初中数学教学设计1
初中数学优秀的教学设计(精选5篇)
初中数学优秀的教学设计(精选5篇)初中数学优秀的教学设计1一、学情分析学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。
同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标分析教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的`活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
为此,本节课的教学目标是:1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、能利用尺规作角的和、差、倍。
3、能够通过尺规设计并绘制简单的图案。
4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
三、教学设计分析1、回顾与思考活动内容:(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b —c活动目的:通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。
2、情境引入,探索发现活动内容:如图2初中数学优秀的教学设计2一、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
初中数学教案设计(共12篇)
初中数学教案设计〔共12篇〕篇1:初中数学教案设计一、教学目的:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联络。
4、掌握直线的平移法那么简单应用。
5、能应用本章的根底知识纯熟地解决数学问题。
二、教学重、难点:重点:初步构建比拟系统的函数知识体系。
难点:对直线的平移法那么的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,假设y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联络:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
根底训练:1、写出一个图象经过点(1,— 3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、假如P(2,k)在直线y=2x+2上,那么点P到x轴的间隔是:4、正比例函数 y =(3k—1)x,,假设y随x的增大而增大,那么k是:5、过点(0,2)且与直线y=3x平行的直线是:6、假设正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,那么m的取值范围是:7、假设y—2与x—2成正比例,当x=—2时,y=4,那么x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,那么b的值为。
9、圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
初中数学教学设计优秀5篇
初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。
二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。
2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。
四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。
初中数学教学优质教案(7篇)
初中数学教学优质教案(7篇)初中数学教学优质教案【篇1】一、教材内容人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点认识负数的意义。
四、教学过程(一)谈话交流谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。
)今天的数学课我们就从这个话题聊起。
(板书:相反。
)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。
)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?(二)教学新知1.表示相反意义的量(1)引入实例谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。
(补充板书:相反意义的量。
)(2)尝试怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。
(3)展示交流2.认识正、负数(1)引入正、负数谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。
初中数学教学设计(优秀5篇)
初中数学教学设计(优秀5篇)初中数学设计教案篇一一、教学目标(一)基础知识目标:1.理解方程的概念,掌握如何判断方程。
2.理解用字母表示数的好处。
(二)能力目标体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标增强用数学的意识,激发学习数学的热情。
二、教学重点知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点如何找相等关系列方程四、教学过程我们知道方程是一个含有未知数的'等式,而等式表示了一个相等关系。
