2020届高三数学(理)“大题精练”15

合集下载

宁夏银川一中2020届高三下学期第一次模拟考试 理科数学(含答案)

宁夏银川一中2020届高三下学期第一次模拟考试 理科数学(含答案)

2020年普通高等学校招生全国统一考试理科数学试题卷(银川一中第一次模拟考试)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={-1,0,1}, A 的子集中,含有元素0的子集共有 A.2个B.4个C.6个D.8个2.复数32(1)i i += A. -2iB. -2C.2iD.23.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a =2.2A.2B1.2CD.24.已知m ∈R ,“函数21xy m =+-有零点”是“函数.log m y x =在(0,+∞)上为减函数”的A.既不充分也不必要条件B.充要条件C.必要不充分条件D.充分不必要条件5.若函数f(x)=-cosx+ax 为增函数,则实数a 的取值范围为 A.[-1,+∞)B.[1,+∞)C.(-1,+∞)D.(1,+∞)6.一个空间几何体的三视图如图,则该几何体的体积为.23A.25B43.C53.D7.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是8.若231()nx x+展开式的各项系数之和为32,则其展开式中的常数项为 A.1B.5C.10D.209.在平面区域(,)02y x M x y x x y ⎧≥⎧⎫⎪⎪⎪=≥⎨⎨⎬⎪⎪⎪+≤⎩⎭⎩内随机取一点P,则点P 在圆222x y +=内部的概率为.8A π.4B π.2C π3.4D π10.已知直线l ,m,平面α、β、γ,给出下列命题: ①l//α,l//β,α∩β= m,则l//m;②α//β,β//γ,m ⊥α,则m ⊥γ; ③α⊥γ,β⊥γ,则α⊥β;④l ⊥m,l ⊥α,m ⊥β,则α⊥β. 其中正确的命题有 A.1个B.2个C.3个D.4个11.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线右支上存在一点P,满足212||||PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率为4.3A5.3B5.4C41.4D 12.已知以T=4为周期的函数21,(1,1]()1|2|,(1,3]x x f x x x ⎧⎪-∈-=⎨--∈⎪⎩,其中m>0,若方程3f(x)=x 恰有5个实数解,则m 的取值范围为.15.(7)A 4.(7)3B48.(,)33C158.)3D 二、填空题:本大题共4小题,每小题5分,共20分.13. 已知tanθ=2,则cos 2θ的值为___.14.若D 点在三角形ABC 的边BC 上,且4CD DB r AB sAC ==+u u u r u u u r u u u r u u u r,则3r+s 的值为___.15.已知A,B 两点均在焦点为F 的抛物线22(0)y px p =>上,若||||4,AF BF +=u u u r u u u r 线段AB 的中点到直线2px =的距离为1,则P 的值为___. 16.观察下列算式:311,= 3235,=+ 337911,=++3413151719=+++……若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n=___.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。

2020届金太阳高三4月联考数学试题

2020届金太阳高三4月联考数学试题
【答案】
【解析】作出图形,求 的中点为 ,连接 ,确定外接球球心在线段 上,设外接球的半径为 ,可得出 ,然后在 中利用勾股定理可求得 的值,最后利用球体体积公式可求得结果.
【详解】
平面 平面 , ,取 的中点为 ,连接 ,
的外接圆圆心为点 ,则外接球的球心 在 上,且 , , ,
设外接球半径为 ,则 ,
在 中, ,即 ,得 ,
因此,三棱锥 的外接球的体积为 .
故答案为: .
【点睛】
本题考查外接球体积的计算,解答时要分析几何体的结构,确定球心的位置,考查推理能力与计算能力,属于中等题.
三、解答题
17.已知数列 的前 项和为 ,且 .
(1)求数列 的通项公式;
(2)若数列 的前 项和为 ,证明: .
【答案】(1) .(2)见解析
还有特称命题的否定,考查的知识点较多,能较好地检测考生的逻辑推理能力,属中等题.
9.已知 , , , ,则 、 、 间的大小关系为()
A. B. C. D.
【答案】A
【解析】由题意得出 ,利用指数函数和对数函数的单调性比较 、 和 三个数的大小关系,再由指数函数的单调性可得出 、 、 三个数的大小关系.
【答案】C
【解析】求出直线 的方程,将该直线的方程与抛物线的方程联立,求出点 的横坐标,利用抛物线的定义可求得 的值.
【详解】
抛物线的焦点为 ,所以 ,
由 得: ,
, , ,
故选:C.
【点睛】
本题考查过拋物线焦点的弦,考查方程思想的应用,考查计算能力,属中等题.
6.在所有棱长都相等的直三棱柱 中, 、 分别为棱 、 的中点,则直线 与平面 所成角的余弦值为()
②乙指挥交通,甲不指挥交通,则丙必须指挥交通,故有 种方法;

2020届全国大联考高三联考数学(理)试题(解析版)

2020届全国大联考高三联考数学(理)试题(解析版)

x y 2 0,
范围是( )
A.[1, )
B. (, 1]
C. (1, )
D. (, 1)
【答案】A 【解析】画出约束条件的可行域,利用目标函数的最值,判断 a 的范围即可. 【详解】
作出约束条件表示的可行域,如图所示.因为 z ax y 的最大值为 2a 6 ,所以 z ax y 在点 A(2, 6) 处取得最大值,则 a 1 ,即 a 1 .
,则可得结论.
【详解】
第 2 页 共 20 页
0
(
1
)
2 5
(1)0
1,
33
(
2
)
1 3
(2)0
1,
5
5
log2
1 3
log2
1
0

c a b .
故选:C.
【点睛】
本题考查了指数幂,对数之间的大小比较问题,是指数函数,对数函数的性质的应用问
题,其中选择中间量 0 和 1 是解题的关键,属于基础题.
故选:B
【点睛】
本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.
2.设集合 A {x | y x 3}, B {x |1 x 9} ,则 (ðR A) B ( )
A. (1,3)
B. (3,9)
C.[3, 9]
D.
【答案】A
【解析】求函数定义域求得集合 A ,由此求得 ðR A B .
本题考查折线图与柱形图,属于基础题.
5.已知
a
1 3
2
5
,b
2 5
1 3
,
c
log2
1 3
,则(

A. a b c

2020届全国大联考高三联考数学(理)试题(解析版)

2020届全国大联考高三联考数学(理)试题(解析版)

