初中数学一元一次方程 测试题
最新初中数学方程与不等式之一元一次方程经典测试题及答案
最新初中数学方程与不等式之一元一次方程经典测试题及答案一、选择题1.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是()A.45%(1+80%)x﹣x=80 B.x+45%﹣80%=80C.80%(1+45%)x﹣x=80 D.(1+80%)(1+45%)x﹣x=80【答案】C【解析】【分析】设这种自行车的进价是每辆x元,根据利润=卖价-进价,列方程即可.【详解】设这种自行车的进价是每辆x元,由题意得,80%(1+45%)x-x=80.故选:C.【点睛】本题考查了一元一次方程的应用-销售问题,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.2.小明在某个月的日历中圈出三个数,算得这三个数的和为36,那么这三个数的位置不可能是()A.B.C.D.【答案】C【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+1+x+8=36,x=9.故本选项可能.B、设最小的数是x.x+x+8+x+16=36,x=4,故本选项可能.C、设最小的数是x.x+x+8+x+2=36,x=263,不是整数,故本项不可能.D 、设最小的数是x .x+x+1+x+2=36,x=11,故本选项可能.因此不可能的为C.故选:C.【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.锻炼了学生理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.3.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A .5B .4C .3D .2 【答案】B【解析】分析:可设两人相遇的次数为x ,根据每次相遇的时间100254⨯+,总共时间为100s ,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.关于x 的方程50x a -=的解比关于y 的方程30y a +=的解小2,则a 的值为( ) A .415 B .415- C .154 D .154- 【答案】D【解析】【分析】把a 当做已知数分别表示出x 与y 的值,根据关于x 的方程5x-a=0的解比关于y 的方程3y+a=0的解小2,得到关于a 的一元一次方程,求出方程的解即可得到a 的值.【详解】解:∵5x-a=0,∴x= 5a , ∵3y+a=0, ∴y= 3a -, ∴a 3--a 5=2, 去分母得:-5a-3a=30,合并得:-8a=30,解得:a=154-. 故选:D .【点睛】此题考查了一元一次方程的解,用a 表示出x 与y 的值是解本题的关键.5.8×200=x+40解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【解析】【分析】按照分式和整式的性质解答即可.【详解】 解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.7.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x 人,则下列方程正确的是( )A .50+x =3×30B .50+x =3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.8.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--= C .2(21)3(53)6x x +--=D .213(53)6x x +--=【答案】C【解析】试题分析:方程两边同乘以6得2(2x+1)-3(5x-3)=6,故答案选C.考点:去分母.9.下列方程中,是一元一次方程的是( )A .x 2﹣4x =3B .x =0C .x +2y =1D .x ﹣1=1x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x 2﹣4x =3,未知数x 的最高次数为2,故A 不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质11.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是()A.20 B.22 C.25 D.20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x ×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故选D .【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.12.一轮船从甲码头到乙码头顺水航行,用了2小时,从乙码头到甲码头逆水航行,用了2.5小时.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,根据题意可列方程为( )A .23 2.53x x +=-B .2(3) 2.5(3)x x +=-C .23 2.53x x -=+D .2(3) 2.5(3)x x -=+【答案】B【解析】【分析】顺流:速度=船在静水中的速度+水流的速度;逆流:速度=船在静水中的速度-水流的速度.【详解】顺流:速度=船在静水中的速度+水流的速度;逆流:速度=船在静水中的速度-水流的速度.在顺流和逆流航行过程中不变的是路程:路程=速度⨯时间顺流路程=()23x + 逆流路程=()2.53x -所以:()23x +=()2.53x -,选B .【点睛】掌握船在顺流和逆流时的速度计算公式,注意航行过程中不变的是路程建立等量关系即可.13.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为()A.27元B.27.8元C.28元D.28.4元【答案】C【解析】【分析】设该商品的标价是x元,根据按标价的九折出售,仍可获利20%列方程求解即可.【详解】解:设该商品的标价是x元,由题意得:0.9x-21=21×20%,解得:x=28,即该商品的标价为28元,故选:C.【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.14.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=()A.10°B.60°C.45°D.80°【答案】C【解析】【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x,∠2=3x,∠3=6x,再根据∠3比∠1大60°,列出方程解出x即可.【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x,∠2=3x,∠3=6x,∵∠3比∠1大60°,∴6x-2x=60,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.15.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B .【点睛】本题考查解一元一次方程,题目简单.16.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里 【答案】C【解析】【分析】【详解】试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C17.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x = C .由104x =,得4x = D .由45x =-,得54x =-- 【答案】B【解析】【分析】 根据等式的性质依次进行判断即可得到答案.【详解】A. 由25x +=,得x=5-2,故错误;B. 由23x =,得32x =,故正确; C. 由104x =,得x=0,故错误; D. 由45x =-,得x=4+5,故错误,故选:B.【点睛】此题考查等式的性质,熟记性质定理是解题的关键.18.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- 【答案】B【解析】【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.19.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.20.下列解方程过程中,变形正确的是( )A .由2x-1=3得2x=3-1B .由255143x x -=-得6x-5=20x-1C .由-5x=4得x =−54 D .由132x x -=得2x-3x=6 【答案】D【解析】【分析】根据等式的基本性质进行判断.【详解】A 、在2x-1=3的两边同时加上1,等式仍成立,即2x=3+1.故本选项错误;B 、在255143x x -=-的两边同时乘以12,等式仍成立,即6x-60=20x-12,故本选项错误;C 、在由-5x=4的两边同时除以-5,等式仍成立,即x=-45,故本选项错误; D 、在132x x -=的两边同时乘以6,等式仍成立,即2x-3y=6,故本选项正确. 故选D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;。
初中数学七年级上册《一元一次方程》单元测试卷(含答案)
一元一次方程测试卷一、选择题(本大题共10个小题,每小题只有一个符合条件的选项,每小题3分,满分30分)1.下列方程是一元一次方程方程的是( )A. B. C. D.5=+y x 42=x 53-=x x 125-=-x2.下列方程中解是的是( )1-=x A. B. C.D.01=-x 01=+x 23121-=+x 21211=-x 3.下列等式的变形错误的是( )A.如果,那么;B.如果,那么y x =22+=+y x y x =yx 22=C.如果,那么; D.如果,那么y x =zy z x =y x =y x -=-224.下列两个方程的解相同的是( )A .方程5x +3=6和方程2x =4B .方程3x =x +1和方程2x =4x -1C .方程x +=0和方程=0 D .方程6x -3(5x -2)=5和方程6x -15x =32121+x 5.若与-互为倒数,那么x 的值等于( ) 615-x 37A .B .- C . D .-7575351135116. 方程,去分母得( )13521=--x x A. B.11023=+-x x 11023=--x x C. D.61023=--x x 61023=+-x x 7. 方程的解是,则等于( )042=-+a x 2-=x a A. B. C. D.8-0288. 下列方程变形中,正确的是( )A.方程,移项,得1223+=-x x ;2123+-=-x x B.方程,去括号,得()1523--=-x x ;1523--=-x x C.方程,未知数系数化为1,得2332=t ;1=xD.方程化成15.02.01=--x x .63=x 9. 若代数式-的值是2,则的值是( ) x 31x +x A. B. C. D.75.075.15.15.310. 朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3个,如果每人2个又多2个,请问共有多少个小朋友?( )A .4个B .5个C .10个D .12个二、填空题(本大题共10个小题,每小题3分,满分30分)11. 方程的解为________________。
初一数学一元一次方程测试题及答案
初一数学一元一次方程测试题及答案一元一次方程测试题一、填空题1、若2a与1-a互为相反数,则a等于-1/3.2、y=1是方程2-3(m-y)=2y的解,则m=5/3.3、如果3x-4=是关于x的一元一次方程,那么a=5.4、在等式S=(a+b)h/2中,已知S=800,a=30,h=20,则b=40.5、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发1.5小时后相遇,列方程可得x=20/3.6、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒75升水。
二、选择题1、下列方程中,是一元一次方程的是(。
)A、x2+x-3=x(x+2)B、x+(4-x)=5C、x+y=1D、3x-2(x+1)=x+1答案:B2、与方程x-1=2x的解相同的方程是()A、x-2=1+2xB、x=2x+1C、x=2x-1D、x-(m-2)/3=x/(x+1)答案:C3、若关于x的方程mx-2x+3=mx/(x+1)的解为x=2,则m=3/2.答案:D4、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x辆客车,可列方程为44x+64(328-64)=328,解得x=4.答案:B5、XXX在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y-(115/y)=y-。
怎么呢?XXX想了一想,便翻看书后答案,此方程的解是y=5,很快补好了这个223常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是4.答案:D6、(2x-1)/(x-1)-1=1,去分母后,正确的是3x-2(x-1)=1.答案:A7、某商品连续两次9折降价销售,降价后每件商品的售价为a元,该产品原价为(10/9)^2a元。
答案:C三、解答题1、3-(x/(x-8))-1/(x+3)=12,化简得到x=11.2、3(x+1)-2(x+2)=2x+3,化简得到x=-1.3、x-(1/x)=4,移项得到x^2-4x-1=0,解得x=2+√5或x=2-√5.4、解方程(x+1)/(x-2)+(x-1)/(x+3)=5/3,化简得到3x^2+9x-10=0,解得x=-5/3或x=2/3,但由题目可知x必须是正数,因此x=2/3.四、解答题1、已知 $y_1=6-x,y_2=2+7x$,若① $y_1=2y_2$,求$x$ 的值;②当 $x$ 取何值时,$y_1$ 比 $y_2$ 小 $3$;③当$x$ 取何值时,$y_1$ 与 $y_2$ 互为相反数?① $y_1=2y_2 \Rightarrow 6-x=2(2+7x) \Rightarrow x=-\frac{10}{15}=-\frac{2}{3}$② $y_1\frac{5}{8}$ 或 $x<-2$③ $y_1=-y_2 \Rightarrow 6-x=-(2+7x) \Rightarrowx=\frac{8}{15}$2、已知 $ax+a+3-8=4$ 是关于 $x$ 的一元一次方程,试求$a$ 的值,并解这个方程。
(好题)初中数学七年级数学上册第三单元《一元一次方程》测试(有答案解析)(1)
一、选择题1.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+12.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b3.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-44.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π-5.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2C .3D .46.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .667.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、68.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b +9.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍10.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个11.多项式33x y xy +-是( ) A .三次三项式 B .四次二项式 C .三次二项式 D .四次三项式 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题13.将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是________________.? 13 6 1015 2128 2 5 9 1420 27 ? 4813 19 26 ? ? 7121825 ? ? 111724? ?16 23 ??22??? ? ?x?14.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.15.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.16.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________.17.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____. 18.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
