最新2017-2018年春北师大版九年级数学下册期末检测题含答案

合集下载

【经典原创】2017-2018学年北师大版初中数学九年级下册第一次期末质量检测题及答案解析

【经典原创】2017-2018学年北师大版初中数学九年级下册第一次期末质量检测题及答案解析

期末质量检测题一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共36分) 1. 一组数据6,0,4,6.这组数据的众数、中位数、平均数分别是( )A .6,6,4B .4,2,4C .6,4,2D .6,5,42. .如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、AC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .125B .65C .245D .不确定3.一元二次方程032=-+kx x 的—个根是x =1,则另一个根是( )A .3B .一lC .一3D .—24.函数12+=x y 与函数x k y =的图象相交于点(2, m),则下列各点不在函数xky =的图象上的是( ) A .(-2,-5) B .(25,4) C .(-1,10) D .(5,2)5.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是( ) A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm6.若0)3(12=++-+y y x ,则y x -的值为 ( ) A .1B .-1C .7D .-77.如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示 张老师家的位置,则张老师散步行走的路线可能是( )8.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A .6cmB .35cmC .8cmD .53cm10. 如图2,反比例函数11k y x=和正比例函数22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是( )A.10x -<<B.11x -<<C.1x <-或01x <<D.10x -<<或1x >11.抛物线y=(x+2)2﹣3可以由抛物线y=x 2平移得到,则下列平移过程正确的是( ) A 、左平移2个单位,上平移3个单位 B 、左平移2个单位,下平移3个单位 C 、右平移2个单位,下平移3个单位 D 、右平移2个单位,上平移3个单位12.如图.在△ABC 中,∠B=90°,∠A=30°,AC=4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上,则点A 所经过的最短路线的长为( ) A 、4 3cmB 、8cmC 、163πcm D 、83πcm 二、填空题(每小题4分,共24分;只要求填写最后结果)13.一张长9cm 、宽5cm 的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是122cm 的一个无盖长方体纸盒,设剪去的正方形边长为xcm ,则可列出关于x 的方程为14.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. B. - C. D.2.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB 的值是()A. 45°B. 1C.D. 无法确定4.在△ABC中,∠C=90°,cosA=,那么tanA等于()A. B. C. D.5.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= ,则AD的长为()A. 2B.C.D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍C. 正弦扩大5倍、余弦缩小5倍D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数y=(m+2) 是二次函数,则m等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________.14.把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________.15.已A(﹣4,y1),B(﹣3,y2),C(3,y3)三点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2,y3的大小关系为________.16.抛物线经过点(-2,1),则________。

