最优化之多目标规划概要
多目标优化基本概念
多目标优化基本概念多目标优化(Multi-objective Optimization,简称MOO)是一种在优化问题中同时考虑多个冲突的目标并找到它们之间的最佳平衡点的方法。
在很多实际问题中,单一目标优化方法无法解决问题的多样性和复杂性,因此需要多目标优化方法来解决这些问题。
1.目标函数:多目标优化问题通常涉及到多个冲突的目标函数。
这些目标函数通常是需要最小化或最大化的。
例如,在生产计划问题中,需要最小化成本和最大化生产效率。
在路线规划问题中,需要最小化行驶距离和最小化行驶时间。
2. Pareto最优解:多目标优化问题的解集通常由一组候选解组成,这些解在目标空间中构成了一个前沿(Frontier)或Pareto前沿。
Pareto最优解是指在目标空间中,不存在其他解能够同步减小或增大所有目标函数值而不减小或增大一些目标函数值的解。
也就是说,Pareto最优解是一种无法在同时满足所有目标的情况下进一步优化的解。
3.帕累托支配关系:在多目标优化问题中,解的优劣之间通常通过帕累托支配关系进行比较。
如果一个解A在目标空间中支配解B,则称解A支配解B。
一个解A支配解B,意味着解A在至少一个目标函数上优于解B,并且在其他目标函数上与解B相等。
如果一个解A不能被任何其他解支配,则称解A为非支配解。
4. 优化算法:多目标优化问题的解集通常非常复杂,无法通过常规的单目标优化算法来解决。
因此,需要专门的多目标优化算法。
常见的多目标优化算法包括进化算法(如遗传算法、粒子群算法)、多目标精英蚁群算法、多目标遗传规划算法等。
这些算法在空间中同时考虑多个目标函数,并通过不同的策略来寻找Pareto最优解。
例如,在进化算法中,通过使用非支配排序和拥挤度距离来保持种群的多样性,并在进化过程中进行解集的更新和进化。
5. 解集选择和决策:多目标优化算法通常会生成一组非支配解,这些解构成了整个Pareto前沿。
解集选择是指从这个解集中选择一个或多个解作为最终的优化结果。
多目标最优化问题全面介绍
多目标最优化问题全面介绍§8.1多目标最优化问题的基本原理一、多目标最优化问题的实例例1 梁的设计问题设用直径为1的圆木加工成截面积为矩形的梁,为使强度最大而成本最低,问应如何设计梁的尺寸?解:设梁的截面积宽和高分别为1x 和2x 强度最大=惯性矩最大22161x x = 成本最低=截面积最小=21x x 故数学模型为: min 1x 2xmax22161x x.s t 22121x x +=10x ≥,20x ≥ 例2 买糖问题已知食品店有1A , 2A ,3A 三种糖果单价分别为4元∕公斤,2.8元∕公斤,2.4元∕公斤,今要筹办一次茶话会,要求用于买买糖的钱不超于20元,糖的总量不少于6公斤,1A ,2A 两种糖的总和不少于3公斤,问应如何确定买糖的最佳方案?解:设购买1A , 2A ,3A 三种糖公斤数为1x ,2x ,3x1A 2A 3A重量 1x 2x3x单价 4元∕公斤 2.8元∕公斤 2.4元∕公斤min 14x +22.8x +32.4x (用钱最省)max 1x +2x +3x (糖的总量最多).st 14x +22.8x +32.4x 20≤ (用钱总数的限制)1x +2x +3x 6≥(用糖总量的要求)1x +2x3≥(糖品种的要求)1x ,2x ,3x 0≥是一个线性多目标规划。
二、多目标最优化的模型12min ()((),(),.....())T m V F x f x f x f x -=.st ()0g x ≥()0h x ≥多目标规划最优化问题实际上是一个向量函数的优化问题,当m=1,多目标优化就是前面讲的单目标优化问题三、解的概念1.序的概念12,.....()Tm a a a a = 12,.....()Tmb b b b =(1)b a =?a iib = 1,2....i m = (2)a b ≤?a i ib ≤ 1,2....i m = 称a 小于等于b(3)a b <=?a i ib ≤ 且?1≤j ≤m ,使a j j b ≠,则a 小于向量b(4)ab < 1,2....i m = 称a 严格小于b绝对最优解:设多目标最优化问题的可行域为D ,*x ∈D ,如果对x ?D ∈,都有*()()F F x x <,则称*x 为多目标最优化的绝对最优解,称绝对最优解的全体为绝对最优解集,记ab R ,absolute —绝对有效解:可行域为D ,*x ∈D ,如果不存在x D ∈,使*()()F F x x <=,则称*x 为有效解,也称pareto 最优解,称有效解的全体为有效解集,记pa R 是由1951年T.C.Koopmans 提出的。
第8章 多目标优化
Rab R pa
定理8.2 对于多目标最优化问题总有R pa Rwp ,即
有效解必是弱有效解. 证 用反证法.设 X * Rpa 但 X * Rwp ,则由定义 8.4可知,X ' D,使得F ( X ' ) F ( X *),这与 X * R pa 矛盾.所以 X * Rwp,即R pa Rwp .