因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
师生共同分析、研究一元一次方程解简单应用题的方法和步骤例1 某面粉仓库存放的面粉运出15%后,还剩余42 500千克,这个仓库原来有多少面粉?师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?上述分析过程可列表如下:解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x—15%x=42 500,此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意。
初中数学教学教案
初中数学教学教案初中数学教学教案模板(通用13篇)作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。
那么你有了解过教案吗?下面是小编精心整理的初中数学教学教案,希望能够帮助到大家。
初中数学教学教案篇1一、学习目标:1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。
2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。
二、学习重点:正确运用二次根式的性质及运算法则进行二次根式的混合运算。
学习难点:二次根式计算的结果要是最简二次根式。
三、过程知识准备1、满足下列条的二次根式是最简二次根式。
2、回忆有理数,整式混合运算的顺序。
3、回忆并整理整式的乘法公式。
方法探究1⑴(512+23)x15⑵(3+10)(2-5)归纳:尝试练习:⑴(3+22)x6⑵(827-53)6⑶(6-3+1)x23⑷(3-22)(33-2)⑸(22-3)(3+2)⑹(5-6)(3+2)方法探究2⑴(3+2)(3-2)⑵(3+25)2归纳:尝试练习:⑴(5+1)(5-1)⑵(7+5)(5-7)⑶(25-32)(25+32)⑷(a+b)(a-b)⑸(3-2)2⑹(32-45)2⑺(3-22)(22-3)⑻(a-b)2⑼(1-23)(1+23)-(1+3)2⑽(3+2-5)(3+2+5)例题解析1、计算:(22-3)2011(22+3)2012。
2、若x=10-3,求代数式x2+6x+11的值。
3、若x=11+72,y=11—72,求代数式x2-xy+y2的值。
内反馈1、计算12(2-3)=2、计算⑴(2+3)(2-3)=⑵(5-2)2010(5+2)2011=3、计算:⑴12(75+313-48)⑵(1327-24-323)12⑶(23-5)(2+3)⑷(5-3+2)(5+3-2)⑸(312-213+48)÷234、已知a=3+2,b=3-2,求下列各式的值。
初中数学教学设计模板8篇
初中数学教学设计模板8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初中数学教学设计模板8篇教学设计在完成的过程中,教师务必要考虑逻辑思路清晰,通过写教学设计,教师从而明确新一学期的教学目标。
初中数学教学设计(精选15篇)
初中数学教学设计(精选15篇)初中数学教学设计1(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的.依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。
初中数学教学设计(优秀8篇)
初中数学教学设计(优秀8篇)篇一:初中数学教学设计篇一一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11U20距离a地50km,要在12U00之前驶过a地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式3.不等式的解集设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?<的解集,也是不等式>502、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计1.填空下列式子中属于不等式的有___________________________①x +7>②x≥ y + 2 = 0③ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7② a的与b的3倍的和是非负数③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.篇二:初中数学教学设计模板篇二教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。
初中数学教案
初中数学教案①,在实践操作过程中,逐步探索图形之间的平移关系;②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:重点:图形连续变化的特点;难点:图形的划分。
三、教学方法:讲练结合。
使用多媒体课件辅助教学。
四、教具准备:多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:创设情景,探究新知:(演示课件):教材上小狗的图案。
提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?小组讨论,派代表回答。
(答案可以多种)让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。
教学过程中渗透数学美学思想,促进学生综合素质的提高。