九年级数学下册2017春北师大版九年级数学下册期末检测题含答案 含答案

九年级数学下册2017春北师大版九年级数学下册期末检测题含答案  含答案

期末检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.在Rt △ABC 中,∠C =90°,AB =15,sin A =13,则BC 的长为( B )A .45B .5 C.15 D.1452.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为( C )A .1 B. 2 C. 3 D .23.如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB ,CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( B )A.833 m B .4 m C .4 3 m D .8 m,第3题图) ,第4题图),第5题图) ,第6题图)4.如图,PA ,PB 是⊙O 的两条切线,切点分别是A ,B ,如果OP =4,PA =23,那么∠APB 等于( D )A .90°B .100°C .110°D .60°5.函数y =-x 2+2(m -1)x +m +1的图象如图,它与x 轴交于A ,B 两点,线段OA 与OB 的比为1∶3,则m 的值为( D )A.13或2B.13C .1D .2 6.如图,一根5 m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( D )A.1712π m 2B.176π m 2C.254π m 2D.7712π m 2 7.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高( A )A .8元或10元B .12元C .8元D .10元8.如图,在△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( A )A.212B .12C .14D .21,第8题图) ,第9题图),第10题图)9.如图,射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2 cm ,QM =4 cm .动点P 从Q 出发,沿射线QN 以每秒1 cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径与△ABC 的边相切(切点在边上),则t(单位:秒)可以取的一切值为( D )A .t =2B .3≤t ≤7C .t =8D .t =2或3≤t ≤7或t =8 10.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是( C ) A .当弦PB 最长时,△APC 是等腰三角形 B .当△APC 是等腰三角形时,PO ⊥AC C .当PO ⊥AC 时,∠ACP =30° D .当∠ACP =30°时,△BPC 是直角三角形 二、细心填一填(每小题3分,共24分)11.已知锐角A 满足关系式2sin 2A -3sin A +1=0,则sin A 的值为__12__.12.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__y =-x 2+4x -3__.13.(2015·绍兴)在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为.14.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC ︵上一点,若∠CEA =28°,则∠ABD =__28°__.,第14题图) ,第15题图) ,第16题图),第17题图) ,第18题图)15.如图,已知AB 是⊙O 的直径,BC 为弦,∠ABC =30°,过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB =__30°__.16.如图,⊙A ,⊙B ,⊙C 两两不相交,且半径都是0.5 cm ,则图中三个扇形(即三个阴影部分)的面积之和为__π8cm 2__.17.如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线表达式是__y =(x -1)2+1__.18.(2015·张家界)如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为.三、用心做一做(共66分) 19.(8分)计算:(1)sin 45°+cos 60°3-2cos 60°-sin 60°(1-cos 30°); (2)cos 30°sin 60°-cos 45°-(2-tan 60°)2+tan 45°. 解:1+24-32解:2+6+320.(8分)如图,一大桥的桥拱为抛物线形,跨度AB =50米,拱高(即顶点C 到AB 的距离)为20米,求桥拱所在抛物线的表达式.解:y =-4125(x -25)221.(8分)(2015·黄石)如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A 到最高点B 的距离为103米,A ,B 两点正前方有垂直于地面的旗杆DE ,在A ,B 两点处用仪器测量旗杆顶端E 的仰角分别为60°和15°(仰角即视线与水平线的夹角).(1)求AE 的长;(2)已知旗杆上有一面旗在离地面1米的F 点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?