T T 设a [a1,a2, ,am ] ,b [b1,b2, ,bm ]是m维向
定义了向量的序后就可以给出多目标最优 化问题的几种的解的概念了.
定 义 8.2 设 多 目 标 最 优 化 问 题 的 可 行 域 为
D,X * D ,如果对X D,都有 F ( X *) F ( X ), 则称 X *为该多 目标最 优化问 题的绝 对最优 解.称绝对最优解的全体为绝对最优解集,记 为 Rab . 实际上绝对最优解对每一个目标函数而言都 是最优的,也即绝对最优解同时使所有了目标 函数达到最优的效果,因此绝对最优解肯定是 最好的解.但是最优解不一定惟一(如图8.1(a) 所示),通常也不一定存在(如图8.1(b)所 示).
i 1
Ri Rab R pa Rwp Ri
i 1
m
m
§8.2 评价函数法
一、评价函数法基本原理
多目标最优化问题的解法中比较重要和常 见的是评价函数法.评价函数法是借助于构造 某种适当的评价函数,将多目标规划问题转化 为单目标规划问题来求解. 用评价函数法求解多目标规划问题的一般 步骤是:首先构造适当的评价函数 h( F ( X )),然 后解单目标规划问题 min h(F ( X )) .最后对得到 XD 的解 X 进行评价,必要时加以修正. 由于评价函数可以是多种多样的,因而方法也 就不同.
多目标优化设计方法
权因子的确定方法: 在确定权因子前,应先将各子目标函数进行 无量纲化,处理的方法是:
fi ' ( X ) fi ( X ) min fi ' ( X )
X D
fi ' ( X ) 是多目标问题中某个带量纲的子目标;
fi ( X ) 是作了无量纲处理后的第i个子目标函数
(1) 专家评判法(老手法)
X D X D 1 2 l
D为可行域,f1(X), f2(X), …, fl(X)为各个子目 标函数。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法 1、线性加权和法(线性加权组合法)
根据各子目标的重要程度给予相应的权数,然后 用各子目标分别乘以他们各自的权数,再相加即构成 统一目标函数。
X ( x1 , x2 ,..., xn )T
2 * 2 min f ( X ) [ f i ( X ) f i ] i 1 s.t. gi ( X ) 0 (i 1, 2,..., m) L 1
h j ( X ) 0 ( j 1, 2,..., k )
(1)
(i S 1,..., L)
则可得功效函数为
fi ( X ) fi (1) di ( fi ( X )) (2) fi fi (1) (i S 1,..., L)
7.4 功效系数法(续)
三、功效函数的确定(续) 4、对于L个子目标函数对应的功效函数为
fi (2) fi ( X ) (2) (1) fi fi di ( fi ( X )) (1) fi ( X ) fi (2) (1) f f i i (i 1, 2,..., S ) (i S 1,..., L)
最优化多目标规划动态规划
(1)若f1(Y)<f1(X*), 而f1(X*)=f1*, 故得(P1)的可 行解Y满足 f1(Y)<f1(X*)=f1* 此与f1*=min f1(X)相矛盾。
X∈R
处理多目标规划的一些方法
[问题分析] 上述要求的最佳方案应为:投资少,收益大。
设xi
1 0
问题即求
若 决 定 对 第i个 项 目 投 资 若 对 第i个 项 目 不 投 资
Hale Waihona Puke m f1 ( x1 , x2 ,..., xm )
ai xi
i 1
最小, 而
m
f 2 ( x1 , x2 ,..., xm )
定义3 设X*∈R,若不存在X∈R满足 F(X)<F(X*), 则称X*为问题(VP)的弱有效解 (或弱Pareto解)。弱有效解的全体记为 Rwp*
多目标规划解的性质
记Rj*为单目标问题 (Pj) min fj(X)
s.t. gi(X)≤0, i=1,2,…,m 的最优解集合,j=1,2,…,p,可见
挑选出满意的方案来。这时称BC上的点为
非劣解,或有效解。
多目标规划解的概念
对于一般的多目标规划问题:
(VP)
V-min F(X)=(f1(X), f2(X),…,fp(X))T
s.t. gi(X)≤0, i=1,2,…,m
其中X=(x1,x2,…,xn)T, p≥2
设R={X| gi(X)≤0, i=1,2,…,m}
min U(F(X))
X∈R
然后求解该问题,并将其最优解X*作为(VP) 的最优解。 由于构造评价函数的多种多样,也就出现 了多种不同的评价函数方法。
多目标规划(运筹学