初中数学教案篇2一年级学生认知水平处于启蒙阶段,尚未形成完整的知识结构体系。
由于学生所特有的年龄特点,学生有意注意力占主要地位,以形象思维为主。
从整体上看一年级学生都比较活跃,大多数学生上课基本上能够跟上教师讲课的思路,教师上课组织课堂纪律并不难,而且学生的学习积极性也很容易调动。
初中数学教学设计(优秀8篇)
初中数学教学设计(优秀8篇)初中数学教案篇一1.初中数学教案模板1.课题填写课题名称(初中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握。
知识,提高学生解决实际问题的能力;(2)过程与方法:通过。
(讨论、发现、探究)的过程,提高。
(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4.教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5.教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的。
解法和步骤)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。
可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。
(3)课堂小结教师提问,学生回答本节课的收获。
(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书2.初中数学教案格式课程编码:______________________________________总学时/ 周学时:/开课时间:年月日第周至第周授课年级、专业、班级:___________________________使用教材:_______________________________________授课教师:_______________________________________1.章节名称2.教学目的3.课时安排4.教学重点、难点5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)6.复习巩固与作业要求7.教学环境及教具准备8.教学参考资料9.教学后记3.初中数学教案范文教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
初中数学教学设计15篇
初中数学教学设计15篇1. 数的认识与比较本节课主要内容是帮助学生认识不同类型的数,并进行比较。
首先,我会使用实物或图片引导学生认识自然数、整数、有理数和无理数。
接下来,我会带领学生进行比较,让他们掌握比较数的大小的方法和技巧。
2. 整数运算本节课将重点教授整数的运算规则和技巧。
首先,我会复习学生已经学过的加法和减法,然后逐步引入乘法和除法的概念。
我会通过实例和练习题帮助学生巩固运算技巧,并教授正确使用括号和运算顺序的方法。
3. 小数与分数的运算本节课的目标是帮助学生理解小数和分数的概念,并学会它们的转化和运算方法。
我会通过示例引导学生认识小数和分数的关系,然后教授小数和分数的加法、减法、乘法和除法规则。
最后,我会提供一些实际问题来巩固所学知识。
4. 平面图形的认识本节课将重点介绍不同类型的平面图形,并帮助学生学会用恰当的方法进行识别和命名。
我会使用图片和实物来引导学生认识常见的二维图形,如圆、正方形、长方形、三角形等,并教授它们的性质和特征。
5. 周长与面积本节课的目标是帮助学生理解周长和面积的概念,并学会计算不同图形的周长和面积。
我会通过实例和图示来引导学生掌握计算周长和面积的方法,并提供一些实际问题来培养学生的应用能力。
6. 坐标与直角坐标系本节课将介绍坐标和直角坐标系的概念,帮助学生理解平面上点的位置和坐标表示。
我会通过实例和练习题引导学生学会定位和表示点的方法,并教授两点间距离的计算方法。
7. 数据统计与图表分析本节课将培养学生收集、整理和分析数据的能力。
我会教授常见的数据图表,如条形图、折线图和饼图,并引导学生理解和应用这些图表来进行数据分析和比较。
8. 几何变换本节课将介绍几何变换的概念和方法。
我会教授平移、旋转、翻转和对称变换,并通过实例和练习题来帮助学生掌握不同变换的规则和技巧。
9. 代数的引入本节课将引入代数的概念和基本符号,为后续学习打下基础。
我会教授代数表达式的写法和读法,并通过实例来展示代数表达式的应用。
初中数学教学设计(7篇)
初中数学教学设计(7篇)初中数学教学设计【篇1】教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。
然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认知道的更多的是直观生动,他们关注的是事物外在的、直接的、具体的形象特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3.情感目标:通过情境教学过程,激发学生的求知欲,培养学生主动学习数学的态度。
体验数学活动充满探索和创造,体验数学活动的成功感,建立自信。
教学重难点:1.重点:一元二次方程的根与系数的关系。
2.难点:学生很难从一个具体方程的根中找到一个变量中一个二次方程的根与系数的关系并用语言表达出来,也很难从一个已知方程中找到一个新方程,使新方程的根与已知方程的根有一定的关系,这是抽象的,学生很难真正掌握。
教学过程:板书设计:一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。
初中数学教学设计(精选5篇)