解:(1)∵BG ∥CD ,∴∠GBA =∠BAC =30°.又∠GBE =15°,∴∠ABE =45°.∵∠EAD =90°,∴∠AEB =45°,∴AB =AE =103 (2)在Rt △ADE 中,∵∠EDA =90°,∠EAD =60°,AE =103,∴DE =15.又DF =1,∴FE =14.∴t =140.5=28(秒).故这面旗到达旗杆顶端需要28秒22.(10分)如图,P 为正比例函数y =32x 图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y).(1)求⊙P 与直线x =2相切时点P 的坐标;(2)请直接写出⊙P 与直线x =2相交、相离时x 的取值范围.解:(1)过P 作直线x =2的垂线,垂足为A.当点P 在直线x =2右侧时,AP =x -2=3,得x =5,∴P ⎝⎛⎭⎫5,152;当点P 在直线x =2左侧时,PA =2-x =3,得x =-1,∴P ⎝⎛⎭⎫-1,-32,∴当⊙P 与直线x =2相切时,点P 的坐标为⎝⎛⎭⎫5,152或⎝⎛⎭⎫-1,-32 (2)当-1<x<5时,⊙P 与直线x =2相交;当x<-1或x>5时,⊙P 与直线x =2相离23.(8分)(2015·武汉)如图,AB 是⊙O 的直径,∠ABT =45°,AT =AB.(1)求证:AT 是⊙O 的切线.(2)连接OT 交⊙O 于点C ,连接AC ,求tan ∠TAC 的值.解:(1)∵AB =AT ,∴∠ABT =∠ATB =45°,∴∠BAT =90°,即AT 为⊙O 的切线 (2)如图,过点C 作CD ⊥AB 于点D.则∠TAC =∠ACD ,tan ∠TOA =AT AO =CDOD =2,设OD=x ,则CD =2x ,OC =5x =OA ,∵AD =AO -OD =(5-1)x ,∴tan ∠TAC =tan ∠ACD =AD CD =(5-1)x2x =5-1224.(12分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可以多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数表达式; (2)当销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4 000元,且每天的总成本不超过7 000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)解:(1)y =(x -50)[50+5(100-x )]=(x -50)(-5x +550)=-5x 2+800x -27 500 (2)y =-5x 2+800x -27 500=-5(x -80)2+4 500.∵-5<0,∴抛物线开口向下.∵50≤x ≤100,对称轴是直线x =80,∴当x =80时,y 最大=4 500.∴当销售单价为80元时,每天的销售利润最大,最大利润是4 500元 (3)当y =4 000时,-5(x -80)2+4 500=4 000,解得x 1=70,x 2=90.∴当70≤x ≤90时,每天的销售利润不低于4 000元.由每天的总成本不超过7 000元,得50(-5x +550)≤7 000,解得x ≥82,∴82≤x ≤90(满足50≤x ≤100),∴销售单价应该控制在82元至90元之间25.(12分)(2015·丽水)某乒乓球馆使用发球机进行铺助训练,出球口在桌面中线端点A 处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A 的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:(2)乒乓球落在桌面时,与端点A 的水平距离是多少? (3)乒乓球落在桌面上弹起后,y 与x 满足y =a(x -3)2+k.①用含a 的代数式表示k ;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A ,求a 的值.解:以点A 为原点,以桌面中线为x 轴,乒乓球水平运动方向为正方向,建立平面直角坐标系.(1)由表格中的数据,可得当t 为0.4秒时,乒乓球达到最大高度 (2)由表格中数据,可画出y 关于x 的图象,根据图象的形状,可判断y 是x 的二次函数.可设y =a (x -1)2+0.45.将(0,0.25)代入,可得a =-15,∴y =-15(x -1)2+0.45.当y =0时,x 1=52,x 2=-12(舍去),即乒乓球与端点A 的水平距离是52米 (3)①由(2)得乒乓球落在桌面上时,对应的点为(52,0).代入y =a (x -3)2+k ,得(52-3)2a +k =0,化简整理,得k =-14a.②由题意知,扣杀路线在直线y =110x 上.由①得y =a (x -3)2-14a.令a (x -3)2-14a =110x ,整理,得20ax 2-(120a +2)x +175a =0.当Δ=(120a +2)2-4×20a ×175a =0时符合题意,解得a 1=-6+3510,a 2=-6-3510.当a 1=-6+3510时,求得x =-352,不符合题意,舍去;当a 2=-6-3510时,求得x =352,符合题意.答:当a =错误!时,能恰好将球沿直线扣杀到点A。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试题(有答案)