2020届全国大联考高三联考数学(理)试题一、单选题 1.已知复数552iz i i=+-,则||z =( )A .B .C .D .【答案】B【解析】利用复数除法、加法运算,化简求得z ,再求得z 【详解】55(2)551725i i i z i i i i +=+=+=-+-,故||z ==故选:B 【点睛】本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.2.设集合{|{|19}A x y B x x ===<≤,则()A B =R I ð( )A .(1,3)B .(3,9)C .[3,9]D .∅【答案】A【解析】求函数定义域求得集合A ,由此求得()R A B ⋂ð. 【详解】因为{|3}A x x =≥,所以()(1,3)R A B ⋂=ð. 故选:A 【点睛】本小题主要考查集合交集、补集的概念和运算,属于基础题.3.若各项均为正数的等比数列{}n a 满足31232a a a =+,则公比q =( ) A .1 B .2 C .3 D .4【答案】C【解析】由正项等比数列满足31232a a a =+,即211132a q a a q =+,又10a ≠,即2230q q --=,运算即可得解.【详解】解:因为31232a a a =+,所以211132a q a a q =+,又10a ≠,所以2230q q --=,又0q >,解得3q =. 故选:C. 【点睛】本题考查了等比数列基本量的求法,属基础题.4.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )A .6.25%B .7.5%C .10.25%D .31.25%【答案】A【解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比. 【详解】水费开支占总开支的百分比为25020% 6.25%250450100⨯=++.故选:A 【点睛】本题考查折线图与柱形图,属于基础题. 5.已知21532121,,log 353a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则( )A .a b c <<B .c b a <<C .c a b <<D .b c a <<【答案】C【解析】加入0和1这两个中间量进行大小比较,其中2510()13<<,132()15->,21log 03<,则可得结论.【详解】205110()()133<<=Q ,10322()()155->=, 221log log 103<=, c a b ∴<<.故选:C. 【点睛】本题考查了指数幂,对数之间的大小比较问题,是指数函数,对数函数的性质的应用问题,其中选择中间量0和1是解题的关键,属于基础题.6.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( )A .,5()4k k π⎛⎫-∈ ⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 【答案】B【解析】由值域为[5,3]-确定,a b 的值,得()5cos4g x x =--,利用对称中心列方程求解即可 【详解】因为()[,2]f x b a b ∈+,又依题意知()f x 的值域为[5,3]-,所以23a b += 得4a =,5b =-,所以()5cos4g x x =--,令4()2x k k ππ=+∈Z ,得()48k x k ππ=+∈Z ,则()g x 的图象的对称中心为,5()48k k ππ⎛⎫+-∈ ⎪⎝⎭Z . 故选:B 【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为07.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A【解析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.8.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=u u u v u u u v,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( ) A .2 B 3C .2D 5【答案】C【解析】由0FA FB +=u u u r u u u r 得F 是弦AB 的中点.进而得AB 垂直于x 轴,得2b ac a=+,再结合,,a b c 关系求解即可 【详解】因为0FA FB +=u u u r u u u r,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C 的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==.故选:C 【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题. 9.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r ,大圆柱底面半径为2r ,如图1放置容器时,液面以上空余部分的高为1h ,如图2放置容器时,液面以上空余部分的高为2h,则12h h =( )A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D 21r r 【答案】B【解析】根据空余部分体积相等列出等式即可求解. 【详解】在图1中,液面以上空余部分的体积为211r h π;在图2中,液面以上空余部分的体积为222r h π.因为221122r h r h ππ=,所以21221h r h r ⎛⎫= ⎪⎝⎭.故选:B 【点睛】本题考查圆柱的体积,属于基础题.10.已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式()()21f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,1【答案】A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在(),0-∞上是减函数,由此可将不等式化为121ax -≤+≤;利用分离变量法可得31a x x -≤≤-,求得3x-的最大值和1x-的最小值即可得到结果. 【详解】()()f x f x =-Q ()f x ∴为定义在R 上的偶函数,图象关于y 轴对称又()f x 在()0,∞+上是增函数 ()f x ∴在(),0-∞上是减函数()()21f ax f +≤-Q 21ax ∴+≤,即121ax -≤+≤121ax -≤+≤Q 对于[]1,2x ∈恒成立 31a xx∴-≤≤-在[]1,2上恒成立312a ∴-≤≤-,即a 的取值范围为:3,12⎡⎤--⎢⎥⎣⎦本题正确选项:A 【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.11.在三棱锥P ABC -中,5AB BC ==,6AC =,P 在底面ABC 内的射影D 位于直线AC 上,且2AD CD =,4PD =.设三棱锥P ABC -的每个顶点都在球Q 的球面上,则球Q 的半径为( )A .B C D 【答案】A【解析】设AC 的中点为O 先求出ABC ∆外接圆的半径,设QM a =,利用QM ⊥平面ABC ,得QM PD ∥ ,在MBQ ∆ 及DMQ ∆中利用勾股定理构造方程求得球的半径即可 【详解】设AC 的中点为O,因为AB BC =,所以ABC ∆外接圆的圆心M 在BO 上.设此圆的半径为r .因为4BO =,所以222(4)3r r -+=,解得258r =.因为321OD OC CD =-=-=,所以221131(4)8DMr =+-=. 设QM a =,易知QM ⊥平面ABC ,则QM PD ∥. 因为QP QB =,所以2222()PD a DM a r -+=+,即22113625(4)6464a a -+=+,解得1a =.所以球Q 的半径22689R QB a r ==+=. 故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题12.设函数()2ln x e f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,则实数t 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫+∞⎪⎝⎭ C .1,,233e e ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭U D .1,,23e ⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭U【答案】C【解析】()f x 恰有两个极值点,则()0f x ¢=恰有两个不同的解,求出()f x ¢可确定1x =是它的一个解,另一个解由方程e 02x t x -=+确定,令()()e 02xg x x x =>+通过导数判断函数值域求出方程有一个不是1的解时t 应满足的条件. 【详解】由题意知函数()f x 的定义域为()0,+?,()()221e 121x x f x t x xx -⎛⎫'=-+-⎪⎝⎭()()21e 2xx t x x ⎡⎤--+⎣⎦=()()2e 122x x x t x x⎛⎫-+- ⎪+⎝⎭=.因为()f x 恰有两个极值点,所以()0f x ¢=恰有两个不同的解,显然1x =是它的一个解,另一个解由方程e 02xt x -=+确定,且这个解不等于1.令()()e 02xg x x x =>+,则()()()21e 02xx g x x +'=>+,所以函数()g x 在()0,+?上单调递增,从而()()102g x g >=,且()13e g =.所以,当12t >且e 3t ≠时,()e 2ln x f x t x x x x ⎛⎫=-++ ⎪⎝⎭恰有两个极值点,即实数t 的取值范围是1,,233e e ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U . 