环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。
多目标最优化方法
多目标最优化方法解决优化问题时,如果只考虑单一目标最优,称为单目标最优化问题(Single-Objective optimization problem, SOP),若考虑的最优目标不仅一个,而是多个,我们称为多目标最优化问题(Multi-objective optimization problem, MOP)。
多目标最优化是最优化方法领域中重要的研究方向之一。
多目标最优化问题起源于实际生活中复杂系统的规划设计、模型建立等。
在工程设计、工农业规划、经济规划、金融决策城、市运输、水库管理和能量分配等社会活动中,经常遇多目标最优化问题,可以说多目标优化问题是无处不有、无处不在的.正是由于这种多目标最优化问题的重要性以及普遍性才使得人们要去研究多目标最优化问题的解法。
目前,国内、外许多学者致力于这方面的研究.1.1多目标最优化问题的简史多目标最优化问题的出现,应追溯到1772年,当时Franklin提出了多目标矛盾如何协调解决的问题。
但国际上大都认为多目标最优化问题最早是由法国经济学家V. Pareto于1896年提出的。
当时,他从政治经济学的角度,把不好比较的目标归纳成多日标最优化问题。
1944年,V on.neumann和J. Morgenstern从对策论的角度,提出多个决策者彼此又互相矛盾的多目标决策问题。
1951年,T. C. Koopmans从生产和分配的活动分析中提到了多目标最优化问题,并且第一次提出了Pareto最优解的定义。
同年,H. W. Kuhn和A. W. Tucker从数学归纳的角度,给出了向量极值问题的Pareto最优解,并研究了这种解的充分必要条件。
1953年,Arron等学者对凸集提出了有效解的概念,从此多目标最优化逐渐受到人们的关注。
1963年,L. A. Zadeh从控制论角度提出多目标控制问题。
这期间Charnes, Klinger, Keeney, Geoffrion等人先后都做了有效的工作。
多目标优化方法概论
效用函数值的大小反映决策者对多目标值的喜爱程度 ,一般来说,决策者希望效用函数的值越大越好。
使效用函数取最大值的非劣解称为最佳协调解。
对于效用函数未知 的情况,无法直接 求得最佳协调解。 我们把多目标优化 过程满意结束的解 称为优惠解。
满意解
4 多目标优化问题的K-T条件 对于多目标优化问题
VOP
多目标优化设计模型
示例2:如图所示,设计一苦空心阶梯悬臂梁,根据结构要
求,已确定梁的总长为1000mm,第一段外径为80mm, 第二段外经为100mm,梁的端部受有集中力F=12000N, 梁的内径不得小于40mm,梁的许用弯曲应力为180MPa,
确定梁的内径和各段长度,使梁的体积和静挠度最小。
(2)对权系数的要求
(3) 权系数的确定
老手法
3. 极小极大法 极小极大法就是求取多目标函数中的最大值,然后使 最大值函数在可行域内极小化,即将多目标优化问题
转化为
极小极大法的有关说明: (1) 考虑到各目标的重要程度差别,可以对各目标乘
以权系数,然后再求最大值函数,即
(2)极小极大法也可以引入一个变量和m个约束,即
4. 理想点法 理想点法就是将距理想点最近的点作为多目标问题的 优惠解,即将多目标优化问题
转化为
理想点法的有关说明: 考虑到各目标的重要程度差别,可以对各目标乘以权 系数,即
权系数的选取可以参阅线性加权法。
5. 功效系数法
在多目标优化问题,各目标的要求不全相同,有的要 求极小化,有的要求极大化,有的要求有一个合适的 数值。为了反映这些不同的要求,故引入如下的功效 函数:
现在,对多目标规划方面的研究集中在以下几个方面: 一、关于解的概念及其性质的研究, 二、关于多目标规划的解法研究, 三、对偶问题的研究, 四、不可微多目标规划的研究, 五、多目标规划的应用研究。
多目标规划_2
f2 A5
A4
A6
A1 A3
A2 O
A7 f1
❖ 绝对最优解
多目标规划的解集
多目标规划的解集
❖ 有效解与弱有效解
多目标规划的解集
❖ 解集之间的关系
多目标规划的象集
❖ 有效点和弱有效点。
多目标规划的象集
多目标规划的象集
❖ 约束法 ❖ 评价函数法 ❖ 功效系数法
处理多目标规划的方法
❖ 多目标规划问题的发展
▪ 多目标规划法(Goal Programming,简称GP)也是最优化理论和方法中的一 个重要分支,它是在线性规划的基础上,为解决多目标决策问题而发展起来的 一种数学方法。其概念和数学模型是由 A.Charnes 和 W.W.Cooper 在1961年 提出的,它在经济管理与规划、人力资源管理、政府管理、大型工程的最优化 等重要问题上都有广泛的应率
