初中数学教学设计

合集下载

初中数学教案模板优秀9篇

初中数学教案模板优秀9篇

初中数学教案模板优秀9篇一、学习目标:1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。

2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。

二、学习重点:正确运用二次根式的性质及运算法则进行二次根式的混合运算。

学习难点:二次根式计算的结果要是最简二次根式。

三、过程知识准备1、满足下列条的二次根式是最简二次根式。

2、回忆有理数,整式混合运算的顺序。

3、回忆并整理整式的乘法公式。

方法探究1⑴(512+23)某15⑵(3+10)(2-5)归纳:尝试练习:⑴(3+22)某6⑵(827-53)6⑶(6-3+1)某23⑷(3-22)(33-2)⑸(22-3)(3+2)⑹(5-6)(3+2)方法探究2⑴(3+2)(3-2)⑵(3+25)2归纳:尝试练习:⑴(5+1)(5-1)⑵(7+5)(5-7)⑶(25-32)(25+32)⑷(a+b)(a-b)⑸(3-2)2⑹(32-45)2⑺(3-22)(22-3)⑻(a-b)2⑼(1-23)(1+23)-(1+3)2⑽(3+2-5)(3+2+5)例题解析1、计算:(22-3)2023(22+3)20232、若某=10-3,求代数式某2+6某+11的值。

3、若某=11+72,y=11—72,求代数式某2-某y+y2的值。

内反馈1、计算12(2-3)=2、计算⑴(2+3)(2-3)=⑵(5-2)2023(5+2)2023=3、计算:⑴12(75+313-48)⑵(1327-24-323)12⑶(23-5)(2+3)⑷(5-3+2)(5+3-2)⑸(312-213+48)÷234、已知a=3+2,b=3-2,求下列各式的值。

⑴a2-b2⑵1a-1b⑶a2-ab+b25、若某=3+1,求代数式某2-2某-3的值。

教学目标:1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题。

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律。

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。

本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

初中数学活动教案6篇

初中数学活动教案6篇

初中数学活动教案6篇初中数学活动教案篇1一、内容特点在知识与方法上类似于数系的第一次扩张。

也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的`四则运算(不要求分母有理化)。

二、设计思路整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

初中数学课堂教学设计5篇

初中数学课堂教学设计5篇

初中数学课堂教学设计5篇一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=k某+b(其中k,b为常数且k≠0),那么y 是一次函数。

正比例函数:对于y=k某+b,当b=0,k≠0时,有y=k某,此时称y 是某的正比例函数,k为正比例系数。

(1)从解析式看:y=k某+b(k≠0,b是常数)是一次函数;而y=k某(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=k某(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=k某+b(k≠0)的图象是过点(0,b)且与y=k某平行的一条直线。

基础训练:1、写出一个图象经过点(1,—3)的函数解析式为2、直线y=—2某—2不经过第象限,y随某的增大而。

3、如果P(2,k)在直线y=2某+2上,那么点P到某轴的距离是4、已知正比例函数y=(3k—1)某,若y随某的增大而增大,则k是5、过点(0,2)且与直线y=3某平行的直线是6、若正比例函数y=(1—2m)某的图像过点A(某1,y1)和点B(某2,y2)当某1y2,则m的取值范围是7、若y—2与某—2成正比例,当某=—2时,y=4,则某=时,y=—4。

8、直线y=—5某+b与直线y=某—3都交y轴上同一点,则b的值为9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

