(教案2)2.3变量间的相关关系_20120207085401500

合集下载

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系教案一、教学目标1. 让学生理解变量间的相关关系的概念。

2. 让学生掌握如何判断两个变量之间的相关关系。

3. 让学生学会如何绘制相关系数图。

4. 让学生能够运用相关关系解决实际问题。

二、教学内容1. 变量间的相关关系定义。

2. 相关关系的判断方法。

3. 相关系数图的绘制。

4. 实际问题中的应用。

三、教学重点与难点1. 教学重点:变量间的相关关系概念,判断方法,相关系数图的绘制。

2. 教学难点:相关系数图的绘制,实际问题中的应用。

四、教学方法1. 讲授法:讲解变量间的相关关系定义、判断方法和绘制相关系数图的步骤。

2. 案例分析法:分析实际问题,让学生学会运用相关关系解决问题。

3. 互动教学法:引导学生提问、讨论,提高学生的参与度。

五、教学过程1. 导入:通过一个实例引入变量间的相关关系概念。

2. 讲解:讲解变量间的相关关系定义、判断方法,并进行相关系数图的绘制演示。

3. 案例分析:分析实际问题,让学生学会运用相关关系解决问题。

4. 练习:让学生独立完成相关系数图的绘制,并分析实际问题。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评价1. 评价方式:采用课堂表现、练习完成情况和课后作业三种方式进行评价。

2. 评价内容:(1)课堂表现:观察学生在课堂上的参与程度、提问和回答问题的情况。

(2)练习完成情况:检查学生练习题的完成质量,包括相关系数图的绘制和实际问题的分析。

(3)课后作业:评估学生作业的完成情况,巩固所学知识。

七、教学反思1. 反思内容:(1)教学内容:回顾本节课的教学内容,确认是否全面覆盖了变量间的相关关系概念、判断方法和实际应用。

(3)课堂互动:评估学生的参与程度,思考如何提高学生的积极性和主动性。

(4)作业布置:检查作业的难度和量,确保学生能够通过作业巩固所学知识。

八、拓展与延伸1. 相关研究:介绍变量间相关关系在学术研究中的应用,如心理学、经济学等领域。

2. 实际案例:分析更多实际问题,让学生了解相关关系在生活中的重要作用。

人教版高中数学必修三(教案)2.3 变量之间的相关关系(4课时)

人教版高中数学必修三(教案)2.3 变量之间的相关关系(4课时)

第一课时 2.3.1 变量之间的相关关系教学要求:通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。

教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系。

教学难点:变量之间相关关系的理解。

教学过程:一、新课准备:1.粮食产量与施肥量有关系吗?2. 提问:“名师出高徒”可以解释为教师的水平越高,学生的水平也越高。

教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(水滴石穿三人行必有我师等)二、讲授新课:1. 问题的提出1.请同学们如实填写下表(在空格中打“√” )学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。

(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。

)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。

数学成绩的高低对物理成绩的高低是有一定影响的。

但决非唯一因素,还有其它因素,如是否喜欢物理,用在物理学习上的时间等等。

(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。

但这两个变量是有一定关系的,它们之间是一种不确定性的关系。

如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。

)2.给出相关关系的概念1.相关关系的概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。

当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。

相关关系是一种非确定性关系。

(分析:两个变量→自变量取值一定→因变量带有随机性→相关关系)2.例:商品销售收入与广告支出经费之间的关系。

(还与商品质量,居民收入,生活环境等有关)3.小结:1.现实生活中相关关系的实例。

2.相关关系的概念。

三.巩固练习1.练习:教材P76 1,2题。

2.分析:人的身高和年龄是一对相关关系。

因为在某一个年龄上,人的身高在取值上带有一定的随机性,如受遗传.营养.体育锻炼.心理素质等因素的影响。

人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_2

人教A版高中数学必修3《二章 统计  2.3 变量间的相关关系  2.3.1 变量之间的相关关系》优质课教案_2

§2.3变量间的相关关系1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。

2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系3.两个变量具有线性相关关系时,会在数点图中作出线性回归直线,会用线性回归进行预测。

请同学们阅读教材P 84—P 91内容1.如果散点图中的分布从整体上看我们就称这两个变量之间具有 __这条直线中2.求回归方程的关键是如何用数学的方法来刻画“ ”如何实现这一目标呢?3.小结求回归方程的一般步骤:第一步,计算平均数______________.第二步,求和____________________.第三步,计算____________________.第四步,写出回归方程 ______________.4.利用计算器或计算机,如何求回归方程?5.线性回归直线a x b y +=的几何意义是:x 每增加一个单位,y 就相应 或 个单位,而不是 倍。

二、新课导学※ 探索新知新知1:线性相关如果散点图中的点分布从整体上看大致在一条直线附近,则这两个变量之间具有线性相关关系。

新知2:回归直线两个变量具有线性相关关系时,它们的散点图在一条直线附近,则这条直线称为回归直线。

新知3:回归直线方程分析与求法:分析:一是所求的回归直线方程只是“大体上”上接近了回归方程而且方程不唯一,可信度不高:二是没有从几何直观和代数精确上对回归直线作刻画,不能作合理的可靠的数学解释。

求回归方程的一般步骤:第一步,计算平均数 第二步,求和;,y x ;,∑∑==n i i n i i i x y x 121第三步,计算第四步,写出回归方程※ 典型例题例1.下列两个变量之间的关系,哪个不是函数关系 ( )A .角度和它的余弦值B .正方形的边长和面积C .正n 边形的边数和内角度数之和D .人的年龄与身高例2.下列两个变量中具有相关关系的是( )A .正方形的体积与边长B .匀速行驶的车辆的行驶距离与时间C .人的身高与体重D .人的身高与视力例 3.由一组10个数据(x i ,y i )算得 则b = ,a = ,回归方程为_____________________.※ 动手试试练1.下列那些变量是相关关系( )A.出租车与行驶里程B.房屋面积与房屋造价C.身高与体重D.铁球的体积大小与其体重练2.工人月工资y 与劳动生产率x 变化的回归方程y=50+80x ,下列判断正确的是( ) ①劳动生产率为1千克每小时时,工资为130元.②劳动生产率提高1千克每小时时,工资提高80元.③劳动生产率提高1千克每小时时,工资提高130元.④劳动生产率为2千克每小时时,工资为210元.A .①②B .①②④C. ②④ D . ①②③④练3.下列说法中不正确的是( )A.两个变量具有线性相关关系时,求出的回归方程才有意义;)())((1221121x b y a x n x y x n y x x x y y x x b n i i n i i i n i ini i i -=--=---=∑∑∑∑====,.a bx y +=∧,10,5==y x ,292,583121==∑∑==ni i n i i i x y xB.散点图能直观的反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.回归直线y=ax+b 一定经过(i x ,i y )(i=1,2,…,n)中的某些点三、总结提升1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。