利润
最大销量
能耗
(m/h) (元/m) (m/周) (t/1000m)
20
500
700
24
25
400
800
26
15
600
500
28
多目标规划问题的典型实例
多目标规划问题的典型实例
多目标规划问题的数学模型
多目标规划问题的数学模型
❖ 目标规范化
多目标规划的解集
❖ 由于多目标规划中的求解涉及到的方法非常多,故在MATLAB中可以利用
不同的函数进行求解,例如在评价函数法中我们所得最后的评价函数为一 线性函数,且约束条件也为线性函数,则我们可以利用MATLAB优化工具 箱中提供的linprog函数进行求解,如果我们得到的评价函数为非线性函数, 则可以利用MATLAB优化工具箱中提供的fmincon函数进行求解,如果我 们采用最大最小法进行求解,则可以利用MATLAB优化工具箱中提供的 fminimax函数进行求解。下面我们就结合前面各小节中所分析的几种方法, 讲解一下典型多目标规划问题的MATLAB求解方法。
7-1-多目标最优化
1
2
【例1】某工厂在计划期内要安排生产甲、乙两种产品。 已知制造甲产品需要A型配件5个,B型配件3个; 制 造乙产品需要A型配件2个,B型配件4个。 而在计划 期内该工厂只能提供A型配件180个,B型配件135个。 又知道该工厂每生产一件甲产品可获利润20元,一件乙 产品可获利润 15元。问在计划期内甲、乙产品应该各安 排生产多少件,才能使总利润最大 ? 将该例所述情况列成表格 : A B 利润(元) 甲 5 3 20 乙 2 4 15 现有配件 180 135
最低收获量约束
⎧11 000x11 + 9 500x12 + 9 000x13 ≥ 190 000 ⎪ ⎨8 000x21 + 6 800x22 + 6 000 x23 ≥ 130 000 ⎪14 000x + 12 000x + 10 000x ≥ 350 000 31 32 33 ⎩
17
18
d+ : 决策值超过目标值的部分 d- :决策值未达到目标值的部分 4 .目标规划的目标函数 min z = g ( d+, d- ) 三种基本形式: 三种基本形式: 目标类型 需要极小化 的偏差变量 fi(x)+ d--d+ = bi d+ 目标规划格式
例2 引例的目标规划模型: 引例的目标规划模型: 例2
16
硬约束 2 . 绝对约束、目标约束 绝对约束:必须严格满足的等式或不等式约束 绝对约束 目标约束:目标规划所特有的约束,约束右端项看作 目标约束 要追求的目标值,在达到目标值时,允许发生正或负 的偏差 软约束 例如,原材料的价格不断上涨,增加供应会使成 本提高。故不考虑再购买原材料 从而 2 x1 + x2 ≤11 是硬约束
25
最优化_第7章 多目标及离散变量优化方法
四. 常用的求选好解的方法: 1、主要目标法 2、统一目标函数法:线性加权因子法、极大极小… 3、功效系数法 4、分层序列法
§7.2 多目标优化方法
一.主要目标法
思想:抓住主要目标,兼顾其他要求。(选择一个目标作 为主要目标,将其他目标转化成约束条件)
原模型: 转变后模型:
f
2 max
当x=b,
f2(X)取得最差值
f
2 min
f
f
1 max
f
2 max
f1
f
1 min
f
2 min
0 a x1 x2
f2 bx
随着设计变量X的值不断增大,目标函数 f1(X)的值越来越好,目标函数 f2(X)的值越来越差
§7.1 多目标优化问题
一. 多目标问题的数学模型:
设 X =[x1, x2 , …,xn]T
6
f1(X)
4.分层序列法及宽容分层序列法
分层序列法:将多目标优化问题中的l个目标函数分清主次, 按重要程度排序,然后依次对各个目标函数 求最优解。后一目标应在前一目标最优解的 集合域内寻优。
假设f1(X)最重要, f2(X)其次, f3(X)再其次, … 首先对第一个目标函数f1(X)求解
miXn f1D(X ) 求出最优解域 f1 *
min f1(X), f2 (X), …fq (X), X∈Rn
s.t. gu(X) ≤ 0
u = 1,2,…,m
hv(X) = 0
v = 1,2,…, p
min fk(X)
X∈Rn
s.t. fi(X) ≤ fi0
i = 1,2,,…,k-1,k+1,…q
多目标优化算法简介
多目标智能优化问题简介•生活中, 许多问题都是由相互冲突和影响的多个目标组成。
人们会经常遇到使多个目标在给定区域同时尽可能最佳的优化问题, 也就是多目标优化问题。