故选:C 【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.二、填空题13.设n S 是公差不为0的等差数列{}n a 的前n 项和,且712a a =-,则94S a =______. 【答案】18【解析】先由712a a =-,可得12a d =-,再结合等差数列的前n 项和公式求解即可. 【详解】解:因为711+62a a d a ==-,所以12a d =-,()19544194992183a d S a d a a a d d+⨯====+. 故答案为:18. 【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前n 项和公式,属基础题. 14.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有ABC ∆满足“勾3股4弦5”,其中“股”4AB =,D 为“弦”BC 上一点(不含端点),且ABD ∆满足勾股定理,则()CB CA AD -⋅=u u u v u u u v u u u v______.【答案】14425【解析】先由等面积法求得AD ,利用向量几何意义求解即可. 【详解】由等面积法可得341255AD ⨯==,依题意可得,AD BC ⊥, 所以()214425CB CA AD AB AD AD -⋅=⋅==u u u r u u u r u u u r u u u r u u u r u u u r . 故答案为:14425【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.15.()62122x x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为______,常数项为______. 【答案】3 -260【解析】(1)令1x =求得所有项的系数和; (2)先求出612x x ⎛⎫- ⎪⎝⎭展开式中的常数项与含21x 的系数,再求()62122x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项. 【详解】将1x =代入()62122x x x ⎛⎫+- ⎪⎝⎭,得所有项的系数和为3.因为的展开式中含21x 的项为()424621602C x x x ⎛⎫-= ⎪⎝⎭,612x x ⎛⎫- ⎪⎝⎭的展开式中含常数项()333612160C x x ⎛⎫-=- ⎪⎝⎭,所以()62122x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为60320260-=-.故答案为:3; -260 【点睛】本题考查利用二项展开式的通项公式解决二项展开式的特殊项问题,属于基础题. 16.已知圆22:4O x y +=,直线l 与圆O 交于,P Q 两点,(2,2)A ,若22||||40AP AQ +=,则弦PQ 的长度的最大值为_______.【答案】【解析】设(,)M x y 为PQ 的中点,根据弦长公式,只需||OM 最小,在,APM AQMV V中,根据余弦定理将22||,||AP AQ 表示出来,由AMP AMQ π∠+∠=,得到2222||||2||2||AP AQ AM MQ +=+,结合弦长公式得到22||||16AM OM -=,求出点M 的轨迹方程,即可求解. 【详解】设(,)M x y 为PQ 的中点,在APM △中,222||||||2||||cos AP AM MP AM MP AMP =+-∠,① 在AQM V 中,222||||||2||||cos AQ AM MQ AM MQ AMQ =+-∠,②,cos cos 0AMP AMQ AMP AMQ π∠+∠=∴∠+∠=Q①+②得2222222||||2||||||2||2||AP AQ AM MP MQ AM MQ +=+=++, 即()222402||2||||AM OQ OM =+-,2220||4||AM OM =+-,22||||16AM OM -=.()2222(2)(2)16x y x y -+--+=,得20x y ++=.所以min ||22OM ==,max ||22PQ =. 故答案为:22.【点睛】本题考查直线与圆的位置关系、相交弦长的最值,解题的关键求出点M 的轨迹方程,考查计算求解能力,属于中档题.三、解答题17.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知0ccosB bsinC -=,2cosA cos A =.()1求C ;()2若2a =,求,ABC V 的面积ABC S V【答案】(1) 12π.(2). 【解析】()1由已知利用正弦定理,同角三角函数基本关系式可求1tanB =,结合范围()0,B π∈,可求4B π=,由已知利用二倍角的余弦函数公式可得2210cos A cosA --=,结合范围()0,A π∈,可求A ,根据三角形的内角和定理即可解得C 的值.()2由()1及正弦定理可得b 的值,根据两角和的正弦函数公式可求sinC 的值,进而根据三角形的面积公式即可求解. 【详解】() 1Q 由已知可得ccosB bsinC =,又由正弦定理b csinB sinC=,可得ccosB csinB =,即1tanB =, ()0,B π∈Q ,4B π∴=,2221cosA cos A cos A ==-Q ,即2210cos A cosA --=,又()0,A π∈,12cosA ∴=-,或1(舍去),可得23A π=,12C A B ππ∴=--=.()223A π=Q ,4B π=,2a =, ∴由正弦定理a bsinA sinB=,可得22a sinBb sinA ⋅===()1sin 22224sinC A B sinAcosB cosAsinB ⎛⎫=+=+=+-⨯=⎪⎝⎭Q ,11222ABC S absinC ∴==⨯=V . 【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角的余弦函数公式,三角形的内角和定理,两角和的正弦函数公式,三角形的面积公式等知识在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i )若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii )已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为(01)p p <<,若2020届高考本科上线人数乙市的均值不低于甲市,求p 的取值范围.可能用到的参考数据:取40.360.0168=,40.160.0007=. 【答案】(1)60%;(2) (i )0.12 (ii ) 2,13⎡⎫⎪⎢⎣⎭【解析】(1)利用上线人数除以总人数求解;(2)(i )利用二项分布求解;(ii )甲、乙两市上线人数分别记为X ,Y ,得~(40000,0.6)X B ,~(36000,)Y B p .,利用期望公式列不等式求解【详解】(1)估计本科上线率为4678560%50++++=.(2)(i )记“恰有8名学生达到本科线”为事件A ,由图可知,甲市每个考生本科上线的概率为0.6,则882241010()0.6(10.6)0.360.16450.01680.160.12P A C C =⨯⨯-=⨯⨯=⨯⨯≈.(ii )甲、乙两市2020届高考本科上线人数分别记为X ,Y , 依题意,可得~(40000,0.6)X B ,~(36000,)Y B p .因为2020届高考本科上线人数乙市的均值不低于甲市, 所以EY EX ≥,即36000400000.6p ≥⨯, 解得23p ≥, 又01p <<,故p 的取值范围为2,13⎡⎫⎪⎢⎣⎭. 【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.19.如图1,在等腰梯形12ABF F 中,两腰122AF BF ==,底边6AB =,214F F =,D ,C 是AB 的三等分点,E 是12F F 的中点.分别沿CE ,DE 将四边形1BCEF 和2ADEF 折起,使1F ,2F 重合于点F ,得到如图2所示的几何体.在图2中,M ,N 分别为CD ,EF 的中点.(1)证明:MN ⊥平面ABCD .(2)求直线CN 与平面ABF 所成角的正弦值. 【答案】(1)证明见解析 (2)23【解析】(1)先证CN EF ⊥,再证DN EF ⊥,由EF BC ∥可得BC ⊥平面CDN ,从而推出MN ⊥平面ABCD ;(2) 建立空间直角坐标系,求出平面ABF 的法向量与CN u u u r,坐标代入线面角的正弦值公式即可得解.【详解】(1)证明:连接CF ,DN ,由图1知,四边形BCEF 为菱形,且60CEF ∠=︒, 所以CEF ∆是正三角形,从而CN EF ⊥. 同理可证,DN EF ⊥, 所以EF ⊥平面CDN .又EF BC ∥,所以BC ⊥平面CDN ,因为BC ⊂平面ABCD , 所以平面CDN ⊥平面ABCD .易知CN DN =,且M 为CD 的中点,所以MN CD ⊥, 所以MN ⊥平面ABCD . (2)解:由(1)可知3CN =,2MN =,且四边形ABCD为正方形.设AB 的中点为G ,以M 为原点,以MG ,MC ,MN 所在直线分别为x ,y ,z 轴,建立空间直角坐标系M xyz -,则()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,0,2N ,()1,0,2F ,所以()0,2,0AB =u u u r,()1,1,2AF =-u u u r ,()0,1,2CN =-u u u r .设平面ABF 的法向量为(),,n x y z =r,由0,0,n AB n AF ⎧⋅=⎨⋅=⎩u u u v v u u u v v 得20,20,y x y z =⎧⎪⎨-++=⎪⎩ 取()2,0,1n =r.