2018年北师大版九年级数学下册期末综合检测试题(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试题(有答案)

2018年北师大版九年级数学下册期末综合检测试题(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试题(有答案)

2018年北师大版九年级数学下册期末综合检测试题(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. B. - C. D.2.抛物线y=(+2)2+3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A. 45°B. 1C.D. 无法确定4.在△ABC中,∠C=90°,cosA=,那么tanA等于()A. B. C. D.5.关于函数y=2的性质表达正确的一项是()A. 无论为任何实数,y值总为正B. 当值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= ,则AD的长为()A. 2B.C.D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍C. 正弦扩大5倍、余弦缩小5倍D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣62+3+4B. y=﹣22+3﹣4C. y=2+2﹣4D. y=22+3﹣410.已知二次函数y=a2+b+c(a≠0)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数y=(m+2) 是二次函数,则m等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________.14.把抛物线y=﹣2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________.15.已A(﹣4,y1),B(﹣3,y2),C(3,y3)三点都在二次函数y=﹣2(+2)2的图象上,则y1,y2,y3的大小关系为________.16.抛物线经过点(-2,1),则________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

2018年北师大版九年级数学下册期末综合检测试卷(有答案)

期末专题复习:北师大版九年级数学下册期末综合检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A. 43B. -34C. 35D. 452.抛物线y=(x+2)2+3的顶点坐标是()A. (-2,3)B. (2,3) C. (-2,-3) D. (2,-3)3.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AAÂ上的一点,则cos∠APB的值是()A. 45°B. 1C. √22D. 无法确定4.在△ABC中,∠C=90°,cosA=35,那么tanA等于()A. 35B. 45C. 34D. 435.关于函数y=x2的性质表达正确的一项是()A. 无论x为任何实数,y值总为正 B. 当x值增大时,y的值也增大C. 它的图象关于y轴对称D. 它的图象在第一、三象限内6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=6,D是AC上一点,若tan∠DBA= 1,则AD的长为()5A. 2B. √3C. √2D. 17.如图,圆内接四边形ABCD中,∠A=100°,则∠C的度数为()A. 100°B. 90°C. 80°D. 70°8.在Rt△ABC中,若各边的长度同时扩大5倍,那么锐角A的正弦值和余弦值()A. 都不变B. 都扩大5倍 C. 正弦扩大5倍、余弦缩小5倍 D. 不能确定9.已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为()A. y=﹣6x2+3x+4B. y=﹣2x2+3x﹣4 C. y=x2+2x﹣4D. y=2x2+3x﹣410.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是()A. 1个 B. 2个 C. 3个 D. 4个二、填空题(共10题;共33分)11.计算cos245°+tan60°cos30°的值为________ .12.已知函数 y =(m +2) A A2−2是二次函数,则m 等于________13.(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为________. 14.把抛物线y=﹣x 2先向上平移2个单位,再向左平移3个单位,所得的抛物线是________. 15.已A (﹣4,y 1),B (﹣3,y 2),C (3,y 3)三点都在二次函数y=﹣2(x+2)2的图象上,则y 1, y 2, y 3的大小关系为________.16.抛物线A =A (A +1)2经过点(-2,1),则A = ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.在Rt △ABC 中,∠C =90°,AB =15,sin A =13,则BC 的长为( B ) A .45 B .5 C.15 D.1452.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为( C )A .1 B. 2 C. 3 D .23.如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB ,CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( B ) A.833 m B .4 m C .4 3 m D .8 m,第3题图) ,第4题图),第5题图) ,第6题图)4.如图,PA ,PB 是⊙O 的两条切线,切点分别是A ,B ,如果OP =4,PA =23,那么∠APB 等于( D )A .90°B .100°C .110°D .60°5.函数y =-x 2+2(m -1)x +m +1的图象如图,它与x 轴交于A ,B 两点,线段OA 与OB 的比为1∶3,则m 的值为( D )A.13或2B.13C .1D .2 6.如图,一根5 m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( D )A.1712π m 2B.176π m 2C.254π m 2D.7712π m 2 7.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高( A )A .8元或10元B .12元C .8元D .10元8.如图,在△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( A ) A.212B .12C .14D .21,第8题图) ,第9题图),第10题图)9.如图,射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2 cm ,QM =4 cm .动点P 从Q 出发,沿射线QN 以每秒1 cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径与△ABC 的边相切(切点在边上),则t(单位:秒)可以取的一切值为( D )A .t =2B .3≤t ≤7C .t =8D .t =2或3≤t ≤7或t =810.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是( C )A .