2018_2019学年八年级数学上学期期末复习检测试卷2
2018-2019学年江西省南昌二中八年级(上)期末数学试卷试题及答案(解析版)
2018-2019学年江西省南昌二中八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案的代号填入题后的括号内.1中的x 的取值范围是( ) A .2x <-B .2x -…C .2x >-D .2x -…2.化简21211a aa a ----的结果为( ) A .11a a +- B .1a -C .aD .13.下列运算正确的是( )A =B =C 35=D 2= 4.如图,在ABCD 中,已知4AC cm =,若ACD ∆的周长为13cm ,则ABCD 的周长为( )A .26cmB .24cmC .20cmD .18cm5.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )A .B .C .D .6.如图所示,圆柱的高3AB =,底面直径3BC =,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C D.二、填空题(本大题共6小题,每小题3分,共18分)7.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为米.8.如图,数轴上点A表示的数为a,化简:a+=.9.如图,在ABCD中,10⊥.则BD=.AD=,AC BCAB=,610.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,ABC+=,3=,BC=,求AC的长,如果设AC x∠=︒,10∆中,90ACBAC AB则可列方程为.11.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S =.现已知ABC ∆的三边长分别为1,2,则ABC ∆的面积为 .12.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 . 三、解答题(本大题共5小题,每小题6分,共30分,解答应写出演算步骤)13.(111|2|()2---(2)计算:2-- 14.解分式方程:21133x xx x =-++.15.先化简,再求值:2222()ab b a b a a a---÷,其中11a b == 16.已知:如图,ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F .求证:AE CF =.17.嘉嘉参加机器人设计活动,需操控机器人在55⨯的方格棋盘上从A 点行走至B 点,且每个小方格皆为正方形,主办单位规定了三条行走路径1R ,2R ,3R ,其行经位置如图与表所示:已知A 、B 、C 、D 、E 、F 、G 七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断1R 、2R 、3R 这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.四、解答题(本大题共3小题,每小题8分,共24分)18.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?19.小刚根据学习“数与式”的经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.以下是小刚的探究过程,请补充完整; (1)具体运算,发现规律.特例12=;特例2=;特例=;特例4: (举一个符合上述运算特征的例子) (2)观察、归纳,得出猜想.如果n 为正整数,用含n 的式子表示这个运算规律; . (3)证明猜想,确认猜想的正确性.20.在四边形ABCD中,AB ACDC=∠=∠=︒,6BD=,4=,45ABC ADC(1)当D、B在AC同侧时,求AD的长;(2)当D、B在AC两侧时,求AD的长.五、解答题(本大题共2小题,每小题9分,共18分)21.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?22.已知:如图,在Rt ABC=,3=,动点P从点B出发沿AC cmAB cm∆中,90C∠=︒,5射线BC以1/cm s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当ABP∆为直角三角形时,求t的值;(3)当ABP∆为等腰三角形时,求t的值.六、解答题(本大题1小题,共12分)23.如图,等边ABCcm s→→→的方向以3/∆的边长为8,动点M从点B出发,沿B A C B 的速度运动,动点N从点C出发,沿C A B Ccm s的速度运动.→→→方向以2/(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.2018-2019学年江西省南昌二中八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)在每小题给出的四个选项中,只有一项是正确的,请将正确答案的代号填入题后的括号内.1中的x 的取值范围是( ) A .2x <-B .2x -…C .2x >-D .2x -…【解答】解:由题意,得240x +…,解得2x -…, 故选:D .2.化简21211a aa a ----的结果为( ) A .11a a +- B .1a -C .aD .1【解答】解:原式21211a aa a -=+-- 2(1)1a a -=- 1a =-故选:B .3.下列运算正确的是( )A =B =C 35=D 2=【解答】解:A 不能合并, 所以A 选项错误;B 、原式=,所以B 选项错误;C 、原式==,所以C 选项错误;D 、原式2==,所以D 选项正确 .故选:D .4.如图,在ABCD 中,已知4AC cm =,若ACD ∆的周长为13cm ,则ABCD 的周长为( )A .26cmB .24cmC .20cmD .18cm【解答】解:4AC cm =,若ADC ∆的周长为13cm ,1349()AD DC cm ∴+=-=.又四边形ABCD 是平行四边形, AB CD ∴=,AD BC =,∴平行四边形的周长为2()18AB BC cm +=.故选:D .5.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )A .B .C .D .【解答】解:A 、22272425+=,222152024+≠,222222025+≠,故A 不正确;B 、22272425+=,222152024+≠,故B 不正确;C 、22272425+=,222152025+=,故C 正确;D 、22272025+≠,222241525+≠,故D 不正确.故选:C .6.如图所示,圆柱的高3AB =,底面直径3BC =,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A.B.C D.【解答】解:蚂蚁也可以沿A B C+=,AB BC--的路线爬行,6把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt ADCADπ=,CD AB==,AD为底面半圆弧长, 1.5∠=︒,3∆中,90ADC所以AC====<,6故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为6⨯米.1.510-【解答】解:6=⨯,0.0000015 1.510-故答案为:6⨯.1.510-8.如图,数轴上点A表示的数为a,化简:a+=2.【解答】解:由数轴可得: 02a <<,则a +a =(2)a a =+-2=.故答案为:2.9.如图,在ABCD 中,10AB =,6AD =,AC BC ⊥.则BD =【解答】解:四边形ABCD 是平行四边形, 6BC AD ∴==,OB OD =,OA OC =, AC BC ⊥,8AC ∴==,4OC ∴=,OB ∴==,2BD OB ∴==故答案为:.10.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,ABC ∆中,90ACB ∠=︒,10AC AB +=,3BC =,求AC 的长,如果设AC x =,则可列方程为 2223(10)x x +=- .【解答】解:设AC x =, 10AC AB +=, 10AB x ∴=-.在Rt ABC ∆中,90ACB ∠=︒,222AC BC AB ∴+=,即2223(10)x x +=-.故答案为:2223(10)x x +=-.11.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S =.现已知ABC ∆的三边长分别为1,2,则ABC ∆的面积为 1 .【解答】解:1[4S =,ABC ∴∆的三边长分别为1,2,则ABC ∆的面积为:1S ==,故答案为:1. 12.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 1-或5或3. 【解答】解:去分母得:4(4)3x m x m ++-=+,可得:(1)51m x m +=-,当10m +=时,一元一次方程无解, 此时1m =-, 当10m +≠时, 则5141m x m -==±+, 解得:5m =或13-,综上所述:1m =-或5或13-,故答案为:1-或5或13-.三、解答题(本大题共5小题,每小题6分,共30分,解答应写出演算步骤)13.(111|2|()2---(2)计算:2--【解答】解:(1):原式22+- 0=;(2)原式612(202)=-+--1818=--=-.14.解分式方程:21133x xx x =-++. 【解答】解:方程两边同乘以最简公分母3(1)x +,得 32(33)x x x =-+, 解得34x =-.检验:当34x =-时,333(1)3(1)044x +=⨯-+=≠.∴34x =-是原分式方程的解.15.先化简,再求值:2222()ab b a b a a a---÷,其中11a b == 【解答】解:原式222()()a ab b aa ab a b -+=+-2()()()a b aa ab a b -=+-a b a b-=+,当1a =1b =-时,原式==.16.已知:如图,ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F .求证:AE CF =.【解答】证明:ABCD 的对角线AC ,BD 交于点O ,AO CO ∴=,//AD BC , EAC FCO ∴∠=∠,在AOE ∆和COF ∆中 EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOE COF ASA ∴∆≅∆, AE CF ∴=.17.嘉嘉参加机器人设计活动,需操控机器人在55⨯的方格棋盘上从A 点行走至B 点,且每个小方格皆为正方形,主办单位规定了三条行走路径1R ,2R ,3R ,其行经位置如图与表所示:已知A 、B 、C 、D 、E 、F 、G 七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断1R 、2R 、3R 这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.【解答】=,11+++=+++,=25101+<+<+++,∴最长路径为A E D F B →→→→;最短路径为A G B →→.四、解答题(本大题共3小题,每小题8分,共24分)18.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【解答】解:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, 根据题意,得6060(6)501.2x x++=,解得 2.5x =.经检验, 2.5x =是方程的解,且符合题意. ∴甲同学所用的时间为:606261.2x+=(秒), 乙同学所用的时间为:6024x=(秒).2624>, ∴乙同学获胜.答:乙同学获胜.19.小刚根据学习“数与式”的经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.以下是小刚的探究过程,请补充完整; (1)具体运算,发现规律.特例12=;特例2=特例=;特例45= (举一个符合上述运算特征的例子) (2)观察、归纳,得出猜想.如果n 为正整数,用含n 的式子表示这个运算规律; . (3)证明猜想,确认猜想的正确性. 【解答】解:(1)由例子可得,特例425==,25=;(2)如果n 为正整数,用含n =,=(3)证明:n 是正整数,∴==.=20.在四边形ABCD 中,AB AC =,45ABC ADC ∠=∠=︒,6BD =,4DC = (1)当D 、B 在AC 同侧时,求AD 的长; (2)当D 、B 在AC 两侧时,求AD 的长.【解答】解:(1)如图1,过点A 作AE AD ⊥交DC 的延长线于E , 45ADC ∠=︒,ADE ∴∆为等腰直角三角形, AB AC =,45ABC ∠=︒, ABC ∴∆为等腰直角三角形,在ABD ∆和ACE ∆中, AB AC BAD CAE AB AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE ∴∆≅∆, 6CE BD ∴==,10DE =,AD ∴==; (2)如图2,过点A 作AE AD ⊥,使AE AD =,连接CE , 在ABD ∆和ACE ∆中, AB AC BAD CAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE ∴∆≅∆,6BD EC ∴==,90CDE ADC ADE ∠=∠+∠=︒,在Rt CDE ∆中,DE ==,AD ∴==.五、解答题(本大题共2小题,每小题9分,共18分)21.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?【解答】解:(1)设B 型机器人每小时搬运x 千克材料,则A 型机器人每小时搬运(30)x +千克材料, 根据题意,得100080030x x=+, 解得120x =.经检验,120x =是所列方程的解. 当120x =时,30150x +=.答:A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)设购进A 型机器人a 台,则购进B 型机器人(20)a -台, 根据题意,得150120(20)2800a a +-…, 解得403a ….a 是整数,14a ∴….答:至少购进A 型机器人14台.22.已知:如图,在Rt ABC ∆中,90C ∠=︒,5AB cm =,3AC cm =,动点P 从点B 出发沿射线BC 以1/cm s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当ABP ∆为直角三角形时,求t 的值; (3)当ABP ∆为等腰三角形时,求t 的值.【解答】解:(1)在Rt ABC ∆中,222225316BC AB AC =-=-=,4()BC cm ∴=;(2)由题意知BP tcm =,①当APB ∠为直角时,点P 与点C 重合,4BP BC cm ==,即4t =; ②当BAP ∠为直角时,BP tcm =,(4)CP t cm =-,3AC cm =, 在Rt ACP ∆中,2223(4)AP t =+-,在Rt BAP ∆中,222AB AP BP +=, 即:22225[3(4)]t t ++-=, 解得:254t =, 故当ABP ∆为直角三角形时,4t =或254t =;(3)①当AB BP =时,5t =;②当AB AP =时,28BP BC cm ==,8t =;③当BP AP =时,AP BP tcm ==,(4)CP t cm =-,3AC cm =, 在Rt ACP ∆中,222AP AC CP =+, 所以2223(4)t t =+-, 解得:258t =, 综上所述:当ABP ∆为等腰三角形时,5t =或8t =或258t =.六、解答题(本大题1小题,共12分)23.如图,等边ABC∆的边长为8,动点M从点B出发,沿B A C B→→→的方向以3/cm s 的速度运动,动点N从点C出发,沿C A B C→→→方向以2/cm s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及ABC∆的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【解答】解:(1)由题意得:3216t t+=,解得:165t=;(2)①当83t剟时,点M、N、D的位置如图2所示:四边形ANDM为平行四边形,DM AN∴=,//DM AN.60MDC ABC∴∠=∠=︒ABC∆为等腰三角形,60C∴∠=︒.MDC C∴∠=∠.MD MC∴=8MC BN AN BN∴+=+=,即:328t t+=,85t=,此时点D在BC上,且245BD=(或16)5CD=,②当843t<…时,此时A、M、N三点在同一直线上,不能构成平行四边形;③1643t<…时,点M、N、D的位置如图所1示:四边形ANDM为平行四边形,DN AM∴=,//AM DN.60MDB ACB∴∠=∠=︒ABC∆为等腰三角形,60B∴∠=︒.MDB B∴∠=∠.MD MB∴=.8MB NC AN CN∴+=+=,38288t t-+-=,解得:245t=,此时点D在BC上,且325BD=(或8)5CD=,④当1683t<…时,点M、N、D的位置如图所3示:则162BN t=-,243BM t=-,由题意可知:BNM∆为等边三角形,BN BM∴=,即:28316t t-=-,解得8t=,此时M、N重合,不能构成平行四边形.答:运动了85或245时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且245BD=或325.。
北京市丰台区2018-2019学年八年级上期末数学试卷及答案
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°160°45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,CB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .ABCD D CBAACBEABCD16. 下面是一个按某种规律排列的数表:第1行 1第2行232第3行567223第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B ,E ,C ,F 在同一条直线上, AB ∥DE ,AB =DE ,BE=CF . 求证:AC =DF .四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?E A C DB F五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.BAOl25. 请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+ AD =2CD.小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1丰台区2019-2019学年度第一学期期末练习初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB .∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 4数学试卷∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分 4F 321 图3A D M N C B E。
2018-2019学年江苏省扬州市江都区八年级(上)期末数学试卷(解析版)
