考研数学概率统计 全书考点梳理
概率统计知识点总结考研
概率统计知识点总结考研概率统计是数学的一个分支,它研究的是随机现象的规律性和数量关系,因此在现代世界中具有非常重要的地位。
在考研数学中,概率统计是一个重要的知识点,涉及到的内容非常丰富,包括概率基本概念与分类、条件概率、独立性、期望与方差、离散型随机变量、连续型随机变量、常用分布、大数定律和中心极限定理、参数估计与假设检验等等。
本文将就以上内容进行总结,以便广大考研学子能够更好地掌握概率统计知识。
一、概率基本概念与分类1.1 概率的基本概念概率是描述事物出现的可能性的一种数值。
在现实生活中,随机现象是普遍存在的,其结果的确定是不可预测的,因此需要用概率来描述随机现象的规律性。
概率的计算公式为P(A)=N(A)/N(S),其中P(A)为事件A发生的概率,N(A)为事件A发生的次数,N(S)为随机试验的次数。
概率的性质包括非负性、规范性、可列可加性和互斥事件概率的加法规则等。
1.2 概率的分类根据随机试验的结果空间和概率分布的不同,概率可分为等可能概率、经典概率、几何概率、条件概率和伯努利概率等。
每种概率都具有其特定的应用场景和计算方法。
二、条件概率、独立性2.1 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
其计算公式为P(A|B)=P(AB)/P(B)。
条件概率的计算方法在实际问题中具有重要的应用价值,如生病的概率、考试的概率等。
2.2 独立性两个事件A与B独立,是指事件A的发生与B的发生互相独立,不影响彼此。
可用P(AB)=P(A)P(B)来计算两个事件的独立性。
在实际问题中,独立事件具有较强的应用性,如掷硬币、抛骰子等。
三、期望与方差3.1 期望期望是随机变量取值的平均数,它是描述一个随机变量平均水平的数值,也被称为均值。
离散型随机变量的期望计算公式为E(X)=∑X*P(X),连续型随机变量的期望计算公式为E(X)=∫xf(x)dx。
3.2 方差方差是随机变量取值与其期望之差的平方的数学期望,用以描述随机变量取值的离散程度。
考研概率统计必须掌握核心知识点
考研概率统计必须掌握核心知识点●离散分布●二项分布●E(X)=np●D(X)=np(1-p)●泊松分布●E(X)=\lambda●D(X)=\lambda●几何分布●E(X)=\frac{1}{p}●D(X)=\frac{1-p}{p^2}●超几何分布●E(X)=\frac{nM}{N}●连续分布●均匀分布●E(X)=\cfrac{b+a}{2}●D(X)=\cfrac{(b-a)^2}{12}●指数分布●E(X)=\cfrac{1}{\lambda}●D(X)=\cfrac{1}{\lambda ^2}●正态分布●E(X)=\mu●D(X)=\sigma ^2●二维●联合分布函数●边缘分布函数●条件分布函数●随机变量函数分布●公式法(绝对单调)●分布函数法●数字特征●期望的性质●E(X)=\int_{-\infty}^{+\infty} xf(x)dx 绝对收敛●E(c)=c●E(cX)=cE(X)●E(X+Y)=E(X)+E(Y)●若XY独立,E(XY)=E(X)E(Y)●方差的性质●D(X)=E(X^2)-E^2(X)●D(c)=0●D(cX)=c^2D(X)●D(aX+bY)=a^2D(X)+b^2D(Y)+2abCov(X,Y)●若XY独立,D(XY)=D(X)D(Y)+D(X)E^2(Y)+D(Y)E^2(X) \geqslantD(X)D(Y)●若 D(X) 存在,D(X)=E[(X-E^2(X))^2] \leqslant E((X-c)^2)●协方差●Cov(X,Y)=E(XY)-E(X)E(Y)●Cov(X,X)=D(X)●Cov(aX+b,cY+d)=acCov(X,Y)●Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)●XY独立时,协方差=0●Cov(X,c)=0●相关系数●\rho _{x,y} =\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}●\rho _{x,y}=0 \iff Cov(X,Y)=0 ,XY不相关●规范性:| \rho _{x,y} | =1的充要条件为存在线性关系●Y=aX+b 且 a>0 , \rho _{x,y} =1●Y=aX+b 且 a<0 , \rho _{x,y} =-1●独立与不相关●XY独立,则一定不相关:反之,不成立●XY的联合分布是二维正态分布,XY独立的充要条件是XY不相关●XY都服从0-1分布,XY独立的充要条件是XY不相关●XY不相关 \iff Cov(X,Y)=0 \iff E(XY)=E(X)E(Y) \iff D(X\pmY)=D(X)+D(Y)●大数定律●切比雪夫不等式●P\{ | X - \mu |\geqslant \epsilon \} \leqslant\ \frac{\sigma ^2}{\epsilon^2}●P\{ | X - \mu | < \epsilon \} \leqslant\ 1-\frac{\sigma ^2}{\epsilon ^2}●伯努利大数定律n_A是n重伯努力实验中A事件的发生次数,P(A)=p●\lim\limits_{n \to \infty} P\{ | \frac{n_A}{n}-p| < \epsilon \} =1●切比雪夫大数定律独立,存在期望和方差,且方差有界●\lim\limits_{n \to \infty} P\{ | \frac{1}{n}\sum\limits_{k=1}^{n}X_k-\frac{1}{n}\sum\limits_{k=1}^{n}E(X_k)| < \epsilon \} =1●辛勤大数定律独立且同分布,期望存在E(X_i)=\mu●\lim\limits_{n \to \infty} P\{ | \frac{1}{n}\sum\limits_{k=1}^{n}X_k-\mu| < \epsilon \} =1●中心极限定律●列维-林德伯格中心极限定理独立,同分布,期望方差存在●\lim\limits_{n \to \infty} P\{ \frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n} \sigma} \leqslant x \} = \phi(x)●棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为其极限分布定理)Y_n \sim B(n,p)●\lim\limits_{n \to \infty} P\{ \frac{Y_n-np}{\sqrt{npq} } \leqslant x \} =\phi(x)●抽样分布●卡方分布●\chi^2 = X_1^2+X_2^2+……+X_n^2服从自由度为n●可加性:●\chi_1^2 \sim \chi^2(n_1),\chi_2^2 \sim \chi^2(n_2),相互独立●\chi_1^2 + \chi_2^2 \sim \chi^2(n_1+n_2)●E(\chi^2)=n,D(\chi^2)=2n●t分布●X \sim N(0,1) ,Y\sim\chi^2(n),独立●t=\frac{X}{\sqrt{Y/n}}服从自由度为n的t分布●X \sim t(n),f(x) 为偶函数●X \sim t(n) ,n充分大时,X近似服从N(0,1)●X \sim t(n),E(X)=0,D(X)=\frac{n}{n-2}●F分布●U\sim\chi^2(m),V\sim\chi^2(n)且UV独立●F=\frac{U/m}{V/n} ,F \sim F(m,n)●X \sim F(m,n) ,\frac{1}{X} \sim F(n,m)●X\sim t(n), X^2 \sim F(1,n)●●参数估计●点估计●矩估计法●E(X)=\overline{X}●最大似然估\sum\limits_{i=1}^{n}●写似然函数L( \theta ) = \prod\limits _{i=1}^{n}f(x_i;\theta)●取对数●求导●最大似然估计量用大写,最大似然估计值用小写●无偏性 E(\hat{\theta})= \theta●有效性 D(\theta_1)<D(\theta_2)●一致性 \lim\limits_{n \to \infty} P\{ | \hat{\theta}-\theta | \leqslant\epsilon \} = 1●区间估计●\mu构造统计量●\sigma^2 未知,Z=\cfrac {\overline{X}-\mu}{\sigma/ \sqrt{n}} \simN(0,1)●\sigma^2已知,Z=\cfrac {\overline{X}-\mu}{S/ \sqrt{n}} \sim t(n-1)@\sigma^@Z=\cfrac {\overline{X}-\mu}{S/ \sqrt{n}} \sim t(n-1)●\sigma^2构造统计量●\mu未知,\cfrac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)●\mu已知,\cfrac{1}{\sigma^2} \sum\limits_{i=1}^{n}(X_i-\mu)^2\sim \chi^2(n)●置信区间●假设检验●过程●提出假设H_0和备择假设H_1●构建检验统计量●写出拒绝域●双边检验●单边检验●判断●= 必须在H_0中●双正态总体均值之差的检验●\sigma_1^2,\sigma_2^2已知●Z=\cfrac{ \overline{X} -\overline{Y} }{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} \sim N(0,1)●未知,但相等●t=\cfrac{ \overline{X} - \overline{Y} }{S_W\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2)●S_W=\sqrt{\cfrac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}}。
考研数学一大纲重点梳理概率论与数理统计部分
考研数学一大纲重点梳理概率论与数理统计部分概率论和数理统计是考研数学一科目中的重要部分,本文将针对概率论与数理统计这一大纲进行重点梳理。
首先,我们将介绍概率论的基本概念和理论,然后详细讨论数理统计的相关内容。
一、概率论的基本概念和理论1. 概率的基本概念概率是研究随机现象的定量描述,用来描述事件发生的可能性大小。
概率可以用数值表示,范围在0到1之间,其中0代表不可能事件,1代表必然事件。
2. 概率的运算规则概率的运算规则包括加法规则和乘法规则。
加法规则适用于互斥事件,乘法规则适用于独立事件。
3. 随机变量和概率分布随机变量是用来描述随机现象的变量,可以分为离散随机变量和连续随机变量。
概率分布描述了随机变量的取值与概率之间的关系,常见的概率分布包括二项分布、泊松分布和正态分布等。
4. 期望和方差期望是随机变量的平均值,用来描述随机变量的集中趋势;方差是随机变量与期望之间的差异程度,用来描述随机变量的离散程度。
二、数理统计的相关内容1. 抽样与抽样分布抽样是指从总体中选取一部分个体进行观察和研究的过程,抽样分布是指样本统计量的概率分布。
常见的抽样分布包括正态分布、t分布和F分布等。
2. 参数估计参数估计是利用样本数据来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