设直线CN 与平面ABF 所成的角为θ,所以22sin 333CN n CN nθ⋅===⨯u u u r r u u u r r , 所以直线CN 与平面ABF 所成角的正弦值为23.【点睛】本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.20.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,左、右焦点分别为12,F F ,离心率为12,P是椭圆上的一个动点(不与左、右顶点重合),且12PF F△的周长为6,点P关于原点的对称点为Q,直线2,AP QF交于点M.(1)求椭圆方程;(2)若直线2PF与椭圆交于另一点N,且224AF M AF NS S=△△,求点P的坐标.【答案】(1)22143x y+=;(2)135,24⎛⎫⎪⎝⎭或135,24⎛-⎝⎭【解析】(1)根据12PF F△的周长为22a c+,结合离心率,求出,a c,即可求出方程;(2)设(,)P m n,则(,)Q m n--,求出直线AM方程,若2QF斜率不存在,求出,,M P N 坐标,直接验证是否满足题意,若2QF斜率存在,求出其方程,与直线AM方程联立,求出点M坐标,根据224AF M AF NS S=△△和2,,P F N三点共线,将点N坐标用,m n表示,,P N坐标代入椭圆方程,即可求解.【详解】(1)因为椭圆的离心率为12,12PF F△的周长为6,设椭圆的焦距为2c,则222226,1,2,a ccab c a+=⎧⎪⎪=⎨⎪+=⎪⎩解得2a=,1c=,3b=所以椭圆方程为22143x y+=.(2)设(,)P m n,则22143m n+=,且(,)Q m n--,所以AP的方程为(2)2ny xm=++①.若1m=-,则2QF的方程为1x=②,由对称性不妨令点P在x轴上方,则31,2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭,联立①,②解得1,9,2x y =⎧⎪⎨=⎪⎩即91,2M ⎛⎫⎪⎝⎭. 2PF 的方程为3(1)4y x =--,代入椭圆方程得2293(1)124x x +-=,整理得276130x x --=,1x =-或137x =,139,714N ⎛⎫∴- ⎪⎝⎭. 222219|227419|21||4AF MAF N AF S S AF ⨯⨯==≠⨯⨯△△,不符合条件.若1m ≠-,则2QF 的方程为(1)1ny x m -=---, 即(1)1ny x m =-+③. 联立①,③可解得34,3,x m y n =+⎧⎨=⎩所以(34,3)M m n +.因为224AF M AF N S S =△△,设(,)N N N x y所以2211|42|||2M N AF y AF y ⨯⨯=⨯⨯⨯,即4M N y y =. 又因为,M N 位于x 轴异侧,所以34N ny =-. 因为2,,P F N 三点共线,即2F P uuu u r 应与2F N u u u u r共线,223(1,),(1,)4N n F P m n F N x =-=--u u u u r u u u u r所以()31(1)4N n n x m -=--,即734N m x -=, 所以2273344143m n -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭+=,又22143m n +=, 所以2272839m m ⎛⎫--= ⎪⎝⎭,解得12m =,所以n =±所以点P的坐标为1,24⎛ ⎝⎭或1,2⎛ ⎝⎭. 【点睛】本题考查椭圆的标准方程以及应用、直线与椭圆的位置关系,考查分类讨论思想和计算求解能力,属于较难题.21.设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数. (1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围; (2)设()()()221ln 1e 11xH x x x x x ⎛⎫=-++--⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >.【答案】(1)(]0,2 (2)证明见解析【解析】(1)据题意可得()()()1ln 0F x f x g x x t x x=-=--<在区间()0,1上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的t 的取值范围;(2)不等式整理为2e 1e 1ln x x x x x x x -<-+,由(1)可知当2t =时,212ln x x x ->,利用导数判断函数e e 1xx x x -+的单调性从而证明e 2e 1xx x x <-+在区间()0,1上成立,从而证明对任意()0,1x ∈,都有()0H x >. 【详解】(1)解:因为函数()f x 的图象恒在()g x 的图象的下方, 所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立. 设()1ln F x x t x x=--,其中()0,1x ∈, 所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >. ①当240t -…,即02t <…时,()0F x '…, 所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<, 则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<, 所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意.综上可得,实数t 的取值范围是(]0,2. (2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-, 因为当()0,1x ∈时,e 10x x x -+>,ln 0x <, 所以()()()21e 10eln x xx x x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+. 令()()e 101xh x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++. 由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立. 综上可得,对任意()0,1x ∈,都有()0H x >成立. 【点睛】本题考查导数在研究函数中的作用,利用导数判断函数单调性与求函数最值,利用导数证明不等式,属于难题.22.在直角坐标系xOy 中,曲线C的参数方程是11cos ,421sin 2x y αα⎧=+⎪⎪⎨⎪=+⎪⎩(α是参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)在曲线C 上取一点M ,直线OM 绕原点O 逆时针旋转3π,交曲线C 于点N ,求||||OM ON ⋅的最大值.【答案】(1)sin 6π⎛⎫ρ=θ+⎪⎝⎭(2)最大值为34【解析】(1)利用22sin cos 1αα+=消去参数α,求得曲线C 的普通方程,再转化为极坐标方程.(2)设出,M N 两点的坐标,求得||||OM ON ⋅的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得||||OM ON ⋅的最大值. 【详解】(1)由11cos ,421sin ,42x y αα⎧=+⎪⎪⎨⎪=+⎪⎩消去α得曲线C的普通方程为22102x y x y +--=.所以C的极坐标方程为1cos 22ρ=θ+θ, 即sin 6π⎛⎫ρ=θ+ ⎪⎝⎭.(2)不妨设()1,M ρθ,2,3N πρθ⎛⎫+ ⎪⎝⎭,10ρ>,20ρ>,[0,2)θπ∈, 则12||||sin sin 663OM ON πππρρθθ⎛⎫⎛⎫⋅==+⋅++ ⎪ ⎪⎝⎭⎝⎭πsin cos 6θθ⎛⎫=+ ⎪⎝⎭1cos cos 22θθθ⎛⎫=+⋅ ⎪ ⎪⎝⎭112cos 2444θθ=++11sin 2264πθ⎛⎫=++ ⎪⎝⎭ 当6πθ=时,||||OM ON ⋅取得最大值,最大值为34. 【点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.23.已知函数()|2||3|f x x x =++-. (1)解不等式()32f x x ≤-;(2)若函数()f x 最小值为M ,且23(0,0)a b M a b +=>>,求13211a b +++的最小值.【答案】(1)7,3⎡⎫+∞⎪⎢⎣⎭(2)169【解析】(1)利用零点分段法,求得不等式的解集.(2)先求得()5f x ≥,即235(0,0)a b a b +=>>,再根据“1的代换”的方法,结合基本不等式,求得13211a b +++的最小值. 【详解】(1)当2x <-时,2332x x x ---+≤-,即35x ≥,无解; 当23x -≤≤时,2332x x x +-+≤-,即73x ≤,得733x ≤≤;当3x >时,2332x x x ++-≤-,即1x ≥,得3x >. 故所求不等式的解集为7,3⎡⎫+∞⎪⎢⎣⎭.(2)因为()|2||3||(2)(3)|5f x x x x x =++-≥+--=, 所以235(0,0)a b a b +=>>,则213(1)9a b +++=,1311313(1)3(21)16[213(1)]10211921192119b a a b a b a b a b ++⎛⎫⎡⎤+=++++=++≥ ⎪⎢⎥++++++⎝⎭⎣⎦.当且仅当211,235,0,0,a b a b a b +=+⎧⎪+=⎨⎪>>⎩即5,854a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故13211a b +++的最小值为169.【点睛】本小题主要考查零点分段法解绝对值不等式,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.。

