1验证11n m>不成立. D 、由m <n ,根据两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时除以负数n 得到1mn>,成立; 故选:C . 【点睛】利用特殊值法验证一些式子错误是有效的方法.不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.C解析:C 【分析】先求出2x≥-1的解集,再确定不等式组的解集即可. 【详解】 解:211x x ≥-⎧⎨>-⎩①②解不等式①得,21x ≥-, 解不等式②得,x>-1,∴不等式组的解集为:21x ≥- 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.B解析:B 【分析】设4人车租x 辆,6人车租y 辆,根据没有空座列出方程,结合至少有1名教师列出不等式,求解即可. 【详解】解:设4人车租x 辆,6人车租y 辆, ∵不得有空座, 则461038x y +=+ ∴283y x =-又∵每辆车上至少有1名教师, ∴10x y +≤ 把283y x =-代入10x y +≤得, 28103x x +-≤ ∴6x ≤ ∵x 、y 都是整数,由283y x =-知x 是3的倍数, 因此,当x=0时,y=8; 当x=3时,y=6; 当x=6时,y=4; 故有3种方案, 故选:B . 【点睛】此题主要考查了二元一次方程与一元一次不等式的应用,关键是根据题目所提供的等量关系和不等量关系,列出方程和不等式求解.5.C解析:C 【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答. 【详解】解:∵在△ABC 中,AC =AM =3, 设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x xx x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6, ③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6, ∴x =5或x =4; 故选C . 【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.6.B解析:B 【分析】此题可先根据一元一次不等式组解出x 的取值,再根据不等式组只有四个整数解,求出实数a 的取值范围. 【详解】解:6234x x a x x +<+⎧⎪⎨+>⎪⎩①②解①得x >2, 解②得x <13a , ∴2<x <13a , ∵不等式组有且只有四个整数解,即3,4,5,6;∴6<13a≤7,即18<a≤21. 故选:B . 【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了7.C【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.故选:C.【点睛】此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.8.A解析:A【分析】要求出a的值,首先分别求出这两个不等式解,最后根据不等式组无解的情况来确定a的值.【详解】解:10a xx->⎧⎨+>⎩①②解不等式①,得x<a,解不等式②,得x>-1∵原不等式组无解,∴a≤-1故答案为:A.【点睛】本题考查了解一元一次不等式组,关键是知道不等式组的解集是由这两个不等式的解集的公共部分构成的,题目无解说明这两个不等式的解集没有公共部分这是关键.9.D解析:D【分析】根据程序操作进行了1次后就停止,即可得出关于x的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】依题意,得:3126x->,解得:9x>.∵x为整数,∴x的最小值为10.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.10.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.11.A解析:A【分析】先求出不等式的解集,再选项进行判断即可.【详解】x-≥,271≥,x+217x≥28x≥.解得,4故选:A.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.12.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.13.1≤x<4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x<4解不等式②得x≥1所以不等式组的解集为:1≤x<4故答案为:1≤x<4【点睛】此题主要考查了求一元一次不解析:1≤x<4.【分析】分别求出每一个不等式的解集,再找到公共部分即可得.【详解】解:217?311?2xxx-<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x<4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x<4.故答案为:1≤x<4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.14.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x 的增大而增大且两个函数的交点坐标是(21)则当x<2解析:2x<【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x的增大而增大.且两个函数的交点坐标是(2,1).则当x<2时,kx+b>mx+n,故答案为:x<2.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.15.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.16.x≥﹣3【分析】根据图象得出P 点横坐标为﹣3观察函数图象得在P 点右侧y=mx 的函数在y=kx+b 的函数图象上方由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3【详解】由图象可知:P 点横坐标为﹣3当x≥﹣解析:x≥﹣3【分析】根据图象得出P 点横坐标为﹣3,观察函数图象得在P 点右侧,y=mx 的函数在y=kx+b 的函数图象上方,由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3.【详解】由图象可知:P 点横坐标为﹣3,当x≥﹣3时,y=mx 的函数在y=kx+b 的函数图象上方,即mx ﹣b≥kx ,所以关于x 的不等式mx ﹣b≥kx 的解集是x≥﹣3.故答案为:x≥﹣3【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x≥﹣3时mx ﹣b≥kx 是解此题的关键.17.【分析】先解不等式组再求整数解的最大值【详解】解不等式①得解不等式②得故不等式组的解集是所以整数解是:-101最大是1故答案为【点睛】考核知识点:求不等式组的最大整数值解不等式组是关键解析:1x =【分析】先解不等式组,再求整数解的最大值.112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >- 故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键. 18.123【分析】先求出不等式的解集再求出不等式的正整数解即可【详解】解:-3x-1≥-10-3x≥-10+1-3x≥-9x≤3∴不等式-3x-1≥-10的正整数解为123故答案为123【点睛】本题考查解析:1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,∴不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键. 19.15【分析】设小明做对x 道题则做错或不做(20−x )道题根据总分=5×做对题目数−1×做错或不做题目数结合总分不少于70分即可得出关于x 的一元一次不等式解之即可得出x 的取值范围再取其中的最小整数值即解析:15【分析】设小明做对x 道题,则做错或不做(20−x )道题,根据总分=5×做对题目数−1×做错或不做题目数,结合总分不少于70分,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中的最小整数值即可得出结论.【详解】解:设小明做对x 道题,则做错或不做(20−x )道题,依题意,得:5x−(20−x )≥70,解得:x≥15,∴小明至少要做对15道题.故答案为:15.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53【分析】 根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)<;(2)①m+4.5;②为常数,0.25;(3)m=8【分析】(1)根据矩形的面积公式计算即可;(2)①根据矩形和正方形的周长公式即可得到结论;②根据矩形和正方形的面积公式即可得到结论;(3)根据题意得出关于m 的不等式,解之即可得到结论.【详解】解:(1)图甲中长方形的面积S 1=(m+5)(m+4)=m 2+9m+20,图乙中长方形的面积S 2=(m+7)(m+3)=m 2+10m+21,∵S 1-S 2=-m-1,m 为正整数,∴-m-1<0,∴S 1<S 2.故答案为:<;(2)①2(m+5+m+4)÷4=m+4.5;②S 3-S 1=(m+4.5)2-(m 2+9m+20)=0.25,故S 3与S 1的差(即S 3-S 1)是常数;(3)由(1)得|S 1-S 2|=m+1,且m 为正整数,∵0<n <|S 1-S 2|,∴0<n <m+1,由题意得8<m+1≤9,解得:7<m≤8,∵m 为正整数,∴m=8.【点睛】本题主要考查列代数式,整式的混合运算,解题的关键是掌握多项式乘多项式、长方形的性质、正方形的性质等知识.22.12<x≤1,数轴见详解 【分析】 首先解每个不等式,然后在数轴上表示出来,两个不等式的解集的公共部分就是不等式组的解集.【详解】6849...115...3x x x x +>+⎧⎪⎨+≤-⎪⎩①②, 解①得:x >12, 解②得:x≤1,数轴上表示如下:∴不等式组的解是:12<x≤1. 【点睛】 本题考查了不等式组的解法,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.24.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.25.(1)A 、B 两种型号计算器的销售价格分别为21元、28元;(2)最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台【分析】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A 型号和1台B 型号计算器,可获利润38元;②销售6台A 型号和3台B 型号计算器,可获利润6元,由①②等量关系列出方程组,解方程即可; (2)根据题意表示出所用成本,进而得出不等式组求出即可.【详解】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:551520386361532060x y x y +-⨯-=⎧⎨+-⨯-⨯=⎩, 解得:2128x y =⎧⎨=⎩答:A 、B 两种型号计算器的销售价格分别为21元、28元;(2)设购进A 型号的计算器z 台,则B 种计算器为(70-z )台,依题意得:1520(70)1250(2115)(2820)(70)460z z z z +-≤⎧⎨-+--≥⎩ , 解得:3050z ≤≤,∴最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.答:最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.【点睛】考查了二元一次方程组和一元一次不等式组的应用,解题关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式组求解.26.(1)12-;(2)21x ≤- 【分析】(1)由绝对值的意义,算术平方根,零指数幂的运算法则进行计算,即可得到答案; (2)由解一元一次不等式的运算法则进行计算,即可得到答案.【详解】解:(1)01(4)2π--=1212-+ =12-; (2)231352x x -+-, ∴302(23)5(1)x x --≤+, ∴304655x x -+≤+,∴21x ≤-.【点睛】本题考查了解一元一次不等式,零指数幂,绝对值的意义,算术平方根,解题的关键是熟练掌握运算法则进行计算.。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷(有答案解析)
一、选择题1.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a << B .12a > C .4a < D .4a > 2.若a b >,则下列各式中一定成立的是( )A .22a b -<-B .11a b +>+C .22a b <D .33a b ->- 3.点P 坐标为(m +1,m -2),则点P 不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知实数 a 、b ,若 a b >,则下列结论错误的是( ) A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 5.如果a <b ,那么下列不等式中一定成立的是( ) A .a 2<abB .ab <b 2C .a 2<b 2D .a ﹣2b <﹣b 6.等腰三角形的周长为20cm 且三边均为整数,底边可能的取值有( )个.A .1B .2C .3D .4 7.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 8.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 9.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 10.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 11.已知a <b ,下列变形正确的是( )A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 12.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x…-2-10123…y…3210-1-2…A.x<1 B.x>1 C.x<0 D.x>0二、填空题13.关于x的不等式组3222553xxxm+⎧+⎪⎪⎨+⎪<+⎪⎩有且只有4个整数解,则常数m的取值范围是_____.14.已知关于x的不等式组0,10x ax+>⎧⎨->⎩的整数解共有3个,则a的取值范围是___________.15.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.16.关于x、y的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x+y>2,则a的取值范围为__________.17.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.18.关于x的方程231x k+=的解是非负数,则k的取值范围是___________.19.不等式组210322xx x->⎧⎨<+⎩的整数解为_____.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.已知关于x 、y 的二元一次方程组256217x y m x y +=+⎧⎨-=-⎩的解x 、y 都是正数,且x 的值小于y 的值.(1)求该二元一次方程组的解(用含m 的代数式表示)(2)求m 的取值范围.22.计算:(1)()()148632323-++-. (2)()()2249m n m n +--.(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩.(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩.23.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A ,B 两种钢笔作为奖品,已知A ,B 两种每支分别为10元和20元,设购入A 种x 支,B 种y 支. (1)求y 关于x 的函数表达式;(2)若购进A 种的数量不少于B 种的数量,则至少购进A 种多少支?24.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.25.解不等式:431132x x +-->,并把解集在数轴上表示出来.26.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a > ∴142a << 故选:A .【点睛】 本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.2.B解析:B【分析】根据不等式的性质进行判断即可.【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误;B 、在不等式两边同时加1,不等号方向不变,故正确;C 、在不等式两边同时乘2,不等号方向不变,故错误;D 、在不等式两边同时除以-3,不等号方向改变,故错误;故选:B .