优化问题存在的优化目标超过一个并需要同时处理, 就成为多目标优化问题(multiobjective optimization problem, MOP)。
•1)物资调运车辆路径问题•某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低,这是含有两个目标的优化问题。
•2)设计•如工厂在设计某种新产品的生产工艺过程时,通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。
•3)投资•假设某决策部门有一笔资金要分配给若干个建设项目,在确定投资方案时, 决策者总希望做到投资少收益大。
•4)生产调度•在离散制造生产系统中,一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称为技术约束条件)通常是事先给定的。
车间调度的作用就是根据现有的资源状况合理地安排作业加工顺序, 以满足特定生产目标的要求,一般包括作业排序和资源分配两个目标。
多目标优化•多目标优化(Multiobjective Optim ization)是指要找出一个能同时满足所有的优化目标的解,而这个解通常是以一个不确定的点集形式出现.因此多目标优化的任务就是要找出这个解集的分布情况,并根据具体情况找出适合问题的解。
实际应用•在现实工程中, 很多问题都是多目标优化问题,需要同时满足两个或者更多的目标要求, 而且要同时满足的多个目标之间往往互相冲突、此消彼长. 因此, 在多目标优化问题中, 寻求单一最优解是不现实的, 而是产生一组可选的折中解集, 由决策过程在可选解集中作出最终的选择.解决方案•传统的方案•基于进化算法方案传统方案•传统的多目标优化方法往往将其转化为各目标之加权和,然后采用单目标的优化技术。
最优化之多目标规划
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即
max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即
pixi
交易费 =
xi>ui xi≤ui
piui
而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(ri-pi)xi
max i i
i 1 k
i ( x1 , x2 , xn ) gi ( i 1,2,, m)
式中, i 应满足: 向量形式:
i 1
i 1
k
max T
s.t . ( X ) G
方法二 罚款模型(理想点法)
思想: 规划决策者对每一个目标函数都能提出所期望的值 (或称满意值);
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
方法一
效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效
一、问题提出 市场上有 n 种资产 s i (i=1,2……n)可以选择,现用数额为 M 的相当大的资金作一 个时期的投资。这 n 种资产在这一时期内购买 s i 的平均收益率为 ri ,风险损失率为 qi , 投资越分散,总的风险越小,总体风险可用投资的 s i 中最大的一个风险来度量。
pi ),当购买额不超过给定值 u i 时,交易费按购买 u i 计算。另外,假定同期银行存款利率是 r0 ,既无交易费又无风险。 r0 =5%) (
精选7多目标优化方法资料
xij
i 1
xij 0, i
bj, j 1,2,3; j
1,2,3,4 1,2,3,4
由于求最大都可以转化为求最小,所以多目标最优化问 题的一般形式为:
min( f (x1), f (x2 ), , f p (x))
S.t.
gi (x) 0,i 1,2., m
F ( X (1) ) f1( X (1) ), f2 ( X (1) ), , fm ( X (1) )T F ( X (2) ) f1( X (2) ), f2 ( X (2) ), , fm ( X (2) )T 若对于每一个分量,都有
fl ( X (1) ) fl ( X (1) ) (l 1, 2, , m) 则显然,X (1)优于X (2),记为X (1) X (2)
a1, a2, a3 (单位:t);现要将这些物资运往四个销售
点 B1, B2 , B3, B4 。其需要量分别为 b1,b2 ,b3,b4
且
3
4
ai bj
i
j
运价分别为 dij
,已知 Ai 到 B j 的距离和单位 (km)和 cij (元),现要决定如何
调运多少,才能使总的吨,公里数和总运费都尽量少?