【附加15套高考模拟试卷】安徽省“江淮十校”2020届高三4月联考数学(理科)试题含答案

【附加15套高考模拟试卷】安徽省“江淮十校”2020届高三4月联考数学(理科)试题含答案

晷影长(寸)
16.0
已知《易经》中记录的冬至晷影长为 130.0 寸,春分晷影长为 72.4 寸,那么《易经》中所记录的夏至的晷
影长应为( ) A.14.8 寸 B.15.8 寸 C.16.0 寸 D.18.4 寸
x sin x, x 0
2.设 f (x)
x3 1, x 0
,则函数 f (x)
的.下表为《周髀算经》对二十四节气晷影长的记录,其中
寸表示 115 寸 分(1 寸=10 分).
节气
冬至
小寒(大雪) 大寒(小雪) 立春(立冬) 雨水(霜降)
晷影长(寸) 135
节气
惊蛰(寒露) 春分(秋分) 清明(白露) 谷雨(处暑) 立夏(立秋)
晷影长(寸)
75.5
节气
小满(大暑) 芒种(小暑) 夏至
线 AB 的方程为( )
y 1x2
y 1 x3
y 1 x3
y 1x2
A. 2
B. 4
C. 2
D. 4
7.若某几何体的三视图如图所示,则这个几何体的体积是( )
A.5 B.6 C.7 D.8 8.在学校举行一次年级排球赛比赛中,李明、张华、王强三位同学分别对比赛结果的前三名进行预测:
李明预测:甲队第一,乙队第三
D.命题 p: x>0,sinx>2x-1,则 p 为 x>0,sinx≤2x-1
4.有一种“三角形”能够像圆一样,当作轮子用.这种神奇的三角形,就是以 19 世纪德国工程师勒洛的名 字命名的勒洛三角形.这种三角形常出现在制造业中(例如图 1 中的扫地机器人).三个等半径的圆两两互 相经过圆心,三个圆相交的部分就是勒洛三角形,如图 2 所示.现从图 2 中的勒洛三角形内部随机取一点, 则此点取自阴影部分的概率为

陕西省2020届高三4月教学质量检测卷数学(理)试题含解析

陕西省2020届高三4月教学质量检测卷数学(理)试题含解析

1 e∈
e12,e ,而

1 e2
=1-e22,g
1 e
=1-
1e,g(e)=1+e,∴g(x)max=g(e)=1+e,g(x)min =
( ) [ ] g
1 e
=1- 1e,∴g(x)∈ B= 1- 1e,1+e .由题
[ ] 意可知存在 x1∈[-2,2],对任意 x2∈ e12,e ,都有
{ f(x1)=g(x2)等价于 B A,即 a- 1 2- 1e≤1- 1e, 1+e≤ a+4+2e2,
9.C 【解析】本题考查三角函数图象的平移变换与性质.由
( ) 题意可得平移后的函数解析式为 y=2sin 3x+π4-3a ,
4.B 【解析】本题考查平面向量的数量积及向量的投影 .
由题意可得 |a|=2,(a-2b)·a=0 a2-2a·b=0 2|a||b|cos〈a,b〉=|a|2,∴|b|cos〈a,b〉=1,∴b在 a上的投影为 1,故选 B. 5.D 【解析】本题考查分段函数及分段函数的图象 .作 函数 f(x)的图象如图所示,由题意可得当 0<x≤1 时,f(x)≥ 0;当 x>1时,f(x)≤ 1.若 f(x)=1,则 -lnx=1或 -x2 +4x-3=1,解得 x= 1e或 x=2,则 f(a)= 1e或 f(a)=2,结合函数图象可知 a的取值有 4个,故选 D.
2020年陕西省高三教学质量检测卷(二) 数学(理科) 答案详解
1 2 3 4 5 6 7 8 9 10 11 12 CBA BDA A D CD B C
1.C 【解析】本题考查复数的运算 .由题意得 z=14+i= (14+(i1)(-1i)-i)=4(12-i)=2-2i,∴z的虚部为 -2,故 选 C. 【一题多解】∵z=14+i=2(1+1i)+(i1-i)=2(1-i)=2- 2i,∴z的虚部为 -2,故选 C.