【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断.3.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解 .【详解】解:A 、当m>2时,m+1与m-2都大于0,P 在第一象限,所以A 不符合题意; B 、若P 在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.4.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a>b,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B、∵a>b,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C、∵a>b,∴-3a<-3b,故本选项符合题意;D、∵a>b,∴5a>5b,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.D解析:D【分析】利用不等式的基本性质逐一进行分析即可.【详解】A、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;B、a<b两边同时乘以b,应说明b>0才得ab<b2,故此选项错误;C、a<b两边同时乘以相同的数,故此选项错误;D、a<b两边同时减2b,不等号的方向不变可得a−2b<−b,故此选项正确;故选D.【点睛】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6.D解析:D【分析】设底边为xcm ,根据题意得腰202x -cm 为整数,且x<10,可得出底边的取值. 【详解】设底边为xcm ,根据题意得腰202x -cm 为整数, ∵能构成三角形,∴x<20-x ,x<10,∴x 可取的值为:2、4、6、8,故选:D .【点睛】此题考查三角形的三边关系,利用不等式解决实际问题,设边长时很重要,这腰长的话需要讨论 范围,故设底边较好,根据三角形三边关系就可以解答. 7.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.8.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.10.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y 得到关于a 、b 的方程组,解之得出a 、b 的值,从而得到关于x 的不等式,解之可得答案.【详解】解:根据题意,得:10b a b =⎧⎨+=⎩, 解得a=-1,b=1,则不等式-ax-b <0为x-1<0,解得x <1,故选:A .【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x 的不等式,并熟练掌握解一元一次不等式的步骤和依据.二、填空题13.【分析】首先利用不等式的基本性质解不等式组再从不等式的解集中找出适合条件的整数解再确定字母的取值范围即可【详解】解:解①得:解②得:∴不等式组的解集为:∵不等式组只有4个整数解即不等式组只有4个整数 解析:423m -<≤- 【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,再确定字母的取值范围即可.【详解】 解:3222553x x x m +⎧+⎪⎪⎨+⎪<+⎪⎩①② 解①得:1x ≥-,解②得:3102m x +<, ∴不等式组的解集为:31012m x +-≤<, ∵不等式组只有4个整数解,即不等式组只有4个整数解为﹣1、0、1、2, 则有310232m +<≤, 解得:423m -<≤-, 故答案为:423m -<≤-【点睛】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.17.55【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最大值为:解析:55【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键. 18.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.解:解方程231x k +=得132k x -= ∵方程的解是非负数 ∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 19.1【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:由①得:x >由②得:x <2∴不等式组的解集为<x <2则不等式组的整数解为1故答案为1【点睛】考查了一元一次不等式组的整数 解析:1【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:210322x x x ->⎧⎨<+⎩①②, 由①得:x >12, 由②得:x <2, ∴不等式组的解集为12<x <2, 则不等式组的整数解为1,故答案为1【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)218x m y m =-⎧⎨=+⎩;(2)192m <<. 【分析】(1)运用加减消元法,即可求得x 和y ;(2)根据x 、y 都是整数,列出不等式组,即可求出m 的取值范围.【详解】解:(1):256217x y m x y +=+⎧⎨-=-⎩①②, 由②得:217x y =-,将217x y =-代入①中,∴()221756y y m -+=+,43456y y m -+=+,5540y m =+,8y m =+,将8y m =+代入217x y =-中,∴()28172161721x m m m =+-=+-=-,∴二元一次方程组的解为:218x m y m =-⎧⎨=+⎩. (2)∵二元一次方程组的解x 、y 是正数,且x 的值小于y 的值,∴21080218x m y m m m =->⎧⎪=+>⎨⎪-<+⎩,∴解得:192m <<, ∴m 的取值范围是:192m <<. 【点睛】本题考查二元一次方程组和不等式的综合,解题的关键是掌握解二元一次方程组的方法.22.(1)1;(2)225265m mn n -+-;(3)373x y =-⎧⎪⎨=-⎪⎩;(4)3x ≥. 【分析】(1)直接用平方差公式,化二次根式为最简,利用运算法则得出答案;(2)直接利用完全平方公式展开合并得出答案.(3)方程组整理后,利用加减消元法求出解即可(4))分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.【详解】(1)22222=-34=-1=.故答案为1(2)()()2249m n m n +-- ()()22224292m mn n m mn n =++--+22224849189m mn n m mn n =++-+-225265m mn n =-+-.故答案为225265m mn n -+-(3)1243231y x x y ++⎧=⎪⎨⎪-=⎩①②将①变形:()()3142y x +=+3348y x +=+,即345y x -=……③,由②+③得:2451x x -=+26x -=3x =-.将3x =-代入231x y -=中,∴()3212317y x =-=⨯--=-, 则73y =-, ∴1243231y x x y ++⎧=⎪⎨⎪-=⎩的解为:373x y =-⎧⎪⎨=-⎪⎩故答案为373x y =-⎧⎪⎨=-⎪⎩(4)513841x x x -⎧>-⎪⎨⎪+≤-⎩①②,解①得:53x ->-2x >,解②得:39x ≥3x ≥,由①②得:3x ≥, 故513841x x x -⎧>-⎪⎨⎪+≤-⎩的解集为:3x ≥.【点睛】本题考察二次根式混合运算,因式分解,解二元一次方程组,解不等式组;熟练掌握化二次根式为最简,平方差公式和完全平方公式;加减消元法;正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键23.(1)y =11202x -+;(2)至少购进A 种钢笔80支(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式;(2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.24.不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.25.57x <;数轴见解析根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x的范围,再把所得的x的范围在数轴上表示出来即可.【详解】431132x x+-->,去分母,得()()243316x x+-->,去括号,得28936x x+-+>,移项、合并同类项,得75x->-,系数化为1,得57x<.在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.26.解集为:31x-<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x xx x<+⎧⎪⎨++≥⎪⎩①②,由①得:1x<;由②得:3x≥-,∴不等式组的解集为31x-≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(答案解析)(4)
一、选择题1.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到450m 以外的安全区域.已知导火线的燃烧速度是12cm/s .,操作人员跑步的速度是6m/s .为了保证操作人员的安全,导火线的长度要超过( )A .90cmB .80cmC .70cmD .60cm 2.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .2 3.不等式323x x +-≤的非负整数解有( ) A .3个 B .4个 C .5个 D .无数个 4.已知a b >,下列不等式中,不成立的是( )A .44a b +>+B .33a b ->-C .22a b > D .22a b ->- 5.若点(,)A n m 在第二象限,则点()2,B m n -位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6.点P 坐标为(m +1,m -2),则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 8.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 9.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 10.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤ 11.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 12.下列各数是不等式271x -≥的解的是( ).A .4B .3C .2D .1二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.已知a 340218a <+<a 的值为____________.15.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 16.已知关于x 的不等式0123x a x ->⎧⎨->-⎩只有五个整数解,则实数a 的取值范围是__________.17.不等式组()2231117232x x x x ⎧+>-⎪⎨-≤-⎪⎩的解为_____.18.若方程组3133x y a x y +=+⎧⎨+=⎩的解x 、y 满足 3y x -<,则a 的取值范围为_________. 19.不等式组235,324,x x -≤⎧⎨-<⎩的解集是________. 20.若关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩.只有4个整数解,则a 的取值范围是_______.三、解答题21.如图,ABC 中,8,6AC BC AB ===,现有两点,M N 分别从点A 点B 同时出发,沿三角形的边运动,已知点M 的速度为每秒1个单位长度,点N 的运度为每秒2个单位长度,当点M 到达B 点时,,M N 同时停止运动,设运动时间为t 秒.(1)当03t ≤≤时,AM = ,AN = ;(用含t 的代数式表示)(2)当点,M N 在边BC 上运动时,是否存在某个时刻,使得12AMN ABC S S =△△成立,若成立,请求出此时点M 运动的时间;若不成立请说明理由.(3)当点,M N 在同一直线上运动时,求运动时间t 的取值范围.22.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题: (1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.23.为了美化校园,某学校决定利用现有的332盆甲种花卉和310盆乙种花卉,搭配A ,B 两种园艺造型共50个,摆放在校园道路两侧.已知一个A 种园艺造型需甲种花卉7盆,乙种花卉5盆;一个B 种园艺造型需甲种花卉6盆,乙种花卉8盆.(1)问搭配A ,B 两种园艺造型共有几种方案?(2)若一个A 种园艺造型的成本是200元,一个B 种园艺造型的成本是300元,哪种方案成本最低?请写出此方案.24.某县在创建省文明卫生城市中,绿化档次不断提升.某校计划购进A 、B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元(1)求A 种、B 种树木每棵各多少元?(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价八折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.解下列不等式组()220463x x x ⎧-<⎨+≥⎩26.为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A ,B 两种蔬菜,若种植20亩A 种蔬菜和30亩B 种蔬菜,共需投入36万元;若种植30亩A 种蔬菜和20亩B 种蔬菜,共需投入34万元.(1)种植A ,B 两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A 种蔬菜每亩可获利0.8万元,种植B 种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w 万元.设种植A 种蔬菜m 亩,请直接写出w 关于m 的函数关系式;(3)在(2)的条件下,若要求A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意可知:操作人员点燃导火线后,要在炸药爆炸前跑到450米以外的安全区域,列出不等式,解不等式即可.【详解】解:设导火线长度为x cm ,根据题意得,1.2x >4506, 解得x >90,故选:A .【点睛】本题考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式. 2.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k 的取值范围,再结合选项解答.【详解】解:根据图象,得2k <6,3k >5,解得k <3,k >53,所以53<k <3. 只有2符合.故选:D .【点睛】 利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.3.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x -2)≤x +3,去括号,得3 x -6≤x +3,移项、合并同类项,得2x ≤9,系数化为1,得x ≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C .【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.4.D解析:D【分析】根据不等式的性质逐个判断即可.【详解】解:A .不等式a b >两边都加上4,不等号的方向不变,即44a b +>+,原变形成立,故此选项不符合题意;B .不等式a b >两边都减去3,不等号的方向不变,即33a b ->-,原变形成立,故此选项不符合题意;C .不等式a b >两边都除以2,不等号的方向不变,即22a b >,原变形成立,故此选项不符合题意; D .不等式a b >两边都乘以2-,不等号的方程改变,即22a b -<-,原变形不成立,故此选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;:②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.5.A解析:A【分析】根据第二象限的点的横坐标是负数,纵坐标是正数,表示出m、n,再根据各象限内的点的坐标特征解答即可;【详解】∵点A(n,m)在第二象限,∴m>0,n<0,∴m2>0,-n>0,∴点B(m2,-n)在第一象限,故选:A.【点睛】本题考查了各象限内点的坐标的特征以及解不等式,记住各象限内点的坐标的符号是解决问题的关键.6.B解析:B【分析】根据各象限坐标的符号及不等式的解集求解.