点估计是用单个数值来估计参数的值,区间估计是用一个区间来估计参数的值。
3. 假设检验假设检验是根据样本提供的信息,对总体的某个参数是否满足某种假设进行判断。
假设检验可以分为单侧检验和双侧检验,常见的假设检验方法包括z检验和t检验等。
4. 方差分析方差分析是用来比较两个或多个总体间均值差异是否显著的统计方法。
方差分析可以分为单因素方差分析和多因素方差分析,常用的方法包括单因素方差分析和双因素方差分析等。
5. 回归分析回归分析是用来研究自变量与因变量之间的关系的方法。
简单线性回归是一种自变量和因变量之间存在线性关系的回归分析方法,多元线性回归是多个自变量和一个因变量之间的回归分析方法。
考研数学概率论重要考点总结
考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
考研概率统计重点内容及常见题型
考研概率统计重点内容及常见题型概率统计是考研数学中非常重要的一门课程,其重点内容主要包括概率论和数理统计两部分。
下面,将会从两个方面介绍概率统计的重点内容以及常见的题型。
一、概率论1.概率的基本概念及性质(1)随机试验、样本空间、随机事件的概念(2)概率的定义及意义2.事件的独立性和条件概率及其应用(1)事件的独立性与概率乘法公式(2)全概率公式和贝叶斯公式3.随机变量及其分布(1)随机变量的概念和分类(2)分布函数及其性质(4)连续型随机变量和概率密度函数(5)期望、方差、标准差及其性质(6)常见的离散型和连续型随机变量的分布及其参数的计算4.大数定律和中心极限定理(1)大数定律及其应用(2)中心极限定理及其应用二、数理统计1.统计学基础知识(1)总体与样本的概念(2)统计量的概念、常见的统计量及其性质(3)抽样分布及其统计量的分布2.参数估计(1)点估计的基本概念和方法(2)矩估计和最小二乘估计(3)极大似然估计和区间估计3.假设检验(2)双侧检验、单侧检验、置信区间估计(3)假设检验中的误差及其解决方法4.方差分析和回归分析(2)单因素方差分析、双因素方差分析(3)简单线性回归分析的基本概念和步骤(4)最小二乘法拟合直线的原理、性质常见题型对于概率统计这门课程,主要考察学生对于基础概念和基本理论掌握情况。
其中,选择题和计算题是比较常见的题型。
选择题:主要考察学生对于基础概念和基本理论的理解,也需要学生具备一定的推理和分析能力。
例如:(1)在进行统计时,抽取的样本应该如何选择?A. 无规律地抽取B. 样本应该尽量多而不必精C. 样本应当是总体中的代表D. 样本应该是存在共性的现象(2)(单选)问题:“已知P(A)=0.2, P(B|A)=0.6, 求P(AB)”。
A. 0.120计算题:主要考察学生对于统计学基础知识和统计方法的掌握,以及对样本数据处理和分析能力的考察。
例如:(1)在某项产品的生产中,一个工厂的生产月份销售数据如下:240、250、360、250、280、310、270、370、280、290。
考研概率论与数理统计知识点梳理
考研概率论与数理统计知识点梳理概率论与数理统计是考研数学的重要组成部分,对于数学专业的考生来说,掌握好概率论与数理统计的知识点是至关重要的。
本文将对考研概率论与数理统计的知识点进行梳理,以帮助考生更好地备考。
一、概率论知识点梳理1. 事件与概率概率论的基本概念是事件和概率。
事件是指随机试验中一些可能出现的事情,而概率则是事件发生的可能性大小。
概率的计算方法包括古典概型、几何概型和统计概型等。
2. 随机变量与概率分布随机变量是指随机试验结果的数值表示,概率分布是指随机变量可能取值的概率分布情况。
常见的概率分布包括离散型随机变量的二项分布和泊松分布,连续型随机变量的正态分布和指数分布等。
3. 随机变量的数字特征随机变量的数字特征是描述随机变量性质的统计量,包括数学期望、方差、协方差和相关系数等。
这些数字特征可以帮助我们更好地理解和描述随机变量的性质。
4. 大数定律与中心极限定理大数定律和中心极限定理是概率论的两个重要定理。
大数定律指出,随着随机试验次数的增加,随机变量的频率逐渐趋近于其概率。
中心极限定理则指出,若随机变量满足一定条件,其和的分布将趋于正态分布。
二、数理统计知识点梳理1. 统计数据的整理与分析数理统计的基本任务是整理和分析统计数据。
常用的统计图表包括频数分布表、频率分布直方图和箱线图等,可以直观地展示数据的分布情况。
2. 抽样与抽样分布抽样是从总体中选取样本进行统计推断的方法,抽样分布是样本统计量的概率分布。
常见的抽样分布包括正态分布的抽样分布和t分布的抽样分布等。
3. 参数估计与假设检验参数估计是利用样本统计量来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
假设检验是利用样本数据对总体参数进行检验的方法,常用的假设检验方法包括单样本假设检验和双样本假设检验等。
4. 方差分析与回归分析方差分析是用于比较两个或多个总体均值是否有显著差异的方法,回归分析是用于建立变量之间关系的方法。
考研数学概率论重点整理
考研数学概率论重点整理概率论是数学中的一个重要分支,它研究随机事件的规律性。
考研数学中的概率论是一个重要的考点,在准备考试时需要重点整理和复习。
本文将从概率的基本概念、常见的概率分布以及概率计算方法等方面进行重点整理,帮助考生更好地复习概率论知识。
一、概率的基本概念1.随机试验和样本空间随机试验是指在相同的条件下可以重复进行的实验,其结果不确定。
样本空间是随机试验的所有可能结果构成的集合。
2.随机事件和事件的概率随机事件是样本空间的一个子集,表示随机试验的某种结果。
事件的概率是指事件发生的可能性大小,用P(A)表示。
3.频率与概率的关系频率是指随机事件在大量重复试验中出现的次数与总试验次数的比值。
当试验次数趋于无穷时,频率趋近于概率。