2018-2019学年江苏省扬州市江都区八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上)1.(3分)传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列实数中是无理数的是()A.B.πC.D.3.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC4.(3分)点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5)B.(﹣3,﹣5)C.(﹣3,5)D.(﹣5,3)5.(3分)已知m=+,则以下对m的估算正确的是()A.3<m<4B.4<m<5C.5<m<6D.6<m<76.(3分)若实数m、n满足|m﹣3|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.167.(3分)已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.8.(3分)如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个二、填空题(本大题共10小题,每小题3分,共30分.请将答案填在答题卡相应位置上)9.(3分)=.10.(3分)若=12.6389823,则≈.(精确到0.01).11.(3分)小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.12.(3分)将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为.13.(3分)若,则a b=.14.(3分)直线l1:y=a1x﹣b1与直线l2:y=a2x﹣b2相交于点P(﹣2,7),则方程组的解为.15.(3分)规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的底角为.16.(3分)如图,正方形ABCD中,AD=12,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是.17.(3分)如图,函数y=﹣4x和y=kx+b的图象相交于点A(m,﹣8),则关于x的不等式(k+4)x+b>0的解集为.18.(3分)如图,在△ABC中,AB=AC=4,BC=2,点P、E、F分别为边BC、AB、AC 上的任意点,则PE+PF的最小值是.三、解答题(本大题共10小题,共96分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)(1)已知:2(x﹣3)2=50,求x;(2)计算:20.(8分)已知:y﹣2与x成正比例,且x=2时,y=8.(1)求y与x之间的函数关系式;(2)当y<3时,求x的取值范围.21.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.22.(8分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC 关于y 轴对称的图形△A 1B 1C 1;(2)将点A 先向上平移3个单位,再向右平移8个单位得到点A 2的坐标为 ; (3)△ABC 的面积为 ;(4)若Q 为x 轴上一点,连接AQ 、BQ ,则△ABQ 周长的最小值为 .23.(10分)如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD .(1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长.24.(10分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴上,且满足S △COD =S △BOC ,求点D 的坐标.25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.26.(10分)如图,在平面直角坐标系中,直线分别与x轴,y轴交于A,B两点.(1)求线段AB的长度;(2)若点C在第二象限,且△ABC为等腰直角三角形,求点C的坐标;27.(12分)对于三个数a,b,c,用max{a,b,c}表示这三个数中最大数,例如:max{﹣2,1,0}=1,max解决问题:(1)填空:max{1,2,3}=,如果max{3,4,2x﹣6}=2x﹣6,则x的取值范围为;(2)如果max{2,x+2,﹣3x﹣7}=5,求x的值;(3)如图,在同一坐标系中画出了三个一次函数的图象:y=﹣x﹣3,y=x﹣1和y=3x ﹣3请观察这三个函数的图象,①在图中画出max{﹣x﹣3,x﹣1,3x﹣3}对应的图象(加粗);②max{﹣x﹣3,x﹣1,3x﹣3}的最小值为.28.(12分)基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为.2018-2019学年江苏省扬州市江都区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上)1.(3分)传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.2.(3分)下列实数中是无理数的是()A.B.πC.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是分数,属于有理数;B、π是无理数;C、=3,是整数,属于有理数;D、﹣是分数,属于有理数;故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4.(3分)点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5)B.(﹣3,﹣5)C.(﹣3,5)D.(﹣5,3)【分析】直接利用关于x轴对称点的性质得出答案.【解答】解:点A(3,5)关于x轴的对称点的坐标为:(3,﹣5).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.5.(3分)已知m=+,则以下对m的估算正确的是()A.3<m<4B.4<m<5C.5<m<6D.6<m<7【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,2<<3,∴4<2+<5∴4<m<5,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(3分)若实数m、n满足|m﹣3|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.16【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解|m﹣3|+=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.【点评】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.7.(3分)已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【分析】由k+b=0可得出一次函数y=kx+b的图象过点(1,0),观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴一次函数y=kx+b的图象过点(1,0).故选:A.【点评】本题考查了一次函数的图象,由k+b=0找出一次函数y=kx+b的图象过点(1,0)是解题的关键.8.(3分)如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分.请将答案填在答题卡相应位置上)9.(3分)=5.【分析】根据开方运算,可得一个正数的算术平方根.【解答】解:=5,故答案为:5.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.10.(3分)若=12.6389823,则≈12.64.(精确到0.01).【分析】根据四舍五入法即可求解.【解答】解:∵=12.6389823,∴≈12.64.故答案为:12.64.【点评】考查了立方根,近似数,关键是熟练掌握四舍五入法求近似数.11.(3分)小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成(3,4).【分析】直接利用两只眼睛关于嘴的横坐标所在直线对称,即可得出另一只眼的坐标.【解答】解:∵用(1,4)表示一只眼,用(2,2)表示嘴,∴另一只眼的位置可以表示成:(3,4).故答案为:(3,4).【点评】此题主要考查了坐标确定位置,利用点的对称性得出对应点坐标是解题关键.12.(3分)将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为y=5x﹣3.【分析】根据函数图象上加下减,可得答案.【解答】解:将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为:y=5x﹣3,故答案为:y=5x﹣3.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.13.(3分)若,则a b=﹣8.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a+2=0,b﹣3=0,解得a=﹣2,b=3,所以,a b=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)直线l1:y=a1x﹣b1与直线l2:y=a2x﹣b2相交于点P(﹣2,7),则方程组的解为.【分析】方程组的解就是方程组中两个一次函数的交点,依此求解即可.【解答】解:∵直线l1:y=a1x﹣b1与直线l2:y=a2x﹣b2相交于点P(﹣2,7),∴方程组的解为.故答案为.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.(3分)规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的底角为80°.【分析】先根据等腰三角形的性质得出∠B=∠C,再根据三角形内角和定理得出9∠A =180°,即可求解.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵该等腰三角形的顶角与一个底角度数的比值为1:4,∴∠A:∠B=1:4,∵∠A+∠B+∠C=180°,∴∠A+4∠A+4∠A=180°,即9∠A=180°,∴∠A=20°,∠B=80°,故答案为:80°.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理得出9∠A=180°是解此题的关键.16.(3分)如图,正方形ABCD中,AD=12,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是4.【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,得出EF=DE,设DE=FE=x,则EC=12﹣x.在Rt△ECG中,根据勾股定理得出方程,解方程即可求出DE的长.【解答】解:连接AE,如图所示:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠C=∠D=90°,由折叠的性质得:AF=AB=12,∠AFG=∠B=90°,BG=FG,∴∠AFE=90°,在Rt△AFE和Rt△ADE中,,∴Rt△AFE≌Rt△ADE(HL),∴EF=DE,设DE=FE=x,则EC=12﹣x.∵G为BC中点,BC=12,∴BG=CG=6,∴FG=6,在Rt△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得x=4,∴DE=4,故答案为4.【点评】本题考查了翻折变换的性质、正方形的性质、全等三角形的判定与性质以及勾股定理;熟练掌握翻折变换的性质和正方形的性质,根据勾股定理得出方程是解题关键.17.(3分)如图,函数y=﹣4x和y=kx+b的图象相交于点A(m,﹣8),则关于x的不等式(k+4)x+b>0的解集为x>2.【分析】直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案.【解答】解:∵函数y=﹣4x和y=kx+b的图象相交于点A(m,﹣8),∴﹣8=﹣4m,解得:m=2,故A点坐标为:(2,﹣8),∵kx+b>﹣4x时,∴(k+4)x+b>0,则关于x的不等式(k+4)x+b>0的解集为:x>2.故答案为:x>2.【点评】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.18.(3分)如图,在△ABC中,AB=AC=4,BC=2,点P、E、F分别为边BC、AB、AC上的任意点,则PE+PF的最小值是.【分析】如图作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,此时PE+PF=ME,根据等腰三角形的性质得到BH=CB=1,由勾股定理可得到AH==,连接CM,得到∠FCB=∠MCB,推出CM∥AB,过C作CD ⊥AB于D,根据平行四边形的性质得到CD=EM,根据三角形的面积公式列方程即可得到结论.【解答】解:如图作出F关于AB的对称点M,再过M作ME⊥AD,交AB于点P,此时PE+PF最小,此时PE+PF=ME,过A作AH⊥BC于H,∵AC=AB,∴BH=CB=1,由勾股定理可得,AH==,连接CM,则∠FCB=∠MCB,∵∠ABC=∠ACB,∴∠ABC=∠MCB,∴CM∥AB,过C作CD⊥AB于D,∴ME∥CD,∴四边形CDEM是平行四边形,∴CD=EM,∵S=AH•BC=AB•CD,△ABC∴CD==,∴EM=,故答案为:.【点评】本题考查了轴对称﹣最短路线问题,平行四边形的判定和性质,解直角三角形,等腰三角形的性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,共96分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(8分)(1)已知:2(x﹣3)2=50,求x;(2)计算:【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:(1)(x﹣3)2=25,则x﹣3=±5,解得:x=8或x=﹣2;(2)原式=2﹣3﹣(﹣1)=﹣1﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8分)已知:y﹣2与x成正比例,且x=2时,y=8.(1)求y与x之间的函数关系式;(2)当y<3时,求x的取值范围.【分析】(1)设y﹣2=kx,利用待定系数法确定函数关系式即可;(2)把y<3代入解析式,得出不等式的解集即可.【解答】解;(1)∵y﹣2与x成正比例∴设y﹣2=kx∵x=2时,y=8∴8﹣2=2k∴k=3∴y=3x+2(2)∵y<3∴3x+2<3即.【点评】此题考查待定系数法确定函数关系式,关键是利用待定系数法确定函数关系式解答.21.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.22.(8分)如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于y轴对称的图形△A1B1C1;(2)将点A先向上平移3个单位,再向右平移8个单位得到点A2的坐标为(3,2);(3)△ABC的面积为;(4)若Q为x轴上一点,连接AQ、BQ,则△ABQ周长的最小值为.【分析】(1)根据轴对称的性质,即可得到△ABC关于y轴对称的图形△A1B1C1;(2)依据平移的方向和距离,即可得到点A2的坐标;(3)根据割补法即可得到△ABC的面积;(4)作点A关于x轴的对称点A',连接A'B交x轴于Q,则AQ+BQ的最小值为A'B的长,依据AB和A'B的长,即可得到△ABQ周长的最小值.【解答】解:(1)如图,△A1B1C1即为所求;(2)将点A先向上平移3个单位,再向右平移8个单位得到点A2的坐标为(3,2);故答案为:(3,2);(3)△ABC 的面积为:4×7﹣×2×3﹣×1×7﹣×4×5=;故答案为:;(4)由图可得,AB ==, 作点A 关于x 轴的对称点A ',连接A 'B 交x 轴于Q ,则AQ +BQ 的最小值为A 'B 的长,又∵A 'B ==5,∴△ABQ 周长的最小值为.故答案为:.【点评】本题主要考查了利用轴对称变换以及平移变换作图以及勾股定理的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.23.(10分)如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD .(1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长.【分析】(1)首先计算出∠ABC 的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD =BD ,进而可得∠ABD =∠A =40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD =DB ,AE =BE ,然后再计算出AC +BC 的长,再利用△ABC 的周长为26cm 可得AB 长,进而可得答案.【解答】解:(1)∵AB =AC ,∴∠ABC =∠C ,∠A =40°,∴∠ABC ==70°,∵DE 是边AB 的垂直平分线,∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =∠ABC ﹣∠DBA =70°﹣40°=30°;(2)∵△BCD 的周长为16cm ,∴BC +CD +BD =16,∴BC +CD +AD =16,∴BC +CA =16,∵△ABC 的周长为26cm ,∴AB =26﹣BC ﹣CA =26﹣16=10,∴AC =AB =10,∴BC =26﹣AB ﹣AC =26﹣10﹣10=6cm .【点评】此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.24.(10分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴上,且满足S △COD =S △BOC ,求点D 的坐标.【分析】(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m ),根据三角形的面积公式结合S △COD =S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标.【解答】解:(1)当x =1时,y =3x =3,∴点C 的坐标为(1,3).将A (﹣2,6)、C (1,3)代入y =kx +b ,得:,解得:.(2)当y =0时,有﹣x +4=0,解得:x =4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m ),∵S △COD =S △BOC ,即|m |=×4×3,解得:m =±12,∴点D 的坐标为D (0,12)或D (0,﹣12).【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =S △BOC ,找出关于m 的一元一次方程.25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.【分析】(1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.【解答】解:(1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.【点评】该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.26.(10分)如图,在平面直角坐标系中,直线分别与x轴,y轴交于A,B两点.(1)求线段AB的长度;(2)若点C在第二象限,且△ABC为等腰直角三角形,求点C的坐标;【分析】(1)直线分别与x轴,y轴交于A,B两点,可以求出A,B两点的坐标,通过勾股定理,可以求出AB长度;(2)点C在第二象限,△ABC为等腰直角三角形,可分是三种情况进行讨论.【解答】解:(1)∵直线分别与x轴,y轴交于A,B两点,∴A(﹣4,0),B(0,3),OA=4,OB=4,由勾股定理得:AB==5(2)∵△ABC为等腰直角三角形,∴分三种情况进行讨论.①当AB=AC=5时,此时BC=5,此时C(﹣7,4);②当AB=BC=5时,此时AC=7,此时C(﹣3,7);③当AC=BC时,此时AB=5时,AC=BC=,此时C().C的坐标(﹣3,7);C(﹣7,4);C().【点评】本题考查了一次函数图象与x轴,y轴坐标计算.另外,考查了一次函数图象与三角形的结合.27.(12分)对于三个数a,b,c,用max{a,b,c}表示这三个数中最大数,例如:max{﹣2,1,0}=1,max解决问题:(1)填空:max{1,2,3}=3,如果max{3,4,2x﹣6}=2x﹣6,则x的取值范围为x≥5;(2)如果max{2,x+2,﹣3x﹣7}=5,求x的值;(3)如图,在同一坐标系中画出了三个一次函数的图象:y=﹣x﹣3,y=x﹣1和y=3x ﹣3请观察这三个函数的图象,①在图中画出max{﹣x﹣3,x﹣1,3x﹣3}对应的图象(加粗);②max{﹣x﹣3,x﹣1,3x﹣3}的最小值为﹣2.【分析】max{a,b,c}表示这三个数中最大数,只要找出a,b,c中的最大数即可解答.【解答】解:(1)max{1,2,3}中3为最大数,故max{1,2,3}=3∵max{3,4,2x﹣6}=2x﹣6∴2x﹣6≥4,解得x≥5故答案为:3;x≥5(2)∵max{2,x+2,﹣3x﹣7}=5∴①x+2=5,解得x=3,验证得﹣3×3﹣7=﹣16<5,成立②﹣3x﹣7=5,解得x=﹣4,验证得﹣4+2=﹣2<2<5,故成立故max{2,x+2,﹣3x﹣7}=5时,x的值为﹣4或3(3)①图象如图所示②由图象可以知,max{﹣x﹣3,x﹣1,3x﹣3}的最小值为直线y=﹣x﹣3与y=x﹣1的交点,解得y=﹣2,即最小值为﹣2故答案为﹣2【点评】此题考查的是代数式和一次函数的综合题.要注意(2)中在分情况讨论才可符合题意.28.(12分)基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为2.【分析】(1)结论:BC=DC+EC.证明△BAD≌△CAE(SAS)即可解决问题.(2)结论:BD2+CD2=DE2.由△BAD≌△CAE,推出BD=CE,∠ACE=∠B,可得∠DCE=90°,利用勾股定理即可解决问题.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD =2.法二:作AE⊥AD,使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=3,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,再利用勾股定理即可解决问题.【解答】解:(1)结论:BC=DC+EC.理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC;(2)结论:BD2+CD2=DE2.理由:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD =2.法二:作AE⊥AD,使AE=AD,连接CE,DE.∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=3,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==,∵∠DAE=90°,∴AD2+AE2=DE2∴AD=2.故答案为2.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年度八年级上数学期末试卷(解析版)