四、教学反思:题的答案做出来,尽量要一题多解。

再由小组长组织小组成员汇编,在汇编过程中要去粗取精。

课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。

中学数学教学设计与案例6篇

中学数学教学设计与案例6篇

中学数学教学设计与案例6篇中学数学教学设计与案例6篇好的教学课件是很重要的。

通过引导学生把握课文内容,培养学生观察、思维能力,培养他们善于通过普通事物发现不寻常的“美”,并能根据对事物的描写,抒发自己的感情。

下面小编给大家带来关于中学数学教学设计与案例,希望会对大家的工作与学习有所帮助。

中学数学教学设计与案例【篇1】一、教学目标1.把握菱形的判定.2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.3.通过教具的演示培养学生的学习爱好.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形. 分析判定2:师问:本定理有几个条件生答:两个.师问:哪两个生答:(1)是平行四边形(2)两条对角线互相垂直.师问:再需要什么条件可证该平行四边形是菱形生答:再证两邻边相等.(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗为什么可画出图,显然对角线,但都不是菱形.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区别与联系.2.思考题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业教材P159中9、10、11、13中学数学教学设计与案例【篇2】教学目标1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回顾本节课所学过的知识内容有哪些所涉及到的主要数学思想方法有那些(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

初中数学教学优质教案(7篇)

初中数学教学优质教案(7篇)

初中数学教学优质教案(7篇)初中数学教学优质教案【篇1】一、教材内容人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

二、教学目标1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

三、教学重、难点认识负数的意义。

四、教学过程(一)谈话交流谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。

)今天的数学课我们就从这个话题聊起。

(板书:相反。

)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。

)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?(二)教学新知1.表示相反意义的量(1)引入实例谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

①六年级上学期转来6人,本学期转走6人。

②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③与标准体重比,小明重了2.5千克,小华轻了1.8千克。

④一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。

(补充板书:相反意义的量。

)(2)尝试怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。

(3)展示交流2.认识正、负数(1)引入正、负数谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。

初中数学教学设计教案模板3篇 初中数学教案板书设计模板

初中数学教学设计教案模板3篇 初中数学教案板书设计模板

初中数学教学设计教案模板3篇初中数学教案板书设计模板下面是整理的初中数学教学设计教案模板范文最新3篇初中数学教案板书设计模板,供大家参考。

初中数学教学设计教案模板范文最新1一.教学目标:1.认知目标:1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2.能力目标:1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3.情感目标:1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二.教学重难点重点:二元一次方程组及其解的概念难点:用列表尝试的方法求出方程组的解。

三.教学过程(一)创设情景,引入课题1.本班共有40人,请问能确定男*各几人吗?为什么?(1)如果设本班男生x人,*y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2.男生比*多了2人。

设男生x人,*y人.方程如何表示?x,y的值是多少?3.本班男生比*多2人且男*共40人.设该班男生x人,*y人。

方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4.点明课题:二元一次方程组。

[设计意图:从学生身边取数据,让他们感受到生活中处处有数学](二)探究新知,练习巩固1.二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。

找关键词,加深他们对概念的了解.](2)练习:判断下列是不是二元一次方程组:x+y=3,x+y=200,2x-3=7,3x+4y=3y+z=5,x=y+10,2y+1=5,4x-y2=2学生作出判断并要说明理由。

2.二元一次方程组的解的概念(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:x=1;x=-2;x=;-x=y=0;y=2;y=1;y=方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)初中数学教学设计1(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。

你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流探究新知(活动一)探究角平分仪的原理。

具体过程如下:播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的.依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。

以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。

其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。

使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)篇一:初中数学教学设计篇一一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11U20距离a地50km,要在12U00之前驶过a地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式3.不等式的解集设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?<的解集,也是不等式>502、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计1.填空下列式子中属于不等式的有___________________________①x +7>②x≥ y + 2 = 0③ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7② a的与b的3倍的和是非负数③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.篇二:初中数学教学设计模板篇二教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。

初中数学优秀教学设计(多篇汇编)

初中数学优秀教学设计(多篇汇编)

初中数学优秀教学设计初中数学优秀教学设计1一、教材分析本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。

因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。

通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:(一)知识技能目标:1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:1、通过探究同类项定义、合并同类项的'方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:合并同类项五、教学关键:同类项的概念六、教学准备:教师:1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。

(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。

初中数学优秀教案 初中数学优秀教案(优秀8篇)

初中数学优秀教案 初中数学优秀教案(优秀8篇)

初中数学优秀教案初中数学优秀教案(优秀8篇)作为一名教师,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。