【详解】解:A、当m>2时,m+1与m-2都大于0,P在第一象限,所以A不符合题意;B、若P在第二象限,则有m+1<0、m-2>0,即m<-1与m>2同时成立,但这是不可能是的,所以B符合题意;C、当m<-1时,m+1与m-2都小于0,P在第三象限,所以C不符合题意;D、当-1<m<2时,m+1>0,m-2<0,P在第四象限,所以D不符合题意;故选B .【点睛】本题考查直角坐标系各象限点坐标符号与不等式的综合应用,根据不等式的解集确定点的坐标符号并最终确定点所在象限是解题关键.7.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y(x,y均是非负整数),则有y=5-3x,且0≤y≤3,由此即可求得x、y的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x,平局数为y,∵该球队小组赛共积5分,∴y=5-3x,又∵0≤y≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.8.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.9.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.10.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②,解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.11.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键. 12.A解析:A【分析】先求出不等式的解集,再选项进行判断即可.271x -≥,217x +≥,28x ≥解得,4x ≥.故选:A .【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.15.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.16.【分析】此题需要首先解不等式根据解的情况确定a 的取值范围特别是要注意不等号中等号的取舍【详解】解不等式x-a >0得:x >a 解不等式1-2x >-3得:x <2∴不等式组的解集是a <x <2∵只有五个整数解解析:43a -≤<-【分析】此题需要首先解不等式,根据解的情况确定a 的取值范围.特别是要注意不等号中等号的取舍.【详解】解不等式x -a >0,得:x >a ,解不等式1-2x >-3,得:x <2,∴不等式组的解集是a < x <2,∵只有五个整数解,∴整数解是1,0,-1,-2,-3∴-4≤a <-3,故答案为:-4≤a <-3.【点睛】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定,含参数问题需要特别注意取等号时的情况.17.x≤4【分析】求出每个不等式的解集再根据找不等式组解集的规律找出即可【详解】解:解不等式①得x <5;解不等式②得x≤4;所以不等式组的解集为:x≤4【点睛】本题考查的知识点是不等式的性质解一元一次不解析:x≤4【分析】求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【详解】解:()2231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩①② 解不等式①得,x <5;解不等式②得,x≤4;所以,不等式组的解集为:x≤4.【点睛】本题考查的知识点是不等式的性质,解一元一次不等式组,解此题的关键是能根据不等式的解集找出不等式组的解集.18.a >-4【分析】先把两式相减求出y−x 的值再代入中得到关于a 的不等式进而求出a 的取值范围即可【详解】由②-①得:2y−2x =2−a ∵则∴2−a <6∴a >-4故答案是:a >-4【点睛】本题考查的是解二解析:a >-4【分析】先把两式相减求出y−x 的值,再代入 3y x -<中得到关于a 的不等式,进而求出a 的取值范围,即可.【详解】3133x y a x y +=+⎧⎨+=⎩①②, 由②-①得:2y−2x =2−a ,∵ 3y x -<,则2 26y x -<,∴2−a <6,∴a >-4,故答案是:a >-4.【点睛】本题考查的是解二元一次方程组及一元一次不等式,解答此题的关键是把a 当作常数表示出y−x 的值,再得到关于a 的不等式.19.【分析】求出不等式组中两不等式的解集找出解集的公共部分即可;【详解】∵由第一个式子求得:x≥-1由第二个式子求得:x <2则不等式组的解集为-1≤x <2故答案为:-1≤x <2【点睛】本题考查了解一元一解析:12x -≤<【分析】求出不等式组中两不等式的解集,找出解集的公共部分即可;【详解】∵235324x x -≤⎧⎨-⎩< 由第一个式子求得:x ≥-1,由第二个式子求得:x <2,则不等式组的解集为-1≤x <2,故答案为:-1≤x <2【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解本题的关键; 20.【分析】先解不等式组可得解集为再由不等式组只有4个整数解列不等式组再解不等式组可得答案【详解】解:由①得:由②得:>关于的不等式组有解不等式组的解集为不等式组只有4个整数解故答案为:【点睛】本题考查 解析:1453a -<≤-【分析】先解不等式组,可得解集为2321,a x -<<再由不等式组只有4个整数解,列不等式组162317,a ≤-<再解不等式组可得答案.【详解】解:6152233x x x a -<⎧⎨+<+⎩①② 由①得:21x <,由②得:32,x a -<- x >23,a -关于x 的不等式组615,2233x x x a -<⎧⎨+<+⎩有解,∴ 不等式组的解集为2321,a x -<<不等式组只有4个整数解,∴ 162317,a ≤-<∴ 14315,a ≤-<∴ 145,3a -<≤- 故答案为:145.3a -<≤-【点睛】本题考查的是一元一次不等式组的解法及由不等式组的整数解确定字母的取值范围,掌握以上知识是解题的关键.三、解答题21.(1)t ,62t -;(2)存在,10秒;(3)37t ≤≤或811t ≤≤【分析】(1)先由运动得出AM=t ,BN=2t ,继而得出AN ,即可得出结论;(2)当点M ,N 在边BC 上运动时,AM=t-8,CN=2t-6-8,即可得到MN=t-6,根据题意知12MN BC =,列出方程即可求解; (3)根据运动的时间、速度和距离即可求得运动时间t 的取值范围.【详解】(1)∵6÷2=3,∴当 0≤t≤3 时,点N 在AB 上运动(包括端点),∵运动时间为t 秒.∴AM=t ,BN=2t ,∴AN=6-2t ,故答案为:t ,6-2t ;(2)存在.理由如下:当M N 、在边BC 上运动时,8672t +>=,点N 在边BC 上,881t >=,点M 在边BC 上, ∴点N 在点M 前面,此时,CM=t-8,CN=2t-14, ∵12AMN ABC S S ∆∆=, ∴12MN BC =, 则1(214)(8)82t t ---=⨯, 解得:10t = 所以,当点M N 、在边BC 上运动,10t =秒时,12AMN ABC S S ∆∆=; (3)①当点M N 、同在AC 上时,∵68AB AC ==,,点N 的速度为2, ∴当66822t +≤≤即37t ≤≤时,点N 在AC 上, 又∵点M 的速度为1,∴当18t ≤≤时,点M 在AC 上, ∴当37t ≤≤时,点M N 、同在AC 上;②当点M N 、同在BC 上时,∵68AB AC ==,,点N 的速度为2,∴当6868822t +++≤≤即711t ≤≤时,点N 在BC 上, 又∵点M 的速度为1. ∴当88811t +≤≤即816t ≤≤时,点M 在BC 上, ∴当811t ≤≤时,点M N 、同在AC 上; 综上所述,当37t ≤≤与811t ≤≤时,点M N 、在同一直线上运动.【点睛】本题考查了一元一次方程在几何中的应用,一元一次不等式在几何中的应用等,解题的关键是理解题意,学会用方程的思想思考问题.22.(1)33x y =⎧⎨=⎩;(2)B ;(3)三种,方案见解析 【分析】(1)求方程3x-y=6的正整数解,可给定x 一个正整数值,计算y 的值,如果y 的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m 本,单价为5元的钢笔n 支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支;或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数.23.(1)共有3种方案;(2)当A种园艺造型32个,B种园艺造型18个,成本最低【分析】(1)根据题意列出一元一次不等式组,直接解不等式组,然后取整数解即可得出答案;(2)根据题意列出总成本关于x的一次函数,利用一次函数的性质求解可得.【详解】(1)解:设A种园艺造型x个,B种园艺造型(50)x-个()()76503325850310x x x x ⎧+-≤⎪⎨+-≤⎪⎩∴3032x ≤≤x 为正整数:x 取30,31,32,∴可设计3种搭配方案:第一种:A 种园艺造型30个,B 种园艺造型20个;第二种:A 种园艺造型31个,B 种园艺造型19个;第三种:A 种园艺造型32个,B 种园艺造型18个.(2)解:设总成本为y 元()20030050y x x =+-10015000y x =-+∴0k <,y 随x 的增大而减小∴当32x =时,y 取最小值∴当A 种园艺造型32个,B 种园艺造型18个,成本最低【点睛】本题主要考查了一元一次不等式组和一次函数的实际应用,解题关键是弄清题意,合适的等量关系,列出不等式组,属于中档题.24.(1)A 种树每棵100元,B 种树每棵80元;(2)当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(100-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.8×(A 种树的金额+B 种树的金额)进行解答.【详解】解:(1)设A 种树每棵x 元,B 种树每棵y 元依题意得:256003380x y x y +=⎧⎨+=⎩解得10080x y =⎧⎨=⎩ 答:A 种树每棵100元,B 种树每棵80元(2)设购买A 种树木为a 棵,则购买B 种树木为()100a -棵则()3100a a ≥-解得75a ≥设实际付款总金额是w 元,则()0.810080100w a a =+-⎡⎤⎣⎦即166400w a =+∵160>,w 随a 的增大而增大∴当75a =时,w 最小即当75a =时,167564007600w =⨯+=最小值(元)答:当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少为7600元.【点睛】本题考查了一次函数的应用和二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.25.62x -≤<【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()220463x x x ⎧-<⎨+≥⎩①②由①得:2x <由②得:6x ≥-∴62x -≤<【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)w =−0.1m +150;(3)当种A 蔬菜100亩,B 种蔬菜50亩时,获得最大利润为140万元.【分析】(1)根据题意列二元一次方程组,问题即可求解;(2)用w 表示种植两种蔬菜的利润,即可得到w 与m 之间函数关系式;(3)根据A 种蔬菜的种植面积不能少于B 种蔬菜种植面积的2倍得到m 的取值范围,结合一次函数的性质,即可求出w 最大值.【详解】(1)设种植A ,B 两种蔬菜,每亩各需分别投入x ,y 万元,根据题意得:203036302034x y x y ⎧⎨⎩+=+=, 解得:0.60.8x y ⎧⎨⎩==, 答:种植A ,B 两种蔬菜,每亩各需分别投入0.6和0.8万元;(2)由题意得:w =0.8m +1.2×1000.60.8m -=−0.1m +150, 即:w =−0.1m +150;(3)由(2)得:m≥2×1000.60.8m-,解得:m≥100,∵w=−0.1m+150,k=−0.1<0,∴w随m的增大而减小,∴当m=100时,w最大=140,此时,1000.60.8m-=50,∴当种A蔬菜100亩,B种蔬菜50亩时,获得最大利润为140万元.【点睛】本题主要考查一次函数实际应用问题,二元一次方程组、不等式、列一次函数关系式和根据自变量取值范围求一次函数的最值.根据题意,列出方程和一次函数解析式,掌握一次函数的性质,是解题的关键.。
一元一次不等式和一元一次不等式组测试题及答案
一元一次不等式和一元一次不等式组一.填空题:(每小题2分,共20分)1.若x<y,则x?2 y?2;(填“<、>或=”号)ab??,则3a_____b;(填“<、>或=”号) 3.不等式2x≥x?2的解集是_________;393?2y4.当y_______时,代数式的值至少为1;5.不等式6?12x?0的解集是______ ___;42.若?6.不等式7?x?1的正整数解为:;7.若一次函数y?2x?6,当x___ __时,y?0;8.x的3与12的差不小于6,用不等式表示为__________________; 59.不等式组??2x?3?0的整数解是______________;?3x?2?0?3x?2y?p?1的解满足x>y,则P的取值范围是_________; 4x?3y?p?1?b10.若关于x的方程组?二.选择题:(每小题3分,共30分) 11.若a>,则下列不等式中正确的是()(A) a?b?0 (B) ?5a??5b (C) a?8?b?8 (D) ab? 4412. 关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A. 0B.-3C. -2D.-1 ( 第12题)13.已知两个不等式的解集在数轴上如图表示,那么这个解集为()(A) x≥?1 (B) x?1(C) ?3?x??1 (D) x??3?x?8?4x-1,14.如果不等式组?的解集是x?3,那么m的取值范围是( )?x?mA. m≥3B. m≤3C.m=3D. m<315.下列不等式求解的结果,正确的是()(A)不等式组??x??3?x??5的解集是x??3 (B)不等式组?的解集是x??5?x??5?x??4?x?5?x?10(C)不等式组?无解(D)不等式组?的解集是?3?x?10?x??7?x??316.把不等式组??x?1?0的解集表示在数轴上,正确的是图中的()?x?1?01。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)
(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
(完整版)一元一次不等式各题型练习
一元一次不等式各题型练习例一.解不等式组-+<-+-≥⎧⎨⎪⎩⎪21113121x x x 31151235x x x x +>-≤-⎧⎨⎪⎪⎩⎪⎪ -<-<1232x例二.若||()x x y m -+--=4502,求当y ≥0时,m 的取值范围。
例三.班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?甲同学说:如果有x 个篮球,550x <.乙同学说:650x >.丙同学说:6(1)50x -<.你明白他们的意思吗?例四.3.若不等式组的解集为−1<x<1,求(a+1)(b −1)的值.例五.用不等式表示:x 的2倍与1的和大于-1为__________,y 的13与t 的差的一半是负数为_________。
例六.x 为何值时,代数式5123--+x x 的值是非负数?例七.已知:关于x 的方程m x m x =--+2123的解是非正数,求m 的取值范围.一.填空:1、有下列数学表达:①30<;②450x +>;③3x =;④2x x +;⑤4x ≠-; ⑥21x x +>+.其中是不等式的有________个.2. 学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价30分;大饼直径40cm ,售价40分.你更愿意买 饼,原因是 .3.若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n -- 4.用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23; (3)如果15x >-2,那么x______-10; (4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 5.有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a ,b 的不等式表示为 .6、有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。
第二章 一元一次不等式与一元一次不等式组测试题(含答案)
第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试题(包含答案解析)3