(压轴题)初中数学七年级数学上册第三单元《一元一次方程》测试(包含答案解析)
一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元2.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b3.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+4.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +-5.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n6.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++7.下列变形中,正确的是( ) A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = 8.下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+9.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .202210.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差11.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2B .﹣2C .0D .412.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738二、填空题13.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.14.与22m m +-的和是22m m -的多项式为__________. 15.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______. 16.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.17.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………19.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.20.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个三、解答题21.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab . 22.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 23.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求: (1)展板的面积是 .(用含a ,b 的代数式表示) (2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).24.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项. 25.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
(易错题)初中数学七年级数学上册第三单元《一元一次方程》测试(有答案解析)
一、选择题1.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .11 2.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 100 3.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( ) A .2B .3C .4D .6 4.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- 5.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 7.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y xx y x +--=+-+ D .()()223423422x y x x y x --+=--+8.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- 9.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个10.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是()A.2 B.﹣2 C.0 D.411.在3a,x+1,-2,3b-,0.72xy,2π,314x-中单项式的个数有()A.2个B.8个C.4个D.5个12.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个二、填空题13.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)14.写出一个系数是-2,次数是4的单项式________.15.观察下面的单项式:234,2,4,8,,a a a a根据你发现的规律,第8个式子是____.16.一列数a1,a2,a3…满足条件a1=12,a n=111na--(n≥2,且n为整数),则a2019=_____.17.如图:矩形花园ABCD中,,AB a AD b==,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM RS c==,则花园中可绿化部分的面积为______.18.一个长方形的周长为68a b+,其一边长为23a b+,则另一边长为______.19.为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a元收费,如果超过50度,那么超过部分按每度()0.5a+元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.20.如图,大、小两个正方形ABCD与正方形BEFG并排放在一起,点G在边BC上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF的面积是______平方厘米.三、解答题21.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.22.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .23.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值24.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.25.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?26.若单项式21425m n x y +--与413n m x y +是同类项,求这两个单项式的积【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.3.C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 4.B解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 5.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.D解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.7.C解析:C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误; B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y xx y x +--=+-+,此选项正确; D. ()()223423422x y xx y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则. 8.D解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.9.B解析:B【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca 是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.10.A解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.11.C解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键. 12.C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.二、填空题13.【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.14.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.15.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n个式子为2n-1a n,∴第8个式子为:27a8=128a8,故答案为:128a8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a1=12,a2=111-2=2,a3=11-2=﹣1,a4=11=1--12(),a5=111-2=2,a6=11-2=﹣1…观察发现,3次一个循环,∴2019÷3=673,∴a2019=a3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.17.【分析】由长方形的面积减去PQLM与RKTS的面积再加上重叠部分面积即可得到结果【详解】S矩形ABCD=AB•AD=abS道路面积=ca+cb-c2所以可绿化面积=S矩形ABCD-S道路面积=ab-解析:2ab bc ac c--+【分析】由长方形的面积减去PQLM与RKTS的面积,再加上重叠部分面积即可得到结果.【详解】S矩形ABCD=AB•AD=ab,S道路面积=ca+cb-c2,所以可绿化面积=S矩形ABCD-S道路面积=ab-(ca+cb-c2),=ab-ca-cb+c2.故答案为:ab-bc-ac+c2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键解析:+a b【分析】根据长方形的周长公式列出代数式求解即可.【详解】解:由长方形的周长=2×(长+宽)可得,另一边长为:()()68223a b a b a b +÷-+=+. 故答案为:a +b .【点睛】本题考查了整式的加减,长方形的周长公式列出代数式是解决此题的关键.19.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.20.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查 解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
初中数学一元一次方程练习题(附答案)
初中数学一元一次方程练习题(附答案)1.下列变形中,正确的是( )A.若a=b,则ac^2=bc^2;B.若ac^2=bc^2,则a=b;C.若a=b,则3a-1=3b-1;2.下列方程中,是一元一次方程的是()A.3x+2y=10B.t^2-t=1C.y=-23.若x=y,且a≠0,则下列各式中不一定正确的是( )A.ax=ayB.x+a=y+aC.xy=aa4.下列等式变形正确的是( ).A.如果x=y,那么x-8=8-yB.如果bx=by,那么x=yC.如果mx+b=(m≠0),那么x=-b/m5.若关于x的方程2x-4=3m的解满足方程x+2=m,则m 的值为( )A.10B.8C.-106.下列方程中,一元一次方程共有( )个.①4x-3=5x-2②3x+1=1/x③3x-4y=5④(3x-1)/(1+x)=1⑤x²+3x+1=07.当k取何值时,关于x的方程2(2x-3)=1-2x和8-k=2(x+6)的解相同?8.解方程.(1)3x-2=10-2(x+1)9.解下列方程.(1)3(x-2)+1=x-(2x-1)10.已知关于x的方程(m+3)x+4+18=0是一元一次方程,求:(1)m的值;14.已知关于x的方程2x+a=0的解比方程3x-a=0的解大5,则a=_______.答案:解:(1) 去掉括号,得到3x-2=10-2x-2。
移项,得到3x+2x=10-2+2。
合并同类项,得到5x=10。
系数化为1,得到x=2。
(2) 去掉括号,得到4x-2=1+3x-9。
(好题)初中数学七年级数学上册第三单元《一元一次方程》测试(答案解析)(1)
一、选择题1.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个2.点1A、2A、3A、…… 、nA(n为正整数)都在数轴上.点1A在原点O的左边,且1A O1=;点2A在点1A的右边,且21A A2=;点3A在点2A的左边,且32A A3=;点4A在点3A的右边,且43A A4=;……,依照上述规律,点2008A、2009A所表示的数分别为()A.2008、2009-B.2008-、2009C.1004、1005-D.1004、1004-3.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg.则3月份鸡的价格为()A.24(1-a%-b%)元/kg B.24(1-a%)b% 元/kgC.(24-a%-b% )元/kg D.24(1-a%)(1-b%)元/kg4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)6.一列数123,,na a a a⋅⋅⋅,其中11a=-,2111aa=-,3211aa=-,……,111nnaa-=-,则1232020a a a a⨯⨯⋅⋅⋅⨯=()A.1 B.-1 C.2020 D.2020-7.已知 2x6y2和﹣3x3m y n是同类项,则9m2﹣5mn﹣17的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣48.点O,A,B,C在数轴上的位置如图所示,其中O为原点,2BC=,OA OB=,若C点所表示的数为x,则A点所表示的数为()A.2x-+B.2x--C.2x+D.-29.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是()A .B .C .D .10.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数 11.下列说法错误的是( )A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23π 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3a B .6a +bC .6aD .10a -b 二、填空题 13.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.14.与22m m +-的和是22m m -的多项式为__________.15.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.16.若212m m a b -是一个六次单项式,则m 的值是______. 17.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____. 18.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.19.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).20.多项式223324573x x y x y y --+-按x 的降幂排列是______。