教案应该怎么写呢?这里是小编阿青给大家收集整理的8篇初中数学优秀教案的相关范文。

初中数学优秀教案篇一一、背景知识《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。

课本安排了做一做等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。

二、教学目标1、使学生能说出有理数大小的比较法则2、能熟练运用法则结合数轴比较有理数的大小,特别是应用定值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3、能正确运用符号∵∵写出表示推理过程中简单的因果关系。

三、教学重点与难点重点:运用法则借助数轴比较两个有理数的大小。

难点:利用定值概念比较两个负分数的大小。

四、教学准备多媒体课件五、教学设计(一)交流对话,探究新知1、说一说(多媒体显示)某一天我们5个城市的较低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的较低气温10∵比上海的较低气温0∵高,有些学生会说哈尔滨的较低气温零下20∵比北京的较低气温零下10∵低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

比较这一天下列两个城市间较低气温的高低(填高于或低于)广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

2、画一画:(1)把上述5个城市较低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么?(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)初中数学教案篇一1.初中数学教案模板1.课题填写课题名称(初中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握。

知识,提高学生解决实际问题的能力;(2)过程与方法:通过。

(讨论、发现、探究)的过程,提高。

(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4.教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5.教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的。

解法和步骤)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。

可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。

(3)课堂小结教师提问,学生回答本节课的收获。

(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书2.初中数学教案格式课程编码:______________________________________总学时/ 周学时:/开课时间:年月日第周至第周授课年级、专业、班级:___________________________使用教材:_______________________________________授课教师:_______________________________________1.章节名称2.教学目的3.课时安排4.教学重点、难点5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)6.复习巩固与作业要求7.教学环境及教具准备8.教学参考资料9.教学后记3.初中数学教案范文教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

初中数学教学设计(精选5篇)

初中数学教学设计(精选5篇)

初中数学教学设计(精选5篇)初中数学教学设计(精选5篇)在平平淡淡的学习中,大家或多或少都参加过一些主题班会吧?主题班会必须有明确的教育目的,自始至终贯穿,渗透着极强的教育性。

你知道什么样的主题班会才是好的主题班会吗?下面是由给大家带来的初中数学优秀教学设计5篇,让我们一起来看看!初中数学教学设计篇1教学目标1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。

运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。

对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。

对代数式的概念可以从三个方面去理解:(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.等都不是代数式.3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。