一、选择题1.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .22.估算192+的结果在() A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间 3.在平面直角坐标系中,若点()3,1B m m -+在第二象限,则m 的取值范围为( ) A .13m -<< B .3m > C .1m <- D .1m >-4.若不等式组11233x x x m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m < 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 7.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( )A .100厘米B .101厘米C .102厘米D .103厘米8.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .29.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个10.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <- 11.若关于x 的不等式组0721x m x -⎧⎨-≤⎩<的整数解有且仅有3个,则实数m 的取值范围是( ) A .56m ≤<. B .56m <<C .56m ≤≤D .56m <≤ 12.已知点()1,23P a a +-在第四象限,则a 的取值范围是( )A .1a <-B .312a -<< C .312a -<< D .32a > 二、填空题13.如果三角形两条边分别为3和5,则周长L 的取值范围是________14.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 15.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 16.过点()5,2-的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线312y x =-+平行,则在线段AB 上,横、纵坐标都是整数的点坐标是______. 17.如图,直线y =x+2与直线y =ax+c 相交于点P(m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为_____.18.如图,函数2y x =和y ax b =+的图象相交于点(),3A m ,则关于x 的不等式2x ax b >+的解集为________.19.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为_____.20.不等式-3x-1≥-10的正整数解为______________三、解答题21.解不等式组:232 2112323x xxx>-⎧⎪-⎨≥-⎪⎩,并将解集在数轴上表示出来.22.某社区计划对面积为3600m2的区域进行绿化,经投标,由甲,乙两个工程队来完成,已知甲队5天能完成绿化的面积等于乙队10天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多60m2.(1)求甲、乙两工程队每天能完成绿化的面积;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过32万元,则至少应安排乙工程队绿化多少天?23.今年,“地摊经济”成为了社会关注的热门话题.小明从市场得知如下信息:甲商品乙商品进价(元/件)355售价(元/件)458x件,甲、乙商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)小明用不超过2000元资金一次性购进甲,乙两种商品,求x的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于632.5元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大.24.已知线段12AB=,点C,E,F在线段AB上,E是线段AC的中点.(1)如图1,当F是线段BC的中点时,求线段EF的长;(2)如图2.当F是线段AB的中点时,EF a=,①求线段AC的长(结果可用含a的代数式表示);②若a为正整数,请写出所有满足条件的a的值.25.为了美化校园,某学校决定利用现有的332盆甲种花卉和310盆乙种花卉,搭配A,B 两种园艺造型共50个,摆放在校园道路两侧.已知一个A种园艺造型需甲种花卉7盆,乙种花卉5盆;一个B 种园艺造型需甲种花卉6盆,乙种花卉8盆.(1)问搭配A ,B 两种园艺造型共有几种方案?(2)若一个A 种园艺造型的成本是200元,一个B 种园艺造型的成本是300元,哪种方案成本最低?请写出此方案.26.(1)解不等式:2112x ->,并把它的解表示在数轴上. (2)解不等式组:31,232 4.x x -⎧≤⎪⎨⎪+≥⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k 的取值范围,再结合选项解答.【详解】解:根据图象,得2k <6,3k >5,解得k <3,k >53, 所以53<k <3. 只有2符合.故选:D .【点睛】利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.2.C解析:C【分析】先确定45<<,再根据不等式的性质得到627<即可得到答案.【详解】∵16<19<25,∴45<<,∴627<<.故选:C .【点睛】此题考查算术平方根的取值范围,不等式的性质,正确掌握算术平方根的取值范围的计算方法是解题的关键.3.A解析:A【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,可得m-3<0,m+1>0,求不等式组的解即可.【详解】解:∵点()3,1B m m -+在第二象限,∴可得到3010m m -<⎧⎨+>⎩, 解得m 的取值范围为13m -<<.故答案为:13m -<<.【点睛】此题主要考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B解析:B【分析】不等式组整理后,利用有解的条件确定出m 的范围即可.【详解】不等式组整理得:33x x m <⎧⎨>⎩, 由不等式组有解,得到3m <3,解得:m <1.故选:B .【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a >b ,∴a +1>b +1,∴选项A 不符合题意;∵a >b ,∴a ﹣1>b ﹣1,∴选项B 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项C 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项D 符合题意.故选:D .【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7.D解析:D【分析】设这次爆破的导火索需要xcm 才能确保安全,安全距离是70米(人员要撤到70米以外),根据人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,列不等式求解即可.【详解】设这次爆破的导火索为x 厘米才能确保安全.根据安全距离是70米(人员要撤到70米及以外的地方),可列不等式:77010.3x ⨯≥ 解得:103x ≥故选:D【点睛】本题考查一元一次不等式的应用,关键是理解导火索燃尽时人撤离的距离要大于等于70米. 8.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解.【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2.故选:B .【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.10.B解析:B【分析】利用函数图象,写出直线y 1在直线y 2下方所对应的自变量的范围即可.【详解】结合图象,当x >3时,y 1<y 2,即kx+b <x+a ,所以不等式kx-x <a-b 的解集为x >3.故选:B .【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.11.D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式0x m -<,得:x m <,解不等式721x -≤,得:3x ≥,则不等式组的解集为3x m ≤<,∵不等式组的整数解有且仅有3个,∴不等式组的整数解为3、4、5,则56m <≤.故答案为:D .【点睛】本题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.12.B解析:B【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列不等式组求解即可.【详解】∵点P (1a +,23a -)在第四象限,∴10230a a +>⎧⎨-<⎩,∴a 的取值范围是312a -<<. 故选:B .【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键.二、填空题13.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x ∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x ,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.14.3【分析】分别求出不等式的解集得到不等式组的解集得到整数解【详解】解不等式得解不等式得∴不等式组的解集是故不等式组的整数解为0123故答案为:3【点睛】此题考查解不等式组求不等式组的整数解正确解不等解析:3【分析】分别求出不等式的解集,得到不等式组的解集,得到整数解.【详解】解不等式312x +>-得1x >-, 解不等式1213-≥x 得3x ≤, ∴不等式组的解集是13x -<≤,故不等式组的整数解为0,1,2,3,故答案为:3.【点睛】此题考查解不等式组,求不等式组的整数解,正确解不等式是解题的关键.15.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.16.(14)(31)【分析】依据与直线平行设出直线AB 的解析式;代入点(5-2)即可求得b 然后求出与x 轴的交点横坐标列举符合条件的x 的取值依次代入即可【详解】解:∵过点(5-2)的一条直线与直线平行设直解析:(1,4),(3,1).【分析】 依据与直线312y x =-+平行设出直线AB 的解析式32y x b =-+;代入点(5,-2)即可求得b ,然后求出与x 轴的交点横坐标,列举符合条件的x 的取值,依次代入即可.【详解】 解:∵过点(5,-2)的一条直线与直线312y x =-+平行,设直线AB 为32y x b =-+; 把(5,-2)代入32y x b =-+;得-2=152b -+ 解得:b=112∴直线AB 的解析式为31122y x =-+ 令y=0,得:311022x =-+ 解得:x=113∴0<x<113的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、52、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).【点睛】本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.17.x≥1【分析】将点P的坐标代入直线y=x+2解出m的值即得出点P的坐标数形结合将不等式x+2≥ax+c的解集转化为直线y=x+2与直线y=ax+c的交点以及直线y=x+2图像在直线y=ax+c图像上解析:x≥1【分析】将点P的坐标代入直线y=x+2,解出m的值,即得出点P的坐标,数形结合,将不等式x+2≥ax+c的解集转化为直线y=x+2与直线y=ax+c的交点以及直线y=x+2图像在直线y=ax+c图像上方部分x的范围即可.【详解】把P(m,3)代入y=x+2得:m+2=3,解得:m=1,∴P(1,3),∵x≥1时,x+2≥ax+c,∴关于x的不等式x+2≥ax+c的不等式的解为x≥1.故答案为:x≥1.【点睛】本题主要考查一次函数与不等式的关系,将不等式的解集转化为一次函数的图像问题是解题关键.18.【分析】先将点A的坐标代入正比例函数中求得m的值再结合图象得出不等式的解集即可【详解】∵函数y=2x经过点A(m3)∴2m=3解得:m=由图象得当时的图象位于图象上方∴关于x的不等式2x>ax+b的解析:32 x【分析】先将点A的坐标代入正比例函数中求得m的值,再结合图象得出不等式的解集即可.【详解】∵函数y=2x经过点A(m,3),∴2m=3,解得:m=32,由图象得,当32x>时,2y x=的图象位于y ax b=+图象上方,∴关于x的不等式2x>ax+b的解集为32x>.故答案为:32 x>.【点睛】本题考查了一次函数与一次不等式的关系,属于简单题,熟悉一次函数的图象和性质是解题关键.19.【分析】先解关于x的不等式然后根据解集确定a的值即可【详解】解:由2x﹣a>﹣3得x>∵不等式2x﹣a>﹣3的解集是x>1∴=1解得:a=5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a=【分析】先解关于x的不等式,然后根据解集确定a的值即可.【详解】解:由2x﹣a>﹣3,得x>32a-,∵不等式2x﹣a>﹣3的解集是x>1,∴32a-=1,解得:a=5.故答案为5.【点睛】本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.20.123【分析】先求出不等式的解集再求出不等式的正整数解即可【详解】解:-3x-1≥-10-3x≥-10+1-3x≥-9x≤3∴不等式-3x-1≥-10的正整数解为123故答案为123【点睛】本题考查解析:1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x-1≥-10,-3x≥-10+1,-3x≥-9,x≤3,∴不等式-3x-1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.三、解答题21.-2≤x<2,数轴表示见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:232 2112323x xxx>-⎧⎪⎨-≥-⎪⎩①②,由①得x<2,由②得x≥-2,所以原不等式组的解集为-2≤x<2,数轴表示:【点睛】本题考查了解一元一次方程组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.22.(1)甲工程队每天能完成绿化的面积为120m2,乙工程队每天能完成绿化的面积为60m2;(2)至少应安排乙工程队绿化40天.【分析】(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,根据甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2,即可得出关于x的一元一次方程,解之即可得出结论;(2)设安排乙工程队绿化m天,则安排甲工程队绿化360060120m-天,根据总费用=每日绿化的费用×绿化时间结合这次绿化的总费用不超过32万元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,依题意,得:3×2x﹣5x=60,解得:x=60,∴2x=120.答:甲工程队每天能完成绿化的面积为120m2,乙工程队每天能完成绿化的面积为60m2.(2)设安排乙工程队绿化m天,则安排甲工程队绿化360060120m-天,依题意,得:1.2×360060120m-+0.5m≤32,解得:m≥40.答:至少应安排乙工程队绿化40天.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)y=7x+300;(2)0≤x≤50;(3)甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;当甲商品进50件,乙商品进50件时,利润有最大值.【分析】(1)分别求出甲、乙商品的利润,根据y=甲商品利润+乙商品利润即可得解析式;(2)由用不超过2000元资金一次性购进甲,乙两种商品,列出不等式组,即可求解;(3)由获得的利润不少于632.5元,列出不等式可求x的范围,根据一次函数的性质即可得答案.【详解】(1)∵购进甲、乙商品共100件进行销售,小明购进甲商品x件,∴甲商品利润为(45-35)x=10x,乙商品利润为(100-x)(8-5)=300-3x,∵甲、乙商品全部销售完后获得利润为y元,∴y=10x+(300-3x)=7x+300.(2)∵用不超过2000元资金一次性购进甲,乙两种商品,∴35x+5(100﹣x)≤2000,∴x≤50,又∵x≥0,∴0≤x≤50;(3)∵甲,乙商品全部销售完后获得的利润不少于632.5元,∴7x+300≥632.5,∴x≥47.5,由(2)可得0≤x≤50,∴47.5≤x≤50,∵x为整数,∴x=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;∵y =7x+300,7>0,∴y 随x 的增大而增大,∴当x =50时,y 有最大利润.∴当甲商品进50件,乙商品进50件,利润有最大值.【点睛】本题考查一元一次不等式的应用及一次函数的应用,理解题意,正确列出不等式并熟练掌握一次函数的性质是解题关键.24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)共有3种方案;(2)当A 种园艺造型32个,B 种园艺造型18个,成本最低【分析】(1)根据题意列出一元一次不等式组,直接解不等式组,然后取整数解即可得出答案;(2)根据题意列出总成本关于x 的一次函数,利用一次函数的性质求解可得.【详解】(1)解:设A 种园艺造型x 个,B 种园艺造型(50)x -个()()76503325850310x x x x ⎧+-≤⎪⎨+-≤⎪⎩∴3032x ≤≤x 为正整数:x 取30,31,32,∴可设计3种搭配方案:第一种:A 种园艺造型30个,B 种园艺造型20个;第二种:A 种园艺造型31个,B 种园艺造型19个;第三种:A 种园艺造型32个,B 种园艺造型18个.(2)解:设总成本为y 元()20030050y x x =+-10015000y x =-+∴0k <,y 随x 的增大而减小∴当32x =时,y 取最小值∴当A 种园艺造型32个,B 种园艺造型18个,成本最低【点睛】本题主要考查了一元一次不等式组和一次函数的实际应用,解题关键是弄清题意,合适的等量关系,列出不等式组,属于中档题.26.(1)32x >,图见见解析;(2)1≥x 【分析】(1)去分母,移项、合并同类项,系数化1,得出不等式的解集,在数轴上用空心圆表示;(2)分别求出两个不等式的解集,取其公共部分从而得出不等式组的解集.【详解】 解:(1)2112x ->, 去分母得:212x ->移项得:221x >+合并同类项得:23x >系数化1得:32x >,这个不等式解集在数轴上的表示如图所示:(2)312324x x -⎧≤⎪⎨⎪+≥⎩①②,解不等式①得:1≥x解不等式②得:23x ≥∴不等式组的解集为:1≥x【点睛】 本题考查了不等式和不等式组的解法,以及数轴上表示不等式的解集,解题关键是熟练掌握解不等式的步骤,以及解不等式组时最后的结果是去其公共部分.。