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷(解析版)
2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣23.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2 6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥2710.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是.13.(3分)命题“对顶角相等”的逆命题是.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是.(只需添加一个即可)15.(3分)小明从A 处出发沿北偏东40°的方向走了30米到达B 处:小军也从A 处出发,沿南偏东α°(0<α<90)的方向走了40米到达C 处,若B 、C 两处的距离为50米,则α= .16.(3分)已知等腰三角形的周长为20,腰长为x ,x 的取值范围是 . 17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t (min ),汽车离抗州的距离为s (km ),则s 关于t 的函数表达式为 .18.(3分)如图,在Rt △ABC 中,∠C =90°,DE 垂直平分AB ,连结AD ,若AC =6,BC =8,则CD 的长为.19.(3分)如图,一次函数y =kx +b 的图象经过点(﹣2,0),则关于x 的不等式k (x ﹣3)+b >0的解集为 .20.(3分)如图,在一张直角三角形纸片ABC 中,∠ACB =90°,BC =1,AC =,P 是边AB 上的一动点,将△ACP 沿着CP 折叠至△A 1CP ,当△A 1CP 与△ABC 的重叠部分为等腰三角形时,则∠ACP 的度数为 .三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选:A.【点评】解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据有理数的乘方法则、假命题的概念解答.【解答】解:(﹣2)2=4>1,﹣2<1,∴当x=﹣2时,说明命题“若x2>1,则x>1”是假命题,故选:D.【点评】本题考查的是命题的真假判断,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>【分析】直接利用不等式的基本性质分别判断得出答案.【解答】解:A、∵a>b,∴a+1>b+1,故此选项错误;B、∵a>b,∴a﹣5>b﹣5,故此选项错误;C、∵a>b,∴﹣3a<﹣3b,故此选项错误;D、∵a>b,∴>,故此选项正确;故选:D.【点评】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键.4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【分析】根据图形求出∠1,根据三角形的外角性质计算,得到答案.【解答】解:如图,∠1=90°﹣45°=45°,则∠α=60°+45°=105°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2【分析】根据一次函数图象的增减性,结合横坐标的大小,可判断纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+1的图象y随着x的增大而较小,又∵﹣1<﹣0.5<1.5,∴y1>y2>y3,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°【分析】根据直角三角形斜边上中线定理得出CD=AD,求出∠DCA=∠A,根据两角互余求出∠DCB的度数即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=36°,∴∠DCB=90°﹣∠DCA=54°.故选:A.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠DCA的度数是解此题的关键.7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)【分析】根据一次函数图象的性质进行逐一分析解答即可.【解答】解:A、∵m>0,∴﹣m<0,∴一次函数y=mx﹣m(m>0)的图象在一、三、四象限,故本选项错误;B、∵m>0,∴一次函数y=mx﹣m(m>0)的图象y随x的增大而增大,故本选项错误;C、∵x=0时,y=﹣m<0,∴函数图象一定交于y轴的负半轴,故本选项正确;D、∵x=﹣1时,y=﹣m﹣m=﹣2m<0,∴函数图象不经过点(﹣1,0),故本选项错误.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象与性质,一次函数图象与系数的关系,都是基础知识,需熟练掌握.8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形【分析】依据作图可得CA=CD,BA=BD,即可得到CB是AD的垂直平分线,依据线段垂直平分线的性质以及三角形内角和定理,即可得到结论.【解答】解:由题可得,CA=CD,BA=BD,∴CB是AD的垂直平分线,即CE垂直平分AD,故A选项正确;∴∠CAD=∠CDA,∠CEA=∠CED,∴∠ACE=∠DCE,即CE平分∠ACD,故B选项正确;∵DB=AB,∴△ABD是等腰三角形,故C选项正确;∵AD与AC不一定相等,∴△ACD不一定是等边三角形,故D选项错误;故选:D.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的判定,解题时注意:垂直平分线上任意一点,到线段两端点的距离相等.9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【解答】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB【分析】如图,作DH⊥CF交CF的延长线于H,连接EH.想办法证明△BCA≌△AHD (AAS),四边形ADHE是平行四边形,即可解决问题.【解答】解:如图,作DH⊥CF交CF的延长线于H,连接EH.∵∠ACB=∠BAD=∠DHA=90°,∴∠BAC+∠DAH=90°,∠DAH+∠ADH=90°,∴∠BAC=∠ADH,∵AB=AD,∴△BCA≌△AHD(AAS),∴AC=DH,BC=AH,∵∠DHA=∠EAH=90°,AC=AE,∴DH∥AE,DH=AE,∴四边形ADHE是平行四边形,∴AF=FH,∴AF=AH=BC,故选:C.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是2.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点A(1,﹣2)到x轴的距离是|﹣2|=2,故答案为:2.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是﹣1,0,1.【分析】首先确定不等式组的解集,找出不等式组解集内的整数就可以.【解答】解:因为是整数,且在﹣1处和2处分别是实心和空心,所以整数有﹣1,0,1,故答案为:﹣1,0,1.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.(3分)命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是AB=DE或∠B=∠E或∠ACB=∠F.(只需添加一个即可)【分析】利用全等三角形的判定定理,AAS定理,ASA定理,SAS定理可得结果.【解答】解:①添加AB=DE,∵AB∥DE,∴∠A=∠EDF,∵AD=CF,∴AD+DC=CF+DC,∴AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS);②添加∠B=∠E,,∴△ABC≌△DEF(AAS);③添加∠ACF=∠F,,△ABC≌△DEF(ASA),故答案为:AB=DE或∠B=∠E或∠ACB=∠F.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,注意AAA、SSA不能判定两个三角形全等是解答此题的关键.15.(3分)小明从A处出发沿北偏东40°的方向走了30米到达B处:小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=50.【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解答】解:∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.【点评】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键.16.(3分)已知等腰三角形的周长为20,腰长为x,x的取值范围是5<x<10.【分析】利用三角形的三边关系解决问题即可.【解答】解:根据三角形的三边关系,x+x>20﹣2x,解得x>5,又∵x+x<20,∴x<10,所以,5<x<10.故答案为:5<x<10.【点评】本题考查了等腰三角形的性质,利用三角形的三边关系得到关于x的不等式是解题的关键.17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t(min),汽车离抗州的距离为s(km),则s关于t的函数表达式为=﹣t.【分析】由汽车每6min行驶10km知汽车的速度为=(km/min),根据距离=90﹣行驶的路程可得函数解析式.【解答】解:由表知,汽车每6min行驶10km,∴汽车的速度为=(km/min),则s=90﹣t,故答案为:s=90﹣t.【点评】本题主要考查函数关系式,解题的关键是根据表格得出汽车的速度及关于距离的相等关系.18.(3分)如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.【分析】先根据线段的垂直平分线的性质得DA=DB,设AD=x,则DB=x,CD=BC ﹣BD=8﹣x,则在Rt△ACD中利用勾股定理得到62+(8﹣x)2=x2,解得x的值即可得到CD的长.【解答】解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.【点评】本题考查了勾股定理以及线段垂直平分线的性质,依据勾股定理列方程是解决问题的关键.19.(3分)如图,一次函数y=kx+b的图象经过点(﹣2,0),则关于x的不等式k(x﹣3)+b>0的解集为x>1.【分析】观察函数图象得到即可.【解答】解:由图象可得:当x>﹣2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x>﹣2,所以关于x的不等式k(x﹣3)+b>0的解集为x﹣3>﹣2,即:x>1,故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.(3分)如图,在一张直角三角形纸片ABC中,∠ACB=90°,BC=1,AC=,P 是边AB上的一动点,将△ACP沿着CP折叠至△A1CP,当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP的度数为40°或70°.【分析】分两种情形画出图形分别求解即可.【解答】解:如图1中,当PC=CE时,设∠ACP=x.∵CP=CE,∴∠CPE=∠CEP,∵∠CPE=∠ACP+∠A=x+30,∴x+x+30+x+30=180°,∴x=40°.如图2中,当CP=CE时,设∠ACP=x.则∠CPE=∠CEP=2x﹣90°+30°=2x﹣60°,在△CPE中,90°﹣x+2(2x﹣60°)=180°,解得x=70°,PE=PC不成立(因为∠CPE=x+30°>x,此时求得x=50°,点E应该在AB延长线上).综上所述,∠ACP的度数为40°或70°,故答案为40°或70°.【点评】本题考查翻折变换,等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.【分析】移项,合并同类项,系数化成1即可.【解答】解:5x﹣2≤3x,移项,得5x﹣3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.【分析】(1)根据AAS证明△ADE≌△CFE即可;(2)利用全等三角形的性质即可解决问题;【解答】(1)证明:∵AB∥CF,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,∴AD=CF=4,∴BD=AB﹣AD=7﹣4=3.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.【分析】(1)把B点坐标代入y=x+b中求出b即可;(2)先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.【解答】解:(1)把B(0,2)代入y=x+b得b=2,所以该直线的函数表达式为y=x+2;(2)当x=0时,x+2=0,解得x=﹣2,则A(﹣2,0),所以AB的长==2.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.【分析】(1)根据轴对称的性质分别作出点A,B,C关于x轴的对称点,再顺次连接可得.(2)根据平移变换的定义和性质分别作出三顶点向右平移6个单位后所得对应点,据此可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图知,对应点A2的坐标为(2,﹣1).【点评】本题主要考查作图﹣轴对称变换和平移变换,解题的关键是掌握轴对称变换和平移变换的定义与性质,并据此得出变换后的对应点.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.【分析】(1)证明△ABD≌△CAE,可得∠ABD=∠CAE,再利用三角形外角的性质可以得出∠BME的度数;(2)①由(1)可得∠MBH=30°,BD=AE,根据BD=BM+DM即可获证;②作AF⊥BC于F,在△ABE中,利用面积法即可得出BH的长.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABD和△CAE中,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∴∠BME=∠ABM+∠MAB=∠CAE+∠MAB=∠BAC=60°,(2)①∵BH⊥AE,∠BMH=60°,∴∠MBH=30°,∴BM=2MH,∵△ABD≌△CAE,∴BD=AE,∴2MH+DM=BM+DM=BD,∴2MH+DM=AE;②如图,作AF⊥BC于F,∵△ABC是等边三角形,BE=2EC=2,∴AB=3,BF=1.5,EF=0.5,∴AF=,AE=,∴△ABE面积=,解得BH=【点评】本题考查了等边三角形性质,全等三角形的性质和判定,三角形外角性质,含30度角的直角三角形性质的应用.涉及高的问题可以考虑面积法.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.【分析】(1)根据待定系数法求解;(2)设甲出发x分钟后相遇,列方程,计算相遇时的时间,可补全图象;(3)分相遇前后两种可能列不等式求解.【解答】解:(1)设AC表达式为y=kx+b,把(6,0)、(21,25)代入得解得k=100,b=﹣600,所以AC所在直线的函数表达式y=100x﹣600;(2)设甲出发x分钟后两人相遇,则解得x=15,即甲出发15分钟后两人相遇,此时d=0,21分钟后乙到图书馆,甲距图书馆1500﹣60×21=240米,因此图象如下:(3)设甲出发x分钟甲、乙两人之间的路程至少为180m.①当乙没出发时,60x≥180,解得x≥3;当甲乙相遇前,即x≤15时60x﹣(100x﹣600)≥180解得x≤10.5,即3≤x≤10.5时甲、乙两人之间的路程至少为180m;③当甲乙相遇后,即x>15时100x﹣600﹣60x≥180,解得x≥19.5,即19.5≤x≤21时甲、乙两人之间的路程至少为180m;④乙到达终点后,1500﹣60x≥180,解得≤22;综上当3<x≤10.5或19.5≤x≤22分钟时甲、乙两人之间的路程至少为180m.【点评】本题考查一次函数,方程和不等式应用,确定数量关系或不等量关系是解答关键.。
重庆市第一中学校2018-2019学年八年级上学期期末考试数学试题
2018-2019学年八年级上学期期末考试数学试题一、选择题:(本大题共12个小题,每小题4分,共48分)1.下列各数中,是无理数的是()A.B.C.﹣2 D.0.32.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.计算(﹣xy2)2的结果是()A.2x2y4B.﹣x2y4C.x2y2D.x2y44.分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣35.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=136.下列命题是假命题的是()A.两直线平行,同位角相等B.全等三角形面积相等C.直角三角形两锐角互余D.若a+b<0,那么a<0,b<07.估计(2+)•的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.如果直线y=3x+b与两坐标轴围成的三角形面积等于2,则b的值是()A.±3B.3C.D.29.如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为(﹣2,l),则关于x的不等式﹣x﹣1<kx+b的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<l10.如图,把Rt△ABC放在平面直角坐标系中,点B(1,1)、C(5,1),∠ABC=90°,AC =4.将△ABC沿y轴向下平移,当点A落在直线y=x﹣2上时,线段AC扫过的面积为()A.B.C.D.11.如图,Rt△ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(﹣3,0),点B(0,3),将Rt△AOB沿x轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为()A.(673,0)B.(6057+2019,0)C.(6057+2019,)D.(673,)12.已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A.4 B.9 C.10 D.12二、填空题:(本大题6个小题,每小题4分,共24分)13.因式分解:5x2﹣2x=.14.+(π﹣3.14)0﹣(﹣)﹣2=.15.一次函数y=kx+b的图象经过点(0,3),且与直线y=﹣x+1平行,则该一次函数解析式为.16.若m,n为实数,且m=+8,则m+n的算术平方根为.17.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示则当甲到达终点时,乙跑了米.18.A、B、C、D、E、F六人按顺序围成一圈做游戏,每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9、10、13、15、23、30,则C抽到的数字是.三、解答题(本大题2个小题,每小题8分,共16分)19.解下列方程组或者不等式组(1)解方程组:(2)解不等式组:20.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣3,1),C(﹣1,3).(1)作图:将△ABC先向右平移4个单位,再向下平移3个单位,则得到△A1B1C1,求作△A1B1C1;(2)求△BCC1面积.