变量间的相关关系教案

变量间的相关关系教案

一、教案基本信息1. 教学科目:数学2. 教学年级:八年级3. 教学课时:2课时4. 教学目标:(1) 理解变量间的相关关系的概念(2) 学会判断变量间的正相关、负相关和无关关系(3) 能够运用相关关系解决问题二、教学重点与难点1. 教学重点:(1) 变量间的相关关系概念(2) 判断变量间的正相关、负相关和无关关系的方法2. 教学难点:(1) 相关系数的概念及其计算方法(2) 运用相关关系解决实际问题三、教学方法与手段1. 教学方法:(1) 讲授法:讲解变量间的相关关系概念及判断方法(2) 案例分析法:分析实际问题,引导学生运用相关关系解决问题(3) 小组讨论法:分组讨论,培养学生的合作与交流能力2. 教学手段:(1) 投影仪:展示相关关系图像和实际问题案例(2) 计算机软件:运用数学软件进行相关系数的计算和分析四、教学内容与步骤1. 第一课时(1) 导入新课:介绍变量间的相关关系概念(2) 讲解相关关系:阐述正相关、负相关和无关关系的定义及特点(3) 案例分析:分析实际问题,引导学生运用相关关系解决问题(4) 课堂练习:布置相关练习题,巩固所学内容2. 第二课时(1) 复习导入:回顾上节课的内容,引入新的知识点(2) 讲解相关系数:介绍相关系数的概念及其计算方法(3) 运用相关关系解决实际问题:通过案例分析,引导学生运用相关关系解决实际问题(4) 课堂练习:布置相关练习题,巩固所学内容五、课后作业与评价1. 课后作业:(1) 完成课后练习题,巩固所学知识(2) 选取一个实际问题,运用相关关系进行分析和解决2. 评价方法:(1) 课堂表现:观察学生在课堂上的参与程度、提问回答等情况(2) 课后作业:检查学生作业完成情况,评估其对知识的掌握程度(3) 小组讨论:评价学生在小组讨论中的表现,包括合作与交流能力六、教学拓展与延伸1. 介绍其他衡量变量间关系的方法,如散点图、回归直线等。

2. 探讨相关关系在实际生活中的应用,如经济学、生物学、社会学等领域。

人教版高中数学必修三教案 2.3变量间的相关关系

人教版高中数学必修三教案 2.3变量间的相关关系

2.3 变量间的相关关系从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积(m2)115 110 80 135 105销售价格(万元)24.8 21.6 18.4 29.2 22(1)画出数据对应的散点图;(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关. (3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系.课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.作业之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系. (4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.)1(,)())((2121121x byax nxyx nyxxxyyxxbniiniiiniiniii其中,b是回归方程的斜率,a是截距.推导公式①的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理.假设我们已经得到两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(x n,y n),且所求回归方程是^y=bx+a,其中a、b是待定参数.当变量x取x i(i=1,2,…,n)时可以得到^y=bx i+a(i=1,2,…,n),它与实际收集到的y i之间的偏差是y i-^y=y i-(bx i+a)(i=1,2,…,n).这样,用这n个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的.由于(y i-^y)可正可负,为了避免相互抵消,可以考虑用∑=-niiiyy1^||来代替,但由于它含有绝对值,运算不太方便,所以改用Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2②来刻画n个点与回归直线在整体上的偏差.这样,问题就归结为:当a,b取什么值时Q最小,即总体偏差最小.经过数学上求最小值的运算,a,b的值由公式①给出.通过求②式的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法(method of least square).(7)利用计算机求回归直线的方程.根据最小二乘法的思想和公式①,利用计算器或计算机,可以方便地求出回归方程.以Excel软件为例,用散点图来建立表示人体的脂肪含量与年龄的相关关系的线性回归方程,具体步骤如下:①在Excel中选定表示人体的脂肪含量与年龄的相关关系的散点图(如下图),在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的回归方程^y=0.577x-0.448.(8)利用计算器求回归直线的方程.用计算器求这个回归方程的过程如下:所以回归方程为^y=0.577x-0.448.正像本节开头所说的,我们从人体脂肪含量与年龄这两个变量的一组随机样本数据中,找到了它们之间关系的一个规律,这个规律是由回归直线来反映的.直线回归方程的应用:①描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系.②利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间.③利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标.如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度.应用示例例1 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:摄氏-5 0 4 7 12 15 19 23 27 31 36 温度/℃156 150 132 128 130 116 104 89 93 76 54 热饮杯数(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2 ℃,预测这天卖出的热饮杯数.解:(1)散点图如下图所示:性相关关系,说明理由;(2)如果具有线性相关关系,求出线性回归方程.解:(1)在直角坐标系中画出数据的散点图,如下图.直观判断散点在一条直线附近,故具有线性相关关系.(2)计算相应的数据之和:∑=81iix=1 031,∑=81iiy=71.6,∑=812iix=137 835,∑=81iiiyx=9 611.7.将它们代入公式计算得b≈0.077 4,a=-1.024 1,所以,所求线性回归方程为=0.077 4x-1.024 1.知能训练1.下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高答案:D2.三点(3,10),(7,20),(11,24)的线性回归方程是()A.^y=5.75-1.75x B.^y=1.75+5.75xC.^y=1.75-5.75x D.^y=5.75+1.75x答案:D3.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:使用年限x2 3 4 5 6维修费用y2.2 3.8 5.5 6.5 7.0 设y对x呈线性相关关系.试求:(1)线性回归方程^y=bx+a的回归系数a,b;(2)估计使用年限为10年时,维修费用是多少?答案:(1)b=1.23,a=0.08;(2)12.38.4.我们考虑两个表示变量x与y之间的关系的模型,δ为误差项,模型如下:模型1:y=6+4x;模型2:y=6+4x+e.(1)如果x=3,e=1,分别求两个模型中y的值;(2)分别说明以上两个模型是确定性模型还是随机模型.解:(1)模型1:y=6+4x=6+4×3=18;模型2:y=6+4x+e=6+4×3+1=19.(2)模型1中相同的x值一定得到相同的y值,所以是确定性模型;模型2中相同的x值,因δ的不同,所得y值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型.5.以下是收集到的新房屋销售价格y与房屋大小x的数据:房屋大小x(m2)80 105 110 115 135销售价格y(万元)18.4 22 21.6 24.8 29.2(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程.解:(1)散点图如下图.。

2.3变量间的相关关系(教、学案)

2.3变量间的相关关系(教、学案)

2. 3变量间的相关关系一、教材分析本节知识内容不多,但分析本节内容,至少有下列特点:1)知识的联系面广,应用性强,概念的真正理解有难度,教学既要承前启后,完成统计必修基础知识的构建;也要知道知识的来龙去脉,提升学生运用统计知识解决实际问题的能力,更要抓住本质,正确理解统计推断的结论。

2)通过典型案例进行教学,使知识形成的过程中具有可操作性,易于创设问题情境,引导学生参与,而学生借助解决问题,通过自主思维活动,会产生感悟、发现,能提出问题,思考交流,不仅能正确、全面地理解基础知识和基本方法,而且能促进、发展学生的统计意识、统计思想。

二、教学目标1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

三、教学重点难点重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程。

难点:对最小二乘法的理解。

四、学情分析本节是一种对样本数据的处理方法,但侧重的是由样本推断总体,其方法是学生初识的、知识的作用也是学生初见的。

知识量并不大,但涉及的数学方法、数学思想较充分,同时,在教材中留有供发现的点,设有开放性问题,既具有体验数学方法、数学思想的功能,也具有培养学生从具体到抽象能力、锻炼创造性思维能力的作用。

五、教学方法1.自主探究,互动学习2.学案导学:见后面的学案。

3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习课本,初步把握必须的定义。

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时八、教学过程〖复习回顾〗标准差的公式为:______________________________________________________〖创设情境〗1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。

推荐-新人教版高中数学2.3变量间的相关关系教案必修三

推荐-新人教版高中数学2.3变量间的相关关系教案必修三

变量间的相关关系的教学设计本节教学设计主要是使用TI92图形计算器,对普通高中课程标准实验教科书数学③第二章《统计》中的“两个变量的线性相关”进行有益的教与学探究。