用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。

初中数学教学设计三篇

初中数学教学设计三篇

【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。

准备了以下内容,供⼤家参考!篇⼀:《正弦和余弦(⼆)》 ⼀、素质教育⽬标 (⼀)知识教学点 使学⽣了解⼀个锐⾓的正弦(余弦)值与它的余⾓的余弦(正弦)值之间的关系. (⼆)能⼒训练点 逐步培养学⽣观察、⽐较、分析、综合、抽象、概括的逻辑思维能⼒. (三)德育渗透点 培养学⽣独⽴思考、勇于创新的精神. ⼆、教学重点、难点 1.重点:使学⽣了解⼀个锐⾓的正弦(余弦)值与它的余⾓的余弦(正弦)值之间的关系并会应⽤. 2.难点:⼀个锐⾓的正弦(余弦)与它的余⾓的余弦(正弦)之间的关系的应⽤. 三、教学步骤 (⼀)明确⽬标 1.复习提问 (1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学⽣回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学⽣回答,从中可以了解教学班还有多少⼈不清楚的,可以采取适当的补救措施. (2)请同学们回忆30°、45°、60°⾓的正、余弦值(教师板书). (3)请同学们观察,从中发现什么特征?学⽣⼀定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个⾓的正弦值等于它们余⾓的余弦值”. 2.导⼊新课 根据这⼀特征,学⽣们可能会猜想“⼀个锐⾓的正弦(余弦)值等于它的余⾓的余弦(正弦)值.”这是否是真命题呢?引出课题. (⼆)、整体感知 关于锐⾓的正弦(余弦)值与它的余⾓的余弦(正弦)值之间的关系,是通过30°、45°、60°⾓的正弦、余弦值之间的关系引⼊的,然后加以证明.引⼊这两个关系式是为了便于查“正弦和余弦表”,关系式虽然⽤⿊体字并加以⽂字语⾔的证明,但不标明是定理,其证明也不要求学⽣理解,更不应要求学⽣利⽤这两个关系式去推证其他三⾓恒等式.在本章,这两个关系式的⽤处仅仅限于查表和计算,⽽不是证明. (三)重点、难点的学习和⽬标完成过程 1.通过复习特殊⾓的三⾓函数值,引导学⽣观察,并猜想“任⼀锐⾓的正弦(余弦)值等于它的余⾓的余弦(正弦)值吗?”提出问题,激发学⽣的学习热情,使学⽣的思维积极活跃. 2.这时少数反应快的学⽣可能头脑中已经“画”出了图形,并有了思路,但对部分学⽣来说仍思路凌乱.因此教师应进⼀步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐⾓)成⽴吗?这时,学⽣结合正、余弦的概念,完全可以⾃⼰解决,教师要给学⽣⾜够的研究解决问题的时间,以培养学⽣逻辑思维能⼒及独⽴思考、勇于创新的精神. 3.教师板书: 任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值. sinA=cos(90°-A),cosA=sin(90°-A). 4.在学习了正、余弦概念的基础上,学⽣了解以上内容并不困难,但是,由于学⽣初次接触三⾓函数,还不熟练,⽽定理⼜涉及余⾓、余函数,使学⽣极易混淆.因此,定理的应⽤对学⽣来说是难点、在给出定理后,需加以巩固. 已知∠A和∠B都是锐⾓, (1)把cos(90°-A)写成∠A的正弦. (2)把sin(90°-A)写成∠A的余弦. 这⼀练习只能起到巩固定理的作⽤.为了运⽤定理,教材安排了例3. (2)已知sin35°=0.5736,求cos55°; (3)已知cos47°6′=0.6807,求sin42°54′. (1)问⽐较简单,对照定理,学⽣⽴即可以回答.(2)、(3)⽐(1)则更深⼀步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学⽣⾃⼰发现35°与55°的⾓,47°6′分42°54′的⾓互余,从⽽根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好⼀些的同学讲清思维过程,便于全体学⽣掌握,在三个问题处理完之后,将题⽬变形: (2)已知sin35°=0.5736,则cos______=0.5736. (3)cos47°6′=0.6807,则sin______=0.6807,以培养学⽣思维能⼒. 为了配合例3的教学,教材中配备了练习题2. (2)已知sin67°18′=0.9225,求cos22°42′; (3)已知cos4°24′=0.9971,求sin85°36′. 学⽣独⽴完成练习2,就说明定理的教学较成功,学⽣基本会运⽤. 教材中3的设置,实际上是对前⼆节课内容的综合运⽤,既考察学⽣正、余弦概念的掌握程度,同时⼜对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下⼀节查正余弦表做了准备. (四)⼩结与扩展 1.