四、解答题:(本大题4个小题,每小题10分,共40分)21.重庆一中田径代表队在2018年重庆市青少年田径锦标赛上勇夺金牌8枚,银牌4枚,铜牌8枚,喜讯再次点燃了同学们热爱运动的热情为了解学生参与运动的情况,学校随机抽查了部分学生每日运动时间的情况,并将调查学生每日运动时间情况条形统计图学生每日运动时间情况扇形统计图.(1)被抽查的学生总数是人,并在图中补全条形统计图;(2)写出每日运动时间的中位数是小时,众数是小时;(3)求这批被调查学生平均每日运动的时间.22.如图,直线AB:y=2x+6与直线AC:y=﹣2x+2相交于点A,直线AB与x轴交于点B,直线AC与x轴交于点D,与y轴交于点C.(1)求交点A的坐标;(2)求△ABC的面积.23.为了满足学生的需求,重庆一中mama超市准备购进甲、乙两种绿色袋装食品.其中甲乙两种绿色袋装食品的进价和售价如表:已知:超市购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等(1)求n的值;(2)要使购进的甲、乙两种绿色袋装食品共1200袋的总利润(利润=售价﹣进价)不少于6400元,且不超过6420元,问该mama超市有哪几种进货方案?要获得最大利润该如何进货?(请写出具体方案)24.在△ABC中,AB=AC,点D为BC的中点,连接AD.(1)如图1,H为线段CB延长线上的一点,连接AH,若∠ACB=60°,∠AHC=45°,AH =2,求HC;(2)如图2,点E为AD上任意一点,过点E作EF⊥AD交AC于点F,连接BF,取BF中点M,连接MD和ME,求证:ME=MD.五、解答题:(本大题2个小题,25题10分,26题12分,共22分)25.阅读下列材料:对于一个任意四位正整数,若其千位数字与百位数字组成的两位数是它的十位数字与个位数字组成的两位数的两倍,则称这样的四位正整数为“双倍数”,如6231,其千位数字与百位数字组成的两位数为62,其十位数字与个位数字组成的两位数是31,62是31的两倍,则称6231为“双倍数”(1)猜想任意一个“双倍数”能否被67整除,并说明理由;(2)若一个双倍数的各个数位数字分别加上1组成一个新的四位正整数,这个新的四位正整数能被7整除,求所有满足条件的“双倍数”.26.如图,平面直角坐标系中直线l1:y=x与直线l2:y=﹣x+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(﹣6,0),点F(0,6),连接DF.(1)如图1,求点A的坐标;(2)如图1,若将△ODF向x轴的正方向平移a个单位,得到△O′D′F′,点D与点B 重合时停止移动,设△O′D′F′与△OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;(3)如图2,现将△ODF向x轴的正方向平移12个单位得到△O1D1F1,直线O1F1与直线l2交于点G,再将△O1GB绕点G旋转,旋转角度为α(0°≤α≤360°),记旋转后的三角形为△O1′GB′,直线O1′G与直线l1的交点为M,直线GB′与直线l1的交点为N,是否存在△GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列各数中,是无理数的是()A.B.C.﹣2 D.0.3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是无理数;B.是分数,属于有理数;C.﹣2是整数,属于有理数;D.0.3是有限小数,即分数,属于有理数;故选:A.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.3.计算(﹣xy2)2的结果是()A.2x2y4B.﹣x2y4C.x2y2D.x2y4【分析】根据积的乘方和幂的乘方运算法则计算可得.【解答】解:(﹣xy2)2=x2y4,故选:D.4.分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x≠﹣3【分析】本题主要考查分式有意义的条件:分母≠0,即x﹣3≠0,解得x的取值范围.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.5.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=13【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【解答】解:A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.6.下列命题是假命题的是()A.两直线平行,同位角相等B.全等三角形面积相等C.直角三角形两锐角互余D.若a+b<0,那么a<0,b<0【分析】根据平行线的性质对A进行判断;根据全等三角形的性质对B进行判断;根据互余的定义对C进行判断;利用反例对D进行判断.【解答】解:A、两直线平行,同位角相等,所以A选项的命题为真命题;B、全等三角形面积相等,所以B选项的命题为真命题;C、直角三角形两锐角互余,所以C选项的命题为真命题;D、当a=﹣3,b=1,所以D选项的命题为假命题.故选:D.7.估计(2+)•的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【解答】解:(2+)•=2+2,∵2<2<3,∴4<2+2<5.故选:B.8.如果直线y=3x+b与两坐标轴围成的三角形面积等于2,则b的值是()A.±3B.3C.D.2【分析】设直线y=3x+b与x轴交于点A,与y轴交于点B,利用一次函数图象上点的坐标特征可得出点A,B的坐标,利用三角形的面积公式结合△AOB的面积为2,可得出关于b的一元二次方程,解之即可得出结论.【解答】解:设直线y=3x+b与x轴交于点A,与y轴交于点B.当x=0时,y=3x+b=b,∴点B的坐标为(0,b);当y=0时,3x+b=0,解得:x=﹣.∵S△AOB=OA•OB=2,∴×|b|×|﹣|=2,∴b=±2.故选:C.9.如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为(﹣2,l),则关于x的不等式﹣x﹣1<kx+b的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<l【分析】根据题意知,直线y=kx+b位于直线y=﹣x﹣1上方的部分符合题意.【解答】解:如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为C (﹣2,l),所以关于x的不等式﹣x﹣1<kx+b的解集为x>﹣2.故选:A.10.如图,把Rt△ABC放在平面直角坐标系中,点B(1,1)、C(5,1),∠ABC=90°,AC =4.将△ABC沿y轴向下平移,当点A落在直线y=x﹣2上时,线段AC扫过的面积为()A.B.C.D.【分析】根据题意,可以求得点A的坐标,然后根据平移的特点,可知线段AC扫过的图形是平行四边形,再根据点A落在直线y=x﹣2上时,从而可以求得线段AC平移的距离,进而求得线段AC扫过的面积.【解答】解:∵点B(1,1)、C(5,1),∠ABC=90°,AC=4,∴BC=4,∴AB==4,∴点A的坐标为(1,5),将x=1代入y=x﹣2得,y=﹣,∴线段AC扫过的面积为:|5﹣(﹣)|×(5﹣1)==,故选:D.11.如图,Rt△ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(﹣3,0),点B(0,3),将Rt△AOB沿x轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为()A.(673,0)B.(6057+2019,0)C.(6057+2019,)D.(673,)【分析】在翻滚的过程中,每翻滚三次就重复出现原来的形状,可将这样的翻滚称为三循环,那么2020÷3=673.…1,所以△2020的形状如同△4,即直角顶点的纵坐标为0,再求出△ABC的周长的673倍即为横坐标.【解答】解:∵2020÷3=673. (1)∴△2020的形状如同△4∴△2020的直角顶点的纵坐标为0而OB1+B1A2+A2O2=3+6+3=9+3∴△2020的直角顶点的横坐标为(9+3)×673=6057+2019故选:B.12.已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A.4 B.9 C.10 D.12【分析】解方程组得,得到k=4,6;解不等式组得到k=4,5,6,于是得到所有满足条件的k的和=4+6=10.【解答】解:解方程组得,∵方程组的解为正整数,∴,∴k=4,6;解不等式组得,,∵不等式组有且仅有四个整数解,∴1<≤2,∴3<k≤6,∴k=4,5,6,∴所有满足条件的k的和=4+6=10,故选:C.二.填空题(共6小题)13.因式分解:5x2﹣2x=x(5x﹣2).【分析】提取公因式x即可得.【解答】解:5x2﹣2x=x(5x﹣2),故答案为:x(5x﹣2).14.+(π﹣3.14)0﹣(﹣)﹣2=﹣10 .【分析】直接利用零指数幂的性质以及负指数幂的性质、立方根的性质分别化简得出答案.【解答】解:原式=﹣2+1﹣9=﹣10.故答案为:﹣10.15.一次函数y=kx+b的图象经过点(0,3),且与直线y=﹣x+1平行,则该一次函数解析式为y=﹣x+3 .【分析】设一次函数解析式为y=kx+b,先把(0,3)代入得b=3,再利用两直线平行的问题得到k=﹣,即可得到一次函数解析式;【解答】解:设一次函数解析式为y=kx+b,把(0,3)代入得b=3,∵直线y=kx+b与直线y=﹣x+1平行,∴k=﹣,∴一次函数解析式为y=﹣x+3.故答案为y=﹣x+3.16.若m,n为实数,且m=+8,则m+n的算术平方根为 3 .【分析】根据二次根式的被开方数是非负数求得n=1,继而求得m=8,然后求m+n的算术平方根.【解答】解:依题意得:1﹣n≥0且n﹣1≥0,解得n=1,所以m=8,所以m+n的算术平方根为:==3.故答案是:3.17.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示则当甲到达终点时,乙跑了1380 米.【分析】先由图象和已知条件求出甲乙的速度,进而求出两人相距300米时甲跑的路程以及离终点的距离和从会和到终点甲所用的时间,从而求出乙跑420秒的路程,最后求出乙跑的总路程.【解答】解:由题意得乙的速度:1800÷1200=1.5(米/秒),甲的速度:1.5+300÷300=2.5 (米/秒),∴两人相距300m时,甲跑的路程是 2.5×300=750(米),此时离终点距离为1800﹣750=1050(米),∴从会合到终点甲的用时是 1050÷2.5=420(秒)乙从会合点跑420秒路程是 420×1.5=630(米),∴当甲到终点时,乙跑的总路程是 750+630=1380(米).故答案为:1380.18.A、B、C、D、E、F六人按顺序围成一圈做游戏,每人抽一个数,已知每人按顺序抽到数字的两倍与其他五个人的平均数之差分别为9、10、13、15、23、30,则C抽到的数字是15 .【分析】设A、B、C、D、E、F六人抽到的数分别为:a,b,c,d,e,f,由题意列出方程组,可求c的值.【解答】解:设A、B、C、D、E、F六人抽到的数分别为:a,b,c,d,e,f,由题意可得解得:c=15故答案为:15三.解答题(共8小题)19.解下列方程组或者不等式组(1)解方程组:(2)解不等式组:【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)整理得①﹣②得7y=﹣1,解得y=﹣,把y=﹣代入②得x+=2,解得x=,所以方程组的解为;(2)解不等式①得,x≤4;解不等式②得x>﹣5,不等式组的解集为﹣5<x≤4.20.作图题:(不要求写作法)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣3,1),C(﹣1,3).(1)作图:将△ABC先向右平移4个单位,再向下平移3个单位,则得到△A1B1C1,求作△A1B1C1;(2)求△BCC1面积.【分析】(1)依据平移动方向和距离,即可得到△A1B1C1;(2)利用割补法进行计算,即可得到△BCC1面积.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图,△BCC1面积为:6×3﹣×1×6﹣×2×2﹣×3×4=18﹣3﹣2﹣6=7.21.重庆一中田径代表队在2018年重庆市青少年田径锦标赛上勇夺金牌8枚,银牌4枚,铜牌8枚,喜讯再次点燃了同学们热爱运动的热情为了解学生参与运动的情况,学校随机抽查了部分学生每日运动时间的情况,并将调查学生每日运动时间情况条形统计图学生每日运动时间情况扇形统计图.(1)被抽查的学生总数是100 人,并在图中补全条形统计图;(2)写出每日运动时间的中位数是40 小时,众数是40 小时;(3)求这批被调查学生平均每日运动的时间.【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据条形统计图中的数据即可得到结论;(3)根据平均数的计算公式即可得到结论.【解答】解:(1)被抽查的学生总数是10÷10%=100人,每日运动时间为1.2小时的学生人数为100×20%=20人,补全条形统计图如图所示;故答案为:100;(2)每日运动时间的中位数是40小时,众数是40小时;故答案为:40,40;(3)这批被调查学生平均每日运动的时间=×(0.2×10+0.5×15+1×40+1.2×20+1.6×10+2×5)=0.995小时.22.如图,直线AB:y=2x+6与直线AC:y=﹣2x+2相交于点A,直线AB与x轴交于点B,直线AC与x轴交于点D,与y轴交于点C.(1)求交点A的坐标;(2)求△ABC的面积.【分析】(1)联立直线AB,AC的解析式成方程组,通过解方程组即可求出点A的坐标;(2)设直线AB与y轴交于点E,利用一次函数图象上点的坐标特征可求出点B,C,E的坐标,利用三角形的面积公式结合S△ABC=S△BOE﹣S△BOC﹣S△ACE,即可求出△ABC的面积.【解答】解:(1)联立直线AB,AC的解析式成方程组,得:,解得:,∴交点A的坐标为(﹣1,4).(2)设直线AB与y轴交于点E,如图所示.当x=0时,y=2x+6=6,y=﹣2x+2=2,∴点E的坐标为(0,6),点C的坐标为(0,2),∴OE=6,OC=2,CE=4.当y=0时,2x+6=0,解得:x=﹣3,∴点B的坐标为(﹣3,0),OB=3.∴S△ABC=S△BOE﹣S△BOC﹣S△ACE,=×3×6﹣×3×2﹣×4×1,=4.23.为了满足学生的需求,重庆一中mama超市准备购进甲、乙两种绿色袋装食品.其中甲乙两种绿色袋装食品的进价和售价如表:已知:超市购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等(1)求n的值;(2)要使购进的甲、乙两种绿色袋装食品共1200袋的总利润(利润=售价﹣进价)不少于6400元,且不超过6420元,问该mama超市有哪几种进货方案?要获得最大利润该如何进货?(请写出具体方案)【分析】(1)根据“购进200袋甲种袋装食品或者购进300袋乙种袋装食品所用金额相等”列出方程并解答;(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(1200﹣x)袋,然后根据总利润列出一元一次不等式组解答;【解答】解:(1)依题意得:200(n+2)=300(n﹣2),解得:n=10,(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(1200﹣x)袋,根据题意得,,解得:≤x≤270,∵x是正整数,270﹣266.7+1=4,∴共有4种方案;∵甲的利润大于乙的利润,要获得最大利润该应该进货时甲最大才行,即甲进货270袋,乙进货1200﹣270=930袋.24.在△ABC中,AB=AC,点D为BC的中点,连接AD.(1)如图1,H为线段CB延长线上的一点,连接AH,若∠ACB=60°,∠AHC=45°,AH=2,求HC;(2)如图2,点E为AD上任意一点,过点E作EF⊥AD交AC于点F,连接BF,取BF中点M,连接MD和ME,求证:ME=MD.【分析】(1)证明△ABC是等边三角形,得出BC=AB,∠ABC=∠BAC=60°,AD⊥BC,CD =BD=BC,∠BAD=30°,证明△ADH是等腰直角三角形,得出AD=DH=AH=2,由含30°角的直角三角形的性质得出AD=BD=2,求出CD=BD=,即可得出HC=DH+CD =2+;(2)延长FE、DM交于点G,证出∠DEG=90°,EF∥BC,由平行线的性质得出∠G=∠BDM,证明△BDM≌△FGM(AAS),得出DM=GM,再由直角三角形斜边上的中线性质即可得出结论.【解答】(1)解:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴BC=AB,∠ABC=∠BAC=60°,∵点D为BC的中点,∴AD⊥BC,CD=BD=BC,∠BAD=30°,∵∠AHC=45°,AH=2,∴△ADH是等腰直角三角形,∴AD=DH=AH=2,∵∠BAD=30°,∴AD=BD=2,∴CD=BD=,∴HC=DH+CD=2+;(2)证明:延长FE、DM交于点G,如图2所示:∵EF⊥AD,AD⊥BC,∴∠DEG=90°,EF∥BC,∴∠G=∠BDM,∵M为BF的中点,∴BM=FM,在△BDM和△FGM中,,∴△BDM≌△FGM(AAS),∴DM=GM,∴EM=DG=MD.25.阅读下列材料:对于一个任意四位正整数,若其千位数字与百位数字组成的两位数是它的十位数字与个位数字组成的两位数的两倍,则称这样的四位正整数为“双倍数”,如6231,其千位数字与百位数字组成的两位数为62,其十位数字与个位数字组成的两位数是31,62是31的两倍,则称6231为“双倍数”(1)猜想任意一个“双倍数”能否被67整除,并说明理由;(2)若一个双倍数的各个数位数字分别加上1组成一个新的四位正整数,这个新的四位正整数能被7整除,求所有满足条件的“双倍数”.【分析】(1)根据已知条件,将数字表示成67的倍数即可;(2)根据已知条件,表示出已知数字,即可求出已知数的满足条件,写出已知数即可.【解答】解:设正整数m=D4D3D2D1,其中D4、D3、D2、D1表示各个位置上的数字,且为0到9之间的整数(D4≠0),根据“双倍数”的定义,有10D4+D3=2(10D2+D1).(1)假设m=D4D3D2D1是“双倍数”,则有m=1000D4+100D3+10D2+D1=100(10D4+D3)+10D2+D1,根据“双倍数”定义,有m=100×2(10D2+D1)+10D2+D1=2010D2+201D1=201(10D2+D1),则==3(10D2+D1)=30D2+3D1为整数,由此可见,任意一个“双倍数”都能被67整除;(2)由题意,新组成的四位正整数可表示为:1000(D4+1)+100(D3+1)+10(D2+1)+D1+1=201(10D2+D1)+1111因为=N,也就是2010D2+201D1+1111可以整除7,而1111÷7=158……5,所以需要“双倍数”(2010D2+201D1)÷7=n……2才可以整除7故所有满足这样条件的“双倍数”(用排除法)有:2613,502526.如图,平面直角坐标系中直线l1:y=x与直线l2:y=﹣x+8相交于点A,直线l2与x轴相交于点B,与y轴相交于点C,点D(﹣6,0),点F(0,6),连接DF.(1)如图1,求点A的坐标;(2)如图1,若将△ODF向x轴的正方向平移a个单位,得到△O′D′F′,点D与点B重合时停止移动,设△O′D′F′与△OAB重叠部分的面积为S,请求出S与a的关系式,并写出a的取值范围;(3)如图2,现将△ODF向x轴的正方向平移12个单位得到△O1D1F1,直线O1F1与直线l2交于点G,再将△O1GB绕点G旋转,旋转角度为α(0°≤α≤360°),记旋转后的三角形为△O1′GB′,直线O1′G与直线l1的交点为M,直线GB′与直线l1的交点为N,是否存在△GMN为等腰三角形?若存在请直接写出MN的值;若不存在,请说明理由.【分析】(1)由两直线解析式组成方程组,解方程组即可得到交点A的坐标;(2)△DOF向右水平移动时,与△AOB重叠的图形在0<a≤6时为直角三角形,用a表示出两直角边即可求出面积的函数关系式,当6<a<24时,重叠部分为四边形,S四边形SHO′D′=S﹣S△F′SH.△F′O′D′(3)存在,在△GO1B绕点G逆时针旋转过程中,等腰△MNG只有两种情况:①∠MGN=60°,②∠MGN=120°;分类进行计算.【解答】解:(1)由题意得,解得,∴A(6,).(2)在y=﹣x+8中,令y=0,得﹣x+8=0,∴x=24∴B(24,0),令x=0,y=,∴C(0,),在Rt△BOC中,tan∠BCO===,∴∠BCO=60°,在Rt△DOF中,tan∠DFO===,∴∠DFO=30°.分两种情况:①当0≤a≤6时,如图1,F′O′交直线l1于点E,则O′(a,0),∴y=a,∴E(a,a),即EO′=a,OO′=a,∴S=OO′•EO′==,②当6<a≤30时,如图2,OO′=a,∴H(a,)F′H=﹣()=∵F′O′∥OC,∴∠BHO′=∠BCO=60°∵∠D′F′O′=∠DFO=30°,∴∠F′SH=90°,∴SH=F′H=(),F′S=SH=(),∴S=S△F′O′D′﹣S△F′HS=F′O′•D′O′﹣F′S•SH=×6×6﹣×()×()=∴.(3)存在,MN=8或24.∵F1O1∥y轴,∴∠BGO1=∠BCO=60°,∴△GMN为等腰三角形时,∠MGN=60°或120°,分两种情况:①当∠MGN=60°时,△GMN必为等边三角形,如图3,此时旋转角α=30°或90°或270°,∵OO1=12,∴BO1=12,∴BG===8,AB=OB cos∠OBC=24cos30°=12,∴AG=AB﹣BG=12﹣8=4,∴MN=NG===8,②当∠MGN=120°时,△GMN为等腰三角形,∴∠MNG=∠NMG=30°,如图4,此时旋转角α=120°或300°,MN=2AN===24.。