(必考题)初中数学七年级数学上册第五单元《一元一次方程》测试卷(答案解析)
一、选择题1.由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为( ) A .300元B .270元C .250元D .230元2.观察下列两行数:1,3,5,7,9,11,13,15,17,19,… 1,4,7,10,13,16,19,22,25,28,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( ) A .17B .18C .19D .203.如图为在电脑屏幕上出现的色块图,它的形状是由6个颜色不同的正方形,如果中间最小的正方形边长为1,则所拼成的长方形的面积是( )A .144B .154C .143D .1694.按下面的程序计算:若输入100x =,输出结果是501,若输入25x =,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有( ) A .1种B .2种C .3种D .4种5.某工程甲独做12天完成,乙独做8天完成,现在由甲先做3天,乙再参加合做.设完成此工程一共用了x 天,则下列方程正确的是( )A .31128x x++= B .31128x x -+= C .1128x x += D .331128x x +-+= 6.依照以下图形变化的规律,则第n 个图形中黑色正方形的数量是2021个,则n 的值为( )…… A .1347B .1348C .1349D .13507.我国古代数学名著《算法统宗》中记载“以绳测井”问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长井深各几何?”其大意为:用绳子测水井深度,如果将绳子折成三等份,那么井外余绳四尺;如果将绳子折成四等份,那么井外余绳一尺,问绳长和井深各多少尺?设绳长为x 尺,根据题意列方程,正确的是( ) A .()()3441x x +=+ B .3441x x +=+ C .4134x x -=- D .4134x x+=+ 8.2020年武汉抗击疫情期间,全国各地加班加点为前线医护人员提供防护面罩和防护服.已知某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x 名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是( ) A .()16024040x x =- B .()16040240x x -= C .()160240402x =- D .()240160402x x -=9.下列说法中,其中正确的个数有( ) ①两点之间的所有连线中,线段最短; ②倒数等于它本身的数是1-、0、1; ③不能作射线OA 的延长线;④单项式3222a b -的系数是2-,次数是7; ⑤若a b =,则a b =±;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则3m =±. A .1个B .2个C .3个D .4个10.为了双十一促销,宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%.已知这种服装的进价为800元,那么这种服装的原价是多少?设这种服装的原价为x 元,可列方程为( ) A .75%(120)15%800x -=B .75%(120)80015%800x --=C .25%12080015%800x --=D .75%12080015%800x --=11.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是( )A .49B .70C .91D .10512.按下边的程序图计算:若输入100x =则输出结果是304,若输入32x =则输出结果也是304;如果开始输入的x 值为正整数,最后输出的结果为322,那么开始输入的x 值可能有( )A .1种B .2种C .3种D .4种二、填空题13.服装厂生产一批学生校服,已知生产1件上衣需要布料1.5米,生产1条裤子需要布料1米.因为裤子旧得快,要求1件上衣和2条裤子配一套.生产这批校服共用了2016米布料,问共生产了多少套校服?设共生产了x 套校服,则可列方程____________. 14.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利(每件商品的利润是商品售价与商品成本价的差)15元,如果设每件商品的成本价为x 元,那么每件服装的标价是____元,每件服装的实际售价为___元,每件服装的利润可表示为____,则列方程:_____.15.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是_____.16.一筐脐橙平均分给若干人,若每人分2个,则还余下2个脐橙;若每人分3个,则少7个脐橙.设有x 人分脐橙,则可列方程为_______.17.对于有理数,a b ,我们规定24a b ab b ⊗=+,若有理数x 满足(2)334x x -⊗=-,则x 的值为_______________.18.一件商品如果按售价的八折销售,仍可获得15%的利润.已知该商品的成本价是50元,设该商品原价为x 元,那么根据题意可列方程__________.(利润=售价-成本,利润=进价⨯利润率)19.如图①,O 为直线AB 上一点,作射线OC ,使120AOC ∠=︒,将一个直角三角尺如图摆放,直角顶点在点O 处,一条直角边OP 在射线OA 上.将图①中的三角尺绕点O 以每秒10︒的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中,第t 秒时,OQ 所在直线恰好平分BOC ∠,则t 的值为________.20.甲、乙两人分别从相距50千米的A ,B 两地骑车相向而行,甲骑车的速度是10千米/时,乙骑车的速度是8千米/时,甲先出发30分钟后,乙骑车出发,乙出发后x 小时两人相遇,则列方程为__________________三、解答题21.解方程(1)3118x 342x -=- (2)0.5x-0.7=6.5-1.3x(3)()123x 6365x -=- (4)1231337x x -+=- 22.已知代数式2,32A a b B b a =-=++. (1)求3A B -;(2)如果32430b x --=是关于x 的一元一次方程,求3A B -的值.23.已知三角形的第一条边长是2+a b ,第二条边长是第一条边长的2倍少3,第三条边比第二条边短5.(1)用含a ,b 的式子表示这个三角形的周长; (2)当2a =,3b =时,求这个三角形的周长; (3)当a=4,三角形的周长为39时,求三角形各边长. 24.解方程:(1)()254x x -+=- (2)1213323x x x --+=- 25.某快递公司每件普通物品的收费标准如下表:例如:寄往省内一件1.7千克的物品,运费总额为:()1080.50.5=18+⨯+元. 寄往省外一件3.2千克的物品,运费总额为:()151220.5=45+⨯+元.(1)小丁同时寄往省内一件2千克的物品和省外一件2.7千克的物品,各需付运费多少元?(2)小丽同时寄往省内和省外同一件a 千克的物品,已知a 超过2,且a 的整数部分是m ,小数部分小于0.5,请用含字母的代数式表示这两笔运费的差.(3)某日小丁和小丽同时在该快递公司寄物品,小丁寄往省外,小丽寄往省内,小丁的运费比小丽的运费多43元,物品的重量比小丽多1.5千克,则小丁和小丽共需付运费多少元?26.某校在开展“校园献爱心”活动中,共筹款9000元捐赠给西部山区男、女两种款式书包共70个,已知男款书包的单价为每个120元,女款书包的单价为每个140元.那么捐赠的两种书包各多少个?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】七五折售价+亏损25元=九折售价-盈利的20元,根据此成本不变等量关系列出方程,求出方程的解即可得到结果. 【详解】解:设该商品的原售价为x 元, 根据题意得:75%x+25=90%x-20, 解得:x=300,则该商品的原售价为300元. 故选:A . 【点睛】此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.2.B解析:B 【分析】先分别表示:第1个相同的数是:0611,⨯+= 第2个相同的数是:1617,⨯+= 第3个相同的数是:26113,⨯+= 第4个相同的数是:36119,⨯+= …,再总结出规律,利用规律列方程即可得到答案. 【详解】解:探究规律:第1个相同的数是:0611,⨯+= 第2个相同的数是:1617,⨯+= 第3个相同的数是:26113,⨯+= 第4个相同的数是:36119,⨯+= …总结并归纳:第n 个相同的数是:()61165,n n -+=- 运用规律:65103,n -= 6108,n ∴=18.n ∴=故选:.B 【点睛】本题考查的是数字的规律探究,一元一次方程的解法,掌握列代数式表示规律,利用方程思想解决问题是解题的关键.3.C解析:C 【分析】由题可知,由于矩形色块图中全是正方形,则右下角两个小正方形一样大小,而顺时针方向每个大正方形边长都增大1,根据等量关系计算即可; 【详解】设右下方两个并排的正方形的边长为x , 则231x x x x x +++=+++,解得:4x =,∴长方形的长为3113x +=, 宽为2311x +=, ∴长方形面积为1311143⨯=; 故答案选C . 【点睛】本题主要考查了一元一次方程的应用,准确计算是解题的关键.4.B解析:B 【分析】分三种情况讨论,当输入x 经过一次运算即可得到输出的结果为556,当输入x 经过两次运算即可得到输出的结果为556, 当输入x 经过三次运算即可得到输出的结果为556, 再列方程,解方程即可得到答案. 【详解】解:当输入x 经过一次运算即可得到输出的结果为556,51556x ∴+=5555,x ∴=111.x ∴=当输入x 经过两次运算即可得到输出的结果为556,()5511556,x ∴++=51111,x ∴+=22.x ∴=当输入x 经过三次运算即可得到输出的结果为556,()555111556,x ∴+++=⎡⎤⎣⎦()5511111,x ∴++=5122,x ∴+= 215x ∴=(不合题意,舍去) 综上:开始输入的x 值可能是22或111. 故选:.B 【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.5.B解析:B 【分析】根据题意知:甲每天做112,做了x 天;乙每天做18,共做了(x-3)天,将两人工作量相加得1即可列得方程. 【详解】解:设完成此工程一共用了x 天,则列方程为:31128x x -+=, 故选:B . 【点睛】此题考查一元一次方程的实际应用,正确理解题意是列方程的关键.6.A解析:A 【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案. 【详解】第1个图形中黑色正方形的数量是2,第2个图形中黑色正方形的数量是3, 第3个图形中黑色正方形的数量是5, … 发现规律:当n 为偶数时第n 个图形中黑色正方形的数量为n+2n个; 当n 为奇数时第n 个图形中黑色正方形的数量为n+12n +个, ∵第n 个图形中黑色正方形的数量是2021个, ∴当n+2n=2021时,无解; 当n+12n +=2021,解得n=1347, 故选:A . 【点睛】本题考查了图形的变化类问题,解一元一次方程,解题的关键是仔细的观察图形并正确的找到规律,运用总结的规律解决问题.7.C解析:C 【分析】设绳长为x 尺,根据两次不同方法的测量,得到井深的式子,令它们相等列出方程. 【详解】解:设绳长为x 尺,如果将绳子折成三等份,那么井外余绳四尺,则井深是:43x-, 如果将绳子折成四等份,那么井外余绳一尺,则井深是:14x-, 可以列方程:4134x x-=-. 故选:C . 【点睛】本题考查一元一次方程的应用,解题的关键是找到等量关系列出方程.8.A解析:A 【分析】若分配x 名工人生产防护服,根据“某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套”列出方程. 【详解】解:设分配x 名工人生产防护服,则分配(40−x )人生产防护面罩,根据题意,得160x =240(40−x ). 故选:A . 【点睛】本题主要考查了由实际问题抽象出一元一次方程,解题的关键是找到等量关系.9.C解析:C 【分析】根据线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义依次判断. 【详解】①两点之间的所有连线中,线段最短,故正确;②倒数等于它本身的数是1-、1,0没有倒数,故该项错误; ③不能作射线OA 的延长线,故正确;④单项式3222a b -的系数是2-3,次数是4,故该项错误; ⑤若a b =,则a b =±,故正确;⑥方程||2(3)40m m x --+=是关于x 的一元一次方程,则m=-3,故该项错误; 故正确的有:①③⑤, 故选:C . 【点睛】此题考查线段的性质,倒数的性质,射线的性质,单项式的定义,绝对值的性质,一元一次方程的定义,熟练掌握各部分知识是解题的关键.10.D解析:D 【分析】设这种服装的原价为x 元,根据题意即可列出一元一次方程,故可求解. 【详解】设这种服装的原价为x 元,依题意得()125%12080015%800x ---=,故选择:D . 【点睛】本题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系列出方程.11.A解析:A 【分析】设最中间的数是x ,再表示出其他六个数,求出它们的和,再根据四个选项求出x 的值,根据月历的图象判断出不可能的值. 【详解】解:设最中间的数是x ,则前后两个数分别是1x +和1x -,上面一行的两个数是8x -和6x -,最下面一行的两个数是8x +和6x +,那么这7个数的和是:1186867x x x x x x x x +++-+-+-++++=, 若7个数的和是49,则7x =,根据图象发现这种情况并不成立, 若7个数的和是70,则10x =,成立,若7个数的和是91,则13x =,成立, 若7个数的和是105,则15x =,成立. 故选:A . 【点睛】本题考查一元一次方程的应用,解题的关键是掌握日历问题的列式方法.第II 卷(非选择题)请点击修改第II 卷的文字说明12.D解析:D 【分析】由输出结果为322可通过34322x +=算出x 的值,然后将得到的x 值再当做34+x 的值计算,直到得到的x 不是正整数为止. 