2020届高三联考数学理科试题(含答案)

2020届高三联考数学理科试题(含答案)

2020年高三联考理科数学试题本试卷共6页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用黑色字迹钢笔或签字笔将答案填写在答题卡上对应题目的序号下面,如需改动,用橡皮擦干净后,再选填其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{/|1|1}A x x =-<, 1{0}xB xx-=≤,则A ∩(∁U B )=( ) A .(0,1) B .[0,1) C .(1, 2) D . (0,2)2. 已知x ,y ∈R ,i 为虚数单位,且(x ﹣2)i ﹣y=1,则(1)x yi -+的值为( ) A .4 B . ﹣4C . ﹣2iD . ﹣2+2i3、已知),2(ππα∈,53sin =α,则)4tan(πα-的值等于( )A .7-B .71-C .7D .714. 等比数列{}n a 中,39a =,前3项和为32303S x dx =⎰,则公q 的值是( )A. 1B.-12 C. 1或-12 D. - 1或-125.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( )A .(0,13)B .(13 ,+∞)C .(- 13,0)∪(13,+∞)D .(-∞,-13)∪(0,13)6.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为 A .π12 B . π3 C .π34 D .π3127.已知双曲线22221x y a b-=(0a >,0b >),过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点,若OM ON ⊥,则双曲线的离心率为( )A .132-+ B .132+ C .152-+ D .152+ 8. 已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=}; ②M={1(x,y )|y sin x =+};③M={2(x,y )|y log x =}; ④M={2x(x,y )|y e =-}.其中是“垂直对点集”的序号是( ) A.①② B .②④ C .①④ D .②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(8~13题)9.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的 概率为10. 设31(5)nx x-的展开式的各项系数之和为M ,二项式系数之和为N ,若240M N -=,则展开式中的常数项_________.11. 下列说法:①“x ∃∈R ,23x >”的否定是“x ∀∈R ,23x ≤”;②函数sin(2)sin(2)36y x x ππ=+- 的最小正周期是π;③命题“函数()f x 在0x x =处有极值,则0()0f x '=”的否命题是真命题;④()f x 是(,0)(0,)-∞+∞上的奇函数,0x >的解析式是()2xf x =,则0x <时的解析式为()2xf x -=-.其中正确的说法是__________.12. 已知向量a =(2,1),b =(x ,y ).若x ∈[-1,2],y ∈[-1,1],则向量a ,b 的夹角是钝角的概率是 .13.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起, 每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.( ) ▲ 14.在极坐标系中,过点(3,)3π且垂直于极轴的直线方程的极坐标方程是 (请选择正确标号填空) (1)3sin 2=ρθ (2)3cos 2=ρθ (3)3sin 2=ρθ (4)3cos 2=ρθ 15. 如图,在△ABC 和△ACD 中,∠ACB =∠ADC =90°,∠BAC =∠CAD ,⊙O 是以AB 为直径的圆,DC 的延长线与AB 的延长线交于点E . 若EB =6,EC =62,则BC 的长为 .三、解答题:本大题共6小题,共80分。

2020届高三理科数学 大题精练 14套 含答案

2020届高三理科数学 大题精练 14套 含答案
没有,请说明理由
(2) 当 AB ⊥ CD 时,点 P,Q 在什么位置时, PQ 取得最小值? 解: (1) 设 A( x1, y1 ) , B ( x2, y2 ) , P ( x0, −1) ,
则 x12 = 4 y1 , x22 = 4 y2 ,
10 读万卷书 行万里路
抛物线的方程可变形为 y = 1 x2 ,则 y' = x ,
uuur
∴ CA = (1,﹣2,0), CS = (0,﹣1,1), CB = (1,0,0),
ur 设平面 ASC 的法向量 m = (x,y,z),

mv mv
⋅ ⋅
uuuv CuuAuv CS
= =
x −
− y
2 +
y z
= =
0 0
,取
y=1,得
ur m
=
(2,1,1),
r 设平面 BSC 的法向量 n = (x,y,z),
解: (1) 由饼图得: a = 1− (6% + 9% + 27% +12% +14% + 3%) = 29% . (2) 假设同一组中的每个数据可用给定区间的中点值代替,估计样本中的 100 名学生每天平
均使用手机的平均时间在第 4 组.
7 读万卷书 行万里路
旗开得胜
(3)Q样本是从高二年级抽取的,根据抽取的样本只能估计该校高二年级学生每天使用手机
旗开得胜
20.过抛物线外一点 M 作抛物线的两条切线,两切点的连线段称为点 M 对应的切点弦已
知抛物线为 x2 = 4 y ,点 P,Q 在直线 l:y = −1上,过 P,Q 两点对应的切点弦分别为 AB,
CD

高考数学《平面解析几何》练习题及答案

高考数学《平面解析几何》练习题及答案

平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。

江西省南昌市第八中学2020届高三数学(文理)复习《直线的倾斜角与的斜率、直线方程》专题练(学生版)

江西省南昌市第八中学2020届高三数学(文理)复习《直线的倾斜角与的斜率、直线方程》专题练(学生版)