到现在为止,多目标优化不仅在理论上取得许多重要成果, 而且在应用上其范围也越来越广泛,多目标决策作为一个工 具在解决工程技术、经济、管理、军事和系统工程等众多方 面的问题也越来越显示出它强大的生命力。
现在,对多目标规划方面的研究集中在以下几个方面: 一、关于解的概念及其性质的研究, 二、关于多目标规划的解法研究, 三、对偶问题的研究, 四、不可微多目标规划的研究, 五、多目标规划的应用研究。
多目标优化方法概论
min F ( X ) f1( X ), f2 ( X ), , fm ( X )T
VOP
s.t. gu ( X ) 0 u 1, 2, , p
hv ( X ) 0 v 1, 2, , q
简记为
V- min F ( X ) X D Rn
多目标优化问题(Multi-Objective Optimization Problem)又称为向量优化问题(Vector Optimization Problem) 。
(1) 线性加权之前,各目标应进行无量纲化处理。
(2)对权系数的要求
m
归一化要求 wl 1 l 1
非负要求 wl 0 l 1, 2, , m
(3) 权系数的确定
1 wl fl*
fl*
min
X D
fl (X )
老手法
ห้องสมุดไป่ตู้
3. 极小极大法
极小极大法就是求取多目标函数中的最大值,然后使 最大值函数在可行域内极小化,即将多目标优化问题
设计变量:产品A的件数x1,产品B的件数x2
目标函数 max f1( X ) 4x1 5x2 max f2 ( X ) x1
多目标优化设计模型
max F( X )=4x1 5x2,x1T
s.t. g1( X ) 200 x1 x2 0 g2 ( X ) 200 1.25x1 0.75x2 0 g3( X ) 150 x2 0 g4 ( X ) x1 0 g5 ( X ) x2 0
fl ( X (1) ) fl ( X (1) ) (l 1, 2, , m) 则显然,X (1)优于X (2),记为X (1) X (2)
大多数情况下,F ( X (1) )的某几个分量小于F ( X (2) )的 对应分量,
多目标优化问题
多目标优化方法基本概述几个概念优化方法一、多目标优化基本概述现今,多目标优化问题应用越来越广,涉及诸多领域。
在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题.例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件.多目标优化的数学模型可以表示为:X=[x1,x2,…,x n ]T——-—--—--—n维向量min F(X)=[f1(X),f2(X),…,f n(X)]T———-—----—向量形式的目标函数s.t. g i(X)≤0,(i=1,2,…,m)h j(X)=0,(j=1,2,…,k)--—-—-——设计变量应满足的约束条件多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。
二、多目标优化中几个概念:最优解,劣解,非劣解。
最优解X*:就是在X*所在的区间D中其函数值比其他任何点的函数值要小即f(X*)≤f(X),则X*为优化问题的最优解。
劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。
非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*)。
如图:在[0,1]中X*=1为最优解在[0,2]中X*=a为劣解在[1,2]中X*=b为非劣解多目标优化问题中绝对最优解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。
三、多目标优化方法多目标优化方法主要有两大类:1)直接法:直接求出非劣解,然后再选择较好的解将多目标优化问题转化为单目标优化问题。
2)间接法如:主要目标法、统一目标法、功效系数法等。
将多目标优化问题转化为一系列单目标优化问题.如:分层系列法等。
多目标最优化方法
多目标最优化方法
多目标最优化方法是指在同一优化问题中同时考虑多个目标函数并寻找使它们达到最优状态的决策变量组合。
与单目标最优化问题不同,多目标最优化问题没有单一的最优解,而是存在多个最优解,这些解通常构成一个被称为Pareto最优(Pareto optimal)集合的边界。
多目标最优化方法通常分为两类:经验法和数学规划法。
经验法包括启发式算法(如遗传算法、蚁群算法、粒子群算法等)和元启发式算法(如模拟退火、禁忌搜索等),这些方法利用经验性的技巧和随机性搜索解空间。
数学规划方法则基于数学模型,常用的方法包括多目标线性规划、多目标非线性规划、多目标整数规划等。
在实际应用中,多目标最优化方法经常被用来解决各种决策问题,例如工程设计、投资组合、风险管理等。
多目标最优化方法可以帮助决策者同时优化多个目标,从而得到更全面、更灵活的解决方案。
第6章多目标优化
第6章多目标优化多目标优化是指在优化问题中存在多个目标函数的情况下,寻求一组最优解,使得这些目标函数在给定约束条件下均得到最优化。
多目标优化问题在现实生活中存在广泛的应用,如工程设计、金融投资、交通规划等领域。
多目标优化问题常用的解决方法有多种,如加权法、边界矩阵法、非支配排序遗传算法(NSGA)等。
其中,NSGA算法是一种经典的多目标优化算法,具有较高的效率和良好的收敛性。
NSGA算法的基本思想是通过遗传算法的进化过程,不断生成潜在解集,并根据这些解集的非支配关系进行排序。
在排序的过程中,通过计算个体与其他个体的支配关系,将其分为不同等级,以判断个体的优劣程度。
通过遗传算子的选择、交叉和变异等操作,对潜在解集进行进一步的扩展和优化。
最终,NSGA算法将找到一组尽可能多的非支配解集,这些解集在多个目标函数下均得到最优化。
NSGA算法的核心是非支配排序和拥挤度计算。