北京市东城区 2018-2019 学年度八年级上学期期末教学统一检测数学试题
2018-2019学年北京市东城区八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣82.若分式有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数3.下列运算中,正确的是()A.3x2+2x3=5x5B.a•a2=a3C.3a6÷a3=3a2D.(ab)3=a3b4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.5.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=66.下列二次根式中,是最简二次根式的是()A.B.C.D.7.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.728.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC =ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④9.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2B.4C.6D.810.定义运算“※”:a※b=.若5※x=2,则x的值为()A.B.或10C.10D.或二、填空题(本题共6小题,11-15小题每小题2分,16小题4分,共14分)11.分解因式:2ax2﹣8a=.12.多项式(mx+8)(2﹣3x)展开后不含x项,则m=.13.当x=时,分式的值为0.14.课本上有这样一道例题:作法:(1)作线段AB=a(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.请你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依据是.15.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为.16.已知在△ABC中,AB=AC.(1)若∠A=36°,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是;(2)若∠A≠36°,当∠A=时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)三、解答题(本题共12小题,共56分)17.计算:+(2﹣π)0﹣()﹣2.18.计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.解分式方程:+1=.21.先化简,然后a在﹣2,0,1,2,3中选择一个合适的数代入并求值.22.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.23.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB ∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.25.如图,AE是△ACD的角平分线,B在DA延长线上,AE∥BC,F为BC中点,判断AE与AF的位置关系并证明.26.阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:===﹣1.===﹣.(一)还可以用以下方法化简:.(二)(1)请用不同的方法化简.参照(一)式得=;参照(二)式得=;(2)从计算结果中找出规律,并利用这一规律选择下面两个问题中的一个加以解决:1.求的值;2.化简:+++…+.27.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC 于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)28.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)2018-2019学年北京市东城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.若分式有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数【分析】分式有意义的条件是分母不等于零,据此可得.【解答】解:若分式有意义,则a﹣1≠0,即a≠1,故选:A.【点评】本题主要考查分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.3.下列运算中,正确的是()A.3x2+2x3=5x5B.a•a2=a3C.3a6÷a3=3a2D.(ab)3=a3b【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【解答】解:A、3x2+2x3,无法计算,故此选项错误;B、a•a2=a3,正确;C、3a6÷a3=3a3,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算,正确掌握相关运算法则是解题关键.4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A.B.C.D.【分析】直接根据轴对称图形的概念分别解答得出答案.【解答】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=6【分析】根据实数的运算方法,求出每个选项中左边算式的结果是多少,判断出哪个算式错误即可.【解答】解:∵4+4﹣=6,∴选项A不符合题意;∵4+40+40=6,∴选项B不符合题意;∵4+=6,∴选项C不符合题意;∵4﹣1÷+4=4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.7.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.72【分析】直接利用同底数幂的乘法运算法则结合幂的乘方运算法则计算得出答案.【解答】解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题关键.8.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC =ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是()A.①②③B.①②④C.①③④D.②③④【分析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【解答】解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED;故选:C.【点评】此题主要考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2B.4C.6D.8【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度.【解答】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点评】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.10.定义运算“※”:a※b=.若5※x=2,则x的值为()A.B.或10C.10D.或【分析】分别讨论5>x和5<x时,得到的分式方程,解之,找出符合题意的即可.【解答】解:若5>x,即x<5时,原方程可整理得:=2,方程两边同时乘以(5﹣a)得:5=2(5﹣x),解得:x=,经检验:x=是原方程的解,且<5,即x=符合题意,若5<x,即x>5时,原方程可整理得:=2,方程两边同时乘以(x﹣5)得:x=2(x﹣5),解得:x=10,经检验:x=10是原方程的解,且10>5,即x=10符合题意,故选:B.【点评】本题考查了解分式方程,有理数的混合运算,正确掌握解分式方程的方法是解题的关键.二、填空题(本题共6小题,11-15小题每小题2分,16小题4分,共14分)11.分解因式:2ax2﹣8a=2a(x+2)(x﹣2).【分析】首先提公因式2a,再利用平方差进行二次分解即可.【解答】解:原式=2a(x2﹣4)=2a(x+2)(x﹣2).故答案为:2a(x+2)(x﹣2).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.多项式(mx+8)(2﹣3x)展开后不含x项,则m=12.【分析】乘积含x项包括两部分,①mx×2,②8×(﹣3x),再由展开后不含x的一次项可得出关于m的方程,解出即可.【解答】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵多项式(mx+8)(2﹣3x)展开后不含x项,∴2m﹣24=0,解得:m=12,故答案为:12.【点评】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.13.当x=﹣2时,分式的值为0.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:∵=0,∴x=﹣2.故答案为:﹣2.【点评】此题考查的是对分式的值为0的条件,分子等于0,分母不能等于0,题目比较简单.14.课本上有这样一道例题:作法:(1)作线段AB=a(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.请你思考只要CD垂直平分AB,那么△ABC就是等腰三角形的依据是线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【分析】利用线段垂直平分线的性质和等腰三角形的定义,由CD垂直平分AB可得到△ABC就是等腰三角形.【解答】解:若CD垂直平分AB,则根据线段垂直平分线上的点与这条线段两端点距离相等得到CA=CB,然后根据等腰三角形的定义可判断△ABC就是等腰三角形.故答案为线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为13.【分析】连接BE,依据l是AB的垂直平分线,可得AE=BE,进而得到AE+CE=BE+CE,依据BE+CE≥BC,可知当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,故△AEC的周长最小值等于AC+BC.【解答】解:如图,连接BE,∵点D是AB边的中点,l⊥AB,∴l是AB的垂直平分线,∴AE=BE,∴AE+CE=BE+CE,∵BE+CE≥BC,∴当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,∴△AEC的周长最小值等于AC+BC=5+8=13,故答案为:13.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.16.已知在△ABC中,AB=AC.(1)若∠A=36°,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是108°,36°;(2)若∠A≠36°,当∠A=90°或108°时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论;(2)当∠A=90°或108°时,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108°,36°;(2)当∠A=90°或108°时,在等腰△ABC中画一条线段,能得到2个等腰三角形,故答案为:90°或108°.【点评】此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形是解题关键.三、解答题(本题共12小题,共56分)17.计算:+(2﹣π)0﹣()﹣2.【分析】直接利用零指数幂的性质、负指数幂的性质、算术平方根分别化简得出答案.【解答】解:原式=3+1﹣4=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.计算:(1);(2)(x﹣2)2﹣(x+3)(x﹣3).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用乘法公式化简求出答案.【解答】解:(1)原式==;(2)原式=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分析】本题考查整式的加法运算,要先去括号,然后合并同类项,最后进行因式分解.本题答案不唯一.【解答】解:方法一:(x2+2xy)+x2=2x2+2xy=2x(x+y);方法二:(y2+2xy)+x2=(x+y)2;方法三:(x2+2xy)﹣(y2+2xy)=x2﹣y2=(x+y)(x﹣y);方法四:(y2+2xy)﹣(x2+2xy)=y2﹣x2=(y+x)(y﹣x).【点评】本题考查了整式的加减,整式的加减运算实际上就是去括号、合并同类项,因式分解时先考虑提取公因式,没有公因式的再考虑运用完全平方公式或平方差公式进行因式分解.20.解分式方程:+1=.【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:方程两边同乘以2(x+3),得4x+2(x+3)=7,解得x=,检验:当x=时,2(x+3)≠0,∴x=是分式方程的解.【点评】本题考查了解分式方程,利用等式的性质得出整式方程是解题关键,要检验方程的根.21.先化简,然后a在﹣2,0,1,2,3中选择一个合适的数代入并求值.【分析】先去括号,然后化除法为乘法进行化简计算,最后代入求值即可.【解答】解:原式===.当a=0时,=.【点评】考查了分式的化简求值,注意:如a取﹣2,2,3时,分式无意义.22.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.【分析】(1)利用轴对称变换,即可作出△ABC关于y轴对称的△A1B1C1;(2)依据以B、C、D为顶点的三角形与△ABC全等,可知两个三角形有公共边BC,运用对称性即可得出所有符合条件的点D坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)当△BCD与△BCA关于BC对称时,点D坐标为(0,3),当△BCA与△CBD关于BC的中点对称时,点D坐标为(0,﹣1),△BCA与△CBD关于BC的中垂线对称时,点D坐标为当(2,﹣1).【点评】本题主要考查了利用轴对称变换作图以及全等三角形的判定的运用,解题时注意,成轴对称的两个三角形或成中心对称的两个三角形全等.23.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB ∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.【分析】设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.根据“行驶完全程时间仅为原来路程行驶完全程时间的”列出方程并解答.【解答】解:设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.依题意,得.解方程,得x=100.经检验:x=100是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25.如图,AE是△ACD的角平分线,B在DA延长线上,AE∥BC,F为BC中点,判断AE与AF的位置关系并证明.【分析】结论:AE与AF的位置关系是垂直.想办法证明∠CAF+∠CAE=90°即可.【解答】解:结论:AE与AF的位置关系是垂直.证明:∵AE是△ACD的角平分线,∴,∵AE∥BC,∴∠DAE=∠B,∠EAC=∠ACB,∴∠B=∠ACB,∴AB=AC,又∵F为BC中点,∴,∵∠CAB+∠CAD=180°,∴∠CAF+∠CAE=90°,∴AE⊥AF.【点评】本题考查平行线的性质,等腰三角形的判定和性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:===﹣1.===﹣.(一)还可以用以下方法化简:.(二)(1)请用不同的方法化简.参照(一)式得=﹣;参照(二)式得=﹣;(2)从计算结果中找出规律,并利用这一规律选择下面两个问题中的一个加以解决:1.求的值;2.化简:+++…+.【分析】(一)(1)方法一:利用分母有理化化简;方法二:利用平方差公式把2写成两个数的平方差的形式,然后利用约分化简;(二)1.先把前面括号内的各二次根式分母有理化,然后合并后利用平方差公式计算;2.利用分母有理化得到原式=(﹣1+﹣+…+﹣),然后合并即可.【解答】解:(1)==﹣;==﹣;故答案为﹣;﹣;(2)1.=(﹣1+++﹣+…+﹣)(+1)=(﹣1)(+1)=2019﹣1=2018;2.+++…+=(﹣1+﹣+…+﹣)=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.27.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC 于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为②(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)【分析】(1)过点P作PF∥BC交AC于点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AC﹣AF),即可求DE的长;(2)过点P作PF∥BC交CE的延长线于点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AC+AF),即可求DE的长;(3)过点P作PF∥BC交BC的延长线与点F,可证△APF是等边三角形,可得EF=AF,通过证明△PDF≌△QDC,可得FD=CD=FC=(AF﹣AC),即可求DE的长.【解答】解:(1)如图,过点P作PF∥BC交AC于点F,∴∠Q=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠Q=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC﹣AF),∴DE=DF+EF=(AC﹣AF)+AF=AC=1;(2)1、补全的图形如下,过点P作PF∥BC交CE的延长线于点F,∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠FAP=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,又∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AC+AF),∴DE=DF﹣EF=(AC+AF)﹣AF=AC=1;2、过点P作PF∥BC交BC的延长线与点F.∴∠DQC=∠FPD,∠APF=∠ABC,∠AFP=∠ACB,∵△ABC为等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠APF=∠AFP=∠BAC=60°,∴△APF为等边三角形,∴AP=AF=PF,又∵PE⊥AC∴EF=AF,∴PF=AP=CQ,∠PDF=∠CDQ,∠DQC=∠FPD,∴△PDF≌△QDC(AAS),∴FD=CD=FC=(AF﹣AC),∴DE=EF﹣DF=(AC+CF)﹣CF=AC=1;答案为②.【点评】本题为三角形综合题,关键是通过作辅助线构建新的等边三角形,再通过证明三角形全等,确定边之间的关系,本题难度不大.28.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)【分析】(1)点A关于y轴的对称点为D,求出∠DOE=∠EOA=90°﹣∠AOB=30°,即可求解;(2)∠AOE=∠DOE=α,∠AOB=60°,求出∠BOD即可求解;(3)证明△AOP≌△ABQ(AAS),而EP为△DAQ的中位线,即可求解.【解答】解:(1)∵点A关于y轴的对称点为D,∴∠DOE=∠EOA=90°﹣∠AOB=30°,∴△OAD为等边三角形,∴∠BOD=120°,∴∠BDO==30°;(2)如下图:∵∠AOE=∠DOE=α,∠AOB=60°,∴∠BOD=360°﹣2α﹣60°=300°﹣2α,∵BO=BD,∴∠OBD=∠ODB.∴(3)如上图,连接AP,过点A作AQ∥y轴,交DB的延长线于点Q,∠OBD=∠BDO=α﹣60°,∠ABQ=180°﹣∠ABO﹣∠BDO=180°﹣α,而∠AOP=180°﹣∠AOE=180°﹣α,∴∠ABQ=∠AOP,∵AQ∥y轴,∴∠Q=∠DPE=∠APE,又AB=AO,∴△AOP≌△ABQ(AAS),∴AP=AQ,BQ=PO,∠BAQ=∠OAP,∴∠PAQ=∠QAB+∠BAP=∠BAP+∠PAO=60°,∴△APQ为等边三角形,∴AQ=PQ=PB+BQ=PB+PO,∵AQ∥y轴,E为AD的中点,∴EP为△DAQ的中位线,∴AQ=2EP,∴2PE=BP+PO.【点评】本题是几何变换的综合题,涉及到三角形全等、中位线、等边三角形等知识,关键是通过正确画图,找出全等的三角形,确定线段间的关系.。