请学⽣做知识⼩结,使学⽣对所学内容进⾏归纳总结,将所学内容变成⾃⼰知识的组成部分. 2.本节课我们由特殊⾓的正弦(余弦)和它的余⾓的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意⼀个锐⾓的正弦值等于它的余⾓的余弦值,任意⼀个锐⾓的余弦值等于它的余⾓的正弦值. 四、布置作业篇⼆:《正弦和余弦》 ⼀、素质教育⽬标 (⼀)知识教学点 使学⽣知道当直⾓三⾓形的锐⾓固定时,它的对边、邻边与斜边的⽐值也都固定这⼀事实. (⼆)能⼒训练点 逐步培养学⽣会观察、⽐较、分析、概括等逻辑思维能⼒. (三)德育渗透点 引导学⽣探索、发现,以培养学⽣独⽴思考、勇于创新的精神和良好的学习习惯. ⼆、教学重点、难点 1.重点:使学⽣知道当锐⾓固定时,它的对边、邻边与斜边的⽐值也是固定的这⼀事实. 2.难点:学⽣很难想到对任意锐⾓,它的对边、邻边与斜边的⽐值也是固定的事实,关键在于教师引导学⽣⽐较、分析,得出结论. 三、教学步骤 (⼀)明确⽬标 1.如图6-1,长5⽶的梯⼦架在⾼为3⽶的墙上,则A、B间距离为多少⽶? 2.长5⽶的梯⼦以倾斜⾓∠CAB为30°靠在墙上,则A、B间的距离为多少? 3.若长5⽶的梯⼦以倾斜⾓40°架在墙上,则A、B间距离为多少? 4.若长5⽶的梯⼦靠在墙上,使A、B间距为2⽶,则倾斜⾓∠CAB为多少度? 前两个问题学⽣很容易回答.这两个问题的设计主要是引起学⽣的回忆,并使学⽣意识到,本章要⽤到这些知识.但后两个问题的设计却使学⽣感到疑惑,这对初三年级这些好奇、好胜的学⽣来说,起到激起学⽣的学习兴趣的作⽤.同时使学⽣对本章所要学习的内容的特点有⼀个初步的了解,有些问题单靠勾股定理或含30°⾓的直⾓三⾓形和等腰直⾓三⾓形的知识是不能解决的,解决这类问题,关键在于找到⼀种新⽅法,求出⼀条边或⼀个未知锐⾓,只要做到这⼀点,有关直⾓三⾓形的其他未知边⾓就可⽤学过的知识全部求出来. 通过四个例⼦引出课题. (⼆)整体感知 1.请每⼀位同学拿出⾃⼰的三⾓板,分别测量并计算30°、45°、60°⾓的对边、邻边与斜边的⽐值. 学⽣很快便会回答结果:⽆论三⾓尺⼤⼩如何,其⽐值是⼀个固定的值.程度较好的学⽣还会想到,以后在这些特殊直⾓三⾓形中,只要知道其中⼀边长,就可求出其他未知边的长. 2.请同学画⼀个含40°⾓的直⾓三⾓形,并测量、计算40°⾓的对边、邻边与斜边的⽐值,学⽣⼜⾼兴地发现,不论三⾓形⼤⼩如何,所求的⽐值是固定的.⼤部分学⽣可能会想到,当锐⾓取其他固定值时,其对边、邻边与斜边的⽐值也是固定的吗? 这样做,在培养学⽣动⼿能⼒的同时,也使学⽣对本节课要研究的知识有了整体感知,唤起学⽣的求知欲,⼤胆地探索新知. (三)重点、难点的学习与⽬标完成过程 1.通过动⼿实验,学⽣会猜想到“⽆论直⾓三⾓形的锐⾓为何值,它的对边、邻边与斜边的⽐值总是固定不变的”.但是怎样证明这个命题呢?学⽣这时的思维很活跃.对于这个问题,部分学⽣可能能解决它.因此教师此时应让学⽣展开讨论,独⽴完成. 2.学⽣经过研究,也许能解决这个问题.若不能解决,教师可适当引导: 若⼀组直⾓三⾓形有⼀个锐⾓相等,可以把其 顶点A1,A2,A3重合在⼀起,记作A,并使直⾓边AC1,AC2,AC3……落在同⼀条直线上,则斜边AB1,AB2,AB3……落在另⼀条直线上.这样同学们能解决这个问题吗?引导学⽣独⽴证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴ 形中,∠A的对边、邻边与斜边的⽐值,是⼀个固定值. 通过引导,使学⽣⾃⼰独⽴掌握了重点,达到知识教学⽬标,同时培养学⽣能⼒,进⾏了德育渗透. ⽽前⾯导课中动⼿实验的设计,实际上为突破难点⽽设计.这⼀设计同时起到培养学⽣思维能⼒的作⽤. 练习题为作了孕伏同时使学⽣知道任意锐⾓的对边与斜边的⽐值都能求出来. (四)总结与扩展 1.引导学⽣作知识总结:本节课在复习勾股定理及含30°⾓直⾓三⾓形的性质基础上,通过动⼿实验、证明,我们发现,只要直⾓三⾓形的锐⾓固定,它的对边、邻边与斜边的⽐值也是固定的. 教师可适当补充:本节课经过同学们⾃⼰动⼿实验,⼤胆猜测和积极思考,我们发现了⼀个新的结论,相信⼤家的逻辑思维能⼒⼜有所提⾼,希望⼤家发扬这种创新精神,变被动学知识为主动发现问题,培养⾃⼰的创新意识. 2.扩展:当锐⾓为30°时,它的对边与斜边⽐值我们知道.今天我们⼜发现,锐⾓任意时,它的对边与斜边的⽐值也是固定的.如果知道这个⽐值,已知⼀边求其他未知边的问题就迎刃⽽解了.看来这个⽐值很重要,下节课我们就着重研究这个“⽐值”,有兴趣的同学可以提前预习⼀下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时⼜激发了学⽣的兴趣. 四、布置作业 本节课内容较少,⽽且是为正、余弦概念打基础的,因此课后应要求学⽣预习正余弦概念. 五、板书设计篇三:《⾓平分线的性质》 (⼀)创设情境导⼊新课 不利⽤⼯具,请你将⼀张⽤纸⽚做的⾓分成两个相等的⾓。