初中数学教学设计(精选5篇)初中数学教学设计(精选5篇)在平平淡淡的学习中,大家或多或少都参加过一些主题班会吧?主题班会必须有明确的教育目的,自始至终贯穿,渗透着极强的教育性。
你知道什么样的主题班会才是好的主题班会吗?下面是由给大家带来的初中数学优秀教学设计5篇,让我们一起来看看!初中数学教学设计篇1教学目标1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。
运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。
对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。
对代数式的概念可以从三个方面去理解:(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.等都不是代数式.3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。
用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。
初中数学教学设计三篇
【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
准备了以下内容,供⼤家参考!篇⼀:《正弦和余弦(⼆)》 ⼀、素质教育⽬标 (⼀)知识教学点 使学⽣了解⼀个锐⾓的正弦(余弦)值与它的余⾓的余弦(正弦)值之间的关系. (⼆)能⼒训练点 逐步培养学⽣观察、⽐较、分析、综合、抽象、概括的逻辑思维能⼒. (三)德育渗透点 培养学⽣独⽴思考、勇于创新的精神. ⼆、教学重点、难点 1.重点:使学⽣了解⼀个锐⾓的正弦(余弦)值与它的余⾓的余弦(正弦)值之间的关系并会应⽤. 2.难点:⼀个锐⾓的正弦(余弦)与它的余⾓的余弦(正弦)之间的关系的应⽤. 三、教学步骤 (⼀)明确⽬标 1.复习提问 (1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学⽣回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学⽣回答,从中可以了解教学班还有多少⼈不清楚的,可以采取适当的补救措施. (2)请同学们回忆30°、45°、60°⾓的正、余弦值(教师板书). (3)请同学们观察,从中发现什么特征?学⽣⼀定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个⾓的正弦值等于它们余⾓的余弦值”. 2.导⼊新课 根据这⼀特征,学⽣们可能会猜想“⼀个锐⾓的正弦(余弦)值等于它的余⾓的余弦(正弦)值.”这是否是真命题呢?引出课题. (⼆)、整体感知 关于锐⾓的正弦(余弦)值与它的余⾓的余弦(正弦)值之间的关系,是通过30°、45°、60°⾓的正弦、余弦值之间的关系引⼊的,然后加以证明.引⼊这两个关系式是为了便于查“正弦和余弦表”,关系式虽然⽤⿊体字并加以⽂字语⾔的证明,但不标明是定理,其证明也不要求学⽣理解,更不应要求学⽣利⽤这两个关系式去推证其他三⾓恒等式.在本章,这两个关系式的⽤处仅仅限于查表和计算,⽽不是证明. (三)重点、难点的学习和⽬标完成过程 1.通过复习特殊⾓的三⾓函数值,引导学⽣观察,并猜想“任⼀锐⾓的正弦(余弦)值等于它的余⾓的余弦(正弦)值吗?”提出问题,激发学⽣的学习热情,使学⽣的思维积极活跃. 2.这时少数反应快的学⽣可能头脑中已经“画”出了图形,并有了思路,但对部分学⽣来说仍思路凌乱.因此教师应进⼀步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐⾓)成⽴吗?这时,学⽣结合正、余弦的概念,完全可以⾃⼰解决,教师要给学⽣⾜够的研究解决问题的时间,以培养学⽣逻辑思维能⼒及独⽴思考、勇于创新的精神. 3.教师板书: 任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值. sinA=cos(90°-A),cosA=sin(90°-A). 4.在学习了正、余弦概念的基础上,学⽣了解以上内容并不困难,但是,由于学⽣初次接触三⾓函数,还不熟练,⽽定理⼜涉及余⾓、余函数,使学⽣极易混淆.因此,定理的应⽤对学⽣来说是难点、在给出定理后,需加以巩固. 已知∠A和∠B都是锐⾓, (1)把cos(90°-A)写成∠A的正弦. (2)把sin(90°-A)写成∠A的余弦. 这⼀练习只能起到巩固定理的作⽤.为了运⽤定理,教材安排了例3. (2)已知sin35°=0.5736,求cos55°; (3)已知cos47°6′=0.6807,求sin42°54′. (1)问⽐较简单,对照定理,学⽣⽴即可以回答.(2)、(3)⽐(1)则更深⼀步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学⽣⾃⼰发现35°与55°的⾓,47°6′分42°54′的⾓互余,从⽽根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好⼀些的同学讲清思维过程,便于全体学⽣掌握,在三个问题处理完之后,将题⽬变形: (2)已知sin35°=0.5736,则cos______=0.5736. (3)cos47°6′=0.6807,则sin______=0.6807,以培养学⽣思维能⼒. 为了配合例3的教学,教材中配备了练习题2. (2)已知sin67°18′=0.9225,求cos22°42′; (3)已知cos4°24′=0.9971,求sin85°36′. 学⽣独⽴完成练习2,就说明定理的教学较成功,学⽣基本会运⽤. 