贵州省遵义市2018-2019学年人教版八年级上学期数学期末考试试卷
贵州省遵义市2018-2019学年八年级上学期数学期末考试试卷一、选择题1.下列长度的线段中,可以组成三角形的是( )A.1,2,3B.2,5,8C.3,4,5D.3,6,92.下列图案中,不是轴对称图形的是( )A. B. C. D.3.下列运算正确的是( )A.3a + 2b = 5aB.(a + b) = a + bC.(-a b ) = a bD.1 - 4m + 4m = (2m -1)4.分式有意义,则x的取值范围是( )A.x≠-3B.x≠3C.x≠±3D.x≠95.已知等腰三角形的一个外角是80°,则它的顶角是( )A.20°B.100°C.20°或100°D.20°或80°6.如图,已知AD∥BC,AB=CD,AC,BD 交于点O,另加一个条件不能使△ABD≌△CDB 的是( )A.AO=COB.AD=BCC.AC=BDD.OB=OD7.下列正多边形不能镶嵌为平面图形的是( )A.正三角形B.正方形C.正五边形D.正六边形8.小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形9.如果mx2 + 4x + m2 + 3 = 0 是一个完全平方式,则m 的值是( )A.m=±1B.m=-1C.m=0D.m=110.港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55 公里.通车前需走水陆两路共约340 公里,通车后,约减少时间2.5 小时,平均速度是原来的6 倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为( )A. B. C. D.11.如图,从边长为a 厘米的正方形纸片中减去边长为b 厘米的小正方形,将剪下的图形从虚线处剪开,再拼成一个矩形(长方形).试求这个“新矩形”的面积,下列说法表述正确的是( )A.因式分解a - b = (a + b)(a - b)B.整式乘法a - b = (a + b)(a - b)C.因式分解(a + b)(a - b) = a - bD.整式乘法a ± 2ab + b = (a ± b)12.如图,点B,C,D,E 在同一条直线上,△ABC 为等边三角形,AC=CD,AD=DE,若AB=3,AD=m,试用m 的代数式表示△ABE 的面积( )A. B.m C.m D.3m二、填空题13.计算________14.分解因式:2m -32m5=________;15.已知a+b=3,ab=2,则a2+b2=________;16.若分式有增根,则m=________;17.如图,在∠AOB 的边OA、OB 上取点M、N,连接MN,P 是△MON 外角平分线的交点,若MN=2,S △PMN=2,S△OMN=7.则△MON 的周长是________;18.如图,以AB 为底分别作等边三角形QAB 和正方形ABCD.如果在正方形的对角线AC上存在一点P 使PD+PQ 存在最小值为2,则该正方形的面积是________ .三、解答题19.(1)计算:(2a6b)-1 ÷(a-2b)3 (2)因式分解:2xy+1-x2- y220.解方程:21.化简,然后从-1,0,1,2 中选取一个你喜欢的数作为x 的值代入求值.22.如图,点A(-1,2),B(-3,1),C(-1,1)在平面坐标系中.(1)在图中找出第四个点P,使以A、B、C、P 为顶点的四边形是轴对称图形,画出该四边形,并写出P 点的坐标________;(找出一个即可)(2)求出(1)中你画出的四边形的面积.23.如图,△ABC 和△BDE 均为等边三角形,求证:DE+EC=AE.24.已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.25.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽新能源EV500”为例,分别在某加油站和某充电站加油和充电的电费均为300 元,而续航里程之比则为1∶4.经计算新能源汽车相比燃油车节约0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受0.48 元/度的优惠专用电费.以新能源EV500 为例,充电55 度可续航400 公里,试计算每公里所需电费,并求出与燃油车相同里程下的所需费用(油电)百分比.26.已知,有一组不为零的数a,b,c,d,e,f,m,满足,求解:∵a=bm,c=md,e=fm∴= = m利用数学的恒等变形及转化思想,试完成:(1)244,333,422 的大小关系是________;(2)已知a,b,c 不相等且不为零,若,求的值.27.数学思维是数学地思考问题和解决问题,运用数学概念,思维和方法,辨明数学关系,形成良好的思维品质,试用你的数学能力解决下列问题:图1 图2(1)如图1 是角平分线的一种作法,其运用的数学知识是全等三角形判定方法中的________(判定方法);(2)如图2,在△ABC 中,∠B=60°,∠BAC 的平分线AD 与∠BCA 的平分线CE 交于点F,则:①∠AFC=________度.②写出EF与FD的数量关系,并说明理由;________。
2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷(北师大版 含答案)
2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷一、选择题(每小题2分,共20分)1.(2分)下列各数中是无理数的是()A.B.C.D.3.142.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)在,,,中,是最简二次根式的是()A.B.C.D.4.(2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°5.(2分)某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数6.(2分)若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或27.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°8.(2分)如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm29.(2分)如图,数轴上点P表示的数可能是()A.B.C.D.10.(2分)一次函数y=﹣x+8的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(每小题3分,共18分)11.(3分)化简:=.12.(3分)点P(a,8)到两坐标轴的距离相等,则a=.13.(3分)当m=时,函数y=(2m﹣1)x3m﹣2是正比例函数.14.(3分)一组数2,3,5,5,6,7的中位数是.15.(3分)若2a﹣b=5,a﹣2b=4,则a﹣b的值为.16.(3分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=8,AC=10,则△ADE的周长为.三、解答题(第17小题6分,第18小题8分,第19小题6分,共20分)17.(6分)解方程组:18.(8分)化简计算:(1);(2)+(﹣1﹣)2.19.(6分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.四、(每小题8分,共16分)20.(8分)甲乙两名运动员进行射击选拔赛,每人射击10次,其中射击中靶情况如表:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次甲71081099108109乙107109910810710(1)选手甲的成绩的中位数是分;选手乙的成绩的众数是分;(2)计算选手甲的平均成绩和方差;(3)已知选手乙的成绩的方差是15,则成绩较稳定的是哪位选手?请直接写出结果.21.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,﹣1),C(6,2),点M为y轴上一点,△MAB的面积为6.请解答下列问题:(1)顶点B的坐标;(2)连接BD,求BD的长;(3)请直接写出点M的坐标.五、(本题10分)22.(10分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上,折痕的另一端F在AD边上且BG=10时.(1)证明:EF=EG;(2)求AF的长.六、(本题12分)23.(12分)某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.七、(本题12分)24.(12分)如图,在△ABC中,点D在AB上,CD=CB,点E为BD的中点,且EA=EC,点F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=AC;(2)求线段AM、DM、BC之间的数量关系.八、(本题12分)25.(12分)如图,在平面直角坐标系中,点E的坐标为(4,0),点F的坐标为(0,2),直线l1经过点E和点F,直线l1与直线l2:y=2x相交于点A.(1)求直线l1的表达式;(2)求点A的坐标;(3)求△AOE的面积;(4)当点P是直线l1上的一个动点时,过点P作y轴的平行线PB交直线l2于点B,当线段PB=3时,请直接写出P点的坐标.2018-2019学年辽宁省沈阳市大东区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列各数中是无理数的是()A.B.C.D.3.14【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:=2,=2,2是有理数,3.14是有理数,是无理数,故选:A.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(2分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2分)在,,,中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的概念分析得出答案.【解答】解:=2,不是最简二次根式;是最简二次根式;==,不是最简二次根式;=﹣3,不是最简二次根式;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.4.(2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°【分析】根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵AB=AC,∠B=70°,∴∠A=180°﹣2∠B=180°﹣2×70°=40°.故选:D.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.5.(2分)某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数【分析】一组数据中出现次数最多的一个数是这组数据的众数,班长最关心吃哪种水果的人最多,即这组数据的众数.【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选:D.【点评】此题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(2分)若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或2【分析】根据二元一次方程的定义即可求解.【解答】解:根据题意可知:|2m﹣3|=1,解得:m=2或m=1,m﹣2≠0,m≠2,∴m=1.故选:A.【点评】本题考查了二元一次方程的定义、绝对值,解决本题的关键是掌握二元一次方程分定义.7.(2分)如图,AB∥CD,∠1=50°,∠2的度数是()A.50°B.100°C.130°D.140°【分析】先根据平行线的性质得∠3=∠1=50°,然后根据邻补角的定义,即可求得∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠1=50°,∴∠2=180°﹣∠3=130°.故选:C.【点评】本题考查了平行线性质,解题时注意:两直线平行,同位角相等.8.(2分)如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm2【分析】由勾股定理求出直角三角形的斜边长,再由长方形的面积公式即可得出结果.【解答】解:由勾股定理得:=5(cm),∴阴影部分的面积=5×1=5(cm2);故选:C.【点评】本题考查了勾股定理、长方形的性质;熟练掌握勾股定理是解决问题的关键.9.(2分)如图,数轴上点P表示的数可能是()A.B.C.D.【分析】首先判定出2<<3,由此即可解决问题.【解答】解:因为2<<3,所以数轴上点P表示的数可能是.故选:B.【点评】本题考查实数与数轴,二次根式等知识,理解数与数轴上的点是一一对应关系是解题的关键,学会估计二次根式的近似值,属于中考常考题型.10.(2分)一次函数y=﹣x+8的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质得出结论.【解答】解:因为解析式y=﹣x+8中,﹣1<0,8>0,图象过一、二、四象限,故图象不经过第三象限,故选:C.【点评】本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题(每小题3分,共18分)11.(3分)化简:=.【分析】先比较1与的大小,再根据绝对值的定义即可求解.【解答】解:=﹣1.【点评】此题主要考查了求实数的绝对值,其中非负数的绝对值等于他本身,负数的绝对值等于它的相反数.12.(3分)点P(a,8)到两坐标轴的距离相等,则a=±8.【分析】根据点到两坐标轴的距离相等,可得该点在象限角的角平分线上,据此可得答案.【解答】解:由题意,得|a|=8,解得a=±8,故答案为:±8.【点评】本题考查了点的坐标,利用点到两坐标轴的距离相等得出方程是解题关键.13.(3分)当m=1时,函数y=(2m﹣1)x3m﹣2是正比例函数.【分析】直接利用正比例函数的定义得出3m﹣2=1,进而得出答案.【解答】解:∵函数y=(2m﹣1)x3m﹣2是正比例函数,∴3m﹣2=1,解得:m=1,∵2m﹣1≠0,∴m≠.故答案为:1.【点评】此题主要考查了正比例函数的定义,正确把握定义是解题关键.14.(3分)一组数2,3,5,5,6,7的中位数是5.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2,3,5,5,6,7,则中位数为:=5.故答案是:5.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15.(3分)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.【分析】已知两等式左右两边相加,变形即可得到a﹣b的值.【解答】解:将2a﹣b=5,a﹣2b=4,相加得:2a﹣b+a﹣2b=9,即3a﹣3b=9,解得:a﹣b=3.故答案为:3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.(3分)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=8,AC=10,则△ADE的周长为18.【分析】两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB.【解答】解:∵DE∥BC∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=18.故答案是:18.【点评】本题考查了平行线的性质和等腰三角形的判定及性质,正确证明△OBD、△EOC 均为等腰三角形是关键.三、解答题(第17小题6分,第18小题8分,第19小题6分,共20分)17.(6分)解方程组:【分析】应用加减消元法,求出方程组的解是多少即可.【解答】解:①+②,得4x=8,解得x=2.把x=2代入①中,得2﹣y=3.解得y=﹣1.∴原方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.18.(8分)化简计算:(1);(2)+(﹣1﹣)2.【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式性质,以及完全平方公式计算即可求出值.【解答】解:(1)原式=2﹣5+9=6;(2)原式=2+1+3+2=2+6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.(6分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.【分析】依据∠DCE=∠E,得出DC∥BE,可得∠D=∠DAE,再根据∠B=∠D,可得∠B=∠DAE,进而判定AD∥BC.【解答】证明:∵∠DCE=∠E,∴DC∥BE,∴∠D=∠DAE,又∵∠B=∠D,∴∠B=∠DAE,∴AD∥BC.【点评】本题主要考查了平行线的判定与性质的运用,两条直线被第三条所截,如果同位角相等,那么这两条直线平行.四、(每小题8分,共16分)20.(8分)甲乙两名运动员进行射击选拔赛,每人射击10次,其中射击中靶情况如表:第一次第二次第三次第四次第五次第六次第七次第八次第九次第十次甲71081099108109乙107109910810710(1)选手甲的成绩的中位数是9分;选手乙的成绩的众数是10分;(2)计算选手甲的平均成绩和方差;(3)已知选手乙的成绩的方差是15,则成绩较稳定的是哪位选手?请直接写出结果.【分析】(1)根据中位数,众数的定义判断即可.(2)根据平均数的定义,方差公式计算即可.(3)根据方差越小成绩越稳定判断即可.【解答】解:(1)甲的中位数==9分,乙的众数为10分.故答案为9,10.(2)甲的平均成绩=(7+10+8+10+9+9+10+8+10+9)=9,甲的方差=[(7﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=1.(3)∵1<15,∴甲的成绩比较稳定.【点评】本题考查方差,平均数,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,﹣1),C(6,2),点M为y轴上一点,△MAB的面积为6.请解答下列问题:(1)顶点B的坐标(6,﹣1);(2)连接BD,求BD的长;(3)请直接写出点M的坐标.【分析】(1)根据点B的位置写出坐标即可;(2)利用勾股定理解答;(3)设△MAB的高为h,构建方程求出h即可解决问题;【解答】解:(1)(6,﹣1).故答案为解:(6,﹣1);(2)∵A(2,﹣1),C(6,2),B(6,﹣1),∴AB=4,BC=3,CD=4,DB===5;(3)设△MAB的高为h,根据题意得:AB•h=6,∵A(2,﹣1),B(6,﹣1).∴AB=4∴×h=6,∴h=3∴M(0,2)或M(0,﹣4).【点评】本题考查矩形的性质、坐标与图形的变化﹣平移等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、(本题10分)22.(10分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上,折痕的另一端F在AD边上且BG=10时.(1)证明:EF=EG;(2)求AF的长.【分析】(1)根据翻折的性质可得∠BGF=∠EGF,再根据两直线平行,内错角相等可得∠BGF=∠EFG,从而得到∠EGF=∠EFG,再根据等角对等边证明即可;(2)根据翻折的性质可得EG=BG,HE=AB,FH=AF,然后在Rt△EFH中,利用勾股定理列式计算即可得解.【解答】证明:(1)∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;(2)∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,∴FH===6,∴AF=FH=6.【点评】本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,熟记翻折前后两个图形能够重合得到相等的线段和角是解题的关键.六、(本题12分)23.(12分)某学校准备购进一批足球,从商场了解到:一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元.