学生通过对 TI图形计算器的操作,具体形象地利用散点图等直观图形认识变量之间的相关关系,同时,经历描述两个变量的相关关系的过程。

学生亲自体验了发现数学、领悟数学的全过程。

与此同时,教师在落实新课程标准的相关理念上作了一些有益的探讨。

教学设计与实践:[教学目标]:1、明确事物间的相互联系。

认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。

2、通过TI技术探究用不同的估算方法描述两个变量的线性相关关系的过程,学会用数学的有关变量来描述现实关系。

3、知道最小二乘法思想,了解其公式的推导。

会用TI图形计算器来求回归方程,相关系数。

[教学用具]:学生每人一台TI图形计算器、多媒体展示台、幻灯[教学实践情况]:一、问题引出:请同学们如实填写下表(在空格中打“√” )然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“ 如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。

”对你来说,是这样吗?同意这种说法的同学请举手。

根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。

(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。

)教师总结如下:物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。

数学成绩的高低对物理成绩的高低是有一定影响的。

但决非唯一因素,还有其它因素,如图所示(幻灯片给出):(影响你的物理成绩的关系图)因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。

但这两个变量是有一定关系的,它们之间是一种不确定性的关系。

如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。

2017-2018学年2.3变量间的相关关系.1变量之间的相关关系教案

2017-2018学年2.3变量间的相关关系.1变量之间的相关关系教案

课题:§2.3.1变量之间的相关关系
一.教学任务分析:
(1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.
(2) 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.
(3) 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用. 二.教学重点与难点:
教学重点:利用散点图直观认识变量间的相关关系.
教学难点:理解变量间的相关关系.
四.教学情境设计:
1.创设情景,揭示课题
生活中存在着许多相关关系的问题:
问题1:商品销售收入与广告支出之间的关系.
问题2:粮食产量和施肥量之间的关系.
问题3:人体内的脂肪含量与年龄之间的关系.
2.两个变量的线性相关
问题4: 在一次对人体的脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
根据上述数据,人体的脂肪含量和年龄之间有怎样的关系?
图中点的趋势表明两个变量之间存在一定的关系.这种关系称为正相关.
3. 两个变量的线性相关性的判断
4.练习:
(1)下列两个变量之间的关系哪个不是函数关系()
A.角度和它的余弦值 B.正方形边长和面积
C.正n边形的边数和它的内角和 D.人的年龄和身高
(2)给出施化肥量对水稻产量影响的试验数据:
请判断施化肥量对水稻产量是否有影响,说明理由.。

高中数学必修3第二章第三节《变量间的相关关系》全套教案

高中数学必修3第二章第三节《变量间的相关关系》全套教案

2.3.变量间的相关关系2.3.1变量间的相关关系【教学目标】(1)了解变量之间的相关关系。

(2)会区别变量之间的函数关系与变量相关关系。

(3)会举例说明现实生活中变量之间的相关关系。

【教学重点难点】1、变量之间的相关关系。

2、会区别变量之间的函数关系与变量相关关系。

3、会举例说明现实生活中变量之间的相关关系。

【学前准备】:多媒体,预习例题个准确的函数来表示,广告费(自变量x)一定时销售额(因变量y)并没有确定,而是因为受多种因素的影响带有一定的随机性。

2、你能试着总结一下相关关系的定义吗?变量间的相关关系定义:自变婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。

你认为这样的结论可靠吗?如何证明这个问题的可靠性?分析:(1)吸烟只是影响健康的一个因素,对健康的影响还有其他的一些因素,两者之间非函数关系即非因果关系;(2)不对,这也是相关关系而不是函数关系。

上面提到了很多相关关系,那它们之间的相关关系强还是弱?我们下面来研究一下。

散点图.2.3.2两个变量的线性相关【教学目标】(1)了解最小二乘法的思想及回归直线方程的推导过程;(2)通过实例加强对回归直线方程含义的理解。

【教学重难点】重点:利用散点图直观地判断两个变量之间的线性相关关系,了解统计学中,数据处理的经典方法——最小二乘法,掌握回归方程系数公式求回归方程,且进行实际预测。

难点:通过代数的方法刻画“从整体上看,各点与回归直线的距离最小”的几何特征,让学生了解最小二乘法思想,形成回归分析思想。

【学前准备】:多媒体,预习例题学生预分类情况:分类1:分成三组(1)(5),(2)(3(4)(8), 其中(1)(5)图中的点分布在一条直线上;(3)(6)(7)图中的点大部分的点落在某条直线附近,呈带状分布;(4)(8)图中的点分布比2.为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,得到如下数据:广告费用(千元) 1.0 4.0 6.0 10.0 14.销售额(千元) 19.0 44.0 40.0 52.0 53.(1)画出散点图。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系优秀教案一、教学目标:1. 让学生理解相关关系的概念,掌握相关系数的定义和计算方法。

2. 培养学生运用相关系数分析实际问题,判断变量间的关系。

3. 引导学生利用图表和数据进行推理和分析,提高学生的数据分析能力。

二、教学内容:1. 相关关系的概念和性质2. 相关系数的定义和计算方法3. 相关系数的大小与变量间关系的强度和方向4. 实际问题中的相关关系分析三、教学重点与难点:1. 重点:相关关系的概念、相关系数的定义和计算方法,相关系数的大小与变量间关系的判断。

2. 难点:相关系数计算公式的理解和应用,实际问题中的相关关系分析。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过实例认识相关关系。