【详解】解:∵输出的结果为322, ∴34322x +=,即106x =, 由于106300<,∴34106x +=时,34x =,3434x +=时,10x =, 3410x +=时,2x =,342x +=时,23x =-,不满足题意,因此x 值有4种, 故选:D . 【点睛】本题考查了代数式和一元一次方程的内容,理解题中程序图的含义是解题的关键.二、填空题13.5x+2x=2016【分析】根据题意列出一元一次方程即可;【详解】设生产了x 套校服∴生产了x 件上衣2x 条裤子∴列方程为15x+2x=2016故答案为:15x+2x=2016【点睛】本题考查了一元一次解析:5x+2x=2016 【分析】根据题意列出一元一次方程即可;设生产了x 套校服,∴ 生产了x 件上衣,2x 条裤子,∴ 列方程为1.5x+2x=2016,故答案为:1.5x+2x=2016.【点睛】本题考查了一元一次方程的应用,正确理解题意是解题的关键;14.4x ;112x ;012x ;(1+40)x×08-x =15;【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价﹣标价=利润列出方程即可【详解】解:设每件服装的成本价为x 元那么每件服装的标解析:4x ; 1.12x ; 0.12x ; (1+40%)x ×0.8- x =15;【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价﹣标价=利润列出方程即可.【详解】解:设每件服装的成本价为x 元,那么每件服装的标价为:(1+40%)x =1.4x ;每件服装的实际售价为:1.4x ×0.8=1.12x ;每件服装的利润为:1.12x –x =0.12x ;由此,列出方程:(1+40%)x ×0.8- x =15;【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出题中的等量关系列出方程.15.=﹣3【分析】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度若设A 港和B 港相距x 千米则从A 港顺流行驶到B 港所用时间为小时从B 港返回 解析:262x +=262x -﹣3 【分析】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A 港和B 港相距x 千米,则从A 港顺流行驶到B 港所用时间为262x +小时,从B 港返回A 港用262x -小时,根据题意列方程即可. 【详解】解:设A 港和B 港相距x 千米, 根据题意,得262x +=262x --3, 故答案为:262x +=262x --3.本题考查了一元一次方程的应用,考验学生对顺水速度,逆水速度的理解,注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系.16.2x+2=3x-7【分析】根据脐橙的个数相同列方程即可;【详解】解:根据题意可得方程2x+2=3x-7;故答案为:2x+2=3x-7【点睛】本题主要考查了一元一次方程的应用准确分析计算是解题的关键解析:2x+2=3x-7【分析】根据脐橙的个数相同列方程即可;【详解】解:根据题意可得方程2x+2=3x-7;故答案为:2x+2=3x-7.【点睛】本题主要考查了一元一次方程的应用,准确分析计算是解题的关键.17.【分析】先根据规定的运算定义可得一个关于x 的一元一次方程再解方程即可得【详解】由题意得:故答案为:【点睛】本题考查了解一元一次方程正确理解新运算的定义是解题关键 解析:13【分析】先根据规定的运算定义可得一个关于x 的一元一次方程,再解方程即可得.【详解】由题意得:23(2)4334x x -+⨯=-, 9(2)1234x x -+=-,9181234x x -+=-,9341812x x -=-+-,62x =,13x =, 故答案为:13. 【点睛】本题考查了解一元一次方程,正确理解新运算的定义是解题关键.18.【分析】设该商品原价为元根据售价-进价=利润列方程【详解】设该商品原价为元根据题意得:故答案为:【点睛】此题考查一元一次方程的实际应用正确理解题意并掌握销售问题的计算公式是解题的关键解析:0.8505015%x -=⨯设该商品原价为x元,根据售价-进价=利润列方程.【详解】设该商品原价为x元,根据题意得:0.8505015%x-=⨯,故答案为:0.8505015%x-=⨯.【点睛】此题考查一元一次方程的实际应用,正确理解题意并掌握销售问题的计算公式是解题的关键.19.或【分析】由平角的定义可得∠BOC=60°然后根据角平分线定义列出方程求解即可【详解】解:∵∠AOC=120°∴∠BOC=60°∵OQ所在直线恰好平分∠BOC∴∠BOQ=∠BOC=30°或∠BOQ=解析:12或30【分析】由平角的定义可得∠BOC=60°,然后根据角平分线定义列出方程求解即可.【详解】解:∵∠AOC=120°,∴∠BOC=60°∵OQ所在直线恰好平分∠BOC,∴∠BOQ=12∠BOC=30°或∠BOQ=180°+30°=210°,∴10t=30+90或10t=90+210,解得t=12或30.故填:12或30.【点睛】本题主要考查了一元一次方程的应用,根据角平分线定义、平角的定义、列出方程是解答本题的关键.20.【分析】先把30分钟换算成小时根据甲的路程加上乙的路程等于总路程列式【详解】解:30分钟=小时列式:故答案是:【点睛】本题考查一元一次方程的应用解题的关键是掌握相遇问题的列式方法解析:1108502x x⎛⎫++=⎪⎝⎭【分析】先把30分钟换算成12小时,根据甲的路程加上乙的路程等于总路程列式.【详解】解:30分钟=12小时,列式:1108502x x ⎛⎫++= ⎪⎝⎭. 故答案是:1108502x x ⎛⎫++= ⎪⎝⎭. 【点睛】本题考查一元一次方程的应用,解题的关键是掌握相遇问题的列式方法.三、解答题21.(1)910x =-;(2)x=4;(3)x=-20;(4)67x 23= 【分析】(1)根据去分母、移项、合并同类项、未知数的系数化为1的步骤求解即可(2)根据移项、合并同类项、未知数的系数化为1的步骤求解即可(3)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可 (4)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可【详解】 (1)3118x 342x -=-, 去分母,得3-32x=12-22x ,移项,得-32x+22x=12-3,合并同类项,得-10x=9,系数化为1,得 910x =-; (2)0.5x-0.7=6.5-1.3x ,移项,得0.5x+1.3x=6.5+0.7,合并同类项,得1.8x=7.2,系数化为1,得x=4;(3)()123x 6365x -=-, 去分母,得 ()53x 61290x -=-,15x-30=12x-90,移项,得15x-12x=-90+30,合并同类项,得3x=-60,系数化为1,得x=-20;(4)1231337x x -+=-, 去分母,得7(1-2x)=3(3x+1)-63,去括号,得7-14x=9x+3-63,移项,得-14x-9x=3-63-7,合并同类项,得-23x=-67,系数化为1,得 67x 23=. 【点睛】 本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.22.(1)72b --;(2)-9.【分析】(1)将2,32A a b B b a =-=++代入3A B -,去括号合并同类项即可;(2)根据一元一次方程的定义求得b ,代入计算即可.【详解】解:(1)33(2)(32)A B a b b a -=--++=3632a b b a ----=72b --;(2)因为32430b x --=是关于x 的一元一次方程,则321b -=,解得1b =,故3A B -=72729b --=--=-.【点睛】本题考查整式的化简求值和一元一次方程的定义.(1)中解题的易错点是去括号时括号前面是负号的要去掉括号和负号给括号内每一项都变号;(2)中理解一元一次方程的定义是23.(1)5a+10b-11;(2)29;(3)第一条边为10,第二条边为17,第三条边为12.【分析】(1)根据题意表示出三角形的周长即可;(2)把a 与b 的值代入计算即可求出值;(3)根据周长求出各边长即可.【详解】解:(1)根据题意三角形的周长为:(a+2b )+[2(a+2b )-3]+[2(a+2b )-3-5]=a+2b+2a+4b-3+2a+4b-8=5a+10b-11;(2)当a=2,b=3时,原式=10+30-11=29;(3)当a=4时,5a+10b-11=39,20+10b-11=39,解得:b=3∴a+2b=10;2(a+2b )-3=17;17-5=12则第一条边为10,第二条边为17,第三条边为12.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.(1)6x =-;(2)2325x =【分析】(1)解一元一次方程,先去括号,然后移项,合并同类项,系数化1求解;(2)解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1求解【详解】解:(1)()254x x -+=-去括号,得:1024x x --=-移项,得:24+10x x -=-合并同类项,得:6x -=系数化1,得:6x =-(2)1213323x x x --+=- 去分母,得:()()183118221x x x +-=--去括号,得:18331842x x x +-=-+移项,得:183+4182+3x x x +=+合并同类项,得:2523x =系数化1,得:2325x =【点睛】本题考查解一元一次方程,掌握解方程的步骤正确计算是解题关键.25.(1)18元和39元;(2)(4m +3)元;(3)143元【分析】(1)根据表中给出的运费计算方式分别计算运费即可;(2)利用已知条件分别求出同一件a 千克的物品寄往省内和省外需付的运费,再用寄往省外付的运费-寄往省内付的运费即可求解;(3)设小丽的物品重(x +a )千克,x 为正整数,a 为小数部分,则小丁的物品重(x +a +1.5)千克,分①0<a≤0.5时,②0.5<a <1时两种情况,根据小丁的运费比小丽的运费多43元列出方程求解,再列式计算求出小丁和小丽共需付的运费.【详解】解:(1)寄往省内一件2千克的物品需付运费:10+8=18(元)∵超过1千克即要续重,续重以0.5千克为计重单位(不足0.5千克按0.5千克计算) ∴寄往省外一件2.7千克的物品需付运费:15+12×2=39(元);(2)省内:()()10810.5=8+6m m +-+元省外:()()151210.5=12+9m m +-+元()()129861298643m m m m m +-+=+--=+元;(3)设小丽的物品重(x +a )千克,x 为正整数,a 为小数部分,小丁的物品重(x +a +1.5)千克①0<a≤0.5时,小丽:()()10+810.5886x x -+⨯=+元小丁:()()15+1212121227x x -+⨯=+元()12278643x x +-+=解得: x =5.5(不是正整数,舍去);②0.5<a <1时,小丽:()()10+8118810x x -+⨯=+元小丁:()()15+121 2.5121233x x -+⨯=+元()123381043x x +-+=解得:x =5,小丁和小丽共需付运费:8×5+10+12×5+33=143(元).【点睛】本题考查了列代数式,一元一次方程的应用,解决问题的关键是读懂题意,根据表中给出的运费计算方式分别列出寄往省内和省外需付的运费的代数式.26.捐赠男款书包40个,捐赠女款书包30个【分析】设捐赠男款书包x 个,则捐赠女款书包(70﹣x )个,根据题意可以列出相应的方程,从而可以解答本题.【详解】解:设捐赠男款书包x 个,则捐赠女款书包(70﹣x )个,依题意有120x +140(70﹣x )=9000,解得x=40,则70﹣x=70﹣40=30.故捐赠男款书包40个,捐赠女款书包30个.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.。
初中数学解一元一次方程精选计算题专题训练含答案
初中数学解一元一次方程精选计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共38题)1、解方程:2、计算:.3、4、利用等式的性质解下列方程:5、解方程:6、7、 x﹣4=2﹣5x8、9、解方程: 9-10x=10-9x10、解方程:11、-2(x-1)=4.12、解关于x的方程b(a+x)-a=(2b+1)x+ab(a≠0).13、解下列方程2y+l=5y+714、 2x+4=-1215、16、-2(x-1)=4.17、 3x-7+4x=6x-218、 -19、20、 4-2(1-x)=-2x21、解方程:22、23、 5x-6=3x+224、;25、;26、用等式的性质解方程3x+1=7.27、解下列方程:12-3(9-x)=5(x-4)-7(7-x); 28、;29、y-=y+330、31、32、.33、34、;35、 ax-1=bx36、 5(x-1)-2(x+1)=3(x-1)+x+1;37、38、============参考答案============一、计算题1、 X=22、分析:,,=1.解:原式.点拨:根据零指数幂、负整数指数幂的运算规律计算即可.3、-----3分4、 x=4.5、6、解:(1)原方程可化为:……2分,解得:………4分7、移项合并得:6x=6,解得:x=1;8、 .解:(1)合并同类项,得2x=6.系数化为1,得x=3.9、解:9-10=10x-9x x=-110、11、 x=-112、解:适当去括号,得ab+bx-a=(2b+1)x+ab,移项,得bx-(2b+1)x=a+ab-ab,合并同类项,得(b-2b-1)x=a,即-(b+1)x=a,当b≠-1时,有b+1 ≠0,方程的解为x=.当b=-1 时,有b+1=0,又因为a≠0,所以方程无解.(想一想,若a=0,则如何?13、14、解:X=-815、 x=1y=-116、 x=-117、 x=518、 x= -2219、解:…………………………2分………………………………2分………………………………1分20、 4-2(1-x)=-2x解:4-2+2x=-2x2x+2x=2-4……2′4x=-2………3′x=…………4′21、22、23、 x=424、(一)解:去分母,得2x - 20 = 60 +3x-移项,得 2x-3x = 60 +20合并同类项,得- x = 80化简,得x = - 80解:移项,得合并同类项化简,得x = - 8025、解:去括号,得 4x– 4 = 2 – 6x -12移项,得 4x + 6x = 2 -12 + 4合并同类项 10x = - 6化简,得26、【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:方程两边都减去1,得3x+1﹣1=7﹣1,化简,得3x=6两边除以3,得x=2.【点评】本题考查了等式的性质,利用等式的性质是解题关键.27、解:去括号,合并-15+3x=12x-69,移项合并,得9x=54,解得x=6;28、;29、解:X=-2130、解: x=3Y=431、32、去分母,…………1分去括号,移项,…………2分合并,…………3分…………5分33、 t=-934、解:先把系数化为整数,得,再去分母,两边都乘以60,得,去括号,合并同类项,得,;35、当a≠b时,方程有惟一解x=;当a=b时,方程无解;36、解:∵5(x-1)-2(x+1)=3(x-1)+x+1∴3x-7 = 3x-3+x+1∴x =-537、=2;38、。
初中七年级数学一元一次方程经典练习题(附有答案)
初中数学一元一次方程经典练习题一、解下列一元一次方程(1)2x+5=7 (2)3(3-x)=12(3)7(x+2)-5(2x-1) =8 (4)(6x+9)-2(x-2)=3(x+4)(5)x+63-x−42=4(x+1)(6)0.2·[12(4-丨-7丨)+5x]=9(7)5x - x+12= 13(3x+1)(8)6-52(3-x)=2(4x-7)(9)7- 14x= 3(1-x)(10)5(2x-16)=2+3x(11)56(x+2)+3=12(3x-5)(12)0.3(2x+7)=0.5(17-x)(13)0.7+5x4-(x+1)=2(2-x)(14)1-0.3x−10.2= 2+4x(15)x−10.3+ x+10.2= 2 (16)60%(2+3x)+80%(3-2x)=1(17)12[ 12(x+1)+13(x+1)]=14(x-2)(18)2[3(x+4)-2(2+x)]+3[2(x+1)-2(1+2x)]=4(19)(300+x)- 14(400+x)=112(200-x)(20)2−x3+ 2+x24=x+10.2-1二、一元一次方程应用题(21)某商品标价为800元,现按九折出售, 仍可获利200元 ,求这种商品的进价是多少元?(22)把一批运动鞋分给同学,若每人4双, 则剩余20双,若每人分5双,则差25双,这个班有多少学生?(23)服装店选购甲、乙两种服装,每套甲进价比乙每套进价多75元,已知用4000元购进甲种服装的数量是用1200元购进乙种服装数量的3倍。