(1)列二元一次方程组解决问题:求一个A型足球和一个B型足球的售价各是多少元;(2)若该学校准备同时购进这两种型号的足球共80个,并且A型足球的数量小于等于60个,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一个A型足球x元,一个B型足球y元,根据“一个A型足球和三个B型足球共需275元;三个A型足球和两个B型足球共需300元”列方程组求解即可;(2)设A型足球a个,总费用w元,可得w=6000﹣25a,由一次函数的性质可求解.【解答】解:(1)设一个A型足球x元,一个B型足球y元,根据题意可得:解得:答:一个A型足球50元,一个B型足球75元.(2)设A型足球a个,总费用w元,根据题意可得:w=50a+75(80﹣a)=6000﹣25a,且a≤60,∵﹣25<0,∴w随着a的增大而减小,∴当a=60时,w的最小值为4500元.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键,难度不大.七、(本题12分)24.(12分)如图,在△ABC中,点D在AB上,CD=CB,点E为BD的中点,且EA=EC,点F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=AC;(2)求线段AM、DM、BC之间的数量关系.【分析】(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)由等腰三角形的性质可得AF=FC,EF⊥AC,由“SAS”可得△AFM≌△CFM,可得AM=CM,可得结论.【解答】(1)证明:∵CD=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=AC;(2)∵AE=EC,点F是AC中点,∴AF=FC,EF⊥AC,∴∠AFM=∠CFM,且AF=FC,MF=MF,∴△AFM≌△CFM(SAS)∴AM=CM,∵BC=CD=DM+CM=DM+AM.【点评】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质,证明△AFM≌△CFM是本题的关键.八、(本题12分)25.(12分)如图,在平面直角坐标系中,点E的坐标为(4,0),点F的坐标为(0,2),直线l1经过点E和点F,直线l1与直线l2:y=2x相交于点A.(1)求直线l1的表达式;(2)求点A的坐标;(3)求△AOE的面积;(4)当点P是直线l1上的一个动点时,过点P作y轴的平行线PB交直线l2于点B,当线段PB=3时,请直接写出P点的坐标.【分析】(1)根据待定系数法求得即可;(2)解析式联立,解方程组即可求得;(3)根据三角形面积公式求得即可;(4)设P(a,﹣+2),则B(a,2a),根据题意得|﹣+2﹣2a|=3,解方程即可求得P点的坐标.【解答】解:(1)设直线l1的解析式为y=kx+b,把E(4,0),F(0,2)代入得,解得k=﹣,b=2,∴直线l1的表达式为y=﹣x+2;(2)解得∴点A的坐标为(,);(3)∵点E的坐标为(4,0),∴OE=4,∴△AOE的面积==;(4)设P(a,﹣+2),则B(a,2a),根据题意得|﹣+2﹣2a|=3,解得a=﹣或a=2,∴P点的坐标为(﹣,)或(2,1).【点评】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,三角形面积等,交点坐标适合两直线解析式是解题的关键.。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
人教版2018-2019年八年级上期末数学试卷含答案解析
八年级(上)期末数学试卷一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是()A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b 的值为( )A .﹣1B .2C .1D .011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a+b )2的值为( )A .49B .25C .13D .112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.B.C.D.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第象限.17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= .20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB∥CD,点P在AB、CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,如图③,则∠BPD﹑∠B﹑∠PDQ﹑∠BQD之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .B .C .D .【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第一象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b 的不等式,根据不等式的性质,可得b 的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A (﹣2,b )在第三象限,得b <0,两边都除以﹣1,得﹣b >0,4>0,B (﹣b ,4)在第 一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是 2 .【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s 2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是 80° .【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠PCD=∠P+∠PCB ,根据角平分线的定义可得∠PCD=∠ACD ,∠PBC=∠ABC ,然后整理得到∠PCD=∠A ,再代入数据计算即可得解.【解答】解:在△ABC 中,∠ACD=∠A+∠ABC ,在△PBC 中,∠PCD=∠P+∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= 4 .【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4 .【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键.25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;=AP•OB=,则AP=.设(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
2018-2019学年江苏省苏州市八年级(上)期末数学试卷(解析版)
2018-2019学年江苏省苏州市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.34.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.138.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣30.14.(填“>”、“<”或“=”)12.(2分)27的立方根为.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=°.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.26.(8分)如图,在四边形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,点E为BC的中点.(1)求四边形ABCD的面积;(2)若AE⊥BC,求CD的长.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m =dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)2018-2019学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.【分析】根据轴对称图形的概念解答.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解.【解答】解:A、0是有理数,故选项错误;B、是无理数,故选项正确;C、﹣2是有理数,故选项错误;D、是有理数,故选项错误.故选:B.【点评】此题主要考查了无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.3【分析】先估计的大小,进而解答即可.【解答】解:∵,∴,∴最“接近”(﹣1)的整数是0,故选:A.【点评】此题考查无理数的大小估计,关键是根据无理数对进行估计解答.4.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°【分析】先根据等腰三角形的性质及三角形外角与内角的关系求出∠ADC的度数,再根据等腰三角形的性质及三角形内角和定理求出∠DAC的度数即可.【解答】解:∵△ABD中,AD=BD,∠B=25°,∴∠BAD=25°,∴∠ADC=25°×2=50°,∵AD=AC,∴∠C=50°,∴∠DAC=180°﹣50°×2=80°.故选:C.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)【分析】联立两一次函数的解析式求出x、y的值即可得出P点坐标.【解答】解:解得,,∴点P的坐标为(1,﹣1),故选:B.【点评】本题考查的是两条直线相交或平行问题.正确的得出方程组的解是解答此题的关键.6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可.【解答】解:①22+32≠42,故不能构成直角三角形;②42+32=52,故能构成直角三角形;③()2+22=()2,故能构成直角三角形;故选:D.【点评】本题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.13【分析】根据题意画出图形,根据等腰三角形的性质得出BD的长,由勾股定理求出AB 的长即可.【解答】解:如图所示,∵△ABC是等腰三角形,且AB=AC,AD是底边BC的高,∴BD=BC=×24=12,∴AB===13.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】根据非负数的性质判断出点A的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.【分析】过点C作CF⊥BA,由题意可得AO=4,BO=3,根据“AAS”可证△ACF≌△ACO,可得CO=CF,AO=AF=4,再根据勾股定理可求OC的长,即可得点C的纵坐标.【解答】解:如图,过点C作CF⊥BA,∵y=﹣x+3的图象分别与x轴、y轴交于点A、B,∴点A坐标为(4,0),点B坐标为(0,3),∴AO=4,BO=3,在Rt△ABO中,AB==5,∵AC平分∠BAO,∴∠FAC=∠OAC,且AC=AC,∠CFA=∠COA=90°,∴△ACF≌△ACO(AAS)∴CO=CF,AO=AF=4∴BF=1,在Rt△BCF中,BC2=BF2+CF2,∴(3﹣CO)2=1+CO2,∴CO=故选:B.【点评】本题考查了一次函数图象上点的坐标特征,勾股定理,全等三角形的判定和性质等知识,灵活运用相关的性质定理进行推理是本题的关键.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)【分析】将BN沿NM方向平移MN长的距离得到AM,连接AB,可得四边形ABNM是平行四边形,根据当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP 的长,即BN+PM的最小值等于AP长,可得PM、MN、NB长度之和最小,再根据待定系数法求得AP的解析式,即可得到点M的坐标.【解答】解:如图,将BN沿NM方向平移MN长的距离得到AM,连接AB,则BN=AM,∴四边形ABNM是平行四边形,∴MN=AB=1,∴当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP的长,即BN+PM 的最小值等于AP长,此时PM、MN、NB长度之和最小,∵P(3,2),B(﹣2,0),AB=1,∴A(﹣1,0),设AP的解析式为y=kx+b,则,解得,∴y=x+,令x=0,则y=,即M(0,),故选:A.【点评】本题主要考查了最短路线问题以及待定系数法的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣3>0.14.(填“>”、“<”或“=”)【分析】直接得出π的近似值,进而得出答案.【解答】解:∵π≈3.14159,∴π﹣3≈0.14159,∴π﹣3>0.14.故答案为:>.【点评】此题主要考查了实数比较大小,正确得出π的近似值是解题关键.12.(2分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=1.【分析】将点P坐标代入解析式可求k的值.【解答】解:∵一次函数y=kx+1的图象经过点P(﹣1,0),∴0=﹣k+1∴k=1故答案为:1【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=10.【分析】先利用垂直得到∠ABF=∠CEF=90°,再证明∠A=∠C,然后根据“ASA”可以判断△ABF≌△CBD,从而得到BF=BD,求出BC,BD,利用勾股定理即可解决问题.【解答】证明:∵CB⊥AD,AE⊥DC,∴∠ABF=∠CEF=90°,∵∠AFB=∠CFE,∴∠A=∠C,在△ABF和△CBD中,∴△ABF≌△CBD(ASA),∴BF=BD,∵AB=BC=8,CF=2,∴BF=BD=8﹣2=6,在Rt△BCD中,CD===10,故答案为10.【点评】本题考查了全等三角形的判定与性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为x>1.【分析】观察函数图象得到,当x>1时,一次函数y=kx+b的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b>mx+n的解集.【解答】解:不等式kx+b>mx+n的解集为x>1.故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=135°.【分析】利用等腰三角形的性质分别求出∠ADB,∠BDC即可解决问题.【解答】解:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BA=BD,∵BA=BC,∠ABC=90°,∴BD=BC,∠CBD=30°,∴∠BDC=∠BCD=(180°﹣30°)=75°,∴∠ADC=∠ADB+∠BDC=135°,故答案为135.【点评】本题考查了等腰直角三角形的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【分析】由折叠的性质可得AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,根据矩形的性质可证∠EAB=∠AEB,即AB=BE,根据勾股定理可求AB的长.【解答】解:∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:5【点评】本题考查了折叠的性质,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=2.【分析】作CP⊥x轴于点P,由余角的性质得到∠OBA=∠PAC,根据全等三角形的性质得到AP=OB=b,PC=OA=a.于是得到C点坐标是(a+b,a),求得D(,),根据勾股定理即可得到结论.【解答】解:如图:作CP⊥x轴于点P,∴∠APC=90°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∴∠ABO+∠BAO=∠BAO+∠CAP=90°,∴∠OBA=∠PAC,在△OBA和△PAC中,,∴△OBA≌△PAC(AAS),∴AP=OB=b,PC=OA=a.由线段的和差,得OP=OA+AP=a+b,即C点坐标是(a+b,a),∵B(0,b),C(a+b,a),∵D是BC的中点,得D(,),∵OD=,∴()2+()2=2,∴a+b=2,故答案为:2.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.【分析】直接利用立方根以及零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2+1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.【分析】(1)用天数乘以日饮水量即可求得总饮水量;’(2)先用科学记数法表示,然后根据近似数的精确度求解.【解答】解:(1)∵平均一天饮水1980毫升,∴30天一共饮水30×1980=59400毫升;(2)59400≈6×104(精确到10000).【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.【分析】欲证明BE=CD,只要证明△ABE≌△BCD(AAS)即可解决问题;【解答】证明:∵AB⊥BC,AE⊥BE,CD⊥BE,∴∠AEC=∠CDB=∠ABC=90°,∴∠A+∠ABE=90°,∠ABE+∠CBD=90°,∴∠A=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD(AAS),∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.【分析】依据线段垂直平分线的性质,可得∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,依据三角形内角和定理,即可得到∠A的度数.【解答】解:∵DE为AB的垂直平分线,∴∠A=∠ABD,又∵∠ABD=2∠CBD,∴∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,又∵∠C=90°,∴∠A+∠ABC=90°,即α+α+α=90°,解得α=36°,∴∠A=36°.【点评】此题考查了线段垂直平分线的性质,等腰三角形性质,三角形内角和定理的应用,解题的关键是注意线段垂直平分线上任意一点,到线段两端点的距离相等.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.【分析】(1)依据△ABC三个顶点的位置,即可得到点A、B、C的坐标;(2)依据轴对称的性质,即可得到△ABC关于直线l成轴对称的△A1B1C1,依据勾股定理进行计算,即可得出线段BC1的长.【解答】解:(1)A(1,1),B(3,4),C(4,2);(2)如图所示,△A1B1C1即为所求;由勾股定理可得,BC1==.【点评】本题主要考查了勾股定理以及轴对称性质的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.【分析】(1)首先证明CD=DE=EC,再证明FD=FC=DC即可.(2)连接EF,设EF交CD于点O.分别求出OE,OF即可解决问题.【解答】(1)证明:连接DE,EC.∵∠ADB=∠ACB=90°,AE=EB,∴DE=EC=AB=4,∵CD=4,∴DE=EC=CD=4,∴△DEC是等边三角形,∵E,F关于CD对称,∴DF=DE,FC=CE,∴DF=FC=CD,∴△DFC是等边三角形,(2)解:连接EF,设EF交CD于点O.∵△DCE,△DFC都是等边三角形,边长为4,∴FD=FC=ED=EC,∴EF⊥CD,∴OE=×4=2,OF=×4=2,∴EF=4.【点评】本题考查轴对称的性质,等边三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.【分析】(1)由已知得到A(﹣1,0),把(﹣1,0)代入y=kx+2即可得到结论;(2)解方程组得到C (,3),根据三角形的面积公式即可得到结论.【解答】解:(1)∵OA =1,∴A (﹣1,0),把(﹣1,0)代入y =kx +2得,k =2,∴直线l 1的函数表达式为:y =2x +2;(2)解得,∴C (,3),∵B (0,2),∴OB =2,当y =0时,﹣2x +4=0,∴x =2,∴D (2,0),∴AD =3,∴四边形OBCD 的面积=S △ACD ﹣S △AOB =×3×3﹣×1×2=.【点评】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.26.(8分)如图,在四边形ABCD 中,已知AB ∥CD ,AD ⊥AB ,AD =2,AB +CD =4,点E 为BC 的中点.(1)求四边形ABCD 的面积;(2)若AE ⊥BC ,求CD 的长.【分析】(1)作辅助线,构建三角形全等,将四边形ABCD 的面积转化为三角形DAF 的面积来解答;(2)连接AC ,设CD =x ,根据勾股定理列方程可解答.