教材中3的设置,实际上是对前⼆节课内容的综合运⽤,既考察学⽣正、余弦概念的掌握程度,同时⼜对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下⼀节查正余弦表做了准备. (四)⼩结与扩展 1.请学⽣做知识⼩结,使学⽣对所学内容进⾏归纳总结,将所学内容变成⾃⼰知识的组成部分. 2.本节课我们由特殊⾓的正弦(余弦)和它的余⾓的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意⼀个锐⾓的正弦值等于它的余⾓的余弦值,任意⼀个锐⾓的余弦值等于它的余⾓的正弦值. 四、布置作业篇⼆:《正弦和余弦》 ⼀、素质教育⽬标 (⼀)知识教学点 使学⽣知道当直⾓三⾓形的锐⾓固定时,它的对边、邻边与斜边的⽐值也都固定这⼀事实. (⼆)能⼒训练点 逐步培养学⽣会观察、⽐较、分析、概括等逻辑思维能⼒. (三)德育渗透点 引导学⽣探索、发现,以培养学⽣独⽴思考、勇于创新的精神和良好的学习习惯. ⼆、教学重点、难点 1.重点:使学⽣知道当锐⾓固定时,它的对边、邻边与斜边的⽐值也是固定的这⼀事实. 2.难点:学⽣很难想到对任意锐⾓,它的对边、邻边与斜边的⽐值也是固定的事实,关键在于教师引导学⽣⽐较、分析,得出结论. 三、教学步骤 (⼀)明确⽬标 1.如图6-1,长5⽶的梯⼦架在⾼为3⽶的墙上,则A、B间距离为多少⽶? 2.长5⽶的梯⼦以倾斜⾓∠CAB为30°靠在墙上,则A、B间的距离为多少? 3.若长5⽶的梯⼦以倾斜⾓40°架在墙上,则A、B间距离为多少? 4.若长5⽶的梯⼦靠在墙上,使A、B间距为2⽶,则倾斜⾓∠CAB为多少度? 前两个问题学⽣很容易回答.这两个问题的设计主要是引起学⽣的回忆,并使学⽣意识到,本章要⽤到这些知识.但后两个问题的设计却使学⽣感到疑惑,这对初三年级这些好奇、好胜的学⽣来说,起到激起学⽣的学习兴趣的作⽤.同时使学⽣对本章所要学习的内容的特点有⼀个初步的了解,有些问题单靠勾股定理或含30°⾓的直⾓三⾓形和等腰直⾓三⾓形的知识是不能解决的,解决这类问题,关键在于找到⼀种新⽅法,求出⼀条边或⼀个未知锐⾓,只要做到这⼀点,有关直⾓三⾓形的其他未知边⾓就可⽤学过的知识全部求出来. 通过四个例⼦引出课题. (⼆)整体感知 1.请每⼀位同学拿出⾃⼰的三⾓板,分别测量并计算30°、45°、60°⾓的对边、邻边与斜边的⽐值. 学⽣很快便会回答结果:⽆论三⾓尺⼤⼩如何,其⽐值是⼀个固定的值.程度较好的学⽣还会想到,以后在这些特殊直⾓三⾓形中,只要知道其中⼀边长,就可求出其他未知边的长. 2.请同学画⼀个含40°⾓的直⾓三⾓形,并测量、计算40°⾓的对边、邻边与斜边的⽐值,学⽣⼜⾼兴地发现,不论三⾓形⼤⼩如何,所求的⽐值是固定的.⼤部分学⽣可能会想到,当锐⾓取其他固定值时,其对边、邻边与斜边的⽐值也是固定的吗? 这样做,在培养学⽣动⼿能⼒的同时,也使学⽣对本节课要研究的知识有了整体感知,唤起学⽣的求知欲,⼤胆地探索新知. (三)重点、难点的学习与⽬标完成过程 1.通过动⼿实验,学⽣会猜想到“⽆论直⾓三⾓形的锐⾓为何值,它的对边、邻边与斜边的⽐值总是固定不变的”.但是怎样证明这个命题呢?学⽣这时的思维很活跃.对于这个问题,部分学⽣可能能解决它.因此教师此时应让学⽣展开讨论,独⽴完成. 2.学⽣经过研究,也许能解决这个问题.若不能解决,教师可适当引导: 若⼀组直⾓三⾓形有⼀个锐⾓相等,可以把其 顶点A1,A2,A3重合在⼀起,记作A,并使直⾓边AC1,AC2,AC3……落在同⼀条直线上,则斜边AB1,AB2,AB3……落在另⼀条直线上.这样同学们能解决这个问题吗?引导学⽣独⽴证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴ 形中,∠A的对边、邻边与斜边的⽐值,是⼀个固定值. 通过引导,使学⽣⾃⼰独⽴掌握了重点,达到知识教学⽬标,同时培养学⽣能⼒,进⾏了德育渗透. ⽽前⾯导课中动⼿实验的设计,实际上为突破难点⽽设计.这⼀设计同时起到培养学⽣思维能⼒的作⽤. 练习题为作了孕伏同时使学⽣知道任意锐⾓的对边与斜边的⽐值都能求出来. (四)总结与扩展 1.引导学⽣作知识总结:本节课在复习勾股定理及含30°⾓直⾓三⾓形的性质基础上,通过动⼿实验、证明,我们发现,只要直⾓三⾓形的锐⾓固定,它的对边、邻边与斜边的⽐值也是固定的. 教师可适当补充:本节课经过同学们⾃⼰动⼿实验,⼤胆猜测和积极思考,我们发现了⼀个新的结论,相信⼤家的逻辑思维能⼒⼜有所提⾼,希望⼤家发扬这种创新精神,变被动学知识为主动发现问题,培养⾃⼰的创新意识. 2.扩展:当锐⾓为30°时,它的对边与斜边⽐值我们知道.今天我们⼜发现,锐⾓任意时,它的对边与斜边的⽐值也是固定的.如果知道这个⽐值,已知⼀边求其他未知边的问题就迎刃⽽解了.看来这个⽐值很重要,下节课我们就着重研究这个“⽐值”,有兴趣的同学可以提前预习⼀下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时⼜激发了学⽣的兴趣. 四、布置作业 本节课内容较少,⽽且是为正、余弦概念打基础的,因此课后应要求学⽣预习正余弦概念. 五、板书设计篇三:《⾓平分线的性质》 (⼀)创设情境导⼊新课 不利⽤⼯具,请你将⼀张⽤纸⽚做的⾓分成两个相等的⾓。
初中数学教案优秀6篇
初中数学教案优秀6篇初中数学教案篇一教学内容分析:⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。
⑴前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。
⑴对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。
学生分析:⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。