当弦PB 最长时,△APC 是等腰三角形 B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,△BPC 是直角三角形二、细心填一填(每小题3分,共24分)11.已知锐角A 满足关系式2sin 2A -3sin A +1=0,则sin A 的值为__12__. 12.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__y =-x 2+4x -3__.13.(2015·绍兴)在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为.14.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC ︵上一点,若∠CEA =28°,则∠ABD=__28°__.,第14题图) ,第15题图) ,第16题图),第17题图) ,第18题图)15.如图,已知AB 是⊙O 的直径,BC 为弦,∠ABC =30°,过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB =__30°__.16.如图,⊙A ,⊙B ,⊙C 两两不相交,且半径都是0.5 cm ,则图中三个扇形(即三个阴影部分)的面积之和为__8cm 2__. 17.如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线表达式是__y =(x -1)2+1__.18.(2015·张家界)如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为.三、用心做一做(共66分)19.(8分)计算:(1)sin 45°+cos 60°3-2cos 60°-sin 60°(1-cos 30°); (2)cos 30°sin 60°-cos 45°-(2-tan60°)2+tan45°.解:1+24-32解:2+6+320.(8分)如图,一大桥的桥拱为抛物线形,跨度AB =50米,拱高(即顶点C 到AB 的距离)为20米,求桥拱所在抛物线的表达式.解:y =-4125(x -25)221.(8分)(2015·黄石)如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A 到最高点B 的距离为103米,A ,B 两点正前方有垂直于地面的旗杆DE ,在A ,B 两点处用仪器测量旗杆顶端E 的仰角分别为60°和15°(仰角即视线与水平线的夹角).(1)求AE 的长;(2)已知旗杆上有一面旗在离地面1米的F 点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?解:(1)∵BG ∥CD ,∴∠GBA =∠BAC =30°.又∠GBE =15°,∴∠ABE =45°.∵∠EAD =90°,∴∠AEB =45°,∴AB =AE =103 (2)在Rt △ADE 中,∵∠EDA =90°,∠EAD =60°,AE =103,∴DE =15.又DF =1,∴FE =14.∴t =140.5=28(秒).故这面旗到达旗杆顶端需要28秒22.(10分)如图,P 为正比例函数y =32x 图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y).(1)求⊙P 与直线x =2相切时点P 的坐标;(2)请直接写出⊙P 与直线x =2相交、相离时x 的取值范围.解:(1)过P 作直线x =2的垂线,垂足为A.当点P 在直线x =2右侧时,AP =x -2=3,得x =5,∴P ⎝⎛⎭⎫5,152;当点P 在直线x =2左侧时,PA =2-x =3,得x =-1,∴P ⎝⎛⎭⎫-1,-32,∴当⊙P 与直线x =2相切时,点P 的坐标为⎝⎛⎭⎫5,152或⎝⎛⎭⎫-1,-32 (2)当-1<x<5时,⊙P 与直线x =2相交;当x<-1或x>5时,⊙P 与直线x =2相离23.(8分)(2015·武汉)如图,AB 是⊙O 的直径,∠ABT =45°,AT =AB.(1)求证:AT 是⊙O 的切线.(2)连接OT 交⊙O 于点C ,连接AC ,求tan ∠TAC 的值.解:(1)∵AB =AT ,∴∠ABT =∠ATB =45°,∴∠BAT =90°,即AT 为⊙O 的切线(2)如图,过点C 作CD ⊥AB 于点D.则∠TAC =∠ACD ,tan ∠TOA =AT AO =CD OD=2,设OD =x ,则CD =2x ,OC =5x =OA ,∵AD =AO -OD =(5-1)x ,∴tan ∠TAC =tan ∠ACD =AD CD =(5-1)x 2x =5-1224.(12分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可以多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数表达式;(2)当销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4 000元,且每天的总成本不超过7 000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量) 解:(1)y=(x-50)[50+5(100-x)]=(x-50)(-5x+550)=-5x2+800x-27 500(2)y=-5x2+800x-27 500=-5(x-80)2+4 500.∵-5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y=4 500.∴当销售单价为80元时,每天的销售利最大润最大,最大利润是4 500元(3)当y=4 000时,-5(x-80)2+4 500=4 000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4 000元.由每天的总成本不超过7 000元,得50(-5x+550)≤7 000,解得x≥82,∴82≤x≤90(满足50≤x≤100),∴销售单价应该控制在82元至90元之间25.(12分)(2015·丽水)某乒乓球馆使用发球机进行铺助训练,出球口在桌面中线端点A 处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起后,y与x满足y=a(x-3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.解:以点A为原点,以桌面中线为x轴,乒乓球水平运动方向为正方向,建立平面直角坐标系.(1)由表格中的数据,可得当t为0.4秒时,乒乓球达到最大高度(2)由表格中数据,可画出y关于x的图象,根据图象的形状,可判断y是x的二次函数.可设y=a(x-1)2+0.45.将(0,0.25)代入,可得a=-15,∴y=-15(x-1)2+0.45.当y=0时,x1=52,x2=-12(舍去),即乒乓球与端点A 的水平距离是52米 (3)①由(2)得乒乓球落在桌面上时,对应的点为(52,0).代入y =a (x -3)2+k ,得(52-3)2a +k =0,化简整理,得k =-14a.②由题意知,扣杀路线在直线y =110x 上.由①得y =a (x -3)2-14a.令a (x -3)2-14a =110x ,整理,得20ax 2-(120a +2)x +175a =0.当Δ=(120a +2)2-4×20a ×175a =0时符合题意,解得a 1=-6+3510,a 2=-6-3510.当a 1=-6+3510时,求得x =-352,不符合题意,舍去;当a 2=-6-3510时,求得x =352,符合题意.答:当a =错误!时,能恰好将球沿直线扣杀到点A。

相关文档
最新文档