非支配排序是指对解集中的个体进行排序,根据个体与其他个体的支配关系,划分为不同等级。
拥挤度计算是指对非支配排序之后的解集中的个体,计算其在目标空间中的拥挤度值,用来表征个体的多样性和密度情况。
通过综合考虑非支配排序和拥挤度计算,NSGA算法能够在解集中找到更多的多样性解,提供更多的选择。
多目标优化问题的解决需要综合考虑多个目标函数之间的权衡和平衡,不同的权重设置可能会得到不同的最优解集。
因此,在实际应用中,需要根据问题的特点和具体要求,合理选择权重设置和目标函数的优化策略。
此外,多目标优化问题还需要考虑约束条件的处理和优化算法的选择,以找到最优解集。
总结来说,多目标优化是求解具有多个目标函数的优化问题,通过综合考虑多个目标函数之间的平衡,寻求一组最优解。
NSGA算法是一种常用的多目标优化算法,通过非支配排序和拥挤度计算等技术,能够有效地找到多样性解集。
在实际应用中,需要根据具体问题的特点和要求,合理选择优化策略和算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
minZ i ( fi fi ) 2
k
i ( x1 , x2 ,, xn ) gi ( i 1,2,, m)
或写成矩阵形式:
i 1
minZ ( F F )T A( F F )
i ( x1 , x2 , , xn ) gi ( i 1,2, , m )
f i d i d i f i ( i 1,2, , K )
min Z pl ( lk d k lk d k )
l 1 k 1
L
K
i ( x1 , x2 , , xn ) gi ( i 1,2, , m )
求解多目标规划的方法大体上有以下几种: 一种是化多为少的方法 , 即把多目标化为比较容易求解 的单目标或双目标,如主要目标法、线性加权法、理想点 法等;
Hale Waihona Puke 另一种叫分层序列法,即把目标按其重要性给出一个序列, 每次都在前一目标最优解集内求下一个目标最优解,直到 求出共同的最优解。 对多目标的线性规划除以上方法外还可以适当修正单纯形 法来求解;还有一种称为层次分析法,是由美国运筹学家 沙旦于70年代提出的,这是一种定性与定量相结合的多目 标决策与分析方法,对于目标结构复杂且缺乏必要的数据 的情况更为实用。
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即
max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即
pixi
交易费 =
xi>ui xi≤ui
piui
而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(ri-pi)xi
在很多实际问题中,例如经济、管理、军事、科学和工程 设计等领域,衡量一个方案的好坏往往难以用一个指标来 判断,而需要用多个目标来比较,而这些目标有时不甚协 调,甚至是矛盾的。因此有许多学者致力于这方面的研究。
1896年法国经济学家 V. 帕雷托最早研究不可比较目标的优 化问题,之后,J.冯· 诺伊曼、H.W.库恩、A.W.塔克、A.M. 日夫里翁等数学家做了深入的探讨,但是尚未有一个完全 令人满意的定义。
法确定这两个方案的优
与劣。 在各个方案之间, 显然:④比①好,⑤比
图1 多目标规划的劣解与非劣解
④好, ⑥比②好, ⑦比
③好……。
而对于方案⑤、 ⑥、⑦之间则无法确 定优劣,而且又没有 比它们更好的其他方 案,所以它们就被称 为多目标规划问题的 非劣解或有效解, 其余方案都称为劣解。 所有非劣解构成的集 合称为非劣解集。 当目标函数处于冲突状态时,就不会存在使所有 目标函数同时达到最大或最小值的最优解,于是我们只 能寻求非劣解(又称非支配解或帕累托解)。
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
方法一
效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效
数学建模讲义
曲阜师范大学数学系
Qufu Normal University
主讲人:吕迪迪
最优化模型
---多目标规划
第四讲 多目标规划方法
多目标规划解的讨论——非劣解 多目标规划及其求解技术简介
效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
多目标规划应用实例
多目标规划是数学规划的一个分支。 研究多于一个的目标函数在给定区域上的最优化。又称多 目标最优化。通常记为 MOP(multi-objective programming)。
max i i
i 1 k
i ( x1 , x2 ,xn ) gi (i 1,2,, m)
式中, i 应满足: 向量形式:
i 1
i 1
k
max T
s.t . ( X ) G
方法二 罚款模型(理想点法)
思想: 规划决策者对每一个目标函数都能提出所期望的值 (或称满意值);
f i d i d i f i ( i 1,2, , K )
式中: di+ 和 di-分别表示与 fi 相应的与fi* 相比的目标超 过值和不足值,即正、负偏差变量; pl表示第l个优先级;
lk+、lk-表示在同一优先级 pl 中,不同目标的正、
负偏差变量的权系数。
投资的收益和风险
max(min) Z f1 ( x1, x2 ,, xn )
i ( x1, x2 ,, xn ) gi (i 1,2,, m)
f jmin f j f jmax ( j 2,3,, k )
方法四
目标达到法
首先将多目标规划模型化为如下标准形式:
f1 ( X ) f ( X ) min F ( x) min 2 f ( X ) k
对于上述多目标规划问题,求解就意味着需要做出如下 的复合选择:
▲ 每一个目标函数取什么值,原问题可以得到最满意 的解决? ▲ 每一个决策变量取什么值,原问题可以得到最满意 的解决 ?