2. 利用图表和数据进行分析,帮助学生理解相关系数的含义和作用。

3. 结合生活中的实际问题,培养学生运用相关系数分析和解决问题的能力。

五、教学准备:1. 准备相关关系的实例和数据,制作PPT进行展示。

2. 准备相关系数计算器,方便学生进行实践操作。

3. 准备一些实际问题,用于课堂讨论和分析。

六、教学过程:1. 引入:通过一个简单的实例,如身高和体重之间的关系,引导学生思考变量间的关系。

2. 讲解相关关系的概念和性质,解释相关系数的作用。

3. 讲解相关系数的定义和计算方法,引导学生理解相关系数的大小与变量间关系的强度和方向。

4. 进行实际问题分析,让学生运用相关系数判断变量间的关系。

5. 总结本节课的重点内容,布置课后作业。

七、课堂练习:1. 让学生使用相关系数计算器,计算给定数据集的相关系数。

2. 让学生分析实际问题中的相关关系,判断变量间的关系强度和方向。

3. 让学生解释相关系数在实际问题中的应用和意义。

八、课堂讨论:1. 引导学生讨论实际问题中的相关关系,分享彼此的想法和观点。

2. 引导学生从相关系数的角度分析实际问题,提出解决方案。

3. 鼓励学生提出问题,促进课堂互动和思考。

九、课后作业:1. 让学生完成相关关系练习题,巩固所学知识。

人教课标版高中数学必修三《变量间的相关关系》教案-新版

人教课标版高中数学必修三《变量间的相关关系》教案-新版

第二章统计2.3 变量间的相关关系一、教学目标1.核心素养通过本节学习,让学生初步形成数据处能理.2.学习目标(1)两个变量之间的相关关系的理解;(2)利用散点图直观认识两个变量之间的线性关系.(2)根据给出的线性回归方程的系数公式建立线性回归方程.3.学习重点根据线性回归方程的系数公式建立线性回归方程.4.学习难点回归思想的建立,对回归直线与观测数据关系的理解.二、教学设计(一)课前设计1.预习任务任务1阅读P84-P91,思考:两个变量的关系有哪些?如何发现两个变量的关系?任务2写出线性回归直线方程的系数公式,明白公式各部分的意义2.预习自测1.下列两个变量之间的关系不是函数关系的是()A.圆的半径和它的面积B.正方形边长和它的面积C.正n边形的边数和内角和D.人的年龄和身高解:D2.设有一个回归方程为y^=2-1.5x,则变量x增加一个单位时,y平均() A.增加1.5个单位B.增加2个单位C.减少1.5个单位D.减少2个单位解:C3.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是()A.y^=1.23x+4B.y^=1.23x+5C.y^=1.23x+0.08D.y^=0.08x+1.23解:C(二)课堂设计1.知识回顾(1)频率分布表,频率分布直方图,频率分布折线图,密度曲线.(2)中数,众数,平均数,方差,标准差.2.问题探究问题探究一两个变量之间有哪些关系,如何呈现?(★▲)●活动一创设情景,感知相关关系考察下列问题中两个变量之间的关系,想一想这些问题中两个变量之间的关系是函数关系吗?(1)商品销售收入与广告支出经费(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.(1)(2)(3)都不是函数关系,因为前者的好坏或多与少还由其它因素来确定. 述两个变量之间的关系是一种非确定性关系,称之为相关关系,也即是说自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.●活动二增设反例,深化相关关系的理解下列两个变量间,哪些是函数关系?哪些是相关关系?①已知二次函数y=ax2+bx+c,其中a、c是已知常数,取b为自变量,因变量是这个函数的判别式△=b2-4ac;②光照时间和果树亩产量;③每亩施用肥料量和粮食产量.它们之间的关系是函数关系的有①,是相关关系的有②③.函数关系中的两个变量间是一种确定性关系;相关关系是一种非确定性关系.函数关系是一种因果关系而相关关系不一定是因果关系,也可能是伴随关系.函数关系与相关关系之间有着密切联系,在一定条件下可以互相转化.问题探究二 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:50494541392723年龄28.226.327.525.921.217.89.5脂肪61605857565453年龄34.635.233.530.831.430.229.6脂肪其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数. ●活动一 初识案例,感知两个变量间的关系思考1:观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?随着年龄的增加,人体脂及含量在增加.思考2:以x 轴表示年龄,y 轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,散点图中的点散布在从左上角到右下角的区域两个变量成负相关. ●活动二 再析案例,用直线拟合两变量的关系有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点大致分布在一条直线附近.称这两个变量线性相关.思考3:对于一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线呢?●活动三 回归直线方程的求法在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.回归直线与散点图中各点的位置整体上最接近 .如何求回归直线呢?思考4:对一组具有线性相关关系的样本数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),设其回归方程为a bx y +=∧可以用哪些数量关系来刻画各样本点与回归直线的接近程度?.)(||2a bx y y y y y i i i i i i +=--∧∧∧其中,或可以用21ˆ()ni i i Q y y==-∑2221122()()()n n y bx a y bx a y bx a =--+--++--为了从整体上反映n 个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适?根据有关数学原理分析,当1122211()(),()n niii ii i nniii i x x y y x y nx yb a y bx x x xnx ====---===---∑∑∑∑时,总体偏差21)ˆ(∑=-=ni i yy Q 最小,这样就得到了回归方程,这种求回归方程的方法叫做最小二乘法.回归方程中,a ,b 的几何意义分别是什么?因此利用计算器或计算机可求得年龄和人体脂肪含量的样本数据的回归方程为48.0577.0-=x y ,由此我们可以根据一个人个年龄预测其体内脂肪含量的百分比的回归值.若某人37岁,则其体内脂肪含量的百分比约为20.9% 问题探究三例1.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得线性回归方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648;③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A.①② B.②③ C.③④ D.①④ 【知识点:正相关、负相关】解 D :由回归方程y ^=b ^x +a ^知当b ^>0时,y 与x 正相关,当b ^<0时,y 与x 负相关,∴①④一定错误.例2.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 【知识点:回归方程的简单应用】解:D ∵0.85>0,∴y 与x 正相关,∴A 正确;∵回归直线经过样本点的中心(x ,y ),∴B 正确;∵Δy =0.85(x +1)-85.71-(0.85x -85.71)=0.85,∴C 正确.例 3.某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少小时? 【知识点:回归方程】 解:(1)散点图如图.(2)由表中数据得:x =3.5,y =3.5 ∴b ^=0.7,∴a ^=1.05, ∴y ^=0.7x +1.05,回归直线如图所示.(3)将x =10代入线性回归方程,得y ^=0.7×10+1.05=8.05,故预测加工10个零件约需要8.05小时. 3.课堂总结(1)相关关系与函数关系的区别与联系①函数关系中的两个变量间是一种确定性关系,相关关系是一种非确定性的关系.线性相关关系是相关关系的一种特殊性况,它也是一种不确定的关系.②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系. ③函数关系与相关关系之间有着密切联系,在一定条件下可以相互转化.而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后,又可以用一种确定性的关系对这两个变量间的取值进行估计.④相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可以用来处理更为广泛的数学应用问题,还可以将对函数关系的认识上升到一个新的高度.(2)回归直线①回归直线的特征:像平均数可以作为一个变量的数据代表一样,回归直线也可以作为两个变量之间具有相关关系的代表.回归直线是样本数据点最大程度的吻合,即散点回归.②线性回归思想:把相关关系(不确定性关系)转化为函数关系(确定性关系).当两个具有相关关系的变量近似满足一次函数关系时,所进行的回归分析叫线性回归分析.③求回归直线方程的步骤:第一步:计算平均数x 和y ; 第二步:计算211,nni i i i i x y x ==∑∑;第三步:计算x b y axn x yx n yx x x y y x xbn i i ni ii ni i ni i iˆˆ,)()()(ˆ2121121-=--=--⋅-=∑∑∑∑====; 第四步:写出回归直线方程y bx a =+.(称点),(y x 为样本中心点,样本中心点),(y x 一定位于回归直线上)④得用回归直线方程对总体进行估计:利用回归直线方程对总体进行估计时,虽然这个值只是估计值,不是精确值,具有随机性,但它是根据统计规律得到 4.随堂检测 1.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩; ③某人每日吸烟量和身体健康情况; ④圆的半径与面积; ⑤汽车的重量和每千米耗油量. 其中两个变量成正相关的是( )A .①③B .②④C .②⑤D .④⑤ 【知识点:正相关,负相关】解:C 由变量的相关关系的概念知,②⑤是正相关,①③是负相关,④为函数关系.2. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )A .直线l 过点(x ,y )B .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在0到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 【知识点:回归直线】解A. 由样本的中心(x ,y )落在回归直线上可知A 正确;x 和y 的相关系数表示为x 与y 之间的线性相关程度,不表示直线l 的斜率,故B 错;x 和y 的相关系数应在-1到1之间,故C 错;分布在回归直线两侧的样本点的个数并不绝对平均,即无论样本点个数是奇数还是偶数,故D 错. 3. 