二、常见的概率分布1.离散型随机变量离散型随机变量是只取有限或可列无限个数值的随机变量,其概率分布可以用概率函数或概率分布列表示。
常见的离散型随机变量包括二项分布、泊松分布等。
2.连续型随机变量连续型随机变量是取值范围为一段连续区间的随机变量,其概率分布可以用概率密度函数表示。
常见的连续型随机变量包括正态分布、指数分布等。
三、概率计算方法1.加法定理与乘法定理加法定理适用于求两个事件的并、或概率。
乘法定理适用于求两个事件的交概率。
2.条件概率与贝叶斯定理条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
贝叶斯定理是由条件概率推导出来的计算公式,用于计算两个事件之间的概率关系。
3.独立性和互斥性独立事件是指两个事件之间相互不影响的事件,其概率计算有简化的特点。
互斥事件是指两个事件不能同时发生的事件。
四、重点题型解析1.题型一:概率计算题概率计算题是考试中的常见题型,主要涉及到加法定理、乘法定理、条件概率等知识点的应用。
解答此类题目时,需要准确理解题目要求,运用相应的概率计算方法进行计算。
2.题型二:随机变量的分布函数与密度函数求解此类题目主要考察对于离散型随机变量和连续型随机变量的概率密度函数和分布函数的求解能力。
考研数学三必背知识点概率论与数理统计
概率论与数理统计必考知识点一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质bP=≤)FX(b)()P-aX≤b<=)F(()bF(a2、离散型随机变量3..连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布Λ2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j iΛ2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E ΛΛ+=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++8五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X Λ1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X Λ1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X Λ1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n Λ=η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X Λ的联合分布为)(),(121k nk n x F x x x F =∏=Λ2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距:Λ2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1Λ(6)次序统计量:设样本),(21n X X X Λ的观察值),(21n x x x Λ,将n x x x Λ21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤Λ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤Λ为样本),(21n X X X Λ的次序统计量。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
2024考研数学概率论重要考点总结
2024考研数学概率论重要考点总结2024考研数学考试中的概率论部分是一个非常重要的考点,对于考生来说,掌握好概率论的相关知识点是非常关键的。
下面是2024考研数学概率论重要考点的总结,希望能够帮助到考生。
一、概率基本概念:1. 随机试验、样本空间、随机事件;2. 古典概型、几何概型、随机变量概型;3. 定义域、值域、事件域;4. 频率与概率的关系。
二、概率公理与概率的性质:1. 概率公理;2. 概率的性质(非负性、规范性、可列可加性);3. 条件概率、乘法公式;4. 全概率公式、贝叶斯公式。
三、随机变量的概念:1. 随机变量的定义;2. 离散型随机变量与连续型随机变量;3. 离散型随机变量的概率分布律、累积分布函数;4. 连续型随机变量的概率密度函数、累积分布函数;5. 随机变量的数学期望、方差、标准差。
四、常见概率分布:1. 二项分布;2. 泊松分布;3. 均匀分布;4. 正态分布。
五、多维随机变量与联合分布:1. 二维随机变量的联合分布律、联合分布函数;2. 边缘分布;3. 条件分布。
六、独立性与随机变量的函数的分布:1. 独立性的概念;2. 独立随机变量的数学期望、方差;3. 独立连续型随机变量的函数的分布;4. 独立离散型随机变量的函数的分布。
七、大数定律与中心极限定理:1. 大数定律的概念与几种形式;2. 切比雪夫不等式;3. 中心极限定理的概念;4. 利用中心极限定理进行概率近似计算。
八、随机过程:1. 随机过程的概念;2. 马尔可夫性;3. 随机过程的平稳性。
九、统计量与抽样分布:1. 统计量的概念;2. 抽样分布与大样本正态分布近似;3. 正态总体均值与方差的推断。
以上就是2024考研数学概率论部分的重要考点总结,希望对考生有所帮助。
考生要多进行习题的练习和考点的整理与总结,提高自己的概率论水平,为考试做好准备。
祝考生取得好成绩!。
考研数学《概率论与数理统计》知识点总结
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
考研数学《概率论与数理统计》知识点总结