《直线的倾斜角与斜率、直线的方程》专题练专题1 直线的倾斜角与斜率1.1 求直线的倾斜角与斜率1.直线x +3y +1=0的倾斜角是2.直线3x -y +a =0(a 为常数)的倾斜角为3.直线x cos140°+y sin40°+1=0的倾斜角是4.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是5.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为6.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于7.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为8.已知三点A (2,-3),B (4,3),C ⎝⎛⎭⎫5,k 2在同一条直线上,则k 的值为9. 若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点在同一条直线上,则m 的值为10.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a 等于11.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为12.直线l 与两直线y =1,x -y -7=0分别交于P ,Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________.13.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为14.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l的斜率为15.若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为16.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为1.2 求直线的倾斜角与斜率的取值范围1.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是2.已知点(-1,2)和⎝⎛⎭⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 倾斜角的取值范围是3.直线x sin α+y +2=0的倾斜角的范围是4.直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B .⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D .⎣⎡⎦⎤π4,2π35.直线x +(a 2+1)y +1=0的倾斜角的取值范围是6.如果直线l 经过A (2,1),B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角α的取值范围是7.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线的倾斜角α的取值范围是8.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 29.设直线l 的倾斜角为α,且π4≤α≤5π6,则直线l 的斜率k 的取值范围是________.10.若直线l 过点P (-3,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围是________.11.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.13.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.14.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 的横坐标的取值范围为专题2 直线方程1.倾斜角为135°,在y 轴上的截距为-1的直线方程是2.过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程是3.过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程是4.直线过点(-4,0),倾斜角的正弦值为1010的直线方程是5.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为6.若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为7.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是.8.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为9.过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是10.直线过点(5,10),到原点的距离为5的直线方程是11.直线过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是12.过点A (4,1)且在两坐标轴上的截距相等的直线方程是13.经过点M (1,1)且在两坐标轴上截距相等的直线方程是14.经过点P(3,2),且在两坐标轴上的截距相等的直线方程是15.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为________.16.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为______________.17.过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为_________.18.直线l过点(-2,2)且与x轴、y轴分别交于点(a,0),(0,b),若|a|=|b|,则直线l的方程为__________19.若直线经过点A(-5,2),且在x轴上的截距等于在y轴上的截距的2倍,则该直线的方程为________.20.已知直线l过点P(1,3),且与x轴,y轴的正半轴所围成的三角形的面积等于6,则直线l的方程是21.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.22.过A (2,1),B (m,3)两点的直线l 的方程为23.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为24.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.25.已知菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程;(2)对角线BD 所在直线的方程.26.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.27.求过点A(1,-1)与已知直线l1:2x+y-6=0相交于B点且|AB|=5的直线方程专题3 直线方程定点图像问题1.如果A·C<0且B·C<0,那么直线Ax+By+C=0不通过()A.第一象限B.第二象限C.第三象限D.第四象限2.直线l的方程为Ax-By-C=0,若A,B,C满足AB>0且BC<0,则直线l不经过的象限是() A.第一象限B.第二象限C.第三象限D.第四象限3.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足() A.ab>0,bc<0 B.ab>0,bc>0 C.ab<0,bc>0 D.ab<0,bc<04.若3π2<α<2π,则直线x cos α+y sin α=1必不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.两直线x m -y n =a 与x n -y m=a (其中a 为不为零的常数)的图象可能是( )6.在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )7.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________.8.不论实数m 为何值,直线mx -y +2m +1=0恒过定点 .9.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是 .10.已知直线l :kx -y +1+2k =0(k ∈R).(1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S的最小值及此时直线l 的方程.专题4 直线方程的综合应用4.1 与基本不等式相结合求最值问题1.已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA →|·|MB →|取得最小值时直线l 的方程.2.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为4.2 由直线方程解决参数问题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是2.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠13.若过点P (1-a,1+a )与Q (4,2a )的直线的倾斜角为钝角,且m =3a 2-4a ,则实数m 的取值范围是________.4.已知直线l:x-my+3m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB 之积为3,则实数m的取值范围是____________.5.已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值.6.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是() A.[-2,2]B.(-∞,-2]∪[2,+∞) C.[-2,0)∪(0,2]D.(-∞,+∞)4.3 与直线方程有关的最值问题1.设点A(-1,0),B(1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是2.已知直线x+a2y-a=0(a是正常数),当此直线在x轴,y轴上的截距和最小时,正数a的值是3.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为________.4.已知动直线l0:ax+by+c-3=0(a>0,c>0)恒过点P(1,m),且Q(4,0)到动直线l0的最大距离为3,则12a+2c的最小值为.5.过点P(4,1)作直线l分别交x轴,y轴正半轴于A,B两点,O为坐标原点.(1)当△AOB面积最小时,求直线l的方程;(2)当|OA|+|OB|取最小值时,求直线l的方程.6.已知过定点P(2,0)的直线l与曲线y=2-x2相交于A,B两点,O为坐标原点,当△AOB的面积取到最大值时,直线l的倾斜角为- 11 -。

2020高考数学(理)全真模拟卷15(解析版)

2020高考数学(理)全真模拟卷15(解析版)

备战2020高考全真模拟卷15数学(理)(本试卷满分150分,考试用时120分钟)第I 卷(选择题)一、 单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z 满足()13z i i -=+(i 为虚数单位),则复数z =( )A .12i +B .12i -C .2i +D .2i -【答案】B【解析】【分析】 运用复数的除法运算法则求出复数z ,在根据共轭复数的定义求出复数z .【详解】 由题意()13z i i -=+,可变形为()()()()31324121112i i iiz i i i i ++++====+-+-.则复数12z i =-.故选:B.【点睛】本题考查了复数的除法运算法则和共轭复数的定义,属于基础题.2.已知:1:12p a -<<,[]:1,1q x ∀∈-,220,x ax --<则p 是q 成立的( )A .充分但不必要条件B .必要但不充分条件C .充分必要条件D .既不是充分条件也不是必要条件【答案】A【解析】【分析】构造函数()22f x x ax =--,先解出命题q 中a 的取值范围,由不等式()0f x <对[]1,1x ∀∈-恒成立,得出()()1010f f ⎧-<⎪⎨<⎪⎩,解出实数a 的取值范围,再由两取值范围的包含关系得出命题p 和q 的充分必要性关系。

【详解】构造函数()22f x x ax =--,对[]1,1x ∀∈-,()0f x <恒成立, 则()()110110f a f a ⎧-=-<⎪⎨=--<⎪⎩,解得11a -<<, ()1,11,12⎛⎫-- ⎪⎝⎭Q Ü,因此,p 是q 的充分但不必要条件,故选:A. 【点睛】本题考查充分必要条件的判断,一般利用集合的包含关系来判断两条件的充分必要性:(1)A B Ü,则“x A ∈”是“x B ∈”的充分不必要条件;(2)A B Ý,则“x A ∈”是“x B ∈”的必要不充分条件;(3)A B =,则“x A ∈”是“x B ∈”的充要条件;(4)A B ⊄,则“x A ∈”是“x B ∈”的既不充分也不必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
上是单调递增函数,符合题意;
当 a 0 时, f x 0 恒成立,

