正态分布性质的讨论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正态分布性质的讨论
数学102:田贵文指导教师:肖鹏
陕西科技大学理学院陕西西安 710021
摘要:正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。它概率论中最重要的一种分布,也是自然界最常见的一种分布。该分布由两个参数——平均值和方差决定。它是一种最常见的连续性随机变量的概率分布,其概率密度函数曲线以均值为对称中线,方差越小,分布越集中在均值附近。其曲线呈钟形,因此人们又经常称之为钟形曲线。
关键词:高斯分布,钟形曲线,定义,特征,意义
Normal Distribution Nature Of Discussion
ABSTRACT:normal distribution, also known as the Gaussian distribution, is a very important in the field of mathematics, physics and engineering probability distribution has a significant influence in many aspects of the statistical. It in probability theory, the most important kind of distribution, but also the nature of the most common kind of distribution. The distribution by two parameters - the mean and variance of the decision.It is one of the most common continuous probability distribution of the random variable, its probability density function curve symmetrical midline of the mean, variance is smaller, the higher the concentration distribution around the mean. The bell-shaped curve, so people and is often referred to as a bell curve. KEYWORDS: Gaussian distribution ,bell curve, defining, feature ,significance
正态分布是一个具有神秘色彩的分布。我们知道,对于某一件事或者某个要达到的目标,很多很多的个体发挥出来的水平大致上服从正态分布。也就是说,对于大量个体的发挥统计,常常能看到正态分布“冥冥之中”束缚着整体的状态。对于某个单独的单位,一般来说,对于“发挥出来的水平”这件事,也往往有波动的效果,不管是机器、工具还是我们人本身:有的时候,超水平发挥了;有的时候正常发挥;有的时候又会发挥失常。这种东西应该也可以抽象为围绕期望水平的正态分布。还有一个角度,如果有若干数据,包括发挥水平、排位情况,但是没有整体数据的时候,如果能推测是正态分布的情形,就可以近似计算出分布函数来,然后去估计其他的分布情况。这是反向推导的过程。
一、正态分布的定义
正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2)。服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越
集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x 轴上方的钟形曲线。当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
二、正态分布的特征
服从正态分布的变量的频数分布由μ、σ完全决定。
1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。
5、u 变换:为了便于描述和应用,常将正态变量作数据转换。μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X =μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。
6、σ 描述正态分布资料数据分布的离散程度,σ 越大,数据分布越分散,σ 越小,数据分布越集中。 也称为是正态分布的形状参数,σ 越大,曲线越扁平,反之,σ 越小,曲线越瘦高。
7、P(μ-σ ()P 3X 399.7%μσμ-<≤+= 三、正态分布的应用 正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t 分布、F 分布等。其主要应用如下: 1.估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。