某产品的广告费用x 与销售额y 的统计数据如下表:6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 【知识点:回归直线】 解:B经计算可知,回归方程为9.4x +9.1, ∴当x =6(万元)时,9.4×6+9.1=65.5(万元). (三)课后作业 基础型 自主突破1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( × ) (2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( √ )(3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( √ ) (4)某同学研究卖出的热饮杯数y 与气温x (℃)之间的关系,得回归方程y ^=-2.352x +147.767,则气温为2℃时,一定可卖出143杯热饮.( × ) 【知识点:正相关、负相关概念;回归方程】 解:× √ √ ×2. 在下列各图中,两个变量具有线性相关关系的图是( )(1)(2)(3)(4)A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)【知识点:散点图】解:D3.在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的线性回归方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可行性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【知识点:散点图,回归直线】解:D4. 下列结论正确的是()①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A.①②B.①②③C.①②④D.①②③④【知识点:相关关系,函数关系】解:C能力型师生共研5.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【知识点:相关关系】 解:D6.根据如下样本数据得到的回归方程为y ^=b ^x +a ^,则( ) A.a ^>0,b ^>0 B.a ^>0,b ^<0 C.a ^<0,b ^>0 D.a ^<0,b ^<0 【知识点:回归方程】解B :作出散点图如下:观察图象可知,回归直线y ^=b ^x +a ^的斜率b ^<0,当x =0时,y ^=a ^>0.故a ^>0,b ^<0.7.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 【知识点:回归方程】解B ∵0.85>0,∴y 与x 正相关,∴A 正确;∵回归直线经过样本点的中心(x ,y ),∴B 正确;∵Δy =0.85(x +1)-85.71-(0.85x -85.71)=0.85,∴C 正确.故选D.8.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180i i x ==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+. 【知识点:回归方程】 解析:(1)由题知21,81,1011=====∑∑==n i n i i i y n y x n x n ,80640720212=-=-∑=x n x ni i ,241601841=-=-∑=y x n y x ni i .因此4.083.02ˆ,3.0ˆ-=⨯-=-==x b y a b,故所求的回归方程为4.03.0-=x y (2)由0>b ,故x 与y 是正相关的.(3)代入回归方程中可以预测该项家庭的月储蓄为7.14.073.0=-⨯=y . 探究型 多维突破9.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =,w =81ii w=∑(Ⅰ)根据散点图判断,y=a +bx 与y =c +d y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程; (Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大? 【知识点:回归方程】解析:(1)由散点图可以判断x d c y +=适合作为年销售y 关于年宜传费用x 的回归方程类型(2)先建立y 关于w 的线性回归方程,由于68168.108)())((ˆ81281==---=∑∑==i ii i iw wy y w wd6.1008.668563ˆˆ=⨯-=-=∴d c,所以y 关于w 的线性回归方程为w y686.100ˆ+=,即y 关于x 的线性回归方程为x y 686.100ˆ+=. (3)由(1)和(2)知,当49=x 时,年销售量y 的预报值为6.57649686.100ˆ=+=y, 32.66492.06.576ˆ=-⨯=z,年利润z 的预报值为 12.206.13)686.100(2.0ˆ++-=-+=x x x x z, 所以当8.626.13==x ,即24.46=x 时,zˆ取得最大值. 自助餐1.已知变量x ,y 呈线性相关关系,线性回归方程为y =0.5+2x ,则变量x ,y 是( )A .线性正相关关系B .由回归方程无法判断其正负相关C .线性负相关关系D .不存在线性相关关系 【知识点: 相关关系】 解:A2.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+ 【知识点: 回归直线】 解:A3.已知变量x 和y 满足关系y ^=-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )A.x 与y 正相关,x 与z 负相关B.x 与y 正相关,x 与z 正相关C.x 与y 负相关,x 与z 负相关D.x 与y 负相关,x 与z 正相关 【知识点:相关关系】 解 C.4.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【知识点: 回归直线】 解B :由已知得8.28.610.011.311.9105x ++++==(万元),6.27.58.08.59.885y ++++==(万元),故80.76100.4a =-⨯=,所以回归直线方程为ˆ0.760.4y x =+,当社区一户收入为15万元家庭年支出为ˆ0.76150.411.8y=⨯+=(万元). 5.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1【知识点:散点图,回归直线】 解 D6.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得线性回归方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648;③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确的结论的序号是( ) A.①② B.②③ C.③④ D.①④ 【知识点:正相关、负相关概念】解D :由回归方程y ^=b ^x +a ^知当b ^>0时,y 与x 正相关,当b ^<0时,y 与x 负相关,∴①④一定错误.7.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为y b x a ''=+,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C. ˆˆ,b b a a ''<> D.a a b b '<'<ˆ,ˆ 【知识点:回归直线】 解:C ,画图即可求得8.如图所示,有A ,B ,C ,D ,E,5组数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.【知识点:散点图】 解:D9.工人月工资y (元)与劳动生产率x (千元)的回归方程为y ^=50+80x ,当劳动生产率提高1000元时,月工资平均提高________元. 【知识点:回归直线】解D:回归直线是用来估计总体的,所以我们求的值都是估算值,所以我们得到的结果也是近似的,只要把自变量的值代入回归直线方程即可求得结果为145.83(cm).10.某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时? 【知识点:回归方程的综合应用】 解 (1)散点图如图.(2)由表中数据得:x =3.5,y =3.5 ∴b ^=0.7,∴a ^=1.05, ∴y ^=0.7x +1.05,回归直线如图所示.(3)将x =10代入线性回归方程,得y ^=0.7×10+1.05=8.05,故预测加工10个零件约需要8.05小时.11.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)由于x -=16(x 1+x 2+x 3+x 4+x 5+x 6)=8.5,y -=16(y 1+y 2+y 3+y 4+y 5+y 6)=80.所以a =y --b x -=80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得L =x (-20x +250)-4(-20x +250)=-20x 2+330x -1000=-20⎝ ⎛⎭⎪⎫x -3342+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润.12.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=,7≈2.646.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -解:(1)99.0646.2255.089.2,89.2))((,28)(,471271≈⨯⨯≈=--=-=∑∑==r y y t t t t t i i i i i(Ⅱ)103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty tb, 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. 所以,y 关于t 的回归方程为:t y 10.092.0ˆ+=.将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.考点:线性相关与线性回归方 程的求法与应用. 五、数学视野最小二乘法最早称为回归分析法.由著名的英国生物学家、统计学家道尔顿(F .Gallton )——达尔文的表弟所创,早年,道尔顿致力于化学和遗传学领域的研究.他研究父亲的身高与儿子的身高之间的关系时,建立了回归分析法.在科学研究和实际工作中,常常会遇到这样的问题:给定两个变量x ,y 的n 组试验数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),如何从中找出这两个变量间的函数关系的近似解析表达式(也称为经验公式),使得能对x 与y 之间的除了数据外的对应情况作出判断. 这样的问题一般可以分为两类:一类是对x 与y 之间所存在的对应规律一无所知,这时要从试验数据中找出切合实际的近似解析表达式是相当困难的,俗称这类问题为黑箱问题;另一类是依据对问题所作的分析,通过数学建模或者通过整理归纳试验数据,能够判断出x 与y 之间满足或大体上满足某种类型的函数关系式y=f (x ,a ),其中a=(a 1,a 2,…,a n )是n 个待定的参数,这些参数的值可以通过m 组试验数据来确定(一般要求m>n ),这类问题称为灰箱问题.解决灰箱问题的原则通常是使用拟合函数在x i 处的值与试验数据的偏差平方和最小,即[f (x i ,a )-y i ]2取得最小值.这种在方差意义下对试验数据实现最佳拟合的方法称为“最小二乘法”,a 1,a 2,…,a n 称为最小二乘解,y=f (x ,a )称为拟合函数.现在回归分析法已远非道尔顿的本意,已经成为探索变量之间关系最重要的方法,用以找出变量之间关系的具体表现形式.。