⑴学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。
教学目标:⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。
⑴过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。
通过运用提高学生的推理能力。
⑴情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。
重点:掌握正方形的性质与判定,并进行简单的推理。
难点:探索正方形的判定,发展学生的推理能教学方法:类比与探究教具准备:可以活动的四边形模型。
(一)教学内容分析1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)2.本课教学内容的地位、作用,知识的前后联系《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。
本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
3.本课教学内容的特点,重点分析体现新课程理念的特点本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。
为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。
初中数学教案(8篇)
初中数学教案(8篇)初中数学优秀教案篇一一、教材内容及设置依据【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。
【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。
二、教材的地位和作用本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了类比依据。
也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。
三、对重点、难点的处理【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。
为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。
同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。
【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。
同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)四、关于教学方法的选用根据本节课的内容和学生的实际水平,本节课可采用的方法:1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。
初中数学教学设计精选6篇
初中数学教学设计精选6篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计精选6篇去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变,要不变,则谁也不变。
初中数学教学设计
初中数学教学设计初中数学教学设计模板5篇作为一名数学教育工作者,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。
那么初中数学教学设计怎么写呢?下面是小编给大家整理的初中数学教学设计,希望大家喜欢!初中数学教学设计篇1一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。
首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。
通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。
学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。
②合并同类项法则③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。
这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学设计等腰三角形镇海区炼化中学:吴大庆课型:新授课日期: 5.12教材分析:1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
学情分析:1、授课班级为平行班,学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
教学目标:知识目标:等腰三角形的相关概念,两个定理的理解及应用。
技能目标:理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
情感目标:体会数学的对称美,体验团队精神,培养合作精神。
教学中的重点、难点:重点:1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点:1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:教学手段:1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作:1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