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测题(包含答案解析)1
一、选择题1.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .2.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y+卖出,结果发现自己亏了钱,其原因是( ) A .x y <B .x y >C .x y ≤D .x y ≥3.若关于x 的一元次不等式组2324274(1)x mx x x -+⎧≤⎪⎨⎪+≤+⎩的解集为32x ≥,且关于y 的方程2(53)322m y y ---=的解为非负整数,则符合条件的所有整数m 的积为( )A .2B .7C .11D .104.不等式360+≤x 的解集是( ) A .2x -≤B .2x ≤C .12x ≥D .2x ≥-5.若不等式组11233x xx m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m < 6.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个7.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7 8.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b9.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .10.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A.22厘米B.23厘米C.24厘米D.25厘米11.已知a<b,下列变形正确的是()A.a﹣3>b﹣3 B.2a<2bC.﹣5a<﹣5b D.﹣2a+1<﹣2b+112.不等式11 2x>-的解集是()A.12x>-B.2x>-C.2x<-D.12x<-二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是_________.15.一次函数1y ax b与2y mx n=+的部分自变量和对应函数值如下表:x⋅⋅⋅0123⋅⋅⋅1y⋅⋅⋅232112⋅⋅⋅x⋅⋅⋅0123⋅⋅⋅2y⋅⋅⋅-3-113⋅⋅⋅x16.若不等式组30x ax>⎧⎨-≤⎩只有三个正整数解,则a的取值范围为__________.17.已知一次函数y ax b=+的图象如图,根据图中信息请写出不等式0ax b+≥的解集为___________.18.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.19.某品牌电脑,成本价3000元,售价4125元,现打折销售,要使利润率不低于10%,最低可以打_____折.20.若关于x的不等式2x﹣a≥3的解集如图所示,则常数a=_____.三、解答题21.某通讯公司推出一款针对手机用户的5G收费套餐(包括上网流量费和语音通话费两部分).套餐的收费方式是:上网流量费固定;通话时间不超过200分钟时,免收语音通话费;通话时间超过200分钟时,超过部分按每分钟0.25元收取语音通话费.套餐收费y (元)与当月语音通话时间x(分钟)之间的关系如图所示.(1)套餐的上网流量费是多少元?(2)请写出通话时间超过200分钟时,y关于x的函数表达式.(3)若要使套餐费用不超过165元,则当月最多能通话多少分钟?22.某校八年级举行数学说题比赛,准备用2400元钱(全部用完)购买A,B两种钢笔作为奖品,已知A,B两种每支分别为10元和20元,设购入A种x支,B种y支.(1)求y关于x的函数表达式;(2)若购进A种的数量不少于B种的数量,则至少购进A种多少支?23.2020年以来,新冠肺炎疫情肆虐全球,感染人数不断攀升,口罩瞬间成为需求最为迫切的防疫物资.为了缓解供需矛盾,在中央的号召下,许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?24.解不等式:111 23x x+--≤.25.某厂贷款8万元购进一台机器生产商品.已知商品的成本每个8元,成品后售价是每个15元,应付税款和损耗总费用是销售额的20%.若每个月能生产销售1000个该商品,问至少几个月后能赚回这台机器的贷款?26.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W元,求W与x之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m<11+4,解得1<m<3.故选:A.【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.2.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】解:根据题意得,他买西瓜每斤平均价是300200500x y+,以每斤2x y+元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y+,解之得,x >y .所以赔钱的原因是x >y . 故选:B . 【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.3.D解析:D 【分析】不等式组整理后,根据已知解集确定出m 的范围,由方程有非负整数解,确定出m 的值,求出之积即可. 【详解】不等式组整理得:31032x m x ⎧≥⎪⎪⎨⎪≥⎪⎩,由解集为32x ≥,得到33102m ≤,即5m ≤, 方程去分母得:64253y m y -=-+,即213m y -=, 由y 为非负整数,得213m k -=(k 为非负整数),整理得:3152k m +=≤, 解得:0k ≤≤3,∴0k =或1或2或3,∴12m =(舍去)或2或72(舍去)或5, ∴2m =或5,∴符合条件的所有整数m 的积为2510⨯=, 故选:D . 【点睛】本题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.A解析:A【分析】利用不等式的性质即可得到不等式的解集.【详解】解:3x+6≤0,3x≤-6,x≤-2,故选:A.【点睛】本题考查了解一元一次不等式:根据不等式的性质先去分母,有括号的再去括号,然后移项、合并,最后得到不等式的解集.5.B解析:B【分析】不等式组整理后,利用有解的条件确定出m的范围即可.【详解】不等式组整理得:33xx m<⎧⎨>⎩,由不等式组有解,得到3m<3,解得:m<1.故选:B.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.6.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C.点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.7.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m的范围.【详解】解不等式x﹣m<0,得:x<m,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.8.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a>b,∴a+1>b+1,∴选项A不符合题意;∵a>b,∴a﹣1>b﹣1,∴选项B不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项C不符合题意;∵a>b,∴﹣2a<﹣2b,∴选项D符合题意.故选:D.【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.10.D解析:D【分析】设导火线的长为xcm,根据题意可得跑开时间要小于或等于爆炸的时间,由此列出不等式,解不等式即可求解.【详解】设导火线的长为xcm,由题意得:150 0815 .x解得x≥24.3cm,∴导火线的长至少为25厘米.故选D.【点睛】本题考查了一元一次不等式的应用,根据题意列出不等式是解决问题的关键.11.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a<b,可得:a﹣3<b﹣3,2a<2b,﹣5a>﹣5b,﹣2a+1>﹣2b+1,故选B.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.12.B解析:B【分析】根据解一元一次不等式基本步骤系数化为1可得.【详解】解:两边都乘以2,得:x>-2,故选:B . 【点睛】本题考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4. 【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可. 【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么222,,412S S Sa b c h ===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6, ∴h=4或h=5, 故答案为:5或4. 【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组 解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可. 【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②,解不等式①,得4x ≤-; 解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-; ∴不等式组的整数解是4x =-; 故答案为:4x =-. 【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.15.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b 中y 随x 的增大而减小;y2=mx+n 中y 随x 的增大而增大且两个函数的交点坐标是(21)则当x <2 解析:2x <【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断. 【详解】根据表可得y 1=kx+b 中y 随x 的增大而减小;y 2=mx+n 中y 随x 的增大而增大.且两个函数的交点坐标是(2,1). 则当x <2时,kx+b >mx+n , 故答案为:x <2. 【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.16.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键 解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可. 【详解】30x a x >⎧⎨-≤⎩30x -≤ 3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 17.【分析】观察函数图形得到当x≥-1时一次函数y=ax+b 的函数值不小于0即ax+b≥0【详解】解:根据题意得当x≥-1时ax+b≥0即不等式ax+b≥0的解集为x≥-1故答案为:x≥-1【点睛】本题解析:1x ≥-【分析】观察函数图形得到当x≥-1时,一次函数y=ax+b 的函数值不小于0,即ax+b≥0.【详解】解:根据题意得当x≥-1时,ax+b≥0,即不等式ax+b≥0的解集为x≥-1.故答案为:x≥-1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.6【解析】设甲种运输车共运输x 吨则乙种运输车共运输(46-x )吨根据题意得≤10解不等式得:则故甲种运输车辆至少需要6辆故答案:6解析:6【解析】设甲种运输车共运输x 吨,则乙种运输车共运输(46-x )吨.根据题意,得x 4654x -+≤10.解不等式得:45(46)200,30x x x +-≤≥,则65x ≥ ,故甲种运输车辆至少需要6辆. 故答案:6. 19.八【分析】设打折由题意得不等关系:售价×打折-进价≥进价×利润率根据不等关系列出不等式再解即可【详解】设打x 折由题意得:4125×-3000≥3000×10解得:x≥8故答案为:八【点睛】本题主要考解析:八【分析】设打x 折,由题意得不等关系:售价×打折-进价≥进价×利润率,根据不等关系列出不等式,再解即可.【详解】设打x 折,由题意得: 4125×10x -3000≥3000×10%,解得:x≥8,故答案为:八.【点睛】本题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,设出未知数,列出不等式.20.-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集再求出所给不等式的解集与已知解集相比较即可求出a的值【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1解不等式:2x﹣a≥3解得:x≥解析:-5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a的值.【详解】解:由数轴上关于x的不等式的解集可知x≥﹣1,解不等式:2x﹣a≥3,解得:x≥3+2a,故3+2a=﹣1,解得:a=﹣5.故答案为:﹣5.【点睛】本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.三、解答题21.(1)100元;(2)y=0.25x+50;(3)460分钟【分析】(1)根据图像可直接得到结果;(2)求出通话400分钟时a的值,再将通话200分钟时费用为100,再利用待定系数法求解;(3)令0.25x+50≤165,求出x的范围即可.【详解】解:(1)由图像可知:套餐的上网流量费是100元;(2)当x=400时,y=100+(400-200)×0.25=150,设y与x的表达式为y=kx+b,则100200150400k b k b =+⎧⎨=+⎩, 解得:0.2550k b =⎧⎨=⎩, ∴y 关于x 的函数表达式为y=0.25x+50;(3)0.25x+50≤165,解得:x≤460,∴当月最多能通话460分钟.【点睛】本题考查了一次函数的实际应用,解题的关键是结合图像,理解题意,求出函数表达式. 22.(1)y =11202x -+;(2)至少购进A 种钢笔80支 【分析】(1)根据A 种的费用+B 种的费用=2400元,可求y 关于x 的函数表达式; (2)根据购进A 种的数量不少于B 种的数量,列出不等式,可求解.【详解】解:(1)由题意得:10x +20y =2400,∴y =11202x -+; (2)①∵购进A 种的数量不少于B 种的数量,∴x≥y ,∴x≥11202x -+, ∴x≥80,∵x 为正整数, ∴至少购进A 种钢笔80支.【点睛】本题考查一次函数的应用,不等式的实际应用,解题的关键是根据数量关系,求出一次函数解析式.23.(1)该厂每天能生产A 型口罩0.8万只或B 型口罩1万只;(2)当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润【分析】(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只,由2天生产A 型口罩,3天生产B 型口罩,一共可以生产4.6万只;如果3天生产A 型口罩,2天生产B 型口罩,一共可以生产4.4万只,列出方程组,即可求解;(2)由总利润=A 型口罩的利润+B 型口罩的利润,列出一次函数关系式,由不等式组和一次函数的性质可求解.【详解】解:(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只.根据题意,得23 4.632 4.4x y x y +=⎧⎨+=⎩, 解得0.81x y =⎧⎨=⎩, 答:该厂每天能生产A 型口罩0.8万只或B 型口罩1万只.(2)设该厂应安排生产A 型口罩m 天,则生产B 型口罩(7)m -天.根据题意,得()0.870.87 5.8m m m m ≥-⎧⎨+-≥⎩, 解得3569m ≤≤, 设获得的总利润为w 万元, 根据题意得:0.50.80.31(7)0.1 2.1w m m m =⨯+⨯⨯-=+,∵0.10m =>,∴w 随m 的增大而增大.∴当m =6时,w 取最大值,最大值为0.16 2.1 2.7⨯+=(万元).答:当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润.【点睛】本题主要考查二元一次方程组的应用以及一次函数的应用,根据工作效率×工作时间=工作总量即可列出(1)问的方程;第二问根据总利润=单件利润×数量列出关系式,求解即可.属于基础类应用题.24.1x ≤【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】解:去分母,得()()31216x x +--≤.去括号,得33226x x +-+≤.移项,得32632x x -≤--.合并同类项,得1x ≤.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键. 25.20【分析】设x 个月后能赚回这台机器的贷款,根据总利润=单个利润×每月销售数量×月份数结合总利润不低于贷款数,即可得出关于x 的一元一次不等式,解出不等式取其中最小值即可得出结论.【详解】解:设至少x 个月后能赚回这台机器的贷款则()1581520%100080000x --⨯⨯≥解得:20x ≥答:至少20个月后能赚回这台机器的贷款.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.26.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W∴随x的增大而减小,∴当9x=时,W最小,220044000220094400024200=-+=-⨯+=(元)W x∴-=--=4044,207x x y答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练练习题(含详解)