f
x
ax
sinx

0,
2
上是单调递减函数,符合题意;
当 0 a 1时,由 f x a cosx 0 得 cosx a ,
则存在
x0
0,
2
,使得
cosx0
a
.
当0
x
x0
时,
f
x0
0
,当
x0
n
斜率和截距的最小二乘估计分别为:
uii nu
i 1
n
ui 2
2
nu
, a u ,相关系数
i 1
n
uii nu
r
i 1
n i 1
ui2
nu
2
n
i2
i 1
n
2
.
【解】(1)令 u 1 ,则 y a b 可转化为 y a bu ,
x
x
8
åå 因为
y
360 8
45 ,所以 bˆ =
(Ⅰ)求证: CD 平面 GAC ; (Ⅱ)求二面角 P AG C 大小的正弦值. 【解】(Ⅰ)取 AD 的中点为 O ,连结 OP ,OC ,OB ,设 OB 交 AC 于 H ,连结 GH .
∵ AD∥BC , AB BC CD 1 AD 2 第 5 页 共 13 页
∵四边形 ABCO 与四边形 OBCD 均为菱形 ∴ OB AC , OB∥CD ∵ CD AC ∵ PAD 为等边三角形, O 为 AD 中点 ∴ PO AD ∵平面 PAD 平面 ABCD 且平面 PAD 平面 ABCD AD . PO 平面 PAD 且 PO AD ∴ PO 平面 ABCD ∵CD 平面 ABCD ∴ PO CD ∵ H , G 分别为 OB , PB 的中点∴ GH PO
2020 届高三数学(理)“大题精练”15(答案解析)
17.已知 ABC 的内角 A, B, C 的对边分别为 a, b, c ,若 cos2 A 1 b .
2 2 2c (1)求角 C;
(2)BM 平分角 B 交 AC 于点 M,且 BM 1, c 6 ,求 cosABM .
18.在四棱锥
在 RtACB 中, cos ABC BC ,即 cos 2 cos
AB
6
即 2 cos2 1 cos cos 3 或 2 (舍)cos ABM 3 .
6
43
4
18.在四棱锥
P
ABCD
中,
AD

BC

AB
BC
CD
1 2Leabharlann AD,G是
PB
的中点,
PAD 是等边三角形,平面 PAD 平面 ABCD .
ui yi - 8uy
i =1 8
ui2 - 8u 2
=
183.4 - 8创0.34 45 1.53 - 8´ 0.115
=
61 = 0.61
100 ,
i =1
则 a y bu 45 100 0.34 11,所以 y 11100u ,
所以 y 关于 x 的回归方程为 y 11 100 ; x
(2) y 与 1 的相关系数为: x
8
r2
ui yi nuy
i 1
8
ui2
i 1
8u
2
8 i 1
yi2
8y2
61 0.61 6185.5
61 61.4
0.99 ,
因为 r1 r2 ,所以用反比例函数模型拟合效果更好,
当 x 10 时, y 100 11 21 (元), 10
(1)若函数
f
x

0,
2
上是单调函数,求
a
的取值范围;
(2)当 a 1时,证明 f (x) 1 x3 . 6
【解】(1)由 f x ax sinx 得导函数 f x a cosx ,其中 0 cosx 1.
当 a 1 时, f x 0 恒成立,

f
x
ax
sinx

0,
问:
S PAB S PCD
是否有最小值?若有,求出最小值;若没有,请说明理由.
第 3 页 共 13 页
22.在直角坐标系
xOy
中,曲线
C
的参数方程是
x y
8k 1 k2 3(1 k 2
1 k2
)

k
为参数),以坐标
原点 O 为极点, x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 cos( ) 3 2 .
5
6
7
8
y
112
61
44.5
35
30.5
28
25
24
根据以上数据,绘制了散点图.
观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型 y a b 和指 x
数函数模型 y cedx 分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回 归方程为 y 96.54e0.2x , ln y 与 x 的相关系数 r1 0.94 .
由(Ⅰ)可知,平面 AGC 的一个法向量 CD 3,1, 0 .
n
CD
∴二面角 P AG C 的平面角的余弦值 cos
n
CD
2 2
3 5
15 5.
二面角 P AG C 大小的正弦值为 10 . 5
第 6 页 共 13 页
19.设函数 f (x) ax sin x, x (0, ), a 为常数 2
参考数据(其中 ui
1 xi
):
8
ui yi u
i 1
2
u
8
ui2
8
yi
8
yi2
0.61 6185.5 e2
i 1
i 1
i 1
183.4
0.34
0.115
1.53
360
22385.5 61.4
0.135
(1)用反比例函数模型求 y 关于 x 的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到 0.01),并用其估计产 量为 10 千件时每件产品的非原料成本; (3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场 调研数据,若该产品单价定为 100 元,则签订 9 千件订单的概率为 0.8,签订 10 千件订 单的概率为 0.2;若单价定为 90 元,则签订 10 千件订单的概率为 0.3,签订 11 千件订
uii nu
i 1
n
ui 2
2
nu
, a u ,相关系数
i 1
n
uii nu
r
i 1
n i 1
ui2
nu
2
n
i2
i 1
n
2
.
21.已知中心在原点的椭圆
C1
和抛物线
C2
有相同的焦点(1,0),椭圆
C1
过点
G
1,
3 2

抛物线 C2 的顶点为原点.
(1)求椭圆 C1 和抛物线 C2 的方程;
第 8 页 共 13 页
单的概率为 0.2;若单价定为 90 元,则签订 10 千件订单的概率为 0.3,签订 11 千件订
单的概率为 0.7.已知每件产品的原料成本为 10 元,根据(2)的结果,企业要想获得更 高利润,产品单价应选择 100 元还是 90 元,请说明理由.
参考公式:对于一组数据 u1,1 ,u2,2 ,…,un ,n ,其回归直线 u 的
4 (1)曲线 C 的普通方程和直线 l 的直角坐标方程;
(2)求曲线 C 上的点到直线 l 的距离的取值范围.
23.已知 a, b, c 为正数,且 a b c 2 ,证明:
(1) ab bc ac 4 ; 3
(2) 2 a 2 b 2 c 8 . bca
第 4 页 共 13 页
(2)设点 P 为抛物线 C2 准线上的任意一点,过点 P 作抛物线 C2 的两条切线 PA,PB,其
中 A、B 为切点.
设直线 PA,PB 的斜率分别为 k1,k2,求证:k1k2 为定值;
②若直线 AB 交椭圆 C1 于 C,D 两点,S△PAB,S△PCD 分别是△PAB,△PCD 的面积,试
x
2
时,
f
x0
0 ,所以
f
x
在 0,
x0
上单调递减,在
x0 , 2
上单调递增,

f
x

0,
2
上是不是单调函数,不符合题意.
综上, a 的取值范围是 , 0 1, .
(2)由(1)知当 a 1时, f x x sinx f 0 0 ,

sinx
x
,故
sin 2
x 2
【解】(1)由题
1
b
cos A b
2
2 2c
c
cos Asin C sin B sin( A C) sin Acos C cos Asin C
sin A cos C 0 又 A (0, )sin A 0cos C 0C 2
(2)记 ABM ,则 MBC ,在 RtMCB 中, CB cos ,
6
20.某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的
非原料成本 y (元)与生产该产品的数量 x (千件)有关,经统计得到如下数据:
x
1
2
3
4
5
6
7
8
y
112
相关文档
最新文档