求甲、乙两种服装每套进价分别为多少元?(24)有一批货物计划每天运20吨, 15天可以运完,如果每天只运计划的20%,那么运完这批货物要多运几天?(25)小明去书店为弟弟准备节日礼物.已知写字本每本2元,铅笔支3元.小明将50元钱全部用于购买写字本和铅笔(写字本和铅笔都买) ,小明的购买方案共有多少种?参考答案一、解下列一元一次方程(1)2x+5=7解:2x=7-52x=2x=1((2)3(3-x)=12解:9-3x=12-3x=12-9-3x=3X=-1(3)7(x+2)-5(2x-1) =8解:7x+14-10x+5=8(7-10)x=8-14-5-3x=-11x= 11 3(4)13(6x+9)-2(x-2)=3(x+4)解:2x+3-2x+4=3x+12(2-2-3)x=12-3-4 -3x=5x= −5 3(5)x+63-x−42=4(x+1)解:两边同时乘以6,得2(x+6)-3(x-4)=24(x+1)2x+12-3x+12=24x+24 (2-3-24)x=24-12-12-25x=0x=0(6)0.2·[12(4-丨-7丨)+5x]=90.1·(4-7)+x=9x=9+0.3x=9.3(7)5x - x+12= 13(3x+1)解:两边同时乘以6,得30x-3(x+1)=2(3x+1)30x-3x-3=6x+2(30-3-6)x=2+321x=5x= 5 21(8)6- 52(3-x)=2(4x-7)解:两边同时乘以2,得12-5(3-x)=4(4x-7)12-15+5x=16x-28(5-16)x= -28-12+15-11x= -25x= 25 11(9)7- 14x= 3(1-x)解:两边同时乘以4,得28-x=12(1-x )28-x=12-12x(-1+12)x=12-2811x=-16x= −1611(10)5(2x- 16)=2+3x 解:10x- 56=2+3x (10-3)x =2+ 56 7x = 176x= 1742(11)56(x+2)+3= 12(3x-5) 解:两边同时乘以6,得5(x+2)+18=3(3x-5)5x+10+18=9x-15(5-9)x=-15-10-18-4x= -43x= 434(12)0.3(2x+7)=0.5(17 -x )解:两边同时乘以10,得3(2x+7)=5(17-x ) 两边同时乘以7,得21(2x+7)=35(17-x ) 42x+147=5-35x(42+35)x=5-147x= −14277(13)0.7+5x 4-(x+1)=2(2-x ) 解:0.7+5x 4=2(2-x )+(x+1) 0.7+5x 4=4-2x +x+1 0.7+5x 4=5-x 两边同时乘以4,得0.7+5x=20-4x(5+4)x=20-0.79x=193x= 19390(14)1- 0.3x−10.2= 2+4x 解:1-(2+4x )= 0.3x−10.2-1-4x= 0.3x−10.2-0.2-0.8x=0.3x-1(-0.8-0.3)x= -1+0.2-1.1x= -0.8x = 118(15)x−10.3 + x+10.2 = 2解:两边同时乘以 610,得 2(x-1)+3(x+1)= 652x-2+3x+3= 65(2+3)x= 65+2-3 5x= 15x= 125(16)60%(2+3x )+80%(3-2x )=1解:1.2+1.8x+2.4-1.6x=1(1.8-1.6)x=1-1.2-2.40.2x=- 2.6x= -13(17) 12 [ 12(x+1)+ 13(x+1)]= 14(x-2) 解:14(x+1)+ 16(x+1) = 14(x-2) 两边同时乘以12,得3(x+1)+ 2(x+1) = 3(x-2)3x+3+2x+2=3x-6(3+2-3)x=-6-3-22x=-11x= −112(18)2[3(x+4)-2(2+x )]+3[2(x+1)-2(1+2x )]=4 解:2(3x+12-4-2x )+3(2x+2-2-4x )=42(x+8)+3(-2x )=42x+16-6x=4(2-6)x=4-16-3x= -12x=3(19) 13(300+x )- 14(400+x )= 112(200-x ) 解:两边同时乘以12,得4(300+x )-3(400+x )=(200-x )1200+4x-1200-3x=200-x(4-3+1)x=2002x=200x=100(20)2−x 3 + 2+x 24 = x+10.2 -1解:4−2x 6+ 6+3x 64 = 10x+102-1(4−2x)+(6+3x)64= 5x+5 -110+x64=5x+410+x24=5x+410+x=120x+96(1-120)x=96-10x= −86 119二、一元一次方程应用题(21)设进价为x元则:90%(800-x)=180解得:800-x =180÷ 0.9800-x =200x=600答:这种商品的进价是600元(22)设这个班有学生x个则这批运动鞋共:4x+20(双)或 5x-25(双)而:4x+20 =5x-25(5-4)x=20+25x=45答:这个班有45个学生(23)设甲服装每套进价分别为x元,乙为x-754000 x =3×1200x−754000 x =3600x−7510 x =9x−7510(x-75)=9x 10x-750=9xx=750那么,乙进价 =750-75= 675答:求甲、乙两种服装每套进价分别为750元、675元。
七年级数学上册《一元一次方程》单元测试卷
七年级数学上册《一元一次方程》单元测试卷一、单选题1.关于x 的方程2(x-1)-a=0的根是3,则a 的值为( )A .4B .-4C .5D .-52.下列式子,是一元一次方程的是( )A .21x x -=B .7x y +=C .248x x-= D .132x x -= 3.若 3x =- 是关于 x 的方 =1x m + 的解,则关于 y 的不等式 ()2126y m -≥-+ 的最大整数解为( ) A .1B .2C .3D .44.已知等式 a b = , c 为任意有理数,则下列等式中,不一定成立的是( )A .22a c b c +=+B .0ac bc -=C .22a c b c -=-D .a b c c= 5.在数轴上,表示哪个数的点与表示﹣2和4的点的距离相等?( )A .原点B .1C .﹣1D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元7.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( )A .312x ++ 8x=1 B .312x ++ 38x - =1 C .12x + 8x =1D .12x + 38x - =18.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x ,那么可得方程( ) A .2000(1+x )=2120 B .2000(1+x %)=2120 C . 2000(1+x·80%)=2120D .2000(1+x·20%)=21209.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P ,则P 的值是( )A .12B .15C .18D .2110.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人B .10人C .12人D .14人11.下列等式一定成立的是( )A .x 2+3=0B .x+2=x+3C .x+2=2+xD .x y -=-212.下列各对等式,是根据等式的性质进行变形的,其中错误的是( ).A .4x-1=5x+2→x=-3B .1.82101820232300.50.757x x x x---=→-= C .0.030.050.135100.23232424x x xx --+=→+= D .()()5312533632x x x x +--=→+--= 二、填空题13.若1x =-是关于x 的方程33x m +=-的解,则m 的值为 .14.若 1x = 是关于x 的方程1222a x a x -=-+ 的解,则 a = . 15.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是 %.16.如图,点A 、点B 在数轴上表示的数分别是-4和4.若在数轴上存在一点P 到A 的距离是点P 到B 的距离的3倍,则点P 所表示的数是 .三、解答题17.如图,已知∠1=∠2,∠3=∠4,试说明AB∠CD .18.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润不低于5%,则最多打几折?19.某商店有两种书包,每个小书包比大书包的进价少25元,而它们的售后所获利润相同,其中,每个小书包的利润率为30%,每个大书包的利润率为20%,求两种书包的进价.20.现有180件机器零件需加工,任务由甲、乙两个小组合作完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成任务.求甲、乙两组分别加工机器零件多少个.21.数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。
(好题)初中数学七年级数学上册第五单元《一元一次方程》测试(含答案解析)
一、选择题1.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在A 处,小强站在B 处,两人同时逆时针方向跑步,小彬每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A .半圆跑道AB 上 B .半圆跑道CD 上C .直跑道AD 上 D .直跑道BC 上2.已知关于x 的一元一次方程()3220a x x a --+-=的解是1x =-,则a 的值为( ) A .0 B .-1C .1D .23.已知关于x 的方程3210x a +-=的解与方程20x a -=的解互为相反数,则a 的值为( ) A .14-B .12-C .4D .24.一个长方形的周长为32cm ,若这个长方形的长减少2cm ,宽增加3cm 就变成了一个正方形,设长方形的长为xcm ,可列方程( ). A .()2323x x +=-- B .()2163x x -=-+ C .()2323x x -=-+ D .()2163x x +=--5.如图所示,将正整数1至2020按一定规律排列成数表,平移表中带阴影的方框,方框中三个数的和可能是( )A .2018B .2019C .2013D .20406.某商店在某一时间以200元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店在这次交易中( ) A .亏了10元钱B .亏了20元钱C .盈利20元钱D .不盈不亏7.现有两堆花生,将第一堆中的3颗花生移动到第二堆后,第二堆的花生数是第一堆花生数的3倍.设第一堆原有m 颗花生,则第二堆的花生原有颗数为( ) A .3m 6-B .3m 3-C .3m 12-D .3m 9-8.按下面的程序计算:若输入100x =,输出结果是501,若输入25x =,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有( ) A .1种B .2种C .3种D .4种9.整数a 满足36a <≤,若a 使得关于x 的方程()631ax x +=-的解为整数,则满足条件的所有整数a 的个数是( ) A .1B .2C .3D .410.已知关于x 的一元一次方程43162ax x x -+-=-的解是整数,则符合条件的所有整数a 的和为( ) A .12- B .6-C .2D .611.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲数为( ) A .30-B .45-C .15-D .60-12.数学课堂上,老师出示了如下例题:整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x 人先做4h .小亮列的方程是:48(2)14040x x ++=,其中,“440x ”表示的意思是“x 人先做4h 完成的工作量”,“8(2)40x +”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是:()4+82814040x ⨯+=,其中,“(48)40x +”表示的意思是( )A .先工作的x 人前4小时和后8小时一共完成的工作量B .增加2人后,(x+2)人再做8小时完成的工作量C .增加2人后,新增加的2人完成的工作量D .x 人先做4小时完成的工作量二、填空题13.515+-a x y 与233+-b x y 是同类项,则a -3b =______. 14.欧拉是一位著名的数学家,他把他的一生都献给了人类的数学事业,在他一生岁数的14那年,他发表了第一篇数学论文,并且获得了巴黎科学院奖金,此后过了7年,他成为彼得堡科学院的数学教授,在欧拉去世的前17年,他不幸双目失明了,但他继续在黑暗的世界里凭着他的记忆和心算进行数学研究,在这17年里,他写出了数学论文400篇,正好是他一生的岁数与他成为彼得堡学院数学教授时岁数之差的8倍.根据以上信息,请你算出数学家欧拉一生______岁.15.如图1,OP 为一条拉直的细线,长为16cm ,A 、B 两点在OP 上且OB BP <,点A 在点B 的左侧.若先握住点B ,将OB 折向BP ,使得OB 重叠在BP 上,如图2.再从图2的A .点及与...A .点重叠处一起剪开........,使得细线分成三段.若这三段的长度由短到长之比为1∶3∶4,其中以点P 为一端的那段细线最长,则OB 的长为____________cm .16.如果2x =-是关于x 的方程213x m +=的解,那么m 的值是______.17.若代数式-2x 与代数式3x 一1互为相反数,则x =__________;18.某糕点厂要制作一批盒装蛋糕,每盒中装2块大蛋糕和4块小蛋糕,制作1块大蛋糕要用0.05kg 面粉,1块小蛋糕要用0.02kg 面粉.现共有面粉450kg ,用_________kg 面粉制作大蛋糕,才能生产最多的盒装蛋糕. 19.若关于x 的方程322m xx +-=的解与方程1x m +=的解相同,则m 的值为______. 20.我国明代数学读本《算法统宗》一书中有这样一道题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托”.其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.如果1托为5尺,那么索和竿各为几尺?设竿为x 尺,可列方程为_____.三、解答题21.如图,动点M 、N 同时从原点出发沿数轴做匀速运动,已知动点M 、N 的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t 秒.若动点M 向数轴负方向运动,动点N 向数轴正方向运动,当2t =秒时,动点M 运动到A 点,动点N 运动到B 点,且12AB =(单位长度).(1)在直线l 上画出A 、B 两点的位置,并回答:点M 运动的速度是 (单位长度/秒);点N 运动的速度是 (单位长度/秒). (2)若点P 为数轴上一点,且PA PB OP -=,求OPAB的值. 22.解方程(1)3(20)4x x --=;(2)3132322105x x x +-+-=-. 23.解方程(1)()()345678x x x --=-- (2)1213412x x x -+-=-+ 24.一个角的补角比这个角的余角的3倍少50°,求这个角的度数.25.