七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知x =2不是关于x 的不等式2x ﹣m >4的整数解,x =3是关于x 的不等式2x ﹣m >4的一个整数解,则m 的取值范围为( )A .0<m <2B .0≤m <2C .0<m ≤2D .0≤m ≤22、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A .24人B .23人C .22人D .不能确定3、已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( )A .4a >B .4a ≠C .4a <D .4a4、如果关于x 的不等式组312364x x x a +⎧≥-⎪⎨⎪+>+⎩有且只有3个奇数解,且关于y 的方程3y +6a =22-y 的解为非负整数,则符合条件的所有整数a 的积为( )A .-3B .3C .-4D .45、若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .2a +1>2b +1D .a ﹣1>b +16、关于x 的两个代数式3x -与5x +的值的符号相反,则x 的取值范围是( )A .3x >B .5x <-C .53x -<<D .5x <-或3x >7、若实数a ,b 满足a >b ,则下列不等式一定成立的是( )A .a >b +2B .a ﹣1>b ﹣2C .﹣a >﹣bD .a 2>b 28、已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是()A .21a -≤<-B .21a -<≤C .21a -<<-D .21a -≤≤9、下列不等式一定成立的是( )A .65y y >B .611x x +<+C .7x x >-D .79m m ->-10、若不等式组4101x m x x m -+<+⎧⎨+>⎩解集是4x >,则( )A .92m ≤B .5m ≤C .92m = D .5m =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、满足不等式2124y ->的最小整数解是_________.2、若关于x 的不等式x a ≤有三个正整数解,则a 的取值范围是____________.3、已知4334x x -=-,则x 的取值范围是________.4、不等式组1023x x +>⎧⎨<⎩的解集为_______.5、不等式组(1)3293x x -->⎧⎨+>⎩的解集是______.三、解答题(5小题,每小题10分,共计50分)1、关于x、y的方程组731x y ax y a+=+⎧⎨-=+⎩的解满足0x<,0y>.求a的取值范围.2、y取什么值时,代数式2y-3的值:(1)大于5y-3的值?(2)不大于5y-3的值?3、解不等式:(1)2x+3>6﹣x;(2)524(1)21125x xxx+≥-⎧⎪+⎨->-⎪⎩.4、解不等式,并把解集在数轴上表示出来.(1)7x﹣2≤9x+2;(2)7132184x x--->.5、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”.例如:方程2x﹣6=0的解为x=3,不等式组205xx-⎧⎨⎩><的解集为2<x<5.因为2<3<5.所以称方程2x﹣6=0为不等式组205xx-⎧⎨⎩><的相伴方程.(1)若关于x的方程2x﹣k=2是不等式组3641410x xx x--⎧⎨-≥-⎩>的相伴方程,求k的取值范围;(2)若方程2x+4=0,213x-=-1都是关于x的不等式组()225m x mx m⎧--⎨+≥⎩<的相伴方程,求m的取值范围;(3)若关于x的不等式组2122x xx n--+⎧⎨≤+⎩>的所有相伴方程的解中,有且只有2个整数解,求n的取值范围.---------参考答案-----------一、单选题1、B【解析】【分析】由2x-m>4得x>42m+,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出42m+≥2、42m+<3,解之即可得出答案.【详解】解:由2x-m>4得x>42m+,∵x=2不是不等式2x-m>4的整数解,∴42m+≥2,解得m≥0;∵x=3是关于x的不等式2x-m>4的一个整数解,∴42m+<3,解得m<2,∴m的取值范围为0≤m<2,故选:B.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m 的不等式.2、C【解析】【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x 为整数.【详解】解:设每组预定的学生数为x 人,由题意得,9(1)2009(1)190x x +>⎧⎨-<⎩ 解得21212299x << x 是正整数 22x ∴=故选:C .【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.3、C【解析】【分析】由题意直接根据已知解集得到40a ->,即可确定出a 的范围.【详解】解:不等式(4)4a x a-<-的解集为1x<-,40a∴->,解得:4a<.故选:C.【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.4、A【解析】【分析】先求解不等式组,根据解得范围确定a的范围,再根据方程解的范围确定a的范围,从而确定a的取值,即可求解.【详解】解:由关于x的不等式组312364xxx a+⎧≥-⎪⎨⎪+>+⎩解得253ax-<≤∵关于x的不等式组有且只有3个奇数解∴2113a--≤<,解得15a-≤<关于y的方程3y+6a=22-y,解得1132a y-=∵关于y的方程3y+6a=22-y的解为非负整数∴1132a-≥,且1132a-为整数解得113a≤且1132a-为整数又∵15a-≤<,且a为整数∴符合条件的a有1-、1、3-⨯⨯=-符合条件的所有整数a的积为(1)133故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.5、C【解析】【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C.【详解】解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、若a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴2a+1>2b+1,符合题意;D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.6、C【解析】【分析】代数式x -3与x +5的符号相反,分两种情况,解不等式组即可.【详解】解:根据题意得,3050x x ->⎧⎨+<⎩或3050x x -<⎧⎨+>⎩, 解得:53x -<<,故选:C .【点睛】本题考查了解一元一次不等式组,是基础知识要熟练掌握.7、B【解析】【分析】根据不等式的性质即可依次判断.【详解】解:当a >b 时,a >b +2不一定成立,故错误;当a >b 时,a ﹣1>b ﹣1>b ﹣2,成立,当a >b 时,﹣a <﹣b ,故错误;当a >b 时,a 2>b 2不一定成立,故错误;故选:B .【点睛】本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.8、A【解析】【分析】先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定a的范围.【详解】解:0 320 x ax->⎧⎨->⎩①②解不等式①得:x>a,解不等式②得:x<32,∴不等式组的解集是a<x<32,∵原不等式组的整数解有3个为1,0,-1,∴-2≤a<-1.故选择:A.【点睛】本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.9、B【解析】【分析】根据不等式的性质依次判断即可.【详解】解:A.当y≤0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x≤0时不成立,故该选项不符合题意;D. 当m≤0时不成立,故该选项不符合题意;故选:B.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键.10、C【解析】【分析】首先解出不等式组的解集,然后与x>4比较,即可求出实数m的取值范围.【详解】解:由①得2x>4m-10,即x>2m-5;由②得x>m-1;∵不等式组4101x m xx m-+<+⎧⎨+>⎩的解集是x>4,若2m-5=4,则m=92,此时,两个不等式解集为x>4,x>72,不等式组解集为x>4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x>5,x>4,不等式组解集为x>5,不符合题意,舍去;故选:C.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.二、填空题1、5【解析】【分析】先求出不等式的解集,然后求出满足题意的最小整数解即可.【详解】解:解不等式2124y->得:92y>,∴满足不等式的最小整数解是5,故答案为:5.【点睛】本题主要考查了解一元一次不等式和求满足题意的不等式的最小整数解,解题的关键在于能够熟练掌握解不等式的方法.2、34a≤<【解析】【分析】首先确定不等式的正整数解,则a的范围即可求得.【详解】解:关于x的不等式x a≤恰有3个正整数解,则正整数解是:1,2,3.则a的取值范围:34a≤<.故答案为:34a≤<.【点睛】本题主要考查一元一次不等式组的整数解,根据a 的取值范围正确确定a 与3和4的关系是关键. 3、34x ≤【解析】【分析】直接利用绝对值的性质分析得出答案,正数的绝对值是正数,负数的绝对值是它的相反数,0的相反数是0.【详解】解:|43|34x x -=-,340x ∴-, 解得34x , 故答案为:34x. 【点睛】此题主要考查了绝对值的性质,正数的绝对值是正数,负数的绝对值是它的相反数,0的相反数是0,正确掌握绝对值的性质是解题关键.4、312x -<<【解析】【分析】先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.【详解】解:由10x +>,得:1x >-,由23x<,得:32x<,∴不等式组的解集为312x-<<.故填:312x-<<.【点睛】本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5、32x-<<-【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:(1)3293xx-->⎧⎨+>⎩①②,由①可得:2x<-,由②可得:3x>-,∴原不等式组的解集为32x-<<-;故答案为32x-<<-.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.三、解答题1、2a<-【解析】【分析】解关于x 、y 的方程组,根据0x <,0y >得到关于a 的不等式组,求解可得.【详解】731x y a x y a +=+⎧⎨-=+⎩①② ①+②得248x a =+解得24x a =+①-②得226y a =-+解得3y a0x <,0y >24030a a +<⎧∴⎨-+>⎩解不等式240a +<,解得2a <-解不等式30a -+>,解得3a <∴2a <-∴a 的取值范围为2a <-【点睛】本题主要考查解方程组和不等式组,根据题意得出关于a 的不等式组是解题的关键.2、(1) y <0;(2)y ≥0【解析】【分析】(1)先列不等式,然后解不等式即可,(2)先列不等式,然后解不等式即可.【详解】解:(1)由2y-3>5y-3,解得y<0;(2)由2y-3≤5y-3,解得y≥0.【点睛】本题考查列不等式和解不等式,掌握抓住不等关系语言列不等式,和解不等式是解题关键.3、(1)x>1;(2)﹣6≤x<2【解析】【分析】(1)把不等式移项,合并同类项,然后系数化1即可;(2)先把不等式组标号,解每个不等式,求每个不等式解集的公共部分即可.【详解】解:(1)2x+3>6﹣x,移项得:2x+x>6﹣3,合并得:3x>3,系数化1得x>1;(2)524(1)21125x xxx+≥-⎧⎪⎨+->-⎪⎩①②,解不等式①得:x≥﹣6,解不等式②得:x<2,不等式组的解集为:﹣6≤x<2.【点睛】本题考查一元一次不等式,与一元一次不等式组的解法,掌握一元一次不等式的解法与步骤,不等式组的解法是解题关键.4、(1)x≥-2,在数轴上表示见解析;(2)x<1,在数轴上表示见解析【解析】【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:(1)7x-2≤9x+2,移项,得:7x-9x≤2+2,合并同类项,得:-2x≤4,系数化为1,得:x≥-2.将不等式的解集表示在数轴上如下:;(2)7132184x x--->,去分母,得:8-(7x-1)>2(3x-2),去括号,得:8-7x+1>6x-4,移项,得:-7x-6x>-4-8-1,合并同类项,得:-13x>-13,系数化为1,得:x<1.将不等式的解集表示在数轴上如下:.【点睛】本题主要考查了解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5、(1)3<k≤4;(2)2<m≤3;(3)4≤n<6.【解析】【分析】(1)首先求出方程2x﹣k=2的解和不等式组3641410x xx x--⎧⎨-≥-⎩>的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+4=0,213x-=-1的解,然后分m<2和m>2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组2122x xx n--+⎧⎨≤+⎩>的解集,然后根据题意列出关于n的不等式组求解即可.【详解】解:(1)∵不等式组为3641410x xx x--⎧⎨-≥-⎩>,解得532x≤<,∵方程为2x﹣k=2,解得x22k+ =,∴根据题意可得,523 22k+≤<,∴解得:3<k≤4,故k取值范围为:3<k≤4.(2)∵方程为2x+4=0,2113x-=-,解得:x=﹣2,x=﹣1;∵不等式组为225m x mx m--⎧⎨+≥⎩()<,当m<2时,不等式组为15xx m⎧⎨≥-⎩>,此时不等式组解集为x>1,不符合题意,应舍去;∴当m>2时不等式组解集为m﹣5≤x<1,∴根据题意可得,252mm⎧⎨-≤-⎩>,解得2<m≤3;故m取值范围为:2<m≤3.(3)∵不等式组为2122x xx n--+⎧⎨≤+⎩>,解得1<x22n+≤,根据题意可得,3242n+≤<,解得4≤n<6,故n取值范围为4≤n<6.【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解.。
初一数学一元一次不等式练习题汇总(复习用)