教学步骤及说明学生活动教师活动教学目标教学说明预习相关概念及定理。
观察并回答。
学生同步回答学生运用直尺或圆规和剪刀进行绘图和剪切。
课题引入:让学生观察两把三角尺,从三角形分类思考“两把三角尺的形状除了角度不同外还有什么区别”在对学生思考结果的总结基础上,引入新课题。
新授:1、等腰三角形的相关概念,腰,底边,顶角,底角。
2、指导学生做一做,要求:在事先准备的纸上,画一个腰长为a的等腰三角形,并将它剪下来,与组内其他成员的作品放在一起,并观察和回答问题。
从直观图形上,回忆小学知识,体会等腰三角形。
理解等腰三角形相关概念。
深入体会,等腰三角形的构成和画三角形的方法。
培养学生良好的学习习惯。
在小学知识和第八章三角形知识的基础上,学生比较容易得到结论。
由于学生有相应的小学的知识和预习,基本概念的理解不成问题。
由于三角形的形状不限,方法不限,学生绘制的结论也有所不同。
学生观察并思考,然后讨论,然后积极回答。
学生以小组形式进行操作和讨论然后努力向结果慢慢前进。
学生对自己剪得的等腰三角形作操作,体会对称的思想。
在讨论的基础上,回答更高层次的问题。
学生观察,并且以小组竞赛的方式进行大范围的搜索和体验。
学生观察,体验,领会新概念。
3、第一个问题:观察所剪得的三角形形状是否相同,在满足条件的情况下,可以画几个不同类的等腰三角形。
4、第二个问题:将这些三角形放在一起,并且使顶点重合,观察另外的一些顶点,看看有什么特点和发现。
5、问题:等腰三角形是否为轴对称图形,如何通过具体的操作体现他是轴对称,并指出对称轴。
问题:等边三角形是否为轴对称图形,对称轴有几条。
等腰三角形的对称轴有几条。
6、通过刚才的折叠结合屏幕上图形的字母,说明轴对称图形的等量关系和位置关系。
7、在总结刚才观察结论的基础上,引出两条重要的定理。
1、直观体会钝角等腰三角形,锐角等腰三角形,直角等腰三角形的不同特点。
2、体会已知两边不能确定三角形,为理解全等或三角形的构成作铺垫。
1、培养学生的观察,猜测,总结的能力。
2、体验等腰三角形在圆中的存在3、体会合作的乐趣。
4、体会从特殊到一般的过程,为今后的轨迹思想做一些准备。
1、从轴对称角度理解等腰三角形,为后面的等量关系的得出做铺垫。
2、体验学习过程。
3、加深对一般情况和特殊情况的理解,提高学生对两解问题的敏感度。
1、体会轴对称图形中的等量关系和由此得到的特殊位置关系。
为下面定理的引出得出有用的结论。
2、感受组间竞争。
1、体验从特殊到一般的过程。
2、体验合作和竞争的关系。
此题学生较容易总结,至于体会到什么程度特别是目标2不作具体要求,体现新教材的“不同人在数学上得到不同的发展”理念。
此题教难,关键在于引导和启发,给予学生充分的时间,必要时候使用事先准备的多媒体辅助教学,从实际结果看,学生在多媒体的启发作用下,应该会有一个思维上的突破。
体现新教材的操作理念,回归学习的本质,体验学习的过程。
对问题的一般到特殊做一些体会。
学生由于竞争的关系,往往能够得到许多有益的结论。
建议采用“开火车”的办法。
在概念1中强调:在一个三角形中。
在概念2中强调:三条线的具体描述。
集体讨论并互相帮助记忆重要的结论。
每个小组抽查记忆。
学生思考,看书理解,然后讨论每一步的理由。
小组讨论,并且竞争回答。
学生讨论,并且试图写出过程。
学生讨论,通过讨论,体会数学定理的使用和数学语言的组织。
通过小组竞争的方式要求每个同学清晰记忆和理解定理2中的具体条件。
8、完成例题:已知:在△ABC中,AB=AC,∠B=80°.求∠C和∠A的度数.9、完成例题:如果等腰三角形的一个外角等于140°,那么等腰三角形三个内角等于多少度?10、完成例题:在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数11、完成例题:建筑工人在盖房子的时候,要看房梁是否水平,可以用一块等腰三角形放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板的底边中点,那么房梁就是水平的,为什么?3、体验原定理和逆定理的关系。
(不作任何表述,只做理解)1、完成对定理1的应用。
体会定理在几何计算中的运用。
2、体会合作精神。
1、体会两解可能性的运用,培养思维的严密性。
2、注意分类表达的合理性和清晰性。
1、对三线合一的使用2、结合学生的过程书写,体会合情推理。
1、体会三线合一在生活中的使用。
2、体验数学语言的精练和准确定理2可以视情况使用多媒体辅助理解。
特别是对相关逆定理的理解,但不作表述。
理由的叙述是数学能力培养的重要一环,认真完成每一步。
同时,鼓励学生讨论,共同提高。
注意两解的情况。
注意两解分类的表达。
此题书写角度有很多选择,对每种书写只要合理就给予鼓励。
体现:新课标的学会数学应用的理念E CBA21D CBA学生在自己剪得的等腰三角形上画上已知条件,并且观察是否相等,然后进行相应证明的思考,并积极讨论。
学生小组讨论后发言。
开放性问题,自由发言。
12、完成例题:等腰△ABC 中,AB =AC ,D 、E 是BC 上的两点,若BD =CE ,那么AD 和AE 相等吗?为什么13、课堂小结:通过今天的学习,你体会到什么?14、有益的思考:通过今天的学习,你有哪些方法判断剪得的三角形是等腰三角形。
1、 直观体验轴对称的概念,以及应用对称思想实现辅助线的寻找2、 继续体验合情推理的使用。
回顾知识。
培养学生开放性思维的运用在没有全等三角形的情况下,此题选择合理方法的思考就变得比较重要。
注意教师的总结和理论化。
注意教师的合理总结。
课后小结:由于运用了新课程教学方法和理念,知识从不同的方向得到了渗透。
基本完成了课前制定的教学目标和教学要求,为进一步的深入理解打下了基础。
E D CB A。