学校组织植树活动,已知在甲处植树的有6人,在乙处植树的有10人,在丙处植树的有8人,现调来若干人去支援,使在甲、乙、丙三处植树的总人数之比为2:3:4.设支援后在甲处植树的总人数有2x 人. (1)根据信息填表:26.解方程:221123x x --+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设小强第一次追上小彬的时间为x 秒,根据小强路程-小斌路程+AB 的长度=1个跑道的全长列出方程求得x 的值,再进一步判断可得. 【详解】解:设小强第一次追上小彬的时间为x 秒, 根据题意,得:6x-4x+115=2×115+2×85, 解得x=142.5,整个跑道长为2×115+2×85=400(m),小强第一次追上小彬时,小彬跑了4x=570(m), 而570-400=170>115, ∴他们的位置在直跑道BC 上, 故选:D . 【点睛】本题主要考查一了元一次方程的应用,解题的关键是理解题意找到环形跑道上路程间的相等关系:小强路程-小斌路程+AB 的长度=1个跑道的全长.解析:A 【分析】把x=-1代入方程即可得到一个关于a 的方程,解方程求得a 的值. 【详解】解:把x=-1代入方程得:a-3+1+2-2a=0, 解得:a=0. 故选:A . 【点睛】本题考查了方程的解的定义,方程的解是能使方程左右两边相等的未知数的值,理解定义是关键.3.A解析:A 【分析】先求出第二个方程的解,根据相反数得出第一个方程的解是x =−2a ,把x =−2a 代入第一个方程,再求出a 即可. 【详解】解:解方程x−2a =0得:x =2a ,∵方程3x +2a−1=0的解与方程x−2a =0的解互为相反数, ∴3(−2a )+2a−1=0, 解得:a =14-. 故选A 【点睛】本题考查了解一元一次方程、一元一次方程的解和相反数,能得出关于a 的一元一次方程是解此题的关键.4.B解析:B 【分析】根据长方形的长为xcm ,得到长方形的宽,结合题意列方程,即可得到答案. 【详解】∵长方形的长为xcm ∴长方形的宽为:()16x -cm 根据题意得:()2163x x -=-+ 故选:B . 【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.解析:C【分析】设中间数为x,则另外两个数分别为x-1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【详解】解:设中间数为x,则另外两个数分别为x-1、x+1,∴三个数之和为(x-1)+x+(x+1)=3x.根据题意得:3x=2018、3x=2019、3x=2013、3x=2040,解得:x=67223(舍去),x=673,x=671,x=680.∵673=84×8+1,∴2019不合题意,舍去;∵671=83×8+7,∴三个数之和为2013.∵680=85×8,∴2040不合题意,舍去;故选:C.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.6.A解析:A【分析】设盈利服装的进价为x元,亏损服装的进价为y元,根据利润=售价﹣进价,即可得出关于x(y)的一元一次方程,解之即可求出x(y)的值,再利用总利润=总售价﹣总进价即可得出结论.【详解】解:设盈利服装的进价为x元,亏损服装的进价为y元,依题意得:200﹣x=25%x,200﹣y=﹣20%y,解得:x=160,y=250,∴200+200﹣160﹣250=﹣10(元),即商店在这次交易中亏了10元钱.故选择:A.【点睛】本题考查销售问题,掌握利润=售价﹣进价,抓住售价﹣进价=进价×利润率(盈利为正,亏损为负)构造方程是解题关键.7.C【分析】设第二堆原有a 颗花生,根据题意得3(m-3)=a+3,求出a 即可. 【详解】解:设第二堆原有a 颗花生,根据题意得3(m-3)=a+3, 解得:a=3m-12, 故选:C . 【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.8.B解析:B 【分析】分三种情况讨论,当输入x 经过一次运算即可得到输出的结果为556,当输入x 经过两次运算即可得到输出的结果为556, 当输入x 经过三次运算即可得到输出的结果为556, 再列方程,解方程即可得到答案. 【详解】解:当输入x 经过一次运算即可得到输出的结果为556,51556x ∴+=5555,x ∴=111.x ∴=当输入x 经过两次运算即可得到输出的结果为556,()5511556,x ∴++=51111,x ∴+=22.x ∴=当输入x 经过三次运算即可得到输出的结果为556,()555111556,x ∴+++=⎡⎤⎣⎦()5511111,x ∴++=5122,x ∴+= 215x ∴=(不合题意,舍去) 综上:开始输入的x 值可能是22或111. 故选:.B 【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.9.C解析:C由整数a 满足36a <≤,先确定6,5,4,4,5,6a =---,由方程()631ax x +=-的解为整数,可得93x a =--,由3a -是9的约数931±±±,,, 求出6,0,2,4,6,12a =-,结合条件求出6,4,6a =-即可.【详解】∵整数a 满足36a <≤, ∴36a <≤或63-≤<-a , ∴6,5,4,4,5,6a =---, ∵()631ax x +=-, 整理得()39a x -=-, ∴93x a =--, ∵3a -是9的约数931±±±,,, ∴6,0,2,4,6,12a =-, ∴6,4,6a =-,则满足条件的所有整数a 的个数是3个. 故选择:C . 【点睛】本题考查有条件限定的一元方程的整数解问题,掌握方程整数解的求法,关键是方程变形为93x a =--,转化为9的约数来解是解题关键. 10.A解析:A 【分析】先解方程43162ax x x -+-=-,得到73x a=+,根据方程的解是整数,求出a=-2或-4或4或-10,再计算和即可. 【详解】解:43162ax x x -+-=-, 6x-(4-ax )=3(x+3)-6 6x-4+ax=3x+9-6 6x+ax-3x=7∴73x a=+,∵方程的解是整数,∴3+a=1或-1或7或-7, ∴a=-2或-4或4或-10,∴符合条件的所有整数a 的和为-2-4+4-10=-12, 故选:A . 【点睛】此题考查解一元一次方程,根据方程解的情况求未知数,有理数加法计算法则,根据方程的解是整数得到a 的值是解题的关键.11.A解析:A 【分析】设甲数是2x ,则乙数是3x ,丙数是4x ,列出方程,解方程求得x 的值即可. 【详解】解:设甲数是2x ,则乙数是3x ,丙数是4x ,则 2x+3x-(3x+4x )=30 解得x=-15.故2x=-30,3x=-45,4x=-60. 即甲、乙、丙分别为-30、-45、-60. 故选:A . 【点睛】考查了一元一次方程的应用,难度不大,关键是根据题意恰当的设未知数,列出方程.12.A解析:A 【分析】根据先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,解答即可. 【详解】解:∵设安排x 人先做4h ,然后增加2人与他们一起做8小时,完成这项工作. ∴可得先工作的x 人共做了(4+8)小时,∴列式为:先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,而x 人1小时的工作量为40x , ∴x 人(4+8)小时的工作量为(48)40x+, ∴(48)40x+表示先工作的x 人前4h 和后8h 一共完成的工作量, 故选A . 【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键.二、填空题13.3【分析】结合题意根据同类项的性质通过列一元一次方程并求解得到a 和b 的值再代入代数式计算即可得到答案【详解】∵与是同类项∴∴∴故答案为:3【点睛】本题考查了同类项一元一次方程代数式的知识;解题的关键解析:3 【分析】结合题意,根据同类项的性质,通过列一元一次方程并求解,得到a 和b 的值,再代入代数式计算,即可得到答案. 【详解】∵515+-a x y 与233+-b x y 是同类项 ∴52a +=,13b =+∴3a =-,2b =-∴()33323a b -=--⨯-= 故答案为:3. 【点睛】本题考查了同类项、一元一次方程、代数式的知识;解题的关键是熟练掌握同类项、一元一次方程、代数式的性质,从而完成求解.14.76【分析】可设数学家欧拉一生活了x 岁根据等量关系:数学论文400篇正好是他一生的岁数与他成为彼得堡学院数学教授时岁数之差的8倍列出方程求解即可【详解】解:设数学家欧拉一生活了x 岁依题意有解得x=7解析:76 【分析】可设数学家欧拉一生活了x 岁,根据等量关系:数学论文400篇,正好是他一生的岁数与他成为彼得堡学院数学教授时岁数之差的8倍,列出方程求解即可. 【详解】解:设数学家欧拉一生活了x 岁,依题意有1400874x x -=÷+, 解得x=76.答:数学家欧拉一生活了76岁. 故答案为:76. 【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.5或7【分析】根据题意可知剪断后的三段可以表示为OA2ABPB-AB 而根据题设可设三段分别为m3m4m由总长度为16cm求出m的值再分两种情况讨论OA=m或OA=3m从而求出各线段的长【详解】解:由解析:5或7【分析】根据题意可知剪断后的三段可以表示为OA、2AB、PB-AB,而根据题设可设三段分别为m,3m,4m,由总长度为16cm求出m的值,再分两种情况讨论OA=m或OA=3m,从而求出各线段的长.【详解】解:由题意可知剪断后的三段可以表示为OA、2AB、PB-AB,而这三段的长度由短到长之比为1:3:4,于是可设三段分别为m,3m,4m∵OA+2AB+PB-AB=OP=16即m+3m+4m=16∴m=2∴剪断后的三条线段的长分别为2cm,6cm,8cm又∵以点P为一端的那段细线最长∴PB-AB=8,于是分类若OA=2,则2AB=6,PB-AB=8∴AB=3,PB=11此时OB=OA+AB=5若2AB=2,则OA=6,PB-AB=8∴OA=6,AB=1,PB=9此时OB=OA+AB=7综上,OB的长为5或7故答案为:5或7.【点睛】本题考查的线段的长度之间的运算,根据图形对线段进行和、差、倍、分的运算是解题的关键.16.4【分析】把x=-2代入方程得到关于m的方程求得m的值即可【详解】解:把x=-2代入方程得-1+m=3解得:m=4故答案为:4【点睛】本题考查了一元一次方程的解方程的解就是能使方程左右两边相等的未知解析:4【分析】把x=-2代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=-2代入方程得-1+m=3,解得:m=4.故答案为:4.【点睛】本题考查了一元一次方程的解,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.17.1【分析】根据题意得到代数式-2x 与代数式3x-1相加为0解方程即可【详解】解:根据题意-2x+3x-1=0解得x=1故答案为:1【点睛】本题考查了相反数的概念和一元一次方程的解法若两个数互为相反数解析:1【分析】根据题意得到代数式-2x 与代数式3x-1相加为0,解方程即可.【详解】解:根据题意,-2x+3x-1=0,解得x=1.故答案为:1.【点睛】本题考查了相反数的概念和一元一次方程的解法.若两个数互为相反数,则它们的和为零.18.;【分析】利用制作的大小月饼正好装成整盒进而得出等式求出即可【详解】解:设用xkg 面粉制作大蛋糕则利用(450x )kg 制作小蛋糕根据题意得出:解得:x=250∴用250kg 面粉制作大蛋糕才能生产最多解析:;【分析】利用制作的大小月饼正好装成整盒,进而得出等式求出即可.【详解】解:设用x kg 面粉制作大蛋糕,则利用(450-x )kg 制作小蛋糕,根据题意得出: 145010.0520.024x x -⨯=⨯, 解得:x=250,∴用250kg 面粉制作大蛋糕,才能生产最多的盒装蛋糕.故答案为:250.【点睛】本题考查了一元一次方程的应用,根据题意得出正确的等量关系是解题关键. 19.【分析】分别求出一元一次的解利用解相同建立关于m 的新方程解方程即可【详解】∵∴x=m-1;∵∴x=4-m ∵关于的方程的解与方程的解相同∴4-m=m-1解得m=故填【点睛】本题考查了一元一次方程的解一 解析:52. 【分析】 分别求出一元一次的解,利用解相同,建立关于m 的新方程,解方程即可.【详解】∵1x m +=,∴x=m-1; ∵322m x x +-=, ∴x=4-m , ∵关于x 的方程322m x x +-=的解与方程1x m +=的解相同, ∴4-m=m-1,解得m=52. 故填52. 【点睛】本题考查了一元一次方程的解,一元一次方程的解法,熟练掌握解的意义和方程解法的基本步骤是解题的关键.20.【分析】设竿为尺则索为(x+5)尺根据将绳索对半折后再去量竿就比竿短5尺即可得出关于x 的一元一次方程【详解】解:设竿为尺则索为(x+5)尺根据题意得:故答案是:【点睛】本题考查了一元一次方程的应用找 解析:1(5)52x x -+= 【分析】设竿为x 尺,则索为(x+5)尺,根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x 的一元一次方程.【详解】解:设竿为x 尺,则索为(x+5)尺, 根据题意得:1(5)52x x -+=, 故答案是:1(5)52x x -+=. 【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键. 三、解答题21.(1)2,4;(2)13或1 【分析】(1)画出数轴,如图所示:由动点M 、N 的运动速度比是1:2,设动点M 的运动速度为m 长度/秒,动点N 的运动速度为2m 长度/秒,动点M 速度×2+动点N 速度×2=12列方程解之即可;(2)设点P 在数轴上对应的数为x ,由0PA PB OP -=,可知2x ,分两种情况当28x 或当8x >,PA PB OP -=构造方程,求出x ,即可得到答案.【详解】解:(1)画出数轴,如图所示:∵动点M 、N 的运动速度比是1:2设动点M 的运动速度为m 长度/秒,动点N 的运动速度为2m 长度/秒根据题意:2m+4m=12,m=2长度/秒∴OA=2m=4,OB=2×2m=8,可得点M 运动的速度是2(单位长度/秒);点N 运动的速度是4(单位长度/秒); 故答案为:2,4;(2)设点P 在数轴上对应的数为x ,0PA PB OP -=,2x ∴,当28x 时,(4)(8)PA PB x x -=+--48x x =+-+,即24x x -=,此时4x =;当8x >时,(4)(8)12PA PB x x -=+--=,此时12x =, 则41123OP AB ==或12112OP AB ==. 【点睛】 本题考查数轴动点问题,掌握动点的速度,线段长度与运动时间三者关系,抓住PA PB OP -=分类构造方程是解题关键.22.(1)6x =;(2)12x =. 【分析】(1)去括号,移项,合并同类项,最后化未知项的系数为1;(2)去分母,去括号,移项,合并同类项,最后化未知项的系数为1.【详解】解:(1)3(20)4x x --=去括号,得 3204x x -+=移项,得3420x x +=+合并同类项,得424x =两边都除以4,得6x =; (2)3132322105x x x +-+-=- 去分母,得5(31)20(32)2(3)x x x +-=--+ 去括号,得 155203226x x x +-=---移项,得 153226520x x x -+=---+合并同类项,得 147x =两边都除以14,得12x =. 【点睛】此题考查解一元一次方程,掌握解一元一次方程的相关法则和一般步骤是关键. 23.(1)x =417;(2)x =72. 【分析】(1)根据去括号、移项、合并同类项、系数化为1,求出方程的解各是多少即可;(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解各是多少即可.【详解】解:(1)()()345678x x x --=--去括号,得3x ﹣20+4x =6﹣7x+56移项,得3x+4x+7x =6+56+20合并同类项,得14x =82系数化为1,得x =417; (2)1213412x x x -+-=-+ 去分母,得4x ﹣3(x-1)=-(x+2)+12去括号,得4x-3x+3=-x-2+12移项,得4x ﹣3x+x =12﹣2﹣3合并同类项,得2x =7系数化为1,得x =72. 【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.20°【分析】设这个角是x 度,结合题意,根据余角、补角的性质,通过列一元一次方程并求解,即可得到答案.【详解】解:设这个角是x 度,根据题意得:()18039050x x -=--解得:x =20.∴这个角为:20︒.【点睛】本题考查了角、一元一次方程的知识;解题的关键是熟练掌握补角、余角、一元一次方程的性质,从而完成求解.25.(1)填表见解析;(2)支援甲、乙、丙处各有6人、8人,16人【分析】(1)根据信息填表即可;(2)根据“支援丙处的人数是支援乙处的人数的2倍”列出方程并解答.【详解】解:(1)依题意得:乙处支援后的总人数:3x ,支援人数:3x ﹣10;丙处支援后的总人数:4x ,支援人数为:4x ﹣8.故答案是:解得x =6,所以2x ﹣6=6,3x ﹣10=8,4x ﹣8=16,答:支援甲、乙、丙处各有6人、8人,16人.【点睛】本题考查了一元一次方程的应用,解题关键是弄清题目中的数量关系,找到等量关系列方程.26.2x =【分析】根据去分母、去括号、移项、合并同类项、系数化为1,求出x 的值即可.【详解】解:221123x x --+= 去分母,得()()322216x x -+-=去括号,得36426x x -+-=移项,得34662x x +=++合并同类项,得714x =系数化为1,得2x =【点睛】本题考查了解一元一次方程,解答本题的关键是明确解一元一次方程的方法.。