一元一次不等式和一元一次不等式组测试题一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2; 2. 若2-x <0,x________2;3. 若xy>0,则xy_________0; 4. 代数式536x-的值不大于零,则x__________;5. a 、b 关系如下图所示: 比较大小|a|______b,-;1______,1_________1bb b a --- 6. 不等式13-3x >0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x ≠y,则x 2+|y|_________0; 9. 不等式组⎩⎨⎧+--023,043 x x 的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a 的取值范围是( ). (A)a >0; (B)a ≥0; (C)a <0; (D)自然数.2.不等式23>7+5x 的正整数解的个数是( ). (A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m ≠n,则|m|≠|n|; (B)若a+b=0,则ab >0;(C)若ab <0,且a <b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x 取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若11|1|-=--x x ,则x 的取值范围是( ). (A)x >1; (B)x ≤1; (C)x ≥1; (D)x <1. 三、解答题1. 解不等式(组),并在数轴上表示它们的解集.(1)213-x (x-1)≥1; (2)21322-++-x x x ; (3)⎪⎩⎪⎨⎧≥--+.052,1372x x x (4)⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x2. x 取什么值时,代数式251x -的值不小于代数式4323+-x的值. 3. K 取何值时,方程k x 332-=5(x-k)+1的解是非负数. 4. k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数?参考答案一、1.-3>-π,-22<(-0.2)2; 2.x >2; 3.xy >0; 4.X ≥2; 5.|a|>b,-b a 11 ,-b <-b1; 6.1,2,3,4; 7.x ≤y; 8.x 2+|y|>0; 9.无解. 二、1.A; 2.C; 3.D 4.D; 5.B. 三、1.(1)x ≤-3;(2)x <1;(3)2≤x <8;(4)x <0;2.x ≤-1127;3.k ≥21;4.k >-48. 华师七下第8章一元一次不等式能力测试题一、填空题(每空3分,共27分) 1.(1)不等式123x <的解集是________; (2)不等式327x -<的非负整数解是________;(3)不等式组21527x x ->⎧⎨-<⎩的解集是______________;(4)根据图1,用不等式表示公共部分x 的范围______________. 2.当k ________时,关于x 的方程2x -3=3k 的解为正数.3.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”). 4.一个三角形的三边长分别是3,1-2m ,8,则m 的取值范围是________. 5.若不等式()327m x -<的解集为13x >-,则m 的值为________. 6.若不等式组121x m x m +⎧⎨>-⎩≤无解,则m 的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式()22m x m ->-的解集为1x <,那么( ) A .2m ≠B .2m >C .2m <D .m 为任意有理数8.如果方程()a b x a b -=-有惟一解1x =-,则( ) A .a b =B .a b ≠C .a b >D .a b <9.下列说法①2x =是不等式36x ≥的一个解;②当12a ≠时,210a ->;③不等式3≥1恒成立;④不等式230x -->和23y <-解集相同,其中正确的个数为( ) A .4个B .3个C .2个D .1个10.下面各个结论中,正确的是( ) A .3a 一定大于2a B .13a 一定大于a C .a +b 一定大于a -b D .a 2+1不小于2a11.已知-1<x <0,则x 、x 2、1x三者的大小关系是( ) A .21x x x<<B .21x x x<<C .21x x x<< D .21x x x<< 12.已知a =x +2,b =x -1,且a >3>b ,则x 的取值范围是( )图1A .x >1B .x <4C .x >1或x <4D .1<x <4三、解答题13.解下列不等式(组).(12分)(1)()2232633x x x ⎛⎫---⎡⎤ ⎪⎣⎦⎝⎭≥ (2)()40.30.5 5.8115134x x x x -<+⎧⎪⎨->-+⎪⎩ 14.已知满足不等式531x -≤的最小正整数是关于x 的方程()()941a x x +=+的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a 元.现欲从中分流出x 人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a 元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)华师七下第8章一元一次不等式能力测试题参考答案一、填空题 1. (1)16x < (2)0,1,2 (3)3x > (4)32x -<≤ 2.k >-1 3.> 4.52x -<<- 5.193m =-6.2m ≥ 二、选择题7.C8.D9.A 10.D 11.D 12.D 三、解答题13.(1)47x ≥-(2)x <2 14.19315.18千米/时 16.15人功16人 一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ; 2、“x 大于-6且小于6”表示为( )A -6<x<6;B x>-6,x ≤6;C -6≤x ≤6;D -6<x ≤6; 3、 解集是x ≥5的不等式是 ( )A x+5≥0B x –5≥0C –5–x ≤0D 5x –2 ≤–94、不等式组⎩⎨⎧x -2≤0x +1>0的解是()A 、x ≤2B 、x ≥2C 、-1<x ≤2D 、x >-15、不等式组240,10x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )6、下列不等式组无解的是( ) A .2010x x -<⎧⎨+<⎩ B. 1020x x -<⎧⎨+>⎩ C. 1020x x +>⎧⎨->⎩ D. 1020x x +<⎧⎨->⎩7、不等式组2030x x -<⎧⎨-≥⎩的正整数解的个数是( )A .1个B .2个C .3个D .4个 8、等式组⎩⎨⎧+>+<+1,159m x x x 的解集是2>x ,则m 的取值范围是( )A . m ≤2B . m ≥2C .m ≤1D . m >19、关于x 的一元一次方程4x-m+1=3x-1的解是负数,则m 的取值范围是 ( )A m=2B m>2C m<2D m ≤2 10、ax>b 的解集是( )A .a b x >; B . a b x <; C .abx =; D .无法确定; 二、填空题(每题4分,共20分) 1、不等式122x >的解集是: ;不等式133x ->的解集是: ; 2、不等式组⎩⎨⎧-+0501>>x x 的解集为 . 不等式组3050x x -<⎧⎨-⎩>的解集为 .3、不等式组2050x x ⎧⎨-⎩>>的解集为 . 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .4、当x 时,3x -2的值为正数;x 为 时,不等式183x -的值不小于7; 5、已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)11(1)223x x -<-(2)532(1)314(2)2x xx -≥⎧⎪⎨-<⎪⎩(3)14321<--<-x (4)2(1)41413x x x x +-<⎧⎪+⎨>-⎪⎩三、 根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设 ,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少? 解:设 ,依题意得:四、解答题:(每题7分,共14分)1、若方程组212x y x y m+=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围。
第2章《一元一次不等式与一元一次不等式组》知识复习2021年八年级北师大版下册数学作业题(含答案)
2021年北师大版八年级数学作业题第2章《一元一次不等式与一元一次不等式组》知识复习一.选择题1.不等式x>5的解集在数轴上表示正确的是()A.B.C.D.2.已知a>b,c≠0,则下列关系一定成立的是()A.c+a>c+b B.C.c﹣a>c﹣b D.ac<bc3.在平面直角坐标系中,若点A(x+3,﹣4)在第四象限,则x的取值范围是()A.﹣3<x<6B.x<﹣3C.x>6D.3<x<64.如果不等式组有解,则m的范围()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣15.不等式组的最小整数解为()A.2B.1C.﹣1D.﹣26.若不等式(m+2)x>m+2的解集为x<1,则m满足的条件是()A.m>0B.m>﹣2C.m<﹣2D.m<27.现用甲、乙两种运输汽车共10辆,将46吨抗旱物资一次性运往某地区,甲种运输车载重5吨,乙种运输车载重4吨,则甲种运输车至少应安排()A.7辆B.6辆C.5辆D.4辆8.某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式()A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125二.填空题9.用不等式表示“x的5倍与2的差为负数”.10.若x<y,试比较大小2x﹣62y﹣6(用“>”、“<”、“=”填空).11.关于x的不等式x﹣1>的解集是.12.不等式4(x﹣1)<3x﹣2的正整数解为.13.已知关于x,y的二元一次方程组满足x﹣y>0,则a的取值范围是.14.在平面直角坐标系中,一次函数y=kx和y=﹣x+b的图象如图所示,则不等式kx>﹣x+b的解集为.15.陈老师购了一批笔记本,用于奖励期中考试成绩优异和进步快的同学,同学们想知道笔记本的本数,陈老师让他们猜.陈茜说:“至少13本.”江涵说:“至多11本.”江月说:“至多8本.”陈老师说:“你们三个人都说错了”.则这批笔记本有本.16.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第四象限;③不等式ax﹣d ≥cx﹣b的解集是x≥4;④4(a﹣c)=d﹣b.其中正确的是.三.解答题17.解下列不等式或不等式组,并把解集在数轴上表示出来:(1)≥1﹣.(2).18.解不等式组,请按下列步骤完成解答:(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.19.求不等式组的非负整数解.20.关于x,y的二元一次方程组的解满足不等式x+2y>5,求a的取值范围.21.若关于x,y的二元一次方程组.(1)当y=k时,求k的值;(2)若方程组的解x与y满足条件0≤x+y≤2,求整数k的值.22.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,其单价分别为24元,18元,学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张.23.已知关于x,y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解同时满足x为非正数,y为负数,求m的取值范围;(3)在(2)的条件下化简|m﹣2|+|3﹣m|.24.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出在①的条件下网店哪种方案获利最多?是多少?参考答案一.选择题1.解:不等式x>5的解集在数轴上表示为:5右边的部分,不包括5,故选:A.2.解:A、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确;B、当c>0时,不等式a>b的两边同时除以正数c,则不等号的方向不发生改变,>,故本选项错误;C、在不等式a>b的两边同时乘以负数﹣1,则不等号的方向发生改变,即﹣a<﹣b;然后再在不等式的两边同时加上c,不等号的方向不变,即c﹣a<c﹣b,故本选项错误;D、当c>0时,不等式a>b的两边同时乘以正数c,则不等号的方向不发生改变,即ac>bc.故本选项错误;故选:A.3.解:∵点A(x+3,﹣4)在第四象限,∴,解得﹣3<x<6.故选:A.4.解:如图,∵不等式组有解,∴m>﹣1,故选:B.5.解:,解不等式①,得x>﹣解不等式②,得x≤4,所以不等式组的解集是﹣<x≤4,所以不等式组的最小整数解是﹣2,故选:D.6.解:∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:C.7.解:设甲种运输车安排x辆,乙种运输车安排(10﹣x)辆,根据题意得5x+4(10﹣x),解得:x≥6,∴甲种运输车至少安排6辆车,故选:B.8.解:由题意可得,10x﹣5(20﹣x)>125,故选:D.二.填空题9.解:x的5倍与2的差小于0,即:5x﹣2<0.故答案为:5x﹣2<0.10.解:∵x<y,∴2x<2y,∴2x﹣6<2y﹣6.故答案为:<.11.解:移项,得:x>1+,合并同类项,得:x>,系数化为1,得:x>,故答案为:x>.12.解:不等式4(x﹣1)<3x﹣2的解集为x<2,故不等式4(x﹣1)<3x﹣2的正整数解为1.故答案为1.13.解:,①﹣②,得x﹣y=3a﹣3,∵x﹣y>0,∴3a﹣3>0,解得a>1,故答案为:a>1.14.解:如图所示:∵一次函数y=kx和y=﹣x+b的图象交点为(1,2),∴关于x的一元一次不等式kx>﹣x+b的解集是:x>1.故答案为:x>1.15.解:设这批笔记本有x本,依题意得:,解得:11<x<13.又∵x为正整数,∴x=12.故答案为:12.16.解:由图象可得,a>0,则﹣a<0,对于函数y=﹣ax+b来说,y随x的增大而减小,故①错误;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到4(a﹣c)=d﹣b,故④正确;故答案为②③④.三.解答题17.解:(1)去分母,得:2(x+8)≥4﹣x,去括号,得:2x+16≥4﹣x,移项,得:2x+x≥4﹣16,合并同类项,得:3x≥﹣12,系数化为1,得:x≥﹣4,将不等式组的解集表示在数轴上如下:(2)解不等式2x﹣1<x+1,得:x<2,解不等式x+8<4x﹣1,得:x>3,所以不等式组无解,将不等式组的解集表示在数轴上如下:18.解:,(1)解不等式①,得x≥﹣1;(2)解不等式②,得x>3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为x>3,故答案为x≥﹣1,x>3,x>3.19.解:解不等式2x﹣6≤0,得:x≤3,解不等式(x﹣4)+3>0,得:x>﹣2,则不等式组的解集为﹣2<x≤3,所以不等式组的非负整数解为0、1、2、3.20.解:,②﹣①得:x+2y=4a﹣3,∵x+2y>5,∴4a﹣3>5,解得a>2.故a的取值范围为a>2.21.解:(1),①×2﹣②,得:3x=6k,解得x=2k,将x=2k代入①,得:4k+y=3k﹣1,解得y=﹣k﹣1,∵y=k,∴﹣k﹣1=k,解得k=﹣;(2)①+②,得:3x+3y=3k﹣3,∴x+y=k﹣1,∵0≤x+y≤2,∴0≤k﹣1≤2,解得1≤k≤3,所以整数k的值为1、2、3.22.解:设购买甲种票x张,则购买乙种票(36﹣x)张,依题意得:24x+18(36﹣x)≤750,解得:x≤17.答:甲种票最多买17张.23.解:(1),由①+②,得2x=4m﹣8,解得x=2m﹣4,由①﹣②,得2y=﹣2m﹣4,解得y=﹣m﹣2,所以原方程组的解是;(2)∵x为非正数,y为负数,∴x≤0,y<0,即,解得﹣2<m≤2;(3)∵﹣2<m≤2,∴|m﹣2|+|3﹣m|=2﹣m+3﹣m=5﹣2m.24.解:(1)设该网店甲种羽毛球每筒的售价是x元,乙种种羽毛球每筒的售价是y元,依题意得:,解得:.答:该网店甲种羽毛球每筒的售价是60元,乙种种羽毛球每筒的售价是45元.(2)①设购进甲种羽毛球m筒,则购进乙种羽毛球(200﹣m)筒,依题意得:,解得:75<m≤78.又∵m为正整数,∴m可以为76,77,78,∴该网店有3种进货方案,方案1:购进76筒甲种羽毛球,124筒乙种羽毛球;方案2:购进77筒甲种羽毛球,123筒乙种羽毛球;方案3:购进78筒甲种羽毛球,122筒乙种羽毛球.②选择进货方案1可获得的利润为(60﹣50)×76+(45﹣40)×124=1380(元);选择进货方案2可获得的利润为(60﹣50)×77+(45﹣40)×123=1385(元);选择进货方案3可获得的利润为(60﹣50)×78+(45﹣40)×122=1390(元).∵1380<1385<1390,∴在①的条件下网店选择方案3获利最多,最多利润是1390元.。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)