第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件.事件关系: 1.A ⊂B ,A 发生必导致B 发生. 2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 与B 互不相容(互斥),A 与B 不能同时发生,基本事件两两互不相容.6.A B=S 且A B=Ø,A 与B 互为逆事件或对立事件,A 与B 中必有且仅有一个发生,记B=A S A -=.事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 与B ,A 与B ,A 与B 也相互独立.第二章 随机变量及其分布(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),k n kk n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a a b x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b ll c X c P -=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(exp[21)(22σμσπ--=x x f ;t t x F xd ]2)(exp[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2exp[21)(2π.即μ=0,ζ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F . 正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3ζ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3ζ,μ+3ζ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.应用: Y=aX +b ~N(a μ+b ,(|a |ζ)2).第三章 多维随机变量及其分布二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质: 1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(. 4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似. 边缘分布:F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*.连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,ζ12,ζ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =||条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ). 正态卷积:若X 和Y 相互独立且X ~N (μ1,ζ12),记Y ~N (μ2,ζ22),则对Z=X+Y 有Z ~N (μ1+μ2,ζ12+ζ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t tαα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x x zx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则: ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y 是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为ζ(X ),ζ(X )= . 通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1. 正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i 的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c cc c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.n 维正态分布:)}()(21exp{det )2(1),,,(1T 221μX C μX C ---=-n n x x x f π ,T21T 21),,,(),,,(n nx x x μμμ ==μX . 性质:1.n 维正态随机变量(X 1,X 2,…,X n )的每一个分量X i (i =1,2,…,n )都是正态随机变量,反之,亦成立. 2.n 维随机变量(X 1,X 2,…,X n )服从n 维正态分布的充要条件是X 1,X 2,…,X n 的任意线性组合l 1X 1+l 2X 2+…+l n X n 服从一维正态分布(其中l 1,l 2,…,l n 不全为零).3.若(X 1,X 2,…,X n )服从n 维正态分布,且Y 1,Y 2,…,Y k 是X j (j =1,2,…,n )的线性函数,则(Y 1,Y 2,…,Y k )也服从多维正态分布.4.若(X 1,X 2,…,X n )服从n 维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.)(x D第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=ζ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=ζk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,X n是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞yyfnPn)(222d)()}({,则称)(2nαχ为)(2nχ的上α分位点.~ 近似的min Q1 M Q3 max当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布:记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点. 由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,则有),(~2n N X σμ,其中X 是样本均值. 定理二:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 与2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 与Y 1,Y 2,…,Y n 2分别是来自N (μ1,ζ12)和N (μ2,ζ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当ζ12=ζ22=ζ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ.设总体X 均值μ及方差ζ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ. 最大似然估计法: 似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉与θ无关的因式项.θˆ即为)(θL 最大值,可由方程0)(d d =θθL 或0)(ln d d =θθL 求得. 当多个未知参数θ1,θ1,…,θk 时:可由方程组 0d d =L i θ或0ln d d =L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ). 结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m e t t F -=>}{,则)(}){()(1i m i m n m m n t P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21n X X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,ζ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μζ2已知 )1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μζ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -= ζ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2ζ12,ζ22已知 )1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2ζ12=ζ22=ζ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ()12112--+±-n n S tY X w α2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμ2)1()1(2122 22112-+-+-=nnS nSnSwζ12/ζ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X~N(μ,ζ2),两个总体X~N(μ1,ζ12),Y~N(μ2,ζ22).第八章假设实验定义:H0:原假设或零假设,为理想结果假设;H1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H0实际为真时,却拒绝H0.第Ⅱ类错误:H0实际为假时,却接受H0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P{当H0为真拒绝H0}≤α,α称为显著水平.拒绝域:取值拒绝H0.临界点:拒绝域边界.双边假设检验:H0:θ=θ0,H1:θ≠θ0.右边检验:H0:θ≤θ0,H1:θ>θ0.左边检验:H0:θ≥θ0,H1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H0备择假设H1检验统计量拒绝域1 ζ2已知μ≤μ0μ>μ0nXZσμ-=z≥zαμ≥μ0μ<μ0z≤-zαμ=μ0μ≠μ0|z|≥zα/22 ζ2未知μ≤μ0μ>μ0nSXt0μ-=t≥tα(n-1) μ≥μ0μ<μ0t≤-tα(n-1) μ=μ0μ≠μ0|t|≥tα/2(n-1)3 ζ1,ζ2已知μ1-μ2≤δμ1-μ2>δ222121nnYXZσσδ+--=z≥zαμ1-μ2≥δμ1-μ2<δz≤-zαμ1-μ2=δμ1-μ2≠δ|z|≥zα/24 ζ12=ζ22=ζ2未知μ1-μ2≤δμ1-μ2>δ1211--+--=nnSYXtwδ2)1()1(212222112-+-+-=nnSnSnSwt≥tα(n1+n2-2) μ1-μ2≥δμ1-μ2<δt≤-tα(n1+n2-2)μ1-μ2=δμ1-μ2≠δ|t|≥tα/2(n1+n2-2)5 μ未知ζ2≤ζ02ζ2>ζ02222)1(σχSn-=χ2≥χα2(n-1)ζ2≥ζ02ζ2<ζ02χ2≤χ21-α(n-1)ζ2=ζ02ζ2≠ζ02χ2≥χ2α/2(n-1)或χ2≤χ21-α/2(n-1)6 μ1,μ2未知ζ12≤ζ22ζ12>ζ222221SSF=F≥Fα(n1-1,n2-1) ζ12≥ζ22ζ12<ζ22F≤F1-α(n1-1,n2-1)ζ12=ζ22ζ12≠ζ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
考研概率统计重点内容及常见题型
考研概率统计重点内容及常见题型概率论和数理统计是考研数学中的重要内容之一,本文将着重介绍考研概率统计的重点内容及常见题型。
概率论概率论是一门研究随机现象的定量描述规律和控制方法的学科。
通常把概率论分为古典概率和现代概率两个部分,其中古典概率是研究有限样本空间的情况,而现代概率则主要研究无限个样本空间的情况。
重点内容:1. 概率的基本定义和性质:包括概率的三大公理、条件概率、乘法公式、全概率公式、贝叶斯公式等。
2. 随机变量及其分布:包括随机变量的定义、离散随机变量与其分布律、连续随机变量与其概率密度函数、分布函数以及常见的分布如正态分布、泊松分布、指数分布、均匀分布等。
3. 数学期望与方差:包括连续和离散随机变量的数学期望公式和性质、方差公式和性质,两个随机变量的线性性质等。
4. 大数定律和中心极限定理:包括切比雪夫不等式、辛钦大数定律和中心极限定理的主要内容和应用。
常见题型:2. 分布计算题:考察各种概率分布的定义、性质,以及定量计算随机变量的概率或期望、方差等。
数理统计数理统计是利用数学的方法研究随机现象的规律性、提取其中的信息和定量的评价不确定性的学科。
它是概率论的一个分支和应用领域。
1. 统计量及其分布:包括样本均值、样本方差、样本协方差、样本相关系数等常见统计量的定义、性质和分布,如t分布、卡方分布、F分布等。
2. 参数估计与假设检验:包括点估计和区间估计(如置信区间、最大似然估计等),显著性水平、拒绝域、p值等假设检验的基本概念和方法。
3. 方差分析和回归分析:包括单因素方差分析和多因素方差分析的原理和方法,以及回归分析的基本模型、方法和应用。
4. 非参数检验与贝叶斯统计:包括基本的非参数检验方法和贝叶斯统计的基本原理与方法等。
1. 参数估计题:考察最大似然估计、置信区间估计等方法,并要求计算或推导统计量的分布。
2. 假设检验题:考察显著性水平、拒绝域、p值等的概念和应用。
3. 方差分析题和回归分析题:考察该方法的基本原理和步骤,并要求数据处理、回归系数估计和模型选择等。
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
新考研数学概率论重要考点总结
新考研数学概率论重要考点总结概率论是考研数学中的重要组成部分,对于广大考生来说,掌握概率论的考点是取得高分的关键。
本文将对新考研数学概率论的重要考点进行总结,帮助大家系统地梳理和掌握这部分知识。
一、随机事件及其概率1.随机事件的定义及分类:必然事件、不可能事件、随机事件。
2.事件的运算:并、交、补运算。
3.概率的基本性质:概率非负性、概率规范性、概率公理。
4.条件概率与独立事件的概率:条件概率的定义与计算、独立事件的概率计算。
二、离散型随机变量及其分布1.离散型随机变量的定义及其性质。
2.概率质量函数(概率分布列):概率质量函数的定义、性质、计算。
3.期望值、方差与标准差:期望值的定义与计算、方差与标准差的定义与计算。
4.离散型随机变量的分布函数:分布函数的定义、性质、计算。
三、连续型随机变量及其分布1.连续型随机变量的定义及其性质。
2.概率密度函数(概率分布):概率密度函数的定义、性质、计算。
3.期望值、方差与标准差:期望值的定义与计算、方差与标准差的定义与计算。
4.连续型随机变量的分布函数:分布函数的定义、性质、计算。
四、大数定律与中心极限定理1.大数定律:弱大数定律、强大数定律。
2.中心极限定理:中心极限定理的假设、及其应用。
五、随机变量的数字特征1.随机变量的数字特征:期望值、方差、协方差、相关系数。
2.期望值与方差的性质:线性性质、转置性质、共轭性质。
3.协方差与相关系数:协方差的定义与计算、相关系数的定义与计算。
通过对以上考点的总结,相信大家对新考研数学概率论的重要考点有了更加清晰的认识。
在复习过程中,希望大家能够系统地掌握这些知识点,不断提高自己的解题能力,为考研数学取得高分奠定坚实的基础。
《篇二》在过去的工作中,我们的重点主要集中在以下几个方面:1.提升工作效率:通过优化工作流程和引入新技术,提高团队的整体工作效率。
2.加强团队协作:通过定期的团队活动和沟通,增强团队成员之间的协作能力和团队凝聚力。
考研数学概率统计考点详解
考研数学概率统计考点详解考研是大多数人实现升学、提升职业发展的一个重要途径。
而数学概率统计作为一门重要的学科,经常被列入考研数学的必考范围。
了解数学概率统计的考点和知识点是非常重要的,只有在弄清考点后,我们才能更好地复习和备考。
本篇文章将介绍2023年考研数学概率统计的考点内容及其详解,让大家能够更好地掌握考试重点,提高成绩。
一. 概率基本概念概率基本概念是概率统计中的重要考点,理解这些概念能让我们更好地掌握概率的本质。
在考试中,通常会涉及下列内容:1.样本空间与事件在概率统计中,样本空间是指一个试验所有可能的结果的集合,以 $\Omega$ 代表,而事件是样本空间的子集,以 $A$ 或 $B$ 表示。
在考试中,通常要求解事件的概率,即 $P(A)$。
2.概率的定义与性质概率的定义是指事件发生的可能性大小的度量。
根据定义可知,概率的大小介于0和1之间,其中0表示事件不可能发生,1表示事件一定会发生。
此外,还需要了解概率的性质,如加法公式、乘法公式和条件概率公式等。
3.事件的独立性与相关性当两个事件发生的概率互不影响时,就称这两个事件相互独立;当两个事件发生的概率存在某种关系时,就称这两个事件相关。