初中数学一元一次方程练习题(附答案)
初中数学一元一次方程练习题一、单选题1.下列说法正确的是( )A.如果a b = ,那么33a b +=-B.如果a b =,那么3121a b -=-C.如果a b =,那么a b c c= D.如果a b =,那么ac bc =2.下列各式中:①由34x =-系数化为1得34x =-; ②由52x =-移项得52x =-; ③由213132x x --=+去分母得()()221133x x -=+-; ④由()()221331x x ---=去括号得42391x x ---=.其中正确的个数有( )A.0个B.1个C.3个D.4个3.解方程1132x x --=时,去分母后,正确的是( ) A.()3211x x --=B.()2311x x --=C.()3216x x --=D.()2316x x --=4.如果293a -与113a +是互为相反数,那么a 的值是( ) A.6 B.2 C.12 D.6-5.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A.9B.8C.5D.4二、解答题 6.当k 取何值时,关于x 的方程()22312x x -=-和5826k x ⎫⎛-=+⎪ ⎝⎭的解相同? 7.关于x 的方程3146x a ax +--=的解是1x =,对于同样的a ,求另一个关于x 的方程3164x a ax +--=的解. 8.当x 为何值时,整式31x +的值是整式74x +的5倍?9.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.10.设a b c d ,,,为实数,则我们把形如a bc d 的式子叫做二阶行列式,它的运算法则用公式表示为a bad bc c d=-,请利用此法则解决以下问题: (1)求1212-的值; (2)若232215x =-,求x 的值.11.已知3y =是方程16()24m y y +-=的解,求关于x 的方程()()()21134m x m x -=+-的解. 三、计算题12.解下列方程:(1)2(2)3(41)9(1)x x x ---=-(3)0.1230.210.30.4x x --+= 13.解方程:(1)()2243x x +-=(2)11132x x x +-+=- (3)12 1.20.30.5x x -+-= 14.关于x 的方程423m m x +=-与()11662x -=-的解互为相反数,求m 的值. 15.阅读下列材料再解方程: 23x +=,我们可以将x+2视为整体,由于绝对值为3的数有两个,所以x+2=3或x+2=-3,解得x=1或x=-5.请按照上面的解法解方程2113x +=. 16.如果方程42832x x -+-=-的解与方程4(31)621x a x a -+=+-的解相同, 求式子1a a-的值.参考答案1.答案:D解析:2.答案:A解析:3.答案:D解析:4.答案:B解析:5.答案:C解析:6.答案:4k =.解析:7.答案:37x =解析:8.答案:2-解析:根据题意列出方程:()31574x x +=+,从而求得2x =-.9.答案:这个两位数为45.解析:10.答案:(1)4;(2)5.解析: (1) a bad bc c d =-,()1222412=--=-. (2) a bad bc c d =-,()2322103110332215x x x ==--=-+=-,即5x =.11.答案: 5=3x 解析: 因为3y =,所以根据方程16()24m y y +-=可知3m =. 所以代入m 方程2(1)(1)(34)m x m x -=+-变成6(1)4(34)x x -=-. 所以可求出5=3x . 12.答案:(1)去括号,得2412399x x x --+=-移项,得2129943x x x -+=+-合并同类项,得10x -=系数化为1,得10x =-(2)去分母,得4(21)2(101)3(21)12x x x --+=+-.去括号,得842026312x x x ---=+-移项,得820631242x x x --=-++合并同类项,得183x -=-系数化为1,得16x =(3)方程变形,得20302134x x --+= 去分母,得4(20)3(302)12x x -+-=.去括号,得48090612x x -+-=.移项,得46128090x x -=+-.合并同类项,得22x -=系数化为1,得1x =-解析:13.答案:(1)去括号,得2823x x +-=.移项,得2382x x --=--.合并同类项,得510x -=-.系数化为1,得2x =.(2)去分母,得()()216631x x x ++=--.去括号,得226633x x x ++=-+.移项、合并同类项,得5x -=-.系数化为1,得5x =.(3)原方程可化为101010206355x x -+-=. 去分母,得5(1010)3(1020)18x x --+=.去括号,得5050306018x x ---=.移项,得5030185060x x -=++.合并同类项,得20128x =.系数化为1,得 6.4x =.解析:14.答案:18-解析:解方程()11662x -=-,得4x =.把4x =-代入方程423m m x +=-,得方程44423m -+=--,解得18m =-. 15.答案:x=0或x=-3解析:16.答案: 1334a a -=-. 解析:方程42832x x -+-=-去分母,得2(4)483(2)x x --=-+,去括号、移项、合并同类项解得10x =,把10x =代入方程4(31)621x a x a -+=+-,解得4a =-, 所以1334a a -=-。
初中数学专题练习:一元一次方程(五)
初中数学专题练习:一元一次方程(五)一、单选题1.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润率由m%提高到(m+6)%,则m的值为( )A.10 B.12 C.14 D.12.方程x3+x15+x35+...+x2005×2007=1的解是x等于()A.20062007B.20072006C.20071003D.100320073.A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时C.5小时D.4小时或5小时4.满足 || x-1 |-| x ||-| x-1 |+| x |=1的x的值是()。
A.0 B.±14C.34D.±345.若关于x的一元次不等式组{−2x+3m4≤2x2x+7≤4(x+1)的解集为x≥32,且关于y的方程3y−2=2m−(5−3y)2的解为非负整数,则符合条件的所有整数m的积为()A.2 B.7 C.11 D.106.某商品降价20%后欲恢复原价,则提价的百分数为().A.18%B.20%C.25%D.30%7.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a,则这三个数中最大的数与最小的数的差为()A. a B. |a| C. |a| D. a8.下列说法:①符号相反的数互为相反数;②有理数a、b、c满足|a+b+c|=a−b+c,且b≠0,则化简|a−1+c|+|b−3|−|b−1|的值为5;③若(m−2)x m2−3+x+2=m是关于x的一元一次方程,则这个方程的解是x=43;④若(3a+4b)x2+ax+b=0是关于x的一元一次方程,则x=34;其中正确的有()A.4个B.3个C.2个D.1个二、填空题9.线段AB=15,点P从点A开始向点B以每秒1个单位长度的速度运动,点Q从点B开始向点A以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当AP=2PQ时,t的值为.10.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是= 销售价−进价×100%).进价11.已知数轴上三点M,O,N对应的数分别是-1,0,3,点P为数轴上任意点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时P点到点M、点N的距离相等,则t的值为.12.关于x的方程9x-2=kx+7的解是自然数,则整数k的值为、、 .13.一笔奖金总额为1092元,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍,若把这笔奖金发给6个人,并且要求一等奖的人数不能超过二等奖人数,二等奖人数不能超过三等奖人数,那么三等奖的奖金金额是元.三、解答题14.已知关于x的方程3x-3=2a(x+1)无解,试求a的值.15.已知方程ax+3=2x-b有两个不同的解,试求(a+b)2007的值.16.七年级(1)班为奖励优秀学生,用30元钱买了钢笔和圆珠笔共10支,其中圆珠笔每支2元,钢笔每支4元.若设所买的圆珠笔的支数为x,可列方程2x+4(10-x)=30,你能根据此方程编一道与上面不同的应用题吗?17.某校初一年级三个班的学生要到怀柔区某农业教育基地进行社会大课堂活动,三个班学生共101人,其中初一(1)班有20多人,不足30人,二班比一班的人数少5人.教育基地团体购票价格如下:原计划三个班都以班为单位购票,则一共应付1365元.三个班各有多少人?18.一项工程,甲单独做15天完工,乙单独做20天完工,丙单独做24天完工.现在先让甲、乙合做5天,剩下工程由丙一个人完成.丙需做多少天?四、综合题19.阅读下列例题,并按要求回答问题:例:解方程|2x|=1.解:①当2x≥0时,2x=1,解得x=12;②当2x<0时,−2x=1,解得x=−12.所以原方程的解是x=12或x=−12.(1)以上解方程的方法采用的数学思想是.(2)请你模仿上面例题的解法,解方程:|2x−1|=5.20.为提高公民社会责任感,保证每个纳税人公平纳税,调节不同阶层贫富差距,营造“纳税光荣”社会氛围,2019年我国实行新的《个人收入所得税征收办法》,将个人收所得税的起征点提高至5000元(即全月个人收所得不超过5000元的,免征个人收入所得税):个人收入超过5000元的,其超出部分称为“应纳税所得额”,国家对纳税人的“应纳税所得额”实行“七级超额累进个人所得税制度”,该制度的前两级纳税标准如下:①全月应纳税所得额不超过3000元的,按3%的税率计税;②全月应纳税所得额超过3000元但不超过12000元的部分,按10%的税率计税.按照新的《个人收入所得税征收办法》,在2019年某月,如果纳税人甲缴纳个人收入所得税75元,纳税人乙当月收入为9500元,纳税人丙缴纳个人收入所得税110元.(1)甲当月个人收入所得是多少?(2)乙当月应缴纳多少个人收入所得税?(3)丙当月个人收入所得是多少?21.某商场出售的甲种商品每件进价100元,售价160元,乙种商品每件进价80元,售价120元.(1)甲种商品每件的利润为元,乙种商品每件的利润率为;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为4200元,求该商场购进乙种商品多少件;(3)在春节期间,该商场对乙种商品进行如下的优惠促销活动:按上述优惠条件,某顾客在该商场购买乙种商品实际付款864元,则该顾客购买乙种商品多少件?。
初中数学专题练习:一元一次方程(一)
初中数学专题练习:一元一次方程(一)一、单选题1.如果四个不同的正整数 m , n , p , q 满足 (4−m)(4−n)(4−p)(4−q)=9 ,则 m +n +p +q 等于( )A .12B .14C .16D .182.下列解方程去分母正确的是( )A .由 x 3−1=1−x 2 ,得2x-1=3(1-x ) B .由x−22−3x−24=−1 ,得2(x-2)-3x-2=-4 C .由 y+12=y 3−3y−16,得3(y+1)=2y-(3y-1) D .由 4x 5−1=x+43 ,得12x-5=5x+203.若方程2x -3=5-6x 与方程2mx = 3−5x−14 的解相同,则 m 的值为( ) A .1 B .-1 C .2 D .-24.在甲处工作的有232人,在乙处工作的有146人,如果从乙处调x 人到甲处,那么甲处工作的人数是乙处工作人数的3倍,则下列方程中,正确的是( )A .3(323+x )=146﹣xB .232﹣x=3(146﹣x )C .232+x=3×146﹣xD .232+x=3(146﹣x ) 5.方程﹣13+x=2x 的解是( )A .-13B .13C .1D .-16.用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是( )A .104B .108C .24D .287.√2x −13+√5x +83 =0,则x 的值是( )A .﹣3B .﹣1C .12D .无选项8.某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排 m 名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为( )A .12×m =18×(28−m)×2B .12×(28−m)=18×m ×2C .12×m ×2=18×(28−m)D .12×(28−m)×2=18×m二、填空题9.已知方程﹣(2﹣m)x|m|﹣1+4m=8是关于x的一元一次方程,那么x= .10.某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多赠了15%,教师比原计划多赠了20%,实际共捐赠5825册,则原计划学生捐赠图书册.11.纸箱里有红黄绿三色球,红球与黄球的比为1∶2,黄球与绿球的比为3∶4,纸箱内共有68个球,则黄球有个.x+2021的解是x=3,则关于y的一元12.已知关于x的一元一次方程2019x−a=12020(y−1)+2021的解是y= .一次方程2019(y−1)−a=1202013.一件夹克按成本价提高 50%后标价,后因季节关系按标价的 8 折出售,每件获利 10 元.这批夹克每件的成本价是元14.x=3和x=﹣6中,是方程x﹣3(x+2)=6的解.15.已知关于x的方程3x﹣2a=7的解是5,则a的值为.16..一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
初中数学一元一次方程专题试题