【解答】解:(1)如图1,连接DE 并延长,交AB 的延长线于F ,∵DC ∥AB ,∴∠C =∠EBF ,∵CE =BE ,∠DEC =∠FEB ,∴△DCE ≌△FBE (ASA ),∴BF =DC ,∵AB +CD =4,∴AB +BF =4=AF ,∴S 四边形ABCD =S 四边形ABED +S △DCE =S 四边形ABED +S △EBF =S △DAF ===4;(2)如图2,连接AC ,∵CE =BE ,AE ⊥BC ,∴AC =AB ,设CD =x ,则AB =AC =4﹣x ,Rt △ACD 中,由勾股定理得:CD 2+AD 2=AC 2,x 2+22=(4﹣x )2,x =,∴CD =.【点评】本题考查了直角梯形的性质,还考查了线段垂直平分线的性质,全等三角形的性质和判定,勾股定理的应用,能正确作辅助线是解此题的关键.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.【分析】(1)根据正方形的性质得到∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,根据三角形的面积公式列方程即可得到结论;(2)分三种情况:当点P在边AB上时,当点P在边BC上时,当点P在边CD上时,列函数关系式即可.【解答】解:(1)∵在边长为12cm的正方形ABCD中,M是AD边的中点,∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,∴根据题意得,12×12﹣×12×6﹣×6t=96,解得:t=4,∴点P的速度为=3cm/s;(2)当点P在边AB上时,y=12×12﹣×6×3t﹣×6t=144﹣12t(0≤t≤4);当点P在边BC上时,y=×(24﹣3t)×12+×6×(12﹣t)=180﹣21t(4<t≤8);当点P在边CD上时,y=×(36﹣4t)×6=﹣12t+108(8<t≤9);综上所述,y与t的函数关系式为:y=.【点评】本题考查了正方形的性质,根据实际问题列函数关系式,三角形的面积,正确的理解题意是解题的关键.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m=2dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)【分析】(1)注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,代入公式求解即可.(2)放水时间=放水体积÷放水速度,求出时间补全图象.(3)圆柱的高=圆柱体积÷圆柱的底面积,代入公式求解.【解答】解:(1)由图象可知,4秒,A容器内水的高度下降了1dm,V=sh=π()2•1=3π,则注水速度u==,由图象可知,4秒,B容器内水的高度上升了3dm,B容器增加的水的体积等于A容器减少的水的体积,V1=sh=π()2•3=,∴=3π,∴d=2.故答案为;2.(2)注满后B容器中水的总体积为:4π,∵放水速度为dm3/s,∴放空所需要的时间为:4π÷()=16.(3)A容器内水的高度:B容器内水的高度:∴=解得,t=6,∴容器A向容器B全程注水时间t为6s.【点评】此题考查了一次函数与注水的相关问题,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,这两个公式为解题关键.。
2018-2019学年度八年级上数学期末试卷(解析版) (2)
2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)
2018-2019 学年八年级(上)期末数学试卷一、选择题:(本大题共8 小题,每小题3 分,共24 分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2 B.2 C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5 B.3,4,5 C.5,6,7 D.6,7,84.点A(﹣3,2)关于x 轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3 7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD,则CE 的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE 的长为()A.3 B.1 C.2 D.4二、填空题:(共8 小题,每题3 分,共24 分。
将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5 和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.1.函数y=kx 的图象过点(﹣1,2),那么k= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB 垂直平分CD,AD=4,BC=2,则四边形ACBD 的周长是.14.将函数y=2x 的图象向下平移3 个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3 上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x、y轴的正半轴上,OA=3,OB=4,D 为OB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,E 点坐标为.三、解答题(共10 小题,共102 分。
2018-2019学年成都市成华区八年级(上)期末数学试卷(含解析)
2018-2019学年成都市成华区八年级(上)期末数学试卷(考试时间:12。
分钟满分:150分)A卷(共100分)一.选择题(每小题3分,共30分)1.下列各数中.为无理数的是(2.关于赤的叙述正确的是()A.在数轴上不存在表示桐的点B.V8=V2+V6C.与最接近的整数是2d.Va=2V23.有五名射击运动员,教练为了分析他们成绩的波动程度.应选择下列统计量中的()A.方差B.中位数C.众数D.平均数4.如图,直线.a,b被直线c所截,下列条件中,不能判定打〃b的是()A.Z2=Z5B.Z1=Z3C.Z5=Z4D.Zl+Z5=180°5.已知直线a〃b,将一块含45°角的直角三角板(NC=90°)按如图所示的位置摆放,若Zl=55°,则匕2的度数为()A.80°B.70°C.85°D.75°6.二元一次方程组x-y=-2廿广2的解是(x=0 y=-2x=0y=2x=-2y=07.若一次函数、,=(k-2) x+1的函数值y 随x 的增大而增大,则()A. k<2 B. k>2 C. k>0 D. k<08.我国古代数学著作《孙子算经》中有“鸡兔同笼"问题:“今有鸡兔同笼.上有三十五头.下有九十四足,问鸡兔各几何设筠x 只,兔y 只,可列方程组为( )\+y=35k 2x+2y=94x+y=354x+4y=949.如图,在矩形AOBC 中,A ( -2, 0), B (0, 1).若正比例函数y=kx 的图象经过点C.则k 的值为(A. B.D.x 4y=35、4"2y=94 x+y=35k 2x+4y=949---------512A.“ 1 D.-- C. -2 D. 2210.如图,小巷左右两侧是竖直的墙,一架梯子斜幸在左墙时,梯子底墙到左墙角的距膏为0.7米,距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度岫A. 0.7 米B. 1.5 米C. 2.2 米D. 2.4 米二.填空题:(每小题4分,共16分)11. 若关于X 、y 的二元一次方程3x - ay = 1有一个解是{ .则a=_______.______ y=212. 若3x - 2y+l *Vx+y-3 = 0,则xy 的算术平方根是.13. 如图所示,一次曲数y=ax+b 的图象与x 轴相交于点(2, 0),与y 轴相交于点(0, 4),结合图象可知,关于x 的方程ax+b=0的解是.. V4* L 214.如围,在RtAABC中,ZC=90°.AC=3.AB=5,分别以点A.B为圆心,大于《AB的长为半径画弧,2两弧交点分别为点P,Q,过P,Q两点作直线交BC于点D,则CD的长是三.解答下列各题(共54分)15.(10分)计算下列各题:(1)计算:(1-V3)2(2)计算:6X^1+(ji-2019) °-|5-VTr-(*)-216.(10分)解下列方程组:(1J x+2y=0®'3x+4y=6®17.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的指数量,采用随机抽样方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A, B. C. D.E表示.根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?18.(8分)如图,已知点D,E分别是ZXABC的边HA和BC延长线上的点,作ZDAC的平分线AF,若AF〃BC.(1)求证:ZiABC是等腰三角形;(2)作NACE的平分线交AF于点G,若ZB=40°,求NAGC的度数.BC E19.(8分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.其中BA是线段,且BA〃x轴,AC是射线.(1)若小李11月份上网20小时.他应付多少元的上网费用?(2)当xN3O,求y与x之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?20.(10分)如图,直角坐标系xOy中.一次函数y=-*x+5的图象L分别与x,y轴交于A・B两点.正比例函数的图象12与L交于点C(m,3).(1)求m的值及k的解析式;(2)求S ec-S△叩的值;(3)一次函数y=kx+l的图象为L,且1.,12,L不能围成三角形,直接写出k的值.B卷(50分)一.填空题(每小题4分,共20分)21.函数y=-x的图象与函数y=x+l的图象的交点在第象限.22.如图,数辅上点A表示的数为*化简:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019 学年八年级数学上学期期末复习检测试卷一、选择题(每题 3 分,共 30 分)1.要使分式xx- -13有意义,x 的取值应满足()A.x=1B.x≠1C.x=3D.x≠32.下列运算正确的是( )A.a·a2=a2B.(a5)3=a8C.(ab)3=a3b3D.a6÷a2=a33.下列长度的三条线段,不能构成三角形的是( )A.3,3,3B.3,4,5C.5,6,10D.4,5,94.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有 0.000 000 076 克,将数 0.000 000 076 用科学记数法表示为( )A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×1085.在如图所示的四个汽车标志图案中,属于轴对称图形的有( )A.1 个B.2 个C.3 个D.4 个6.下列各式中,计算结果是 x2+7x-18 的是( )A.(x-1)(x+18)B.(x+2)(x+9)C.(x-3)(x+6)D.(x-2)(x+9)7.已知 y2+10y+m 是完全平方式,则 m 的值是 ( )A.25B.±25C.5D.±58.如图,折叠直角三角形纸片的直角,使点 C 落在 AB 边上的点 E 处.若 BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.6(第 8 题)(第 10 题)9.小明乘出租车去体育场,有两条线路可供选择,线路一的全程为 25 km,但交通比较拥堵;线路二的全程为 30 km,平均车速比走线路一时的平均车速高 80%,因此能比走线路一少用 10 min到达.若设走线路一时的平均速度为 x km/h,根据题意可列方程( )A.2x5-(1+3800%)x=1600 C.(1+3800%)x-2x5=1600B.2x5-(1+3800%)x=10 D.(1+3800%)x-2x5=1010.如图,C 为线段 AB 上一动点(不与点 A,B 重合),在 AB 同侧分别作正三角形 ACD 和正三角形BCE,AE 与 BD 交于点 F,AE 与 CD 交于点 G,BD 与 CE 交于点 H,连接 GH.以下五个结论:①AE=BD;②GH∥AB;③AD=DH;④GE=HB;⑤∠AFD=60°,一定成立的是( )A.①②③④B.①②④⑤C.①②③⑤D.①③④⑤二、填空题(每题 3 分,共 24 分)11.分解因式:x-x3=____________.12.计算:(-3)0÷(-2)-2=________.13.若 a2+a-1=0,则 2a2+2a+2 016 的值是________.14.点 A(2,-3)关于 x 轴的对称点 A′的坐标是__________.15.一个多边形的每个内角都是 150°,这个多边形是________边形.16.如图,在△ABC 和△DEF 中,已知 CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是__________.(第 16 题)(第 18 题)17.若分式xx2-+00..024的值为零,则 x=________;若分式x-1 1与2x的值相等,则 x=________.18.如图,△ADB,△BCD 都是等边三角形,点 E,F 分别是 AB,AD 上的两个动点,满足 AE=DF.连接 BF,DE,BF 与 DE 相交于点 G,CH⊥BF,垂足为 H,连接 CG.若 DG=a,BG=b,且 a,b 满足下列关系:a2+b2=5,ab=2,则 GH=________.三、解答题(19~22 题每题 6 分,26 题 12 分,其余每题 10 分,共 66 分) 19.计算:(2a+b)(2a-b)+b(2a+b)-8a2b÷2b.20.先化简,再求值:3xx2-+14-x-2 1÷x2-x+2x2+1,其中 x=-3.x821. 解分式方程:x-2-1=x2-4.22.如图,已知:EC=AC,∠BCE=∠DCA,∠A=∠E.求证∠B=∠D.23.如图,在平面直角坐标系中,每个小正方形的边长为 1,△ABC 的顶点都在格点上,点 A 的坐 标为(-3,2).请按要求分别完成下列各题:(1)把△ABC 向下平移 7 个单位长度,再向右平移 7 个单位长度,得到△A1B1C1,画出△A1B1C1; (2)画出△A1B1C1 关于 x 轴对称的△A2B2C2;画出△A1B1C1 关于 y 轴对称的△A3B3C3; (3)求△ABC 的面积.24.如图,在△ABC 中,AB=BC ,DE⊥AB 于点 E,DF⊥BC 于点 D,交 AC 于点 F. (1)若∠AFD=155°,求∠EDF 的度数; (2)若点 F 是 AC 的中点,求证∠CFD=12∠B.25.某文具店老板第一次用 1 000 元购进了一批文具,很快销售完毕;第二次购进时发现每件文具 的进价比第一次上涨了 2.5 元.老板用 2 500 元购进了第二批文具,所购进文具的数量是第一 次购进数量的 2 倍,同样很快销售完毕,两批文具的售价均为每件 15 元.(1)问第二次购进了多少件文具? (2)文具店老板第一次购进的文具有 3%的损耗,第二次购进的文具有 5%的损耗,问文具店老板在这两笔生意中是盈利还是亏本?盈利或亏本多少元?26.如图,已知点 O 到△ABC 的两边 AB,AC 所在直线的距离相等,且 OB=OC. (1)如图①,若点 O 在 BC 上,求证:△ABC 是等腰三角形. (2)如图②,若点 O 在△ABC 内部,求证 AB=AC. (3)若点 O 在△ABC 的外部,AB=AC 还成立吗?请画图说明.答案 一、1.D 2.C 3.D 4.B 5.B 6.D7.A 8.C 9.A 10.B 点拨:∵△ACD 和△BCE 是等边三角形,∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.∵∠ACB=180°,∴∠DCE=60°.∴∠DCE=∠BCE. ∵∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB. 在△ACE 和△DCB 中, AC=DC, ∠ACE=∠DCB, CE=CB, ∴△ACE≌△DCB(SAS). ∴AE=BD,∠CAE=∠CDB,∠AEC=∠DBC.故①正确. 在△CEG 和△CBH 中, ∠AEC=∠DBC, CE=CB, ∠DCE=∠BCE, ∴△CEG≌△CBH(ASA),∴CG=CH,GE=HB,∴△CGH 为等边三角形,∴∠GHC=60°, ∴∠GHC=∠BCH,∴GH∥AB. 故②④正确. ∵∠AFD=∠EAB+∠CBD, ∴∠AFD=∠CDB+∠CBD=∠ACD=60°.故⑤正确. ∵∠DHC=∠HCB+∠HBC=60°+∠HBC,∠DCH=60°, ∴∠DCH≠∠DHC,∴CD≠DH, ∴AD≠DH.故③错误. 综上所述,正确的有①②④⑤. 二、11.x(1+x)(1-x) 12.4 13.2 018 14.(2,3) 15.十二 16.AC=ED(答案不唯一) 17.0.2;2 18.32 三、19.解:(2a+b)(2a-b)+b(2a+b)-8a2b÷2b=4a2-b2+2ab+b2-4a2=2ab. 20.解:3xx2-+14-x-2 1÷x2-x+2x2+1=(x+13)x+(4x-1)-(x+2(1)x+(1x)-1)÷(xx-+12)23x+4-2x-2x+2=(x+1)(x-1)÷(x-1)2x+2(x-1)2 x-1=(x+1)(x-1)· x+2 =x+1.当 x=-3 时,原式=xx- +11=--33-+11=2.21.解:x-x 2-1=x2-8 4,方程两边乘(x+2)(x-2),得 x(x+2)-(x+2)(x-2)=8,化简,得 2x+4=8,解得 x=2.检验:当 x=2 时,(x+2)(x-2)=0,即 x=2 不是原分式方程的解.所以原分式方程无解.22.证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,即∠ACB=∠ECD.在△ACB 和△ECD 中,∠A=∠E, AC=EC, ∠ACB=∠ECD,∴△ACB≌△ECD(ASA).∴∠B=∠D.23.解:(1)略.(2)略. (3)S△ABC=2×3-12×2×1-12×1×2-12×1×3=6-1-1-32=52. 24.(1)解:∵∠AFD=155°,∴∠DFC=25°.∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°.∴∠C=180°-90°-25°=65°.∵AB=BC,∴∠A=∠C=65°.∴∠EDF=360°-65°-155°-90°=50°.(2)证明:如图,连接 BF.(第 24 题)∵AB=BC,且点 F 是 AC 的中点, ∴BF⊥AC, ∠ABF=∠CBF=12∠ABC. ∴∠CFD+∠BFD=90°. ∵FD⊥BC, ∴∠CBF+∠BFD=90°, ∴∠CFD=∠CBF. ∴∠CFD=12∠ABC. 25.解:(1)设第一次购进了 x 件文具.1 000 2 500 依题意,得 x = 2x -2.5. 解得 x=100. 经检验,x=100 是原方程的解,且符合题意. 则 2x=2×100=200. 答:第二次购进了 200 件文具. (2)[100(1-3%)+200(1-5%)]×15-1 000-2 500=805(元). 答:文具店老板在这两笔生意中盈利,盈利 805 元. 26.(1)证明:如图,过O 作OE⊥AB 于E,OF⊥AC 于F,则∠OEB=∠OFC=90°.∵点 O 到△ABC 的两边 AB,AC 所在直线的距离相等, ∴OE=OF. 在 Rt△OEB 和 Rt△OFC 中,(第 26(1)题)OB=OC, OE=OF, ∴Rt△OEB≌Rt△OFC(HL). ∴∠ABC=∠ACB. ∴AB=AC, 即△ABC 是等腰三角形. (2)证明:如图,过 O 作 OE⊥AB 于 E,OF⊥AC 于 F,则∠OEB=∠OFC=90°.(第 26(2)题) ∵点 O 到△ABC 的两边 AB,AC 所在直线的距离相等, ∴OE=OF. 在 Rt△OEB 和 Rt△OFC 中, OB=OC, OE=OF, ∴Rt△OEB≌Rt△OFC(HL). ∴∠ABO=∠ACO. ∵OB=OC,∴∠OBC=∠OCB. ∴∠ABC=∠ACB. ∴AB=AC. (3)解:AB=AC 不一定成立. 理由:当∠BAC 的平分线所在直线和 BC 的垂直平分线重合时,如图①,过 O 作 OE⊥AB 交 AB 的延长线于 E,OF⊥AC 交 AC 的延长线于 F,则∠OEB=∠OFC=90°. ∵点 O 到△ABC 的两边 AB,AC 所在直线的距离相等, ∴OE=OF. 在 Rt△OEB 和 Rt△OFC 中, OB=OC, OE=OF, ∴Rt△OEB≌Rt△OFC(HL). ∴∠EBO=∠FCO.∵OB=OC, ∴∠OBC=∠OCB. ∵∠ABC=180°-(∠OBC+∠EBO), ∠ACB=180°-(∠OCB+∠FCO), ∴∠ABC=∠ACB. ∴AB=AC.(第 26(3)题) 当∠BAC 的平分线所在直线和 BC 的垂直平分线不重合时,如图②,∠ABC 和∠ACB 不相等, ∴AB≠AC. 综上,AB=AC 不一定成立.。