《变量间的相关关系》教案(2)

《变量间的相关关系》教案(2)

《变量间的相关关系》教学设计一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算机基础,主要是电子表格的使用。

教材地位和作用:变量间的相关关系是高中新教材人教B版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。

为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。

结合教材特点及学情,特制定三维教学目标如下:二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及2回归方程系数公式的推导过程,利用电子表格求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。

②通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。

3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。

利用计算机让学生动手操作,合作交流激发学生的学习兴趣。

三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想借助电子表格求出回归方程。

教学内容的难点:对最小二乘法的数学思想和回归方程的理解教学实施过程中的难点:根据给出的线性回归方程的系数公式建立线性回归方程。

四、教学媒体设计本节课涉及大量数据计算及分析,用传统方法很难突破,故我主要采用电子表格和几何画板,通过学生动手操作、教师动画演示、师生合作交流来突出重点、突破难点。

学生学习效果有明显提高。

五、教学设计(具体如下表)(一)、创设情境 导入新课1、相关关系的理解 师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢? 让学生举例,教师总结 如: 生:不是。

【优质文档】人教A版数学必修三教案:§2.3变量间的相关关系(1)

【优质文档】人教A版数学必修三教案:§2.3变量间的相关关系(1)

2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关一、教材分析变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在的关系”,不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.二、教学目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.三、重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想.四、课时安排2课时五、教学设计第1课时(一)导入新课思路 1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?):请同学们如实填写下表(在空格中打“√” 好中差你的数学成绩你的物理成绩学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路 2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?(二)推进新课、新知探究、提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、但是,不管你的经验多么丰富,如果只凭经学习经验作出相应的判断,因为“经验当中有规律”.验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;我们就说身高与体重这两个变②带有随机性的变量间的相关关系,例如“身高者,体重也重”,量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23 27 38 41 45 49 50 脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄53 54 56 57 58 60 61 脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6 分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加.我们可以作散点图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系. b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)(三)应用示例思路 1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例 2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路 2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价:品牌所含热量的百分比口味记录A 25 89B 34 89C 20 80D 19 78E 26 75F 20 71G 19 65H 24 62I 19 60J 13 52(1)作出这些数据的散点图.(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.性别身高/cm 右手一拃长/cm 性别身高/cm 右手一拃长/cm 女152 18.5 女153 16.0女156 16.0 女157 20.0女158 17.3 女159 20.0女160 15.0 女160 16.0女160 17.5 女160 17.5女160 19.0 女160 19.0女160 19.0 女160 19.5女161 16.1 女161 18.0女162 18.2 女162 18.5女163 20.0 女163 21.5女164 17.0 女164 18.5女164 19.0 女164 20.0女165 15.0 女165 16.0女165 17.5 女165 19.5女166 19.0 女167 19.0女167 19.0 女168 16.0女168 19.0 女168 19.5女170 21.0 女170 21.0女170 21.0 女171 19.0女171 20.0 女171 21.5女172 18.5 女173 18.0女173 22.0 男162 19.0男164 19.0 男165 21.0男168 18.0 男168 19.0男169 17.0 男169 20.0男170 20.0 男170 21.0男170 21.5 男170 22.0男171 21.5 男171 21.5男171 22.3 男172 21.5男172 23.0 男173 20.0男173 20.0 男173 20.0男173 20.0 男173 21.0男174 22.0 男174 22.0男175 16.0 男175 20.0男175 21.0 男175 21.2男175 22.0 男176 16.0男176 19.0 男176 20.0男176 22.0 男176 22.0男177 21.0 男178 21.0男178 21.0 男178 22.5男178 24.0 男179 21.5男179 21.5 男179 23.0男180 22.5 男181 21.1男181 21.5 男181 23.0男182 18.5 男182 21.5男182 24.0 男183 21.2男185 25.0 男186 22.0男191 21.0 男191 23.0 (1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.(四)知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x(个)10 20 30 40 50 60 70 80 90 100 加工时间y(min) 62 68 75 81 89 95 102 108 115 122 画出散点图;关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.(五)拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积(m2)115 110 80 135 105销售价格(万元)24.8 21.6 18.4 29.2 22 (1)画出数据对应的散点图;(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系.(六)课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.(七)作业习题2.3A组3、4(1).。

变量间的相关关系教案

变量间的相关关系教案

变量间的相关关系优秀教案第一章:引言1.1 课程介绍本课程旨在帮助学生理解变量间的相关关系,并学会如何进行相关性分析。

通过本章的学习,学生将能够掌握相关性概念,并了解相关性在实际应用中的重要性。

1.2 变量间的相关关系概念1.2.1 变量概念变量是研究对象的特征或属性,可以用来衡量或描述。

在本课程中,我们将关注两种类型的变量:定量变量和分类变量。

1.2.2 相关关系概念相关关系是指两个变量之间的相互关系或关联程度。

相关关系可以是正相关的,即一个变量增加时,另一个变量也增加;也可以是负相关的,即一个变量增加时,另一个变量减少。

第二章:皮尔逊相关系数2.1 皮尔逊相关系数的概念皮尔逊相关系数是衡量两个定量变量之间线性相关程度的一种统计方法。

它的取值范围在-1到1之间,当相关系数为1时,表示完全正相关;当相关系数为-1时,表示完全负相关;当相关系数为0时,表示没有相关关系。

2.2 计算皮尔逊相关系数2.2.1 数据收集收集两组定量变量的数据,并将其整理成表格形式。

2.2.2 计算步骤(1)计算两组数据的均值;(2)计算两组数据的标准差;(3)计算协方差;(4)计算皮尔逊相关系数。

2.3 应用案例通过实际案例,让学生了解如何使用皮尔逊相关系数进行相关性分析,并解释结果。

第三章:斯皮尔曼等级相关系数3.1 斯皮尔曼等级相关系数的概念斯皮尔曼等级相关系数是衡量两个变量之间单调相关程度的一种非参数方法。

它适用于非正态分布的数据或有序分类变量。

3.2 计算斯皮尔曼等级相关系数3.2.1 数据收集收集两组有序分类变量的数据,并将其整理成表格形式。

3.2.2 计算步骤(1)将数据进行等级排序;(2)计算等级差的积;(3)计算等级差的平均值;(4)计算斯皮尔曼等级相关系数。

3.3 应用案例通过实际案例,让学生了解如何使用斯皮尔曼等级相关系数进行相关性分析,并解释结果。

第四章:肯德尔等级相关系数4.1 肯德尔等级相关系数的概念肯德尔等级相关系数是衡量多于两个变量之间单调相关程度的一种非参数方法。

高中数学变量间的相关关系教案1 新人教A版必修3

高中数学变量间的相关关系教案1 新人教A版必修3

2.2.3 变量间的相关关系[知识与技能]1 两个变量间的相关关系(1)、两个变量间的相关关系的定义。

自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。

(2)、两个变量间的种类。

两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系。

例如“身高者,体重也重”。

我们就说身高与体重这两个变量具有相关关系。

2 两个变量间的相关关系的判断(1)、散点图。

(2)、根据散点图中变量的对应点的离散程度,可以准确的判断两个变量是否具有相关关系。

(3)、正相关、负相关的概念。

3 回归直线方程(1)回归直线的概念(2)回归直线方程4、回归直线方程的系数公式[过程与方法][例1] 下列关系中,是带有随机性相关关系的是①正方形的边长面积之间的关系;②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系。

[分析] 两变量之间的关系有两种:函数关系与带有机性的相关关系。

①正方形的边长与面积之间的关系是函数关系。

②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系。

③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系。

④降雪量与交通事故的发生率之间具有相关关系,因此填②、④。

[例2] 现随机抽取某校10名学生在入学考中的数学成绩X与入学后的第一次数学考试成绩Y,数据如下:[分析] 应用散点图分析解:(图略)这10名同学的两次数学考试成绩具有相关关系。

[创新思维训练]一、选择题1、在下列各图中,每个图的两个变量具有相关关系的图是()(2)(3)(4)A :(1)(2)B :(1)(3)C :(2)(4)D :(2)(3) 2、线性回归方程a bx y +=∧必过[ ]A :(0,0)点B :(x ,0)点C :(0,y )点心D :(y x ,)点 3、设有一个直线回归方程为y=2-1.5x, 则变量x 增加一个单位时 A :y 平均增加1.5个单位于 B :y 平均增加2个单位 C :y 平均减少1.5个单位 D :y 平均减少2个单位二、填空题4、变量与变量之间的关系有两类:一类是 ,另一类是。