(共25题)一、选择题(共10题)1. 若不等式组 {x >1,x <a 无解,则 a 的取值范围是 ( )A . a >1B . a ≥1C . a <1D . a ≤12. 下列各数轴上表示的 x 的取值范围可以是不等式组 {x +2>a,(2a −1)x −6<0的解集的是 ( )A .B .C .D .3. 不等式 −x +2≤0 的解集为 ( )A . x ≤−2B . x ≥−2C . x ≤2D . x ≥24. 若关于 x 的不等式 (a +2019)x >a +2019 的解为 x <1,则 a 的取值范围是 ( ) A . a >−2019B . a <−2019C . a >2019D . a <20195. 若关于 x 的不等式组 {2x −1>4x +7,x >a 无解,则实数 a 的取值范围是 ( )A .a <−4B .a =−4C .a >−4D .a ≥−46. 不等式组 {2x +1>3,3x −5≤1的解集在数轴上表示正确的是 ( )A .B .C .D .7. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则有一户可分得母羊但不足 3 只,这批种羊共 ( )A . 55 只B . 72 只C . 83 只D . 89 只8. 下面给出了 5 个式子:① 3>0;② 4x +3y >0;③ x =3;④ x −1;⑤ x +2≤3;其中不等式有 ( ) A . 2 个 B . 3 个 C . 4 个 D . 5 个9. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 3 个,则 a 的取值范围是 ( )A . −1≤a ≤0B . −1<a ≤0C . 0≤a ≤1D . 0<a ≤110. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤2二、填空题(共7题) 11. 叫做解不等式.12. 已知 x −y =3.①若 y <1,则 x 的取值范围是 ; ②若 x +y =m ,且 {x >2,y <1,则 m 的取值范围是 .13. 不等式 x >√2x +1 的解集是 .14. 不等式组 {x >4,x >m 的解集是 x >4,那么 m 的取值范围是 .15. 不等式组 {x−32+3>x +1,1−3(x −1)≤8−x所有整数解的和是 .16. “九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为 A (小蟹)、 B (中蟹)、 C (大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若 2 只 A 类蟹、 1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只的价格,而 6 只 A 类蟹、 3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3:4,根据市场有关部门的要求 A ,B ,C 三类蟹的单价之和不低于 40 元、不高于 60 元,则第一批大闸蟹每只价格为 元.17. 已知不等式 {2x −a <1,x −2b >3 的解集为 −1<x <1,求 (a +1)(b −1) 的值为 .三、解答题(共8题)18. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的平均数;用 min {a,b,c } 表示这三个数中最小的数.例如 M {1,2,3}=13×(1+2+3)=2,min {1,2,3}=1,min {2,2,2}=2⋯.解答下列问题:(1) 填空:M{√3,√12,√18}= ,min{2√2,π,√7}= . (2) 如果 M {−2,x −1,2x }=min {−2,x −1,2x },求 x 的值.(3) 在同一直角坐标系中作出函数 y =12x −3,y =−12x −1,y =−2x +4 的图象(不需列表描点),通过观察图象,填空:min {12x −3,−12x −1,−2x +4} 的最大值为 .19. 解不等式:1−x+26<2x−33,并把它的解集在数轴上表示出来.20. 解答下列各题:(1) 解方程组 {5x +6y =7,2x +3y =4.(2) 解不等式组 {x −4<3(x −2),1+2x 3+1>x.21. 解答下列问题.(1) 解方程组:{5x −2y =4,2x −y =1;(2) 解不等式组:{3x −2≥1,x +9>3(x +1).22. 某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车 4 辆,B 型汽车 7 辆,共需 310 万元;若购买A 型汽车 10 辆,B 型汽车 15 辆,共需 700 万元. (1) A 型和B 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买A 型和B 型两种汽车共 10 辆,费用不超过 285 万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.23. 解不等式组 {3x −5>2(x −3),x+43≥x,并写出该不等式组的所有非负整数解.24. 为迎接“军运会”,某商店准备采购 500 件纪念品,现有甲、乙两种纪念品可供选择.其中甲种纪念品的进价为 80 元/件,售价为 112 元/件;乙种纪念品的进价为 64 元/件,售价为 80 元/件.设购进甲种纪念品 x (x 为整数)件,所购纪念品全部售完时利润为 y 元. (1) 求 y 关于 x 的函数关系式.(2) 若乙种纪念品的数量不少于甲种纪念品数量的 3 倍,且利润 y 不低于 9600 元,请通过计算说明商店有几种采购方案.(3) 若甲种纪念品每件售价降低 3a 元,乙种纪念品毎件售价上涨 2a 元,在(2)的条件下,最大利润为 11500 元,求 a 的值.25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】 ∵ 不等式组 {x >1,x <a 无解,∴a 的取值范围是 a ≤1, 故选:D .【知识点】含参一元一次不等式组2. 【答案】B【解析】由 x +2>a ,得 x >a −2, A 选项,由数轴知 x >−3,则 a −2=−3, ∴a =−1,∴−3x −6<0,解得 x >−2,与数轴不符合; B 选项,由数轴知 x >0,则 a −2=0, ∴a =2,∴3x −6<0,解得 x <2,与数轴相符合; C 选项,由数轴知 x >2,则 a −2=2, ∴a =4,∴7x −6<0,解得 x <67,与数轴不符合;D 选项,由数轴知 x >−2,则 a −2=−2, ∴a =0,∴−x −6<0,解得 x >−6,与数轴不符合. 【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】 ∵ 不等式 (a +2019)x >a +2019 的解为 x <1, ∴a +2019<0, 则 a <−2019. 【知识点】不等式的性质5. 【答案】D【解析】提示:解 2x −1>4x +7 ,得 x <−4 . 【知识点】常规一元一次不等式组的解法6. 【答案】D【知识点】常规一元一次不等式组的解法7. 【答案】C【解析】设该村有 x 户,则这批种羊中母羊有 (5x +17) 只,根据题意可得 {5x +17−7(x −1)>0,5x +17−7(x −1)<3, 解得 10.5<x <12, 因为 x 为正整数, 所以 x =11,所以这批种羊共有 11+5×11+17=83(只). 【知识点】一元一次不等式组的应用8. 【答案】B【知识点】不等式的概念9. 【答案】B【知识点】含参一元一次不等式组、不等式组的整数解10. 【答案】A【知识点】含参一元一次不等式组二、填空题(共7题)11. 【答案】求不等式的解集的过程【知识点】不等式的解集12. 【答案】 x <4 ; 1<m <5【知识点】二元一次方程、常规一元一次不等式组的解法13. 【答案】 x <−√2−1【知识点】常规一元一次不等式的解法、分母有理化14. 【答案】 m ≤4【解析】不等式组 {x >4,x >m的解集是 x >4,得 m ≤4. 【知识点】含参一元一次不等式组15. 【答案】 −3【知识点】常规一元一次不等式组的解法16. 【答案】14【解析】A类蟹与B类蟹每只单价之比为3:4,设A类蟹价格为3x,B类蟹价格为4x.∵批发时每只价格相同,依题意可得,∴2A+B+3C8=6A+3B+2C12,24A+12B+36C=48A+24B+16C,∵A=3x,B=4x,∴C=6x,∵A,B,C三类单价之和不低于40元,不高于60元,∴40≤A+B+C≤60,即:40≤13x≤60,∵A(3x),B(4x),C(6x)单价均为整数,∴4013≤x≤6013,x取整为x=4.∴A=3x=12,B=4x=16,C=6x=24.第一批大闸蟹每只价格为:2A+B+3C8=2×12+16+24×38=14元.故第一批大闸蟹每只价格为14元.【知识点】一元一次不等式组的应用17. 【答案】−6【解析】{2x−a<1, ⋯⋯①x−2b>3. ⋯⋯②由①得2x<1+a,x<1+a2,由②得,x>3+2b,综上,不等式组的解为3+2b<x<1+a2,又∵已知解集:−1<x<1,∴{3+2b=−1,1+a2=1,解得{a=1,b=−2,∴(a+1)(b−1)=(1+1)(−2−1)=−6.【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】(1) √3+√2;√7(2)∵M {−2,x −1,2x }=13×(−2+x −1+2x )=13×(3x −3)=x −1,∵M {−2,x −1,2x }=min {−2,x −1,2x }=x −1, ∴ 可知 {x −1≤−2,x −1≤2x, 解之得 {x ≤−1,x ≥−1,∴ 可知 x =−1.(3) 在同一直角坐标系中,作出 y =12x −3,y =−12x −1,y =−2x +4 的图象如图所示: −2 【解析】(1) ∵M {1,2,3}=13(1+2+3)=2∴M{√3,√12,√18}=13×(√3+√12+√18)=13×(√3+2√3+3√2)=√3+√2,又 ∵min {1,2,3}=1,min {2,2,2}=2⋯, ∴ 可知 min 表示其中最小数字, ∵π>3,故 π2>9, ∴ 可知 π>√9, ∵9>8>7,∴√9>√8>√7,即 √9>2√2>√7, ∴ 可知 π>2√7>√7, ∴min{2√2,π,√7}=√7. 故答案为:√3+√2;√7.(3) 联立 {y =−12x −1,y =12x −3,解得 {x =2,y =−2, ∴y =−12x −1 与 y =12x −3 交点坐标为 (2,−2),联立 {y =−12x −1,y =−2x +4, 解得 {x =103,y =−83,∴y =−12x −1 与 y =−2x +4 交点坐标为 (103,−83), 由函数图象可知:当 x ≤2 时,min {12x −3,−12x −1,−2x +4}=12x −3≤−2, ∴min {12x −3,−12x −1,−2x +4} 最大值为 −2,当 2<x <103时,min {12x −3,−12x −1,−2x +4}=−12x −1,则 −53<−12x <−1,−83<−12x −1<−2,∴min {−12x −3,−12x −1,−2x +4} 最大值小于 −2, 当 x ≥103时,min {12x −3,−12x −1,−2x +4}=−2x +4, ∴−2x ≤−203,−2x +4≤−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −83,∵−2>−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −2.故答案为:−2.【知识点】常规一元一次不等式组的解法、平方根的估算、一次函数与二元一次方程(组)的关系19. 【答案】 x >2.【知识点】常规一元一次不等式的解法20. 【答案】(1) {5x +6y =7, ⋯⋯①2x +3y =4. ⋯⋯②① − ② ×2 得:x =−1.把 x =−1 代入①得:y =2.则方程组的解为{x =−1,y =2.(2) {x −4<3(x −2), ⋯⋯①1+2x 3+1>x. ⋯⋯②解不等式①得x >1.解不等式②得x <4.∴ 不等式组的解集为1<x <4.【知识点】加减消元、常规一元一次不等式组的解法21. 【答案】(1) {5x −2y =4, ⋯⋯①2x −y =1. ⋯⋯②① − ② ×2,得:x =2.将 x =2 代入②,得:4−y =1.解得y =3.∴ 方程组的解为{x =2,y =3.(2) 解不等式 3x −2≥1,得:x ≥1.解不等式 x +9>3(x +1),得:x <3.则不等式组的解集为1≤x <3.【知识点】加减消元、常规一元一次不等式组的解法22. 【答案】(1) 设A 型汽车每辆价格为 x 万元,B 型汽车每辆的价格为 y 万元,由题意,得{4x +7y =310,10x +15y =700,解得{x =25,y =30.故A 型汽车每辆的价格为 25 万元,B 型汽车每辆的价格为 30 万元.(2) 设购买A 型汽车 m 辆,则购买B 型汽车 (10−m ) 辆,由题意,得{m <10−m,25m +30(10−m )≤285.解得3≤m <5.因为 m 是整数,所以 m =3或4.当 m =3 时,该方案所需费用为 25×3+30×7=285(万元); 当 m =4 时,该方案所需费用为 25×4+30×6=280(万元).故费用最省的方案是购买 4 辆A 型汽车,6 辆B 型汽车,该方案所需费用为 280 万元. 【知识点】一元一次不等式组的应用、综合应用23. 【答案】原不等式组为{3x −5>2(x −3), ⋯⋯①x+43≥x. ⋯⋯②解不等式 ①,得x >−1.解不等式 ②,得x ≤2.∴ 原不等式组的解集为 −1<x ≤2. ∴ 原不等式组的所有非负整数解为 0,1,2.【知识点】常规一元一次不等式组的解法24. 【答案】(1) 由题意得:y =(112−80)x +(80−64)(500−x ), 化简得:y =16x +8000.(2) 由题意得:{16x +8000≥9600,500−x ≥3x.解得:100≤x ≤125.因为 x 为整数,所以x =100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125.所以共有 26 种采购方案. (3) 设利润为 w , w=(112−3a −80)x +(80+2a −64)(500−x )=(16−5a )x +8000+1000a.当 16−5a >0,即 a <165时,w 随 x 增大而增大,所以 x =125 时,利润最大,w 最大=(16−5a )×125+8000+1000a =11500, 解得 a =195.11 综上可知,a =195.【知识点】一元一次不等式组的应用、利润问题、解析式法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下数学周末作业 (第一周)
姓名: 班别: 学号: 完成情况:
A 、32-x ≤8
B 、32-x ≥8
C 、32-x <8
D 、32-x >8
2、下列不等式一定成立的是( )
A 、a a 45>
B 、32+<+x x
C 、a a 2->-
D 、a
a 24> 3、不等式x >-2的正整数有( )
A 、1个
B 、2个
C 、3个
D 、无数多个
4、如果x <-3,那么下列不等式成立的是( )
A 、2x >x 3-
B 、2x ≥x 3-
C 、2x <x 3-
D 、2x ≤x 3-
5、若m 满足|m|>m ,则m 一定是( )
A 、正数
B 、负数
C 、非负数
D 、任意有理数
6、在数轴上与原点的距离小于8的点对应的x 满足( )
A 、x <8
B 、x >8
C 、-8<x <8
D 、x <-8或x >8
7、如果a >b,那么下列不等式中不成立的是 ( )
A 、a ―3>b ―3
B 、3a >3
b C 、―a <―b D 、―3a >―3b
8、使不等式633<+x 成立的最大整数解是 ( )
A 、―1
B 、0
C 、1
D 、以上都不对
9、如果0<<b a ,那么不等式b ax <的解是( )
A 、a b x <
B 、a b x >
C 、a
b x -< D 、a
b x -> 10、有理数a 、b 、
c 在数轴上的对应点的位置如图所示,下列式子中正确的是( ) A 、b+c >0 B 、a-b >a-c
C 、ac >bc
D 、ab >ac
二、填空题:
11、不等式110-<+x 的解集是_____________;不等式10-x ≥1的解集是______________。
12、不等式62>x 的解集是_______________;不等式62>-x 的解集是_______________。
13、不等式22-x ≤6的解有________个,其中非负整数解分别是________________________。
14、当m ______________时,不等式8)2(<-x m 的解集为m
x ->
28。
15、下列各数0,-2,2,3-,8.0-,6,-5中,_________是方程02=+x 的解;__________________是不等式02>+x 的解;_________________是不等式2+x ≤0的解。
三、解答题:
16、解下列各不等式并把解集在数轴上表示出来:
① 132-<+x ② 1)3(2>--x
③
21x +≥312-x ④ 31211->+x x
17、x 取何值时,代数式312-x 的值不小于2
121+-x 的值?
18、某种商品的进价为15元,出售是标价是22.5元。
由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价多少元出售该商品?
19、暑假期间,两名家长计划带领干名学生去旅游,他们联系了报价均为500元的两家旅行社。
经协商,甲旅行社若的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是:家长、学生都打八折优惠。
假设这两名家长带领x名学生去旅游,他们应该选择哪家旅行社?(提示:要分情况讨论)。