非劣解可以用图1说明。
在图1中,max(f1, f2) .就
方案①和②来说,①的
f2 目标值比②大,但其目 标值 f1 比②小,因此无
一
多目标规划及其非劣解
多目标规划模型
(一)任何多目标规划问题,都由两个基本部分组成: (1)两个以上的目标函数; (2)若干个约束条件。
(二)对于多目标规划问题,可以将其数学模型一般地描 写为如下形式: 1 ( X ) g1 max(min) f ( X ) 1 2( X ) g2 G Z F ( X ) max(min) f 2 ( X ) s.t. ( X ) ( X ) g m m max(min) f ( X ) k
min
X ,
i ( X ) 0
(i 1,2,, m)
fi ( X ) i fi* , (i 1,2,, k )
松弛因子
由于流体力学中要求解非线性的方程,在求解过程中,控制变量的变 化是很必要的,这就通过松弛因子来实现的.它控制变量在每次迭代中的 变化.也就是说,变量的新值为原值加上变化量乘以松弛因子. 如:A1=A0+B*DETA A1 :新值 A0 :原值: B:松弛因子 DETA :变化量 松弛因子可控制收敛的速度和改善收敛的状况! 为1,相当于不用松弛因子 大于1,为超松弛因子,加快收敛速度 小于1,欠松弛因子,改善收敛的条件 一般来讲,大家都是在收敛不好的时候,采用一个较小的欠松弛因 子。 Fluent里面用的是欠松弛,主要防止两次迭代值相差太大引起发散。 松弛因子的值在0~1之间,越小表示两次迭代值之间变化越小, 也就越稳定,但收敛也就越慢。
max(min) Z CX
s.t.
AX b
式中:
X 为n 维决策变量向量;
C 为k×n 矩阵,即目标函数系数矩阵;
A 为m×n 矩阵,即约束方程系数矩阵; b 为m 维的向量,即约束向量。
多目标规划的非劣解
max(min) Z F ( X )
s.t. ( X ) G
多目标规划问题的求解不能只追求一个目标的最优化 (最大或最小),而不顾其它目标。
二、基本假设和符号规定
基本假设: 1. 投资数额 M 相当大,为了便于计算,假设 M=1; 2.投资越分散,总的风险越小; 3.总体风险用投资项目 s i 中最大的一个风险来度量; 4.n 种资产 S i 之间是相互独立的; 5.在投资的这一时期内, ri,pi,qi,r0 为定值,不受意外因素影响; 6.净收益和总体风险只受 ri,pi,qi 影响,不受其他因素干扰。
f1 ( X ) f ( X ) min F ( x) min 2 f ( X ) k
1 ( X ) 0 2 ( X ) 0 ( X ) ( X ) 0 m
T 式中: X [ x1 , x2 , , xn ] 为决策变量向量。
缩写形式:
max(min) Z F ( X )
(1) (2)
s.t .
( X ) G
有n个决策变量,k个目标函数, m个约束方程,
则:
Z=F(X) 是k维函数向量, (X)是m维函数向量;
G是m维常数向量;
对于线性多目标规划问题,可以进一步用矩阵表示:
( X ) G
式中, i 是与第i个目标函数相关的权重; A是由 i (i=1,2,…,k )组成的m×m对角矩阵。
方法三
约束模型(极大极小法)
理论依据 :若规划问题的某一目标可以给出一个可供选 择的范围,则该目标就可以作为约束条件而被排除出目 标组,进入约束条件组中。
假如,除第一个目标外,其余目标都可以提出一个可供选 择的范围,则该多目标规划问题就可以转化为单目标规划 问题:
1( X ) 0 ( X ) 0 2 Φ( X ) 0 ( X ) m
在求解之前,先设计与目标函数相应的一组目标值理想 化的期望目标 fi* ( i=1,2,…,k ) , 每一个目标对应的权重系数为 i* ( i=1,2,…,k ) , 再设 为一松弛因子。 那么,多目标规划问题就转化为: