高一数学2.2.1第1课时对数学案新人教A版必修1
高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质
4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。
人教A版数学必修1课件:2.2.1对数及对数运算(1)
(1)54=625
(2) 2
6
1 64
1 m (3) ( ) 5.73 3
(5)
(4)
log 1 16 4
2
lg 0.01 2 (6) ln10 2.303
典 例 分 析 例2 求下列各式中x的值
(1)
(3) lg100
2 log 64 x 3
(2) (4)
log x 8 6
为底的对数叫自然对数(naturallogarithm),
为了简便,N的自然对数简记作lnN。
3. 几个常用的结论 (1)负数与零没有对数 (2) loga 1 0 (3) loga a 1 (4)对数恒等式:a 请同学们记下!
loga N
N
典 例 分 析
例1.将下列指数式化为对数式,对数式化为指数式.
4. 特殊的两种对数:
5.几个常用结论: 课后作业(自主学习册) 今日上交 P63 Ⅰ类题 P64Ⅱ类题 P64Ⅲ类题
若2x=15,则x= 若3x=8,则x=
2
3
3
7
4 若3x=9,则x= log 2 15
log 3 8
2
已知底数和幂的值,如何求指数呢?
1. 对数的定义
一般地,如果 a N a 0, a 1, 那么数 x叫做以a为底N的对数, 记作 ,a N x log
x
其中a叫做对数的底数,N叫做真数. 思考1:那么如何记忆呢?
§2.2.1 对数及对数运算
第一课时 对数
学习目标
1. 理解对数的定义. 2. 掌握指数式与对数式互换互化.(重点) 3.特殊的两种对数及常用结论.(重点)
新 课 引 入 练习:
高中数学 2.2.1.1对数课件 新人教A版必修1
提示:①a<0,N取某些值时,logaN不存在,如根据指数的运算性质可知,不存在实数x使(-12)x=2成
立,所以log(-
1 2
)2不存在,所以a不能小于0.②a=0,N≠0时,不存在实数x使ax=N,无法定义logaN;N
=0时,任意非零实数x,有ax=N成立,logaN不确定.③a=1,N≠1时,logaN不存在;N=1,loga1有无 数个值,不能确定.
1
30
思考 1 对数恒等式 a logaN=N 成立的条件是什么? 提示:成立的条件是a>0,a≠1且N>0.
思考 2 用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是什么?
提示:用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是凑准公式的结构,尤其是对数的底数和幂底数 要一致,为此要灵活应用幂的运算性质.
思考 根据对数的定义以及对数与指数的关系,你能求出loga1=?logaa=?
提示: ∵对任意a>0且a≠1,都有a0=1, ∴化成对数式为loga1=0; ∵a1=a,∴化成对数式为logaa=1.
1
24
[典例示法] 例3 求下列各式中x的值. (1)logx27=32;(2)log2x=-23; (3)x=log2719;(4)log3(lgx)=1.
题目(1)(2)中的对数式化为指数式是怎样的?题目(3)(4)呢?
3
提示:(1)化为指数式x2
=27,(2)化为指数式2-23
=x,(3)化为指数式27x=19,(4)化为指数式31=lgx.
1
25
[解]
(1)由logx27=32可得x32 =27,
2
高一数学(人教A版)必修1课件:2-2-1-1对数的定义与性质
=324.
(3)log3(log4x)=1,∴log4x=3,∴log4x=3,∴x=43=64.
(4)3log2x=27=33,∴log2x=9,∴x=512.
名师辩误做答
忽略了对数式的底数和真数的取值范围
[例 4] 对数式 loga-2(5-a)=b 中,实数 a 的取值范围是
()
A.(-∞,5)
我们把底数为 10 的对数叫做常用对数 ,并把 log10N 记为 lgN.我们把无理数 e=2.718 28…为底数的对数称为 自然对数 并把 logeN 记为 lnN.
归纳提升:通过以上认识,我们知道: (1)指数式与对数式可以互化. (2)零和负数没有对数. (3)对数的底数 a>0 且 a≠1,真数 N>0. (4)logaa=1,loga1=0(a>0 且 a≠1). (5)对数恒等式:将 ax=N 中的 x 用 x=logaN 替换即得 alogaN=(a>0 且 a≠1,N>0).
探究:以上各式从形式上都是已知底数和幂的值,求指 数.其中(1)~(3)都是有意义的,我们把这一类问题称为对数 问题.一般地,如果 ax=N(a>0,且 a≠1),那么数 x 叫做以 a 为底 N 的对数,记为 x=logaN,其中 a 叫底数,N 叫真数, 例如:13×1.01x=18,则 x=log1.011183.
[答案] D
3.有以下四个结论:
①lg(lg10)=0; ②lg(lne)=0;
③若 10=lgx,则 x=10; ④若 e=lnx,则 x=e2.
其中正确的是( )
A.①③
B.②④
C.①②
D.③④
[答案] C
4.使式子 log(x+1)(1-x)有意义的 x 的值是( )
教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1
2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。
〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。
〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。
教学重难点:指、对数式的互化。
教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。
这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。
能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。
二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。
其中a 叫做对数的底数,N 叫做真数。
根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。
高中数学人教版A版必修一第二章 第1课时对数
第1课时 对 数
学习目标
1.了解对数的概念; 2.会进行对数式与指数式的互化; 3.会求简单的对数值.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 对数的概念
思考
解指数方程:3x=
3.可化为
1
3x=32,所以
x=12.但你会解
3x=2
吗?
答案 不会,因为2难以化为以3为底的指数式,因而需要引入对数概念.
反思与感悟
解析答案
跟踪训练2 计算:(1)log927; 解 设 x=log927,则 9x=27,32x=33,∴x=32.
2log4 381;
解
设 x = log4 381,
则4
3x=81,
x
34=34, x=16.
3 log3 54 625.
解 令 x = log3 54 625
,∴3
54x=625,
例1 在N=log(5-b)(b-2)中,实数b的取值范围是( D ) A.b<2或b>5 B.2<b<5
C.4<b<5
D.2<b<5且b≠4
解析
b-2>0, ∵5-b>0,
5-b≠1,
∴2<b<5 且 b≠4.
反思与感悟
解析答案
1-x 跟踪训练 1 求 f(x)=logx1+x的定义域.
x>0,
答案
对数的概念:
如果ax=N(a>0,且a≠1),那么数x叫做 以a为,底记N的作对数 x=logaN ,其中a叫做 对数的底数,N叫做 真数.
常用对数与自然对数:
人教A版必修1导学案 必修1 2.2.1对数及对数运算(第1课时)
必修1高一数学第一章§ 2.2.1 对数与对数运算(1)【学习目标】:① 理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系 .【教学重点、难点】:重点:对数式与指数式的互化及对数的性质; 难点:推导对数性质【教学过程】:一、新课讲解:1、对数的概念一般地,若(0,1)x a N a a =>≠且,那么数x 叫做以a 为底N 的______,记作log a x N =a 叫做________________,N 叫做______________(注意:底数a >0,且a ≠1;真数N>0) 举例:x 01.11318=写成对数形式:x = 1.0118log 13,读作x 是以 1.01为底,1318的对数. 2416=写成对数形式:42log 16=,读作2是以4为底,16的对数.2、对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1(2)log x a a N N x =⇔=指数式⇔对数式幂底数←a →对数底数指 数←x →对数幂 ←N →真数3、例题讲解:指数式与对数式互化例1(P63例1)将下列指数式化为对数式,对数式化为指数式.(1)54=625 (2)61264-=(3)1() 5.733m = (4)12log 164=- (5)10log 0.012=- (6)log 10 2.303e =(课本64页#1)练习1:将下列指数式与对数式互化:(1)328=,(2) 1122-=;(3)3log 92=;(4)21log 24=-。
4、对数的性质:问题:① 把a 0=1,a 1=a (a >0,且a ≠1)如何写成对数式?②负数和零有没有对数? ③根据对数的定义,log a N a=? 小结:log log 10, log 1, a N a a a aN === 负数和零没有对数。
5、常用对数和自然对数 ① 以10为底的对数称为常用对数,10log N 常记为___________② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为__________.6、例题讲解例2:(课本63页)求下列各式中x 的值(1)642log 3x =-(2)log 86x = (3)lg100x = (4)2ln e x -= 分析:将对数式化为指数式,再利用指数幂的运算性质求出x .7.巩固提高:求下列各式的值:(1)5log 25; (2)lg1000; (3)15log 15;(4)9log 81; (5) 2.5log 6.25。
数学:2.2.1《对数与对数运算》课件(新人教A版必修1)
一般对数的两个特例: 1.常用对数: 以10为底的对数. 并把 log 10N 简记作 lgN . 2.自然对数: 以无理数e = 2.71828…为底的对数. 并把 log e N 简记作 lnN .
五、练习巩固
例1.将下列指数式写成对数式:
(1) 5 625
4
(3) 3 27
a
1 (2) 2 64 1 m (4) ( ) 5.73 3
一、学习目标
1. 在熟悉指数的基础上充分理解对数 的定义; 2. 熟练掌握指数式和对数式的互换; 3. 能够求出一些特殊的对数式的值.
二、知识铺垫
对数的创始人是苏格兰数学家纳皮尔 ( Napier , 1550 年 ~1617 年) . 他发明了供天 文计算作参考的对数,并于 1614 年在爱丁堡 出版了《奇妙的对数定律说明书》,公布了 他的发明.恩格斯把对数的发明与解析几何的 创始,微积分的建立并称为 17 世纪数学的三 大成就.
3
2log9 5
____; 2
2 - log 2 5
____
六、练习巩固
(1)对数的定义; (2)指数式和对数式的互换; (3)求值.
思考题:
(1) 对数式 log ( 2 x -1)
1- x
2
中x的取值范围是______ (2) 若log5[log3(log2x)]=1, x=_______
2. 指数和对数的关系相互转化
指数
幂 真数
对数
a N
底数
b
log a N b
由对数的概念可知:
1. 负数和零没有对数;
2. log a 1 0( a 0, a 1); 3. log a a 1( a 0, a 1); 4.a
高中数学 2.2.1对数与对数运算(全课时讲练结合)新人教A版必修1
解 :lg 5 100 1 lg102
5
log2 25 log2 47
2 lg10
log2 25 log2 214
5
2
=5+14=19
5
练习(liànxí)课本P68 2
第三十一页,共47页。
练习(liànxí)P68 3.求下列(xiàliè)各式的值:
(1) log2 6 log2 3
【例 1】 计算下列各式的值: (1)lg 14-2lg73+lg 7-lg 18;
(3)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.
• (3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2
=2lg 10+(lg 5+lg 2)2
=2+(lg 10)2 =2+1
(2) lg xy2 z
(3) lg xy3 z
=lgx+2lgy-lgz;
=lgx+3lgy-
1 lgz; 2
(4)
x lg y 2 z
1 lg x 2 lg y lg z 2
第三十页,共47页。
例4 计算(jìsuàn)
(1) log2 (25 47 ) (2) lg 5 100
解 : log2 (25 47 )
log2
6 3
log2 2 1
(2) lg 5 lg 2 lg(5 2) lg10 1
(3)
log5 3 log5
1 3
(4) log3 5 log3 15
log
5
(3
1 3
)
log5 1
0
log3
5 15
log3 31 1
第三十二页,共47页。
高中数学第二章2.2对数函数2.2.1对数与对数运算第1课时对数练习(含解析)新人教版必修1
2.2.1 对数与对数运算第一课时对数1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④=-5成立.其中正确命题的个数为( B )(A)1 (B)2 (C)3 (D)4解析:②错误,如(-1)2=1,不能写成对数式;④错误,log3(-5)没有意义.2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( C )(A)①③ (B)②④ (C)①② (D)③④解析:lg(lg 10)=lg 1=0,①正确;ln(ln e)=ln 1=0,②正确;10=lg x得x=1010,③错误;e=ln x,x=e e,④错误.故选C.3.已知log x9=2,则x的值为( B )(A)-3 (B)3 (C)±3 (D)解析:由log x9=2得x2=9,又因为x>0且x≠1,所以x=3.故选B.4.若log a=c,则下列各式正确的是( A )(A)b=a5c (B)b=c5a (C)b=5a c(D)b5=a c解析:由log a=c得a c=,所以b=a5c.故选A.5.已知log a=m,log a3=n,则a m+2n等于( D )(A)3 (B)(C)9 (D)解析:由已知得a m=,a n=3.所以a m+2n=a m×a2n=a m×(a n)2=×32=.故选D.6.已知log7[log3(log2x)]=0,那么等于( D )(A)(B)(C)(D)解析:由题知log3(log2x)=1,则log2x=3,解得x=8,所以===.故选D.7.已知f(2x+1)=,则f(4)等于( B )(A)log25 (B)log23(C)(D)解析:令2x+1=4,得x=log23,所以f(4)=log23,选B.8.已知x2+y2-4x-2y+5=0,则log x(y x)的值是( B )(A)1 (B)0 (C)x (D)y解析:x2+y2-4x-2y+5=0,则(x-2)2+(y-1)2=0,所以x=2,y=1.log x(y x)=log212=0.故选B.9.已知对数式log(a-2)(10-2a)(a∈N)有意义,则a= .解析:由对数定义知得2<a<5且a≠3,又因为a∈N,所以a=4.答案:410.方程log2(1-2x)=1的解x= .解析:因为log2(1-2x)=1=log22,所以1-2x=2,所以x=-.经检验满足1-2x>0. 答案:-11.已知=,则x= .解析:由已知得log2x=log9=log9=-,所以x==.答案:12.若f(10x)=x,则f(3)= .解析:令10x=3,则x=lg 3,所以f(3)=lg 3.答案:lg 313.计算下列各式:(1)10lg 3-(+e ln 6;(2)+.解:(1)原式=3-()0+6=3-1+6=8.(2)原式=22÷+3-2·=4÷3+×6=+=2.14.(1)已知10a=2,10b=3,求1002a-b的值; (2)已知log4(log5a)=log3(log5b)=1,求的值.解:(1)1002a-b=104a-2b===.(2)由题得log5a=4,log5b=3,则a=54,b=53,所以==5.15.(1)求值:0.1-2 0150+1+; (2)解关于x的方程(log2x)2-2log2x-3=0.解:(1)原式=0.-1++=()-1-1+23+=-1+8+=10.(2)设t=log2x,则原方程可化为t2-2t-3=0,(t-3)(t+1)=0,解得t=3或t=-1,所以log2x=3或log2x=-1,所以x=8或x=.16.()的值为( C )(A)6 (B)(C)8 (D)解析:()=()-1·()=2×4=8.故选C.17.若a>0,=,则lo a等于( B )(A)2 (B)3 (C)4 (D)5解析:因为=,a>0,所以a=()=()3,则lo a=lo()3=3.故选B.18.计算:lo(+)= .解析:因为(-)·(+)=n+1-n=1,所以+=(-)-1,所以原式=-1.答案:-119.已知log x27=,则x的值为.解析:log x27==3·=3×2=6,所以x6=27,所以x6=33,又x>0,所以x=. 答案:20.设x=,y=(a>0且a≠1),求证:z=.证明:由已知得log a x=,①log a y=, ②将②式代入①式,得log a z=, 所以z=.。
数学:2.2.1《对数与对数运算》课件(新人教a版必修1)
( 3).10
log 5 1125
例2 求下列各式中x的值:
2 1log 64 x ; 2log x 8 6; 3lg100 x; 4 ln e 2 x. 3
练习5.填空
1.设 loga 2 m, oga 3 n, 则a
2 m 3n
108
1 log3 2
n
例6、计算下列各式
(1) log2 6 log2 3 1 (2) log5 3 log5 3 2 log5 2 log5 3 (3) 1 1 log5 10 log5 0.36 log5 8 2 3
例7 用 (1)
loga x, loga y, loga z 表示下列各式:
4
( 2).2 64
6
log 2 64 6 1 1 1 1 3 log 27 ( 3).27 3 3 3 x (4).1.08 2 log 1.08 2 x
练习2.把下列对数式写成指数式:
1 3 1 (1). log2 3 2 8 8 3 ( 2). log5 125 3 5 125 3 ( 3). lg 0.001 3 10 0.001 (4). ln10 2.303 e 2.303 10
练习3.求下列各式的值:
(1) l og2 4; ( 2) l og3 27; ( 3) l og5 125; ( 4) l g1000 ; ( 5) l g 0.001.
2 3 3 3 3
练习4.计算下列各式的值:
(1).2
log 2 4 log 3 27 lg10 5
( 2).3 (4).5
对数及其运算(1,2课时)
1.对数的定义.
人教版高中数学必修1:2.2.1《对数》课件【精品课件】
20
例2
求下列各式的值:
(1) log2(47×25);
(2) lg5
31log3 2
100
;
(3) log318 -log32 ;
(4)
3
1 log 3 2
.
21
例3 计算:
2 log 5 2 log 5 3 1 1 log 5 10 log 5 0.36 log 5 8 2 3
对数与对数运算
第二课时
对数的运算
13
问题提出
1.对数源于指数,对数与指数是怎样互 化的?
2.指数与对数都是一种运算,而且它们 互为逆运算,指数运算有一系列性质, 那么对数运算有那些性质呢?
14
15
知识探究(一):积与商的对数
思考1:求下列三个对数的值:log232, log24 , log28.你能发现这三个对数之 间有哪些内在联系? 思考2:将log232=log24十log28推广到一 般情形有什么结论?
48
思考3:点P(m,n)与点Q(n,m)有怎样的 位置关系?由此说明对数函数 y log a x x 的图象与指数函数 y a 的图象有怎样 的位置关系? y Q P o x
49
思考4:一般地,对数函数的图象可分为 几类?其大致形状如何? y 0 <a <1 y a >1
1 0 1 x 1 0 1
(5) lg0.01=-2;
化为指数式:
3
(6) ln10=2.303.
10
2
例2.求下列各式中x的值:
2 (1)log64x= ; (2) logx8=6 ; 3
(3)lg100=x;
(4)-lne2=x .
高中数学第二章对数函数2.2.1对数与对数运算第1课时对数学案(含解析)新人教版
§2.2对数函数2.2.1 对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1 对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式:(1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3;(2)因为ln a =b ,所以e b=a ;(3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ; (4)因为lg 1 000=3,所以103=1 000. 题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x=100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x=e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log 75;(2)100⎝⎛⎭⎪⎪⎫12lg 9-lg 2; (3)alog ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2 =9×110lg 4=94.(3)原式=(alog ab )log bc=blog bc=c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x +1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x +1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A.0B.1C.2D.3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A.a >12且a ≠1B.0<a <12C.a >0且a ≠1D.a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________.解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a =b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000;(4)ln 10=x 可得e x=10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a ab =b ;(2)a log a N =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.4910解析 3a -b=3a÷3b=3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2. (5)由x =log 2719,得27x=19,即33x=3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2.A.(1)(2)B.(2)(3)(4)C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则a b的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故a b=1. 答案 A 10.方程3log 2x =127的解是________. 解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18.答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b=________.解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k,27b =3k ,所以108ab =6k,∴108ab =a +b ,∴108=1a +1b.答案 10812.(1)若f (10x)=x ,求f (3)的值; (2)计算23+log 23+35-log 39.解 (1)令t =10x,则x =lg t ,∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39 =23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。
高中数学第二章2.2对数函数2.2.2对数函数及其性质(一)学案(含解析)新人教A版必修1
2.2.2 对数函数及其性质(一)学习目标 1.理解对数函数的概念.2.掌握对数函数的性质.3.了解对数函数在生产实际中的简单应用.知识点一对数函数的概念思考已知函数y=2x,那么反过来,x是否为关于y的函数?答案由于y=2x是单调函数,所以对于任意y∈(0,+∞)都有唯一确定的x与之对应,故x也是关于y的函数,其函数关系式是x=log2y,此处y∈(0,+∞).习惯上用x,y分别表示自变量、因变量.上式可改为y=log2x,x∈(0,+∞).梳理一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).知识点二对数函数的图象与性质对数函数y=log a x(a>0,且a≠1)的图象和性质如下表:定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过定点(1,0),即x=1时,y=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0] 对称性函数y=log a x与y=1logax的图象关于x轴对称1.由y =log a x ,得x =a y,所以x >0.( √ ) 2.y =2log 2x 是对数函数.( × )3.y =a x与y =log a x 的单调区间相同.( × )4.由log a 1=0,可得y =log a x 恒过定点(1,0).( √ )类型一 对数函数的定义域的应用 例1 求下列函数的定义域. (1)y =log a (3-x )+log a (3+x ); (2)y =log 2(16-4x). 考点 对数函数的定义域 题点 对数函数的定义域解 (1)由⎩⎪⎨⎪⎧3-x >0,3+x >0,得-3<x <3,∴函数的定义域是{x |-3<x <3}. (2)由16-4x>0,得4x <16=42, 由指数函数的单调性得x <2,∴函数y =log 2(16-4x)的定义域为{x |x <2}. 引申探究1.把本例(1)中的函数改为y =log a (x -3)+log a (x +3),求定义域.解 由⎩⎪⎨⎪⎧x -3>0,x +3>0,得x >3.∴函数y =log a (x -3)+log a (x +3)的定义域为{x |x >3}.2.求函数y =log a [(x +3)(x -3)]的定义域,相比引申探究1,定义域有何变化?解 (x +3)(x -3)>0,即⎩⎪⎨⎪⎧x +3>0,x -3>0或⎩⎪⎨⎪⎧x +3<0,x -3<0,解得x <-3或x >3.∴函数y =log a [(x +3)(x -3)]的定义域为{x |x <-3或x >3}.相比引申探究1,函数y =log a [(x +3)(x -3)]的定义域多了(-∞,-3)这个区间,原因是对于y =log a [(x +3)·(x -3)],要使对数有意义,只需(x +3)与(x -3)同号,而对于y =log a (x -3)+log a (x +3),要使对数有意义,必须(x -3)与(x +3)同时大于0.反思与感悟 求含对数式的函数定义域关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数底数的取值范围是否改变. 跟踪训练1 求下列函数的定义域.(1)y =x 2-4lg x +3;(2)y =log (x +1)(16-4x); 考点 对数函数的定义域 题点 对数函数的定义域解 (1)要使函数有意义,需⎩⎪⎨⎪⎧x 2-4≥0,x +3>0,x +3≠1,即⎩⎪⎨⎪⎧x ≤-2或x ≥2,x >-3,x ≠-2,即-3<x <-2或x ≥2,故所求函数的定义域为(-3,-2)∪[2,+∞). (2)要使函数有意义,需⎩⎪⎨⎪⎧16-4x>0,x +1>0,x +1≠1,即⎩⎪⎨⎪⎧x <2,x >-1,x ≠0,所以-1<x <2,且x ≠0,故所求函数的定义域为{x |-1<x <2,且x ≠0}. 类型二 对数函数单调性的应用 命题角度1 比较同底对数值的大小 例2 比较下列各组数中两个值的大小. (1)log 23.4,log 28.5; (2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a ≠1). 考点 对数值大小比较 题点 对数值大小比较解 (1)考察对数函数y =log 2x , 因为它的底数2>1,所以它在(0,+∞)上是增函数, 又3.4<8.5, 于是log 23.4<log 28.5.(2)考察对数函数y =log 0.3x ,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,又1.8<2.7,于是log0.31.8>log0.32.7.(3)当a>1时,y=log a x在(0,+∞)上是增函数,又5.1<5.9,于是log a5.1<log a5.9;当0<a<1时,y=log a x在(0,+∞)上是减函数,又5.1<5.9,于是log a5.1>log a5.9.综上,当a>1时,log a5.1<log a5.9,当0<a<1时,log a5.1>log a5.9.反思与感悟比较两个同底数的对数大小,首先要根据对数底数来判断对数函数的增减性;然后比较真数大小,再利用对数函数的增减性判断两对数值的大小.对于底数以字母形式出现的,需要对底数a进行讨论.对于不同底的对数,可以估算范围,如log22<log23<log24,即1<log23<2,从而借助中间值比较大小.跟踪训练2 设a=log3π,b=log23,c=log32,则( )A.a>b>c B.a>c>bC.b>a>c D.b>c>a考点对数值大小比较题点对数值大小比较答案 A解析∵a=log3π>1,b=12log23,其中log22<log23<log24,则12<b<1,c=12log32<12,∴a>b>c.命题角度2 求y=log a f x型的函数值域例3 函数f(x)=log2(3x+1)的值域为________.考点对数函数的值域题点对数函数的值域答案(0,+∞)解析f(x)的定义域为R.∵3x>0,∴3x+1>1.∵y=log2x在(0,+∞)上单调递增,∴log 2(3x+1)>log 21=0. 即f (x )的值域为(0,+∞).反思与感悟 在函数三要素中,值域从属于定义域和对应关系.故求y =log a f (x )型函数的值域必先求定义域,进而确定f (x )的范围,再利用对数函数y =log a x 的单调性求出log a f (x )的取值范围.跟踪训练3 已知f (x )=log 2(1-x )+log 2(x +3),求f (x )的定义域、值城. 考点 对数函数的值域题点 真数为二次函数的对数型函数的值域解 要使函数式有意义,需⎩⎪⎨⎪⎧1-x >0,x +3>0,解得定义域为(-3,1).f (x )=log 2[(1-x )(x +3)]=log 2[-(x +1)2+4].∵x ∈(-3,1),∴-(x +1)2+4∈(0,4].∴log 2[-(x +1)2+4]∈(-∞,2]. 即f (x )的值域为(-∞,2]. 类型三 对数函数的图象例4 画出函数y =lg|x -1|的图象. 考点 对数函数的图象题点 含绝对值的对数函数的图象 解 (1)先画出函数y =lg x 的图象(如图).(2)再画出函数y =lg|x |的图象(如图).(3)最后画出函数y =lg|x -1|的图象(如图).反思与感悟现在画图象很少单纯依靠描点,大多是以基本初等函数为原料加工,所以一方面要掌握一些常见的平移、对称变换的结论,另一方面要关注定义域、值域、单调性、关键点.跟踪训练4 画出函数y=|lg(x-1)|的图象.考点对数函数的图象题点含绝对值的对数函数的图象解(1)先画出函数y=lg x的图象(如图).(2)再画出函数y=lg(x-1)的图象(如图).(3)再画出函数y=|lg(x-1)|的图象(如图).1.下列函数为对数函数的是( )A.y=log a x+1(a>0且a≠1)B.y=log a(2x)(a>0且a≠1)C.y=log(a-1)x(a>1且a≠2)D.y=2log a x(a>0且a≠1)考点对数函数的概念题点对数函数的概念答案 C2.函数y=log2(x-2)的定义域是( )A.(0,+∞) B.(1,+∞)C.(2,+∞) D.[4,+∞)考点对数函数的定义域题点 对数函数的定义域 答案 C3.函数y =2log 4(1-x )的图象大致是( )考点 对数函数的图象 题点 对数函数的图象 答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.故选C.4.函数f (x )=log 0.2(2x+1)的值域为________. 考点 对数函数的值域 题点 对数函数的值域 答案 (-∞,0)5.若函数f (x )=2log a (2-x )+3(a >0,且a ≠1)过定点P ,则点P 的坐标是__________. 考点 对数函数的性质 题点 对数函数图象过定点问题 答案 (1,3)1.含有对数符号“log”的函数不一定是对数函数.判断一个函数是否为对数函数,不仅要含有对数符号“log”,还要符合对数函数的概念,即形如y =log a x (a >0,且a ≠1)的形式.如:y =2log 2x ,y =log 5x5都不是对数函数,可称其为对数型函数.2.研究y =log a f (x )的性质如定义域、值域、比较大小,均需依托对数函数的相应性质.一、选择题1.给出下列函数:①y=log 23x2;②y=log3(x-1);③y=log(x+1)x;④y=logπx.其中是对数函数的有( )A.1个B.2个C.3个D.4个考点对数函数的概念题点对数函数的概念答案 A解析①②不是对数函数,因为对数的真数不是只含有自变量x;③不是对数函数,因为对数的底数不是常数;④是对数函数.2.已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于( )A.{x|x>-1} B.{x|x<1}C.{x|-1<x<1} D.∅考点对数函数的定义域题点对数函数的定义域答案 C解析∵M={x|1-x>0}={x|x<1},N={x|1+x>0}={x|x>-1},∴M∩N={x|-1<x<1}.3.已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象只能是下图中的( )考点对数函数的图象题点同一坐标系下的指数函数与对数函数的图象答案 B解析y=a x与y=log a(-x)的单调性相反,排除A,D.y=log a(-x)的定义域为(-∞,0),排除C,故选B.4.已知函数f(x)=log a(x+2),若图象过点(6,3),则f(2)的值为( )A .-2B .2C.12D .-12考点 对数函数的性质 题点 对数函数图象过定点问题 答案 B解析 代入(6,3),3=log a (6+2)=log a 8, 即a 3=8,∴a =2.∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.5.若函数f (x )=log a (x +b )的图象如图所示:其中a ,b 为常数,则函数g (x )=a x+b 的图象大致是( )考点 对数函数的图象题点 同一坐标系下的指数函数与对数函数的图象 答案 D解析 由f (x )的图象可知0<a <1,0<b <1, ∴g (x )的图象应为D.6.下列不等号连接错误的一组是( ) A .log 0.52.2>log 0.52.3 B .log 34>log 65 C .log 34>log 56 D .log πe>lnπ 考点 对数值大小比较 题点 对数值大小比较 答案 D解析 对A ,根据y =log 0.5x 为单调减函数易知正确. 对B ,由log 34>log 33=1=log 55>log 65可知正确.对C ,由log 34=1+log 343>1+log 365>1+log 565=log 56可知正确.对D ,由π>e>1,得lnπ>1>log πe 可知错误. 7.已知f (x )=2+log 3x ,x ∈⎣⎢⎡⎦⎥⎤181,9,则f (x )的最小值为( )A .-2B .-3C .-4D .0 考点 对数函数的值域 题点 对数函数的值域 答案 A解析 ∵181≤x ≤9,∴log 3181≤log 3x ≤log 39,即-4≤log 3x ≤2,∴-2≤2+log 3x ≤4. ∴当x =181时,f (x )min =-2.8.已知函数f (x )=log a |x +1|在(-1,0)上有f (x )>0,那么( ) A .f (x )在(-∞,0)上是增函数 B .f (x )在(-∞,0)上是减函数 C .f (x )在(-∞,-1)上是增函数 D .f (x )在(-∞,-1)上是减函数 考点 对数函数的图象题点 含绝对值的对数函数的图象 答案 C解析 当x ∈(-1,0)时,|x +1|∈(0,1), ∵log a |x +1|>0,∴0<a <1, 画出f (x )的图象如图:由图可知选C. 二、填空题9.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是____________.考点 对数函数的定义域题点 对数函数的定义域答案 {x |2<x ≤8}解析 由题意知,f (x )>0,由所给图象可知f (x )>0的解集为{x |2<x ≤8}.10.设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系是______________.考点 对数值大小比较题点 指数、对数值大小比较答案 a >c >b解析 因为π>2,所以a =log 2π>1,所以b =log 12π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b .11.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是____________. 考点 对数函数的图象题点 含绝对值的对数函数的图象答案 (5,+∞)解析 因为f (a )=f (b ),且0<a <b ,所以0<a <1<b ,且-lg a =lg b ,即b =1a,所以a +4b =a +4a .令g (a )=a +4a ,易知g (a )在(0,1)上为减函数,所以g (a )>g (1)=1+41=5,即a +4b 的取值范围是(5,+∞).三、解答题12.已知f (x )=log 2(x +1),当点(x ,y )在函数y =f (x )的图象上时,点⎝ ⎛⎭⎪⎫x 3,y 2在函数y =g (x )的图象上.(1)写出y =g (x )的解析式;(2)求方程f (x )-g (x )=0的根.考点 对数函数的解析式题点 对数函数的解析式解 (1)设x 3=x ′,y 2=y ′, 则x =3x ′,y =2y ′.∵(x ,y )在y =f (x )的图象上,∴y =log 2(x +1),∴2y ′=log 2(3x ′+1),y ′=12log 2(3x ′+1), 即点(x ′,y ′)在y =12log 2(3x +1)的图象上. ∴g (x )=12log 2(3x +1). (2)f (x )-g (x )=0,即log 2(x +1)=12log 2(3x +1)=log 23x +1, ∴x +1=3x +1,∴⎩⎪⎨⎪⎧x +1>0,3x +1>0,x +12=3x +1, 解得x =0或x =1. 13.已知1≤x ≤4,求函数f (x )=log 2x 4×log 2x 2的最大值与最小值. 考点 对数函数的值域 题点 对数函数的值域 解 ∵f (x )=log 2x 4×log 2x 2=(log 2x -2)(log 2x -1)=⎝⎛⎭⎪⎫log 2x -322-14, 又∵1≤x ≤4,∴0≤log 2x ≤2,∴当log 2x =32,即x =232=22时,f (x )取最小值-14; 当log 2x =0,即x =1时,f (x )取最大值2.∴函数f (x )的最大值是2,最小值是-14. 四、探究与拓展14.已知log a (3a -1)恒为正,则a 的取值范围是________.考点 对数函数的图象题点 对数函数的图象答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 13<a <23或a >1解析 由题意知log a (3a -1)>0=log a 1.当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,∴a >1; 当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧ 3a -1<1,3a -1>0,解得13<a <23. ∴13<a <23. 综上所述,a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪ 13<a <23或a >1. 15.已知函数f (x )=ln(ax 2+2x +1).(1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围.考点 对数函数的值域题点 求对数函数的定义域与值域解 (1)若f (x )的定义域为R ,则y =ax 2+2x +1的图象恒在x 轴的上方,所以⎩⎪⎨⎪⎧ a >0,Δ=4-4a <0,所以a >1.(2)若f (x )的值域为R ,则y =ax 2+2x +1的图象一定要与x 轴有交点,且能取得y 轴正半轴的任一值,所以a =0或⎩⎪⎨⎪⎧ a >0,Δ=4-4a ≥0,所以0≤a ≤1.。
高一(人教A版)第二章数学课件:2.2.1对数与对数运算(第1课时对数)
不同,互为逆运算.
(2)并非任何指数式都可以直接化为对数式,如(-3)2=9就不 能直接写成log-39,只有符合a>0,a≠1且N>0时,才有ax=N⇔x =logaN.
3/24/2014
研修班
18
求log(1-2x)(3x+2)中的x的取值范围. 【错解】 ∵对数的真数大于0,∴3x+2>0,
2-1)( x
2+1)=x
1 - ∴( 2-1) = 2+1= =( 2-1) 1 2-1 ∴x=-1.
3/24/2014
研修班
11
有关“底数”和“1”的对数,可利用对数的性质求出其值 “1”和“0”,化成常数,有利于化简和计算.
3/24/2014
研修班
12
2.求下列各式中的 x. 1 (1)log5(log2x)=0;(2)log3(ln x)=1;(3)log x= 2 -2. 【解析】 (1)由 log5(log2x)=0, 得 log2x=1, ∴x=21=2. (2)由 log3(ln x)=1 得 ln x=3;∴x=e3.
2 1 所以 x 的取值范围是{x|-3<x<2且 x≠0}.
3/24/2014
研修班
20
1.将下列对数式与指数式互化 1 (1)log 27=-3;(2)log 3x=6;(3)logx64=-6. 3
1 1 -2 (4)54=625;(5)3 =9;(6) =16. 4
-2
1 -3 -6 6 【解析】 (1) 3 = 27.(2)( 3) = x.(3)x =64.
3/24/2014 研修班 6
1 -3 5 【解析】 (1)3 =27;(2) 2 = 8 ; (3)( 2) =x
新人教A版必修1高中数学2.2.1-2对数与对数运算导学案
高中数学 2.2.1-2对数与对数运算导学案新人教A 版必修1学习目标:掌握对数的运算性质 学习重点:对数的运算 学习过程: 一、 理论学习 对数的运算性质:如果0,01,0>>≠>N M a a ,且,那么: (1)N M N M a a a log log )(log +=∙ (2)N M NMa a alog log log -= (3))(log log R n M n M a n a ∈=(4))0(log log ≠∈=b R n b M bn M a n a b,、(5))1,(log log log ≠∈=a R cb a abb c c a 、、 二、 实践应用 1、求下列各式的值(1)=⨯)24(log 572 (2)=5100lg(3)=⨯)927(log 23 (4)=2100lg(5)=00001.0lg (6)=e ln(7)=-3log 6log 22(8)=+2lg 5lg(9)=+31log 3log 55(10)=-15log 5log 33(11)=+25.0log 10log 255(12)=-64log 325log 225(13)=)16(log log 22(14)=)25(log log 5412、已知b a ==3lg ,2lg ,求下列各式的值 (1)=6lg (2)=4log 3(3)=12log 2 (4)=23lg3、化简下列各式: (1)=⋅a c c a log log(2)=⋅⋅⋅2log 5log 4log 3log 5432(3)=++)2log 2)(log 3log 3(log 9384三、课后反思计算题1、 lg 5·lg 8000+06.0lg 61lg )2(lg 23++.2、 求x 的值lg 2(x +10)-lg(x +10)3=4.3、求x 的值23log 1log 66-=x .4、求x 的值9-x -2×31-x =27.5、求x 的值x )81(=128.6、求x 的值5x+1=123-x .7、10log 5log )5(lg )2(lg 2233++·.10log 188、 (1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求121log 8.0--=x x y 的定义域.10、log 1227=a,求log 616.11、求log 927的值.12、设3a =4b =36,求a 2+b1的值.13、求x 的值log 2(x -1)+log 2x=114、求x 的值4x +4-x -2x+2-2-x+2+6=015、求x 的值24x+1-17×4x +8=016、求x 的值log 2(x -1)=log 2(2x+1) 17、求x 的值log 2(x 2-5x -2)=218、求x 的值log 16x+log 4x+log 2x=719、求x 的值log 2[1+log 3(1+4log 3x)]=120、求y 的值lg(y -1)-lgy=lg(2y -2)-lg(y+2)21、求x的值lg(x2+1)-2lg(x+3)+lg2=022、求x的值lg2x+3lgx-4=0。
「精品」人教A版数学必修一2.2.1对数与对数运算-精品课件
2.2.1│ 考点类析
同理 b=53.所以ab=5.
2.2.1│ 考点类析
考点三 对数运算性质的应用 重点探究型 例 3 (1)计算 log2 478+log212-12log242=_-__12_____.
[解析] 原式=log2
478×12-log2
42=log24 73×12×
1 7×
6=log22
-12=-12.
2.2.1│ 考点类析
[解析]
(2)①x=2-12=
1= 2
22;②x2=25,因为
x>0,所
以 x=5;
③x2=52,得 x=±5;④lg x=5,x=105=100 000.
(3)由 log3[log4(log5a)]=0,得 log4(log5a)=1,所以 log5a =4,所以 a=54.
[导入二] (1)根据上一节的例 8 我们能从 y=13×1.01x 中算出任意
一个 x(经过的年份)的人口总数,可不可以算出哪一年人口数 低于 13 亿?
(2)那么哪一年的人口达到 18 亿? 师生共同讨论:(1)由指数函数性质知,a>1,x>0,有 1.01x>1,所以 y=13×1.01x>13. (2)人口数达到 18 亿时,y=18,所以有1183=1.01x. 在以上这两个式子中,能求出 x 的范围或值吗? 今天我们学习对数与对数运算.
2.2.1│ 重点难点 重点难点
[重点] 对数式与指数式的互化及对数的性质. [难点] 利用对数式的有关性质求值.
2.2.1│ 教学建议
教学建议
对于对数概念的引入的教学,建议教师先让学生阅读教材中的实 例,体会数学概念源于生活,再复习指数式,引入对数概念,便于学 生接受.
178.高一数学人教A版必修一精品教案:2.2.1对数的运算性质 Word版含答案
课题:§2.2.1对数的运算性质教学目的:(1)理解对数的运算性质;(2)知道用换底公式能将一般对数转化成自然对数或常用对数;(3)通过阅读材料,了解对数的发现历史以及对简化运算的作用.教学重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数教学难点:对数的运算性质和换底公式的熟练运用.教学过程:一、引入课题1. 对数的定义:b N N a a b =⇔=log ;2. 对数恒等式:b a N a b a N a ==log ,log ;二、新课教学1.对数的运算性质提出问题:根据对数的定义及对数与指数的关系解答下列问题:○1 设m a =2log ,n a=3log ,求n m a +; ○2 设m M a =log ,n N a =log ,试利用m 、n 表示M a(log ·)N . (学生独立思考完成解答,教师组织学生讨论评析,进行归纳总结概括得出对数的运算性质1,并引导学生仿此推导其余运算性质)学生活动:○1 阅读教材P75例3、4,;设计意图:在应用过程中进一步理解和掌握对数的运算性质.○2 完成教材P79练习1~3 设计意图:在练习中反馈学生对对数运算性质掌握的情况,巩固所学知识.2. 利用科学计算器求常用对数和自然对数的值设计意图:学会利用计算器、计算机求常用对数值和自然对数值的方法.思考:对于本小节开始的问题中,可否利用计算器求解1318log 01.1的值?从而引入换底公式.3. 换底公式ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 学生活动○1 根据对数的定义推导对数的换底公式. 设计意图:了解换底公式的推导过程与思想方法,深刻理解指数与对数的关系.○2 思考完成教材P 76问题(即本小节开始提出的问题);○3 利用换底公式推导下面的结论(1)b m n b a n a m log log =; (2)ab b a log 1log =. 设计意图:进一步体会并熟练掌握换底公式的应用.说明:利用换底公式解题时常常换成常用对数,但有时还要根据具体题目确定底数.4. 课堂练习○1 教材P79练习4 ○2 已知的值。
高中数学2.2.2对数函数及其性质第1课时对数函数的图象及性质人教A版必修1
第1课时 对数函数的图象及性质[A 基础达标]1.y =2x与y =log 2x 的图象关于( ) A .x 轴对称 B .直线y =x 对称 C .原点对称D .y 轴对称解析:选B.函数y =2x与y =log 2x 互为反函数,故函数图象关于直线y =x 对称. 2.函数y =ln(1-x )的图象大致为( )解析:选C.函数的定义域为(-∞,1),且函数在定义域上单调递减,故选C.3.函数y =lg(x -1)+lg(x -2)的定义域为M ,函数y =lg(x 2-3x +2)的定义域为N ,则( )A .M NB .N MC .M =ND .M ∩N =∅解析:选A.y =lg(x 2-3x +2)=lg[(x -1)(x -2)],所以⎩⎪⎨⎪⎧x -1>0x -2>0或⎩⎪⎨⎪⎧x -1<0x -2<0,即x >2或x <1. 所以N ={x |x >2或x <1}. 又M ={x |x >2}.所以M N .4.已知函数y =log a (x +c )(a ,c 为常数,且a >0,a ≠1)的图象如图所示,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:选D.由题意可知y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c <1.根据单调性易知0<a <1.5.已知a >1,b <-1,则函数y =log a (x -b )的图象不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D.因为a >1,所以函数y =log a (x -b )(b <-1)的图象就是把函数y =log a x 的图象向左平移|b |个单位长度,如图.由图可知函数y =log a (x -b )不经过第四象限,所以选D.6.若f (x )=log a x +(a 2-4a -5)是对数函数,则a =______.解析:由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.答案:57.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 解析:函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .答案:log 2x8.已知y =log a (3a -1)恒为正值,则a 的取值范围为________.解析:当⎩⎪⎨⎪⎧0<a <1,0<3a -1<1,即13<a <23时,y =log a (3a -1)恒正;当⎩⎪⎨⎪⎧a >1,3a -1>1,即a >1时,y =log a (3a -1)恒正.综上,a 的取值范围为a >1或13<a <23.答案:a >1或13<a <239.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围. 解:(1)作出函数y =log 3x 的图象如图所示. (2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:当0<a <2时,恒有f (a )<f (2).所以所求a 的取值范围为0<a <2. 10.已知函数f (x )=log a (3+2x ),g (x )=log a (3-2x )(a >0,且a ≠1). (1)求函数y =f (x )-g (x )的定义域;(2)判断函数y =f (x )-g (x )的奇偶性,并予以证明. 解:(1)要使函数y =f (x )-g (x )有意义,必须有⎩⎪⎨⎪⎧3+2x >0,3-2x >0,解得-32<x <32.所以函数y =f (x )-g (x )的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <32.(2)由(1)知函数y =f (x )-g (x )的定义域关于原点对称,f (-x )-g (-x )=log a (3-2x )-log a (3+2x ) =-[log a (3+2x )-log a (3-2x )]=-[f (x )-g (x )].所以函数y =f (x )-g (x )是奇函数.[B 能力提升]11.已知a >0且a ≠1,函数y =log a x ,y =a x,y =x +a 在同一坐标系中的图象可能是( )解析:选C.因为函数y =a x与y =log a x 的图象关于直线y =x 对称,当0<a <1时,y =x +a 的纵截距小于1,y =log a x 单调递减且过点(1,0),y =a x 单调递减且过点(0,1),此时C项符合题意,A 、B 项均不符合题意.当a >1时,y =x +a 的纵截距大于1,y =log a x 单调递增且过点(1,0),y =a x单调递减且过点(0,1),D 项不符合题意.12.已知函数y =|log 12x |的定义域为⎣⎢⎡⎦⎥⎤12,m ,值域为[0,1],则m 的取值范围为________.解析:作出y =|log 12x |的图象(如图)可知f ⎝ ⎛⎭⎪⎫12=f (2)=1, 由题意结合图象知:1≤m ≤2. 答案:[1,2]13.已知函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2), (1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域.解:(1)由已知f (x )=log a x (a >0且a ≠1)的图象过点(4,2),则2=log a 4,所以a 2=4. 因为a >0且a ≠1,所以a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x ),由⎩⎪⎨⎪⎧1-x >0,1+x >0得-1<x <1. 所以g (x )的定义域为(-1,1).14.(选做题)求函数y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解:因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2. 设t =log 12x ,则-2≤t ≤-1,所以y =t 2-12t +5,其图象的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-13 2.1时,y min=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴x=± 5. ∵52= 25> 0,( - 5) 2= 25> 0,
∴x= 5 或 x=- 5.
要点三 对数恒等式 alog aN= N的应用
例3
5
计算: 3 1 log 3 - 2 4
3
log 2 + 10 3lg3 +
1 2
5
log 2 .
解
5
3 1 log 3 -2 4
3
log 2 + 103lg3 +
2.2 对数函数 2.2.1 对数与对数运算
第 1 课时 对 数
[ 知识链接 ]
2
2
1. 8 3 = 4, (64)
3
=
1 16.
2.若 2x= 8,则 x= 3;若 3x= 81,则 x= 4.
[ 预习导引 ]
1.对数的概念 一般地,如果 ax= N( a> 0,且 a≠1) ,那么数 x 叫做以 a 为底 N的对数,记作 x=log aN,其
①零和负数没有对数;
②用对数;
④以 e 为底的对数叫做自然对数.
其中正确命题的个数为 ( )
A. 1 B . 2 C . 3 D . 4
答案 解析
C 对于②, ( - 2) 3=- 8 不能化为对数式,∴②不正确,其余正确.
1
4.已知 log 2x= 2,则 x 2 =________.
N> 0) ,据此可得两个常用恒等式: (1)log aab= b; (2) alog aN= N. 2.在关系式 ax= N中,已知 a 和 x 求 N的运算称为求幂运算,而如果已知 算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化
指数中含有对数形式; (3) 其值为对数的真数.
跟踪演练 3
求值: (1)9
1
4
log 3
2 ; (2)5
2
1 log 5 .
1
4
1
4
解
(1)9
log 3 2
2
= (3 )
log 3 2
4
= 3 log 3 =4.
2
2
(2)5 1 log 5 =5·5log 5 =5×2= 10.
1. 2x= 3 化为对数式是 (
规律方法 1. 对数式与指数式的互化图:
2.并非所有指数式都可以直接化为对数式.如
( - 3) 2= 9 就不能直接写成
有 a> 0 且 a≠1, N> 0 时,才有 ax= N? x= log aN.
log ( -3) 9=2,只
跟踪演练 1 下列指数式与对数式互化不正确的一组是 ( )
0
A. e = 1 与 ln 1 = 0
x 值.
1 (1)log 2x=- 2; (2)log x25= 2;
(3)log 5x2= 2.
解
1 (1) 由 log 2x=- ,得
2
1
2 =x,
2
对于多重对数符号的,
2 ∴x= 2 . (2) 由 log x25= 2,得 x2 =25.
∵x> 0,且 x≠1,∴ x= 5. (3) 由 log 5x2= 2,得 x2= 52,
1
(3) ∵log ( 2- 1)
=x,
2+ 1
x
∴( 2-1) =
1 = 2- 1,∴ x=1.
2+ 1
规律方法 1. 对数运算时的常用性质: log aa= 1, log a1= 0.
2.使用对数的性质时, 有时需要将底数或真数进行变形后才能运用;
可以先把内层视为整体,逐层使用对数的性质.
跟踪演练 2 利用指数式、对数式的互化求下列各式中的
1 2
5
log 2
=
log
3×3
5 3
- 24×2log 23
+ (10 lg3 ) 3 +(2
log
5 2
) -1
=3×5-16×3+
33+
5-
1=-
29 .
5
规律方法 对于指数中含有对数值的式子进行化简, 应充分考虑对数恒等式的应用. 这就要
求首先要牢记对数恒等式,对于对数恒等式
alog aN= N要注意格式: (1) 它们是同底的; (2)
中 a 叫做对数的底数, N叫做真数.
2.常用对数和自然对数
(1) 常用对数:通常我们将以 10 为底的对数叫做常用对数,并把 log 10N记为 lg N.
(2) 自然对数:在科学技术中常使用以无理数
e=2.718 28 …为底数的对数,以 e 为底的对
数称为自然对数,并把 log eN记为 ln N.
1
B. 8
3
=
2
与
log
1 82= 3
1
C. log 24= 2 与 4 2 = 2
D. log 33= 1 与 31= 3
答案 解析
C 由指对互化的关系: ax=N? x= log a N可知 A、B、 D 都正确; C 中 log 24= 2? 22= 4.
要点二 对数基本性质的应用
例 2 求下列各式中 x 的值:
3.对数与指数的关系 当 a> 0,且 a≠1时, ax= N? x=log aN.
4.对数的基本性质
(1) 负数和零没有对数.
(2)log a1= 0( a> 0,且 a≠1) .
(3)log aa= 1( a> 0,且 a≠1).
要点一 指数式与对数式的互化
例 1 将下列指数式与对数式互化:
(1)2
)
A. x= log 32 B . x= log 23
C. 2= log 3x D . 2= log x3
答案 解析
B ∵2x=3,∴ x=log 23.
2.若 log 3x=3,则 x 等于 ( )
A. 1 B . 3
C. 9 D . 27
答案 解析
D
∵log
3x= 3,∴
x
=
3
3
=
27.
3.有下列说法:
-2=
1 4;
(2)10
2= 100;
1
(3)e a= 16; (4)64
3
=
1 4;
(5)log 39= 2;(6)log xy=z.
1 解 (1)log 2 =- 2.
4
(2)log 10100= 2,即 lg 100 = 2. (3)log e16= a,即 ln 16 = a.
11 (4)log 644=- 3. (5)3 2= 9. (6) xz= y.
1 答案 2
解析 ∵log 2x= 2,∴ x= 4,
1
1
∴x
2=4
2=
11 1 =2.
42
5.若 lg(ln x) = 0,则 x= ________.
答案 e
解析 ∵ln x= 1,∴ x= e.
1. 对数概念与指数概念有关, 指数式和对数式是互逆的, 即 ab= N? log aN= b( a> 0,且 a≠1,
(1)log 2(log 4x) = 0;
(2)log 3(lg x) = 1;
1
(3)log ( 2-1)
= x.
2+ 1
解 (1) ∵log 2(log 4x) = 0,∴ log 4x= 20= 1, ∴x= 41= 4. (2) ∵log 3(lg x) = 1,∴ lg x=31= 3,∴ x= 103= 1 000.