初中数学一元一次方程专题试题满分:100学校 __________ 班级 __________ 学生 __________一、填空题( 本大题共30小题每题1 分)1、甲用40秒跑完一环行跑道,乙反向跑,每隔15秒与甲相遇一次,那么乙跑完这个跑道需要_______秒.2、若3x2m-3+1=5是一元一次方程,则m的值是__________.3、方程2x+8=0的解是______________.4、关于x的方程2(x-1)-a=0的解是3,则a的值为__________.5、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图(1),图(2)所示,那么▲和■两种物体的质量之间的关系是__________,●与▲两种物体的质量之间的关系是__________.(用含有符号“●”“▲”“■”的等式加以表示)6、甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了__________场,平了__________场,负了__________场.7、小凡在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,__________”(横线部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.8、若关于x的方程6x+3m=22与5x-6=4的解相同,则m的值为________.9、元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马________天可以追上驽马.10、西周戎生青铜编钟是由八个大小不同的小编钟组成,其中最大编钟高度比最小编钟高度的3倍少5 cm,且它们的高度相差37 cm.则最大编钟的高度是________cm.11、三角形的周长是84 cm,三边长的比为17∶13∶12,则这个三角形最短的一边长为________.12、某人在地主家干活,工作一年的报酬是年终给他一件衣服和10枚银币,但他干满7个月就决定不干了,结帐时,给了他一件衣服和2枚银币.则这件衣服大约值________枚银币.13、2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.则铜牌____枚,银牌____枚,金牌____枚.14、若商店将商品提价40%,然后再打出“九折酬宾”的广告,结果每个商品的销售仍可获利195元,则商品的进价为________元.15、移项就是把等式一边的某项______后移到另一边.16、王明同学参加教育储蓄活动,把所得压岁钱存入银行.如果月利率是0.2%,那么10个月后,本金与利息的和是40.8元,那么存入银行的压岁钱是________元.(教育储蓄不缴纳利息税)17、某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是________________.18、对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:__________.19、当x=________时,代数式5x+10与4x+14的值相等.20、当n为________时,3x2n-1与-x n+2是同类项.21、利润是商品售价与商品成本价(进价)的____,利润率是指商品的______与______的比率,可以用公式表示为__________.22、只含有____个未知数(元)x,未知数x的指数是____次的方程叫一元一次方程.23、一元一次方程如有括号,解方程时一般要先____,再________、____________、________.24、敌我两军相距14千米,敌军于1小时前以4千米/时的速度逃跑,现我军以7千米/时的速度追击,几小时后可追上敌军?若设x小时后可追上敌军,则列方程为_______________.25、某校学生列队以8千米/时的速度前进,在队尾校长让一名学生跑步到队伍的最前面找带队老师传达一个通知,然后立即返回队尾,这位学生的速度是12千米/时,从队尾赶到排头又回到队尾共用了7.2分钟,则队伍的长为______米.26、学生小明在做作业时,不慎将墨水瓶打翻,使一个题目看到如下的部分:已知甲、乙两地相距40千米,一辆客车的速度为45千米/时,一辆货车的速度为35千米/时,________________?(横线部分表示被墨水覆盖的若干文字),请你先将这个题目补充完整,并列出方程.27、完成一项工程,实际所用时间比原计划时间的多2天,比原计划的少1天,设原计划用x天完成,可列方程为__________.28、在等式的两边都乘______,得m=______,依据__________.29、有一个密码系统,其原理如图所示:,当输出为10时,则输入的x=__________.30、若代数式3x+7的值为-2,则x=________.二、选择题( 本大题共30小题每题1 分)1、下列根据等式的性质变形正确的是()A.由,得x=2yB.由3x-2-2x=2,得x=4C.2x-3=3x,得x=3D.由3x-5=7,得3x=7-52、方程3x+6=0的解的相反数是()A.2 B.-2 C.3 D.-33、某种商品降价20%后出售,一段时间后欲恢复原价,则应在售价的基础上提高的百分数是()A.20% B.30% C.35% D.25%4、解方程时,去分母后,正确结果是( ).A.4x+1-10x+1=1 B.4x+2-10x-1=1C.4x+2-10x-1=6 D.4x+2-10x+1=65、三元一次方程组的解为( ).A.B. C.D.6、某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( ).A.21元B.19.8元 C.22.4元D.25.2元7、方程2x+1=0的解是( ).A.B. C.2D.-28、甲车队有汽车100辆,乙车队有汽车68辆,要使两队的汽车一样多,则需要从甲车队调x辆汽车到乙车队.由此可列方程为( ).A.100-x=68 B.x+68=100C.100+x=68-x D.100-x=68+x9、下列方程变形后得到的方程与原方程是同解方程的是().A.若2x=4,则x=2B.若2x-2=4,则2x=4-2C.若2x=8,则x=6D.若-2x=4,则x=210、如果代数式5x-4的值与-互为倒数,则x的值是( )A. B.-C. D.-11、一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放两个水龙头,灌满水池需( )A. 小时B. 小时 C.2小时D.3小时12、解方程-=1去分母正确的是( )A.2(x-1)-3(4x-1)=1 B.2x-1-12+x=1 C.2(x-1)-3(4-x)=6 D.2x-2-12-3x=613、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是( )A.1 000元B.1 300元 C.1 350元D.1 400元14、下列方程的变形中,是移项的是( )A.由3=x,得x=3 B.由6x=3+5x,得6x=5x+3C.由2x=-1,得x=- D.由2x-3=x+5,得2x-x =5+315、在解方程2(x-1)-3(2x-3)=8时,去括号正确的是( )A.2x-1-6x-3=8 B.2x-1-6x+3=8C.2x-2-6x-9=8 D.2x-2-6x+9=816、在解方程-=1时,去分母正确的是 ( )A.3x+1-2x-1=1 B.3x+1-2x-1=6C.3(x+1)-2(x-1)=1 D.3(x+1)-2(x-1)=617、对任意四个有理数a,b,c,d定义新运算:=ad-bc.已知=18,则x等于 ( )1 B.2 C.3D.418、请根据图中给出的信息,可得正确的方程是( )A.π×()2x=π×()2×(x+5) B.π×()2x=π×()2×(x-5)C.π×82x=π×62×(x+5) D.π×82x=π×62×519、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( )A.54 B.27 C.72D.4520、x=-3是下列方程______的解.( )A.-5(x-1)=-4(x-2) B.4x+2=1C. x+5=5 D.-3x-1=021、方程4(a-x)-4(x+1)=60的解是x=-1,则a为( )14 B.20 C.14D.-1622、解方程-1=时,去分母正确的是( )A.3x-3=2x-2 B.3x-6=2x-2C.3x-6=2x-1 D.3x-3=2x-123、在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个足球队只输了两场,那么此队胜的场数是( )A.4 B.5C.6 D.724、笼中有鸡兔共12只,共40条腿,设鸡有x只,根据题意,可列方程为( )A.2(12-x)+4x=40 B.4(12-x)+2x=40C.2x+4x=40 D. -4(20-x)=x25、下列方程是一元一次方程的是( )A. =5x+2 008 B.3x2+1=3xC.2y2+y=3 D.6x-3y=10026、一元一次方程(m-1)x+5=0成立的条件是()A.m=1 B.m≠1 C.m≠0 D.m为任意数27、某商店购进某种商品的价格是1 050元,按进价的150%标价,若他打算获得此商品的利润不低于20%,那么他最低可以打( ).A.7折 B.8折C.9折D.8.5折28、在高速公路上,一辆长4米、速度为110千米/时的轿车准备超越一辆长12米、速度为100千米/时的卡车,则轿车从开始追到超越卡车,需要花费的时间约是( ).A.1.6秒B.4.32秒C.5.76秒D.345.6秒29、关于x的方程mx-1=2x的解为正实数,则m的取值范围是()A.m≤2 B.m≤2C.m>2 D.m<230、阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元 B.27元 C.28元 D.29元三、解答题( 本大题共20小题每题2 分)1、若关于x的方程5x+3=0的解与5x+3k=27的解相同,求k的值.2、小明解方程去分母时,方程右边的式子没有乘以3,求得的解为x=2.试求a的值,并正确地解方程.3、解方程(1)(2)2(3x-4)+7(4-x)=4x4、某人原计划骑车以每小时12千米的速度由A地到B地,这样便可以在规定的时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到达,求A、B两地间的距离.5、在括号里填上解方程2x+5=-x-4的根据.解:2x+5=-x-4,2x+x=-4-5(),3x=-9(),x=-3().6、在括号里填上解方程2x+5=-x-4的根据.解:2x+5=-x-4,2x+x=-4-5(),3x=-9(),x=-3().7、解方程:8x+12-9x+5=8.8、“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1 000元;如果进行精加工,每天可加工0.5吨,每吨可获利5 000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了两种方案:方案一:将毛竹全部粗加工后销售,则可获利__________元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利__________元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.9、如图所示,两个长方形重叠部分的面积等于大长方形面积的,等于小长方形面积的,已知阴影部分的面积为9 cm2,求重叠部分的面积.10、甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成.否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否完成该合同?为什么?(2)现两人合作了该工作的75%,因别处有急事,必须调走一人,问调走谁更合适一些?为什么?11、甲、乙、丙三个工人生产同一型号的零件,甲、乙两工人每天生产零件个数的比是4∶3,乙、丙两工人每天生产零件个数的比是2∶3.已知丙工人每天生产零件的个数比甲、乙二人每天生产零件的个数之和少25,问三个工人每天各生产多少个零件?12、依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为,(________)去分母,得3(3x+5)=2(2x-1).(________)去括号,得9x+15=4x-2.(________)(________),得9x-4x=-15-2.(________)合并,得5x=-17.(合并同类项)(________),得.(________)13、解方程.14、解方程:-1=.15、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?16、某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润4 000元,经精加工后销售,每吨利润7 000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,请说说理由.17、为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1 200元(不包括780元),求甲种消毒液最多能再购买多少瓶?18、学了“去分母”以后,民辉同学在计算+时,把分母去掉得3+2=5.对吗?19、某商店的老板销售一种商品,他要以不低于进价的20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买标价为360元的这种商品,最多降价多少元商店老板才能出售?20、剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换).有关销售策略与售价等信息如下表所示:把)某段时间内,甲厂家销售了8 400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把刀架?多少片刀片?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1一元一次方程
姓名学号
A组
1.在下列方程中:①2χ+1=3;
②y2-2y+1=0; ③2a+b=3;④2-6y=1; ⑤2χ2+5=6; ⑥3m+2=1-m;
⑦5
12
x-
1
3
=-
1
4
;⑧xy=1.属于一元一次方程的是______ 。
(填序号)
2.已知x=2是关于x的方程3x-2m=4的解,则m的值为()
A. 5
B.-5
C.-1
D.1
3.能使等式x+5=5+x成立的x的值为()
A.只能是0
B.不存在
C.只能是1
D.为任何数
4. 已知x的1
4
与-7的和比x的2倍少3,可列出方程:_________
5. 2004年夏季奥运会上,我国获得32枚金牌。
其中跳水队获得6枚金牌,比射击队获得金牌数的2倍少2枚。
射击队获得多少枚金牌?如果设射击队获得x枚金牌,那么跳水队获得(2x-2)枚金牌,可得到方程为:_____________________.
6.王超从甲地到乙地,如果每小时走9千米,在规定时间内到达乙地还差4千米;如果每小时走12千米,则比规定时间早到20分钟,求规定的时间和甲、•乙两地的距离:设规定时间为x小时,可列出方程:_________________
7. 如果x=3是方程kx+k-1=0的解,求k的值.
8. 检验括号中的数是否为方程的解。
(1) 3x-4=8 (x=3, x=4)
(2)
12
y+3=7 (y=8, y=4). B 组
9. 以x=-3为解的方程是( )
(A )3x-7=2 (B )5x-2=-x
(C )6x+8=-26 (D )x+7=4x+16
10.根据条件求出m 的值:
(1).方程3x m -2 + 5=0是一元一次方程,则代数式 m=_____。
(2). x ︱m ︱ +5=0是关于x 的一元一次方程,则m=________。
(3).(m-1)x ︱m ︱+5=0是关于x 的一元一次方程,则m=_______。
(需要写出过程)
(4).方程(m+6)x 2 +3x-8=7是关于x 的一元一次方程,则m= _____。
(需要写出过程)
11. 若a 是方程3-x=4的解,求 ∣a ∣+a 2007-
a 1的值。
12.已知关于x 的方程32
2+=-x x a 的解满足,04=+x 求a a 22-的值。
C 组
13.小张在解方程1523=-x a (x 是未知数)时,不小心将“—2x ”看成了“+2x ”,解得方程的解为x=3,请求出原方程的解。