在考试中,需要考虑事件的独立性或相关性,从而求出相应的概率。
二. 随机变量和分布函数另一个重要的考点是随机变量和分布函数。
我们需要了解以下内容:1. 随机变量的概念及其分类随机变量是指对试验结果的数值化描述,它可以分为离散型和连续型。
考试中经常涉及到随机变量的概率分布和数学期望,例如二项分布、泊松分布和正态分布等。
2. 分布函数的定义分布函数是指随机变量在某一点的取值概率,通常用 $F(x)$ 表示。
在考试中,通常要求求解分布函数的概率。
3. 数学期望与方差数学期望是随机变量的平均值,通常用 $E(X)$ 表示。
方差是随机变量取值离散程度的度量值,通常用 $Var(X)$ 或$\sigma^{2}$ 表示。
考研统计与概率知识点归纳
考研统计与概率知识点归纳统计学是研究数据收集、处理、分析和解释的科学,而概率论是研究随机现象的数学分支。
在考研中,统计与概率是数学科目的重要组成部分,以下是对这两部分知识点的归纳:统计学的基本概念:- 总体与样本:总体是指研究对象的全体,样本是总体中所抽取的一部分。
- 变量:可以量化的属性或特征。
- 描述统计:包括数据的收集、整理、描述和展示。
- 推断统计:从样本数据推断总体特征。
概率论的基本概念:- 随机事件:在相同条件下,可能出现也可能不出现的结果。
- 概率:随机事件发生的可能性大小。
- 条件概率:在已知某个事件已经发生的条件下,另一个事件发生的概率。
统计学的主要方法:- 描述性统计:包括频率分布、直方图、箱线图等。
- 参数估计:点估计和区间估计,用于估计总体参数。
- 假设检验:用于检验关于总体参数的假设是否成立。
概率论的主要理论:- 概率空间:由样本空间、事件域和概率测度组成。
- 随机变量:可以将随机试验的结果量化为数值的变量。
- 概率分布:描述随机变量取值的概率规律。
- 大数定律和中心极限定理:描述随机变量的长期行为。
统计学的应用:- 回归分析:研究变量之间的依赖关系。
- 方差分析:用于分析多个样本均值的差异。
- 时间序列分析:研究时间序列数据的趋势和周期性。
概率论的应用:- 随机过程:研究随时间变化的随机现象。
- 马尔可夫链:具有无记忆性质的随机过程。
- 泊松过程:描述在一定时间或空间内随机事件发生的次数。
结束语:考研统计与概率知识点的归纳不仅涵盖了基础概念,还包含了方法论和应用领域。
掌握这些知识点对于理解和解决实际问题至关重要。
希望以上的归纳能够帮助考生更好地复习和准备考研。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学概率统计全书考点梳理
凯程考研老师认为概率论与数理统计这门课程的最大特点是题型比较单一,规律性较强,解题方法也是相对较固定。
比如概率的两道解答题,大多集中于第三章二维随机变量及其分布、第四章数字特征、数理统计中的基本概念以及参数估计。
只要考生在这些章节重点进行复习,得分应该不是特别困难。
考生复习起来比较困难的地方,集中在两点,一是古典概率,那块儿的计算一不小心就数错了,或者是不知道怎么来数数,其实这个大家放心,考研只会考简单的古典概率的计算,复杂的不会考,所以这部分可以很快通过;二是数理统计部分,这部分式子比较复杂,很多人学到这里就脑袋大,其实不用担心,这部分需要你真正去记忆的很少。
概率论与数理统计一共是八章,前五章是概率论,数学一、数学三都要考的。
数理统计是后面三章,数学一和数学三是要考的,但是估计量的评选标准、置信区间和假设检验只有数学一要求。
第一章是随机事件和概率,是后续各章的基础。
它的重点内容主要是事件的关系和运算,条件概率及独立性,五大公式(加法公式、减法公式、乘法公式、全概公式和贝叶斯公式)。
第一章出解答题的可能性很小,但也可能会在选择、填空中出现。
第二章是一维随机变量及其分布,该章节是学习二维随机变量的基础,掌握两大类随机变量:离散型随机变量和连续型随机变量、常见分布以及随机变量函数的分布。
第三章二维随机变量及其分布,重点内容是二维随机变量的联合分布、边缘分布和条件分布,以及随机变量函数的分布。
当然,也会有一些小的知识点,如随机变量的独立性。
二维离散型随机变量的联合分布律,主要是结合第一章的古典概率进行考查。
二维连续型随机变量的边缘概率密度和条件概率密度的计算,很多考生计算存在误区,一定要注意。
第三章还有一个重点和难点内容就是随机变量函数的分布,这在2009年以前经常以解答题的形式考查,所以考生也应该引起足够的重视。
第四章随机变量的数字特征,每年必考,主要和二维随机变量及其分布和数理统计部分相结合。
一般是一道客观题和一道解答题中的一问,所以要重点复习。
第四章是考试的重点,但是不是考试的难点,考生掌握相应的公式进行计算即可。
第五章有三个内容,分别是切比雪夫不等式、大数定律和中心极限定理。
这不是考试的重点,至今只考过三次。
所以本章主要掌握它们的条件和结论即可。
数理统计部分,第六章数理统计的基本概念主要是以客观题的形式进行考查。
还有一种题型是结合数字特征进行考查,主要是出现在数一的试卷中。
第七章参数估计中的点估计是考试重点,经常是以解答题的形式进行考查,经常是试卷的最后一道题目。
如果考试试卷中出现了这类题目,其实考生是完全能轻松拿到满分的,但是通过对历年试卷的分析,此类题目的得分并不是很理想,考生要注意答题顺序。
估计量的评选标准只有数一的要求,数三不做要求。
置信区间也是只有数一的要求,它的考试频率非常低,主要是以客观题的形式考查,考生只需要记住相应的公式即可。
第八章假设检验只有数一要求。
在1998年数学仅考过一道题,后来就没有考过,所谓第八章不作为重点。
以上是概率统计部分全部考点是梳理,现在已经进入10月份加大强化阶段的复习,希望同学们持之以恒坚持到最后!
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。