高中变量间的相关关系教案

高中变量间的相关关系教案

2.3 变量间的相关关系[知识与技能]1 两个变量间的相关关系(1)、两个变量间的相关关系的定义。

自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。

(2)、两个变量间的种类。

两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系。

例如“身高者,体重也重”。

我们就说身高与体重这两个变量具有相关关系。

2 两个变量间的相关关系的判断(1)、散点图。

(2)、根据散点图中变量的对应点的离散程度,可以准确的判断两个变量是否具有相关关系。

(3)、正相关、负相关的概念。

3 回归直线方程(1)回归直线的概念(2)回归直线方程4、回归直线方程的系数公式[过程与方法][例1] 下列关系中,是带有随机性相关关系的是①正方形的边长面积之间的关系;②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系。

[分析] 两变量之间的关系有两种:函数关系与带有机性的相关关系。

①正方形的边长与面积之间的关系是函数关系。

②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系。

③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系。

④降雪量与交通事故的发生率之间具有相关关系,因此填②、④。

[例2] 现随机抽取某校10名学生在入学考中的数学成绩X与入学后的第一次数学考试成绩Y,数据如下:问这10名同学的两次数学考试成绩是否具有相关关系?[分析] 应用散点图分析解:(图略)这10名同学的两次数学考试成绩具有相关关系。

[创新思维训练]一、选择题1、在下列各图中,每个图的两个变量具有相关关系的图是()(1)(2)(3)(4)A:(1)(2) B:(1)(3) C:(2)(4) D:(2)(3)2、线性回归方程a bx y +=∧必过[ ]A :(0,0)点B :(x ,0)点C :(0,y )点心D :(y x ,)点3、设有一个直线回归方程为y=2-1.5x, 则变量x 增加一个单位时A :y 平均增加1.5个单位于B :y 平均增加2个单位C :y 平均减少1.5个单位D :y 平均减少2个单位二、填空题4、变量与变量之间的关系有两类:一类是 ,另一类是。

2.3变量间的相关关系教案(人教A版必修3)

2.3变量间的相关关系教案(人教A版必修3)