初中数学教案优秀6篇

初中数学教案优秀6篇

初中数学教案优秀6篇初中数学教案篇一教学内容分析:⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑴前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑴对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

学生分析:⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑴学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

教学目标:⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑴过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。

通过运用提高学生的推理能力。

⑴情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

重点:掌握正方形的性质与判定,并进行简单的推理。

难点:探索正方形的判定,发展学生的推理能教学方法:类比与探究教具准备:可以活动的四边形模型。

(一)教学内容分析1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)2.本课教学内容的地位、作用,知识的前后联系《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。

本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。

为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。

初中数学优秀教案7篇

初中数学优秀教案7篇

初中数学优秀教案7篇初中数学优秀教案篇1教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。

教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1x2得出一元二次方程根与系数的关系,以及以数x1x2为根的一元二次方程的求方程模型。

然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。

学情分析:1.学生已学习用求根公式法解一元二次方程。

2.本课的教学对象是九年级学生,学生对事物的认识多是直观形象的,他们所注意的多是事物外部的直接的具体形象的特征。

3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。

教学目标:1知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

2能力目标:通过韦达定理的教学过程,使学生经历观察实验猜想证明等数学活动过程,发展推理能力,能有条理地清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。

3情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。

体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

教学重难点:1重点:一元二次方程根与系数的关系。

2难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

板书设计:一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。

问题6.在方程ax+bx+c=0(a≠0)中,abc的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,ac异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。

初中数学教案(8篇)

初中数学教案(8篇)

初中数学教案(8篇)初中数学优秀教案篇一一、教材内容及设置依据【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

二、教材的地位和作用本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了类比依据。

也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

三、对重点、难点的处理【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。

为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。

同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。

【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。

同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)四、关于教学方法的选用根据本节课的内容和学生的实际水平,本节课可采用的方法:1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

初中数学教学设计精选6篇

初中数学教学设计精选6篇

初中数学教学设计精选6篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计精选6篇去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变,要不变,则谁也不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学教学设计
教材分析:
1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。

2、等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

学情分析:
1、授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。

2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。

3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。

教学中的重点、难点:
重点:1、等腰三角形对称的概念。

2、“等边对等角”的理解和使用。

3、“三线合一”的理解和使用。

难点:1、等腰三角形三线合一的具体应用。

2、等腰三角形图形组合的观察,总结和分析。

主要教学手段及相关准备:
教学手段:1、使用导学法、讨论法。

2、运用合作学习的方式,分组学习和讨论。

3、运用多媒体辅助教学。

4、调动学生动手操作,帮助理解。

准备工作:1、多媒体课件片断,辅助难点突破。

2、学生课前分小组预习,上课时按小组落座。

3、学生自带剪刀,圆规,直尺等工具。

4、每人得到一张印有“长度为a的线段”的纸片。

教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。

2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。

3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。

相关文档
最新文档