2.3变量间的相关关系●三维目标1.知识与技能通过收集现实问题中两个有关联变量的数据,认识变量间的相关关系.2.过程与方法明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.情感、态度与价值观通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想.●重点难点重点:(1)通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;(2)利用散点图直观认识两个变量之间的线性关系.难点:(1)变量之间相关关系的理解;(2)作散点图和理解两个变量的正相关和负相关.从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来.通过对典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律.通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系强化本节重点.通过学生讨论、交流,用TI图形计算器展示、对比自己作出的散点图,得出线性相关关系、正负相关关系的概念.教师及时将求线性方程的公式展示出来,通过例题的讲解和训练,进一步加深对散点图和回归方程的理解,突破难点.下表是水稻产量与施化肥量的一组观测数据:1.【提示】 散点图如下:2.施化肥量与水稻产量有关系吗? 【提示】 有关系.1.相关关系:不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.2.散点图:将样本中几个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.3.正相关与负相关:散点图中的点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,称它为正相关.若散点图中的点分布在从左上角到右下角的区域内,对于两个变量的这种相关关系,称它为负相关.一台机器由于使用时间较长,生产的零件有一些会有缺陷.按不同转速生产出有缺陷的零件的统计数据如下:1.【提示】2.从散点图中判断x和y之间是否具有相关关系?【提示】有.3.若转速为10转/秒,能否预测机器每小时生产缺陷的零件件数?【提示】可以.根据散点图作出一条直线,求出直线方程后可预测.1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程.3.最小二乘法求回归直线时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.4.求回归方程若两个具有线性相关关系的变量的一组数据为:(x1,y1),(x2,y2),…,(x n,y n ),则所求的回归方程为y ∧=b ∧x +a ∧,其中a ∧,b ∧为待定的参数,由最小二乘法得: ⎩⎪⎨⎪⎧b ∧=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x -y -∑i =1nx 2i-n x -2,a ∧=y -b ∧x .b ∧是回归直线斜率,a ∧是回归直线在y 轴上的截距以下是在某地搜集到的不同楼盘新房屋的销售价格y (单位:万元)和房屋面积x (单位:m 2)的数据:(1)(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【思路探究】 涉及两个变量房屋面积与销售价格,以房屋面积为自变量,考察销售价格的变化趋势从而做出判断.【自主解答】 (1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.两个随机变量x和y相关关系的确定方法:1.散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断.2.表格、关系式法:结合表格或关系式进行判断.3.经验法:借助积累的经验进行分析判断.5个学生的数学和物理成绩如下表:【解】以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如图所示,由散点图可知,两者之间具有线性相关关系,且是正相关.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(2)如果y与x具有线性相关关系,求y关于x的回归直线方程.【思路探究】【自主解答】(1)画散点图如下:由上图可知y与x具有线性相关关系.(2)列表、计算:b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668,a ∧=y -b ∧x =91.7-0.668×55=54.96.即所求的回归直线方程为:y ∧=0.668x +54.96.用公式求回归方程的一般步骤: (1)列表x i ,y i ,x i y i ; (2)计算x ,y,∑ni =1x 2i ,∑n i =1x i y i ; (3)代入公式计算b ∧、a ∧的值; (4)写出回归方程.假设关于某设备的使用年限x 和所支出的维修费用y (万元)有如下的统计资料:(1)作出散点图,判断y 对x 是否线性相关,若线性相关,求线性回归方程y ^=b ^x +a ^中的a ^,b ^;(2)估计使用年限为10年时的维修费用.【解】 (1)作出散点图,如图所示,由散点图可知y 对x 是线性相关的.制表如下:于是有b ^=112.3-5×4×590-5×42=12.310=1.23,a ^=y --b ^x -=5-1.23×4=0.08. (2)回归直线方程是y ^=1.23x +0.08,当x =10时,y ^=1.23×10+0.08=12.38(万元), 即估计使用10年时维修费用是12.38万元.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)(2)请根据上表提供的数据,用最小二乘法求出回归方程y ∧=b ∧x +a ∧; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【思路探究】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ∧,a ∧的值;(3)实际上就是求当x =100时,对应的y 的值.【自主解答】 (1)散点图,如图所示.(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86,∴b ∧=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ∧=y -b ∧x =3.5-0.7×4.5=0.35, 故线性回归方程为y ∧=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨标准煤).回归分析的三个步骤(1)判断两个变量是否线性相关:可以利用经验,也可以画散点图. (2)求线性回归方程,注意运算的正确性.(3)根据回归直线进行预测估计:估计值不是实际值,两者会有一定的误差.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水含碳量x 与冶炼时间y (从炉料熔化完毕到出钢的时间)的几种对应数据如下表所示:(2)求回归直线方程;(3)预测当钢水含碳量为160个0.01%时应冶炼多少分钟.【解】 (1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示.从图中可以看出,各点散布在一条直线附近,即它们线性相关. (2)列表如下:设所求的回归直线方程为y ∧=b ∧x +a ∧.b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x 2=287 640-10×159.8×172265 448-10×159.82≈1.27,a ∧=y -b ∧x ≈172-1.27×159.8≈-30.95, 即所求的回归直线方程为y ∧=1.27x -30.95. (3)当x =160时,y ∧=1.27×160-30.95≈172(分), 即大约冶炼172分钟.数形结合在线性相关性中的应用(12分)下表数据是退水温度x (℃)对黄硐延长性y (%)效应的试验结果,y 是以延长度计算的,且对于给定的x ,y 为正态变量,其方差与x 无关.(1)(2)指出x ,y 是否线性相关;(3)若线性相关,求y 关于x 的线性回归方程; (4)估计退水温度是1 000 ℃时,黄硐延长性的情况.【思路点拨】 根据所给数据画出散点图,然后可借助函数的思想分析. 【规范解答】 (1)散点图如图所示.4分(2)由散点图可以看出样本点分布在一条直线的附近,可见y 与x 线性相关.5分(3)列出下表,并用科学计算器进行有关计算.于是可得:b ∧=∑i =16x i y i -6x y∑i =16x 2i -6x 2=198 400-6×550×571 990 000-6×5502≈0.058 857,8分a ∧=y -b ∧x =57-0.058 857×550=24.628 65.9分 因此所求的线性回归方程为y ∧=0.058 857x +24.628 65.10分(4)将x =1 000代入回归方程得y ∧=0.058 857×1 000+24.628 65=83.486,即退水温度是1 000 ℃时,黄硐延长性大约是83.486%.12分1.在研究两个变量是否存在某种关系时,必须从散点图入手,对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一函数曲线附近,那么变量之间具有相关关系;(3)如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系.2.利用散点图判断两个变量之间是否具有线性相关关系,体现了数形结合思想的作用,而用回归直线方程进行估计又体现了函数与方程思想的应用.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ∧,b ∧的值时,要先算出b ∧,然后才能算出a ∧.3.利用回归方程,我们可以进行估计和预测.若回归直线方程为y ∧=b ∧x +a ∧,则x =x 0处的估计值为y ∧0=b ∧x 0+a ∧.由于回归直线将部分观测值所反映的规律进行了延伸,所以它在情况预报、资料补充等方面有着广泛的应用.1.下列变量之间的关系是相关关系的是( ) A .正方体的表面积与体积 B .光照时间与果树产量C .匀速行驶车辆的行驶距离与时间D .中国足球队的比赛成绩与中国乒乓球队的比赛成绩 【解析】 A 、C 是函数关系,D 无相关关系. 【答案】 B2.设一个回归方程y ∧=3+1.2x ,则变量x 增加一个单位时 ( ) A .y 平均增加1.2个单位 B .y 平均增加3个单位 C .y 平均减少1.2个单位 D .y 平均减少3个单位 【解析】 由b =1.2>0,故选A. 【答案】 A3.若施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ∧=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.【解析】 当x =80时,y ∧=400+250=650. 【答案】 6504.某公司利润y (单位:千万元)与销售总额x (单位:千万元)之间有如下表对应数据:(1)(2)判断y 与x 是否具有线性相关关系. 【解】 (1)散点图如下:(2)由图可知,所有数据点接近直线排列,因此,认为y 与x 有线性相关关系,且为正相关.一、选择题1.判断下列图形中具有相关关系的两个变量是( )【解析】 A 、B 为函数关系,D 无相关关系. 【答案】 C2.已知x 与y 之间的一组数据:则y 与x 的线性回归方程y =bx +a 必过点( ) A .(1,2) B .(5,2) C .(2,5)D .(2.5,5)【解析】 线性回归方程一定过样本中心(x ,y ). 由x =0+1+2+3+45=2,y =1+3+5+7+95=5.故必过点(2,5). 【答案】 C3.(2013·湖北高考)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578. 其中一定不正确...的结论的序号是( ) A .①② B .②③ C .③④D .①④【解析】 由正负相关性的定义知①④一定不正确. 【答案】 D4.两个相关变量满足如下关系:A.y ∧=0.56x +997.4 B.y ∧=0.63x -231.2C.y ∧=50.2x +501.4D.y ∧=60.4x +400.7【解析】 x =15(10+15+20+25+30)=20, y =15(1 003+1 005+1 010+1 011+1 014)=1 008.6, 代入所给选项A 符合. 【答案】 A5.(2013·福建高考)已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b^>b ′,a ^>a ′ B.b^>b ′,a ^<a ′ C.b^<b ′,a ^>a ′ D.b^<b ′,a ^<a ′ 【解析】 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2. 求b^,a ^时, ∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136,∑i =16x 2i =1+4+9+16+25+36=91,∴b^=58-6×3.5×13691-6×3.52=57,a^=136-57×3.5=136-52=-13, ∴b^<b ′,a ^>a ′. 【答案】 C 二、填空题6.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y对x 的回归直线方程:y ∧=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 由于y ∧=0.254x +0.321知,当x 增加1万元时,年饮食支出y 增加0.254万元.【答案】 0.2547.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程中的b =-2.气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量约为________件.【解析】 样本中心点是(10,35.5),则a ∧=y --b ∧ x -=35.5-(-2)×10=55.5, 故线性回归方程为y ∧=-2x +55.5,将x =6代入得y ∧=-2×6+55.5=43.5≈44. 【答案】 448.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据(由资料显示y 与x 呈线性相关关系):根据上表提供的数据得到回归方程y =b x +a 中的b =6.5,预测销售额为115万元时约需________万元广告费.【解析】 x =15(2+4+5+6+8)=5, y =15(30+40+60+50+70)=50,由b ∧=6.5知,a ∧=y -b ∧·x =50-6.5×5=17.5, ∴y ∧=17.5+6.5x ,当y ∧=115时,解得x =15. 【答案】 15 三、解答题9.某工厂对某产品的产量与成本的资料分析后有如下数据:(1)(2)求成本y 与产量x 之间的线性回归方程.(结果保留两位小数) 【解】 (1)散点图如图所示.(2)设y 与产量x 的线性回归方程为y ∧=b ∧x +a ∧, x =2+3+5+64=4,y =7+8+9+124=9,b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=(x 1y 1+x 2y 2+x 3y 3+x 4y 4)-4x yx 21+x 22+x 23+x 24-4x 2=1110=1.10,a ∧=y -b ∧x =9-1.10×4=4.60. ∴回归方程为:y ∧=1.10x +4.60.10.高三(1)班的10名学生每周用于数学学习的时间x (h)与数学成绩y (分)之间有如下对应数据:) 【解】 列出下表,并用科学计算器进行有关计算.b ∧=∑i =110x i y i -10x ·y∑i =110x 2i -10x 2=545.4154.4≈3.53,a ∧=y -b ∧x =74.9-3.53×17.4≈13.48,∴所求的回归方程是y ∧=3.53x +13.48.11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ∧; (2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.【解】 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据预处理如下:x y b ∧=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5,a ∧=y -b ∧x =3.2.由上述计算结果,知所求回归直线方程为 y ∧-257=b ∧(x -2 008)+a ∧=6.5(x -2 008)+3.2. 即y ∧=6.5×(x -2 008)+260.2.(2)利用所求得的回归方程,可预测2014年的粮食需求量为 6.5×(2 014-2 008)+260.2=6.5×6+260.2=299.2(万吨).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.2 两个变量的线性相关
教学目标:经历用不同估算方法描述两个变量线性相关的过程。

知道最小
二乘法的思想,能根据给出的线性回归方程系数公式建立线性
回归方程。

教学重点:经历用不同估算方法描述两个变量线性相关的过程。

知道最小
二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

教学过程:
1.回顾上节课的案例分析给出如下概念: (1)回归直线方程 (2)回归系数
2.最小二乘法
3.直线回归方程的应用 (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述
两个变量间依存的数量关系
(2)利用回归方程进行预测;把预报因子(即自变量x )代入回归
方程对预报量(即因变量Y )进行估计,即可得到个体Y 值
的容许区间。

(3)利用回归方程进行统计控制规定Y 值的变化,通过控制x 的
范围来实现统计控制的目标。

如已经得到了空气中NO 2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO 2的浓度。

4.应用直线回归的注意事项
(1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延。

5.实例分析:
某调查者从调查中获知某公司近年来科研费用支出(i X )与公司所获得利润(i Y )的统计资料如下表:
科研费用支出(i X )与利润(i Y )统计表 单位:万元
年份 科研费用支出 利润 1998 1999 2000
5 11 4
31 40 30
在图中显示回归方程和相关系数。

课堂练习:
小结:经历用不同估算方法描述两个变量线性相关的过程。

知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

课后作业:作业:根据情况安排。

相关文档
最新文档