2017届高三最新考试数学理试题分类汇编:三角函数含答案
广东省13市2017届高三上学期期末考试数学理试题分类汇编:三角函数含答案
广东省13市2017届高三上学期期末考试数学理试题分类汇编三角函数一、选择、填空题1、(潮州市2017届高三上学期期末)若=﹣,则sin (α+)的值为( )A .B .﹣C .D .﹣2、(东莞市2017届高三上学期期末)已知函数()3sin()3f x x πω=+的最小正周期为π,将函数()f x 的图象向右平移6π个所得图象对应的函数为()y g x =,则关于函数为()y g x =的性质,下列说法不正确的是()A .g (x )为奇函数B .关于直线2x π=对称C.关于点(π,0)对称 D .在(,)64ππ-上递增 3、(佛山市2017届高三教学质量检测(一))下列函数中,同时满足两个条件“①R x ∈∀,0)12()12(=-++x f x f ππ;②当36ππ<<-x 时,0)('>x f ”的一个函数是( )A .)62sin()(π+=x x f B .)32cos()(π+=x x f C .)62sin()(π-=x x f D .)62cos()(π-=x x f4、(广州市2017届高三12月模拟)若将函数()sin 2cos 2f x x x =+的图象向左平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是(A)8π (B )4π (C)38π(D)34π5、(惠州市2017届高三第三次调研)函数y =cos 2x +2sin x 的最大值为( )(A )34 (B )1 (C )32(D )26、(江门市2017届高三12月调研)已知函数f (x )=2sinxcosx +cos2x ,则下列说法正确的是A .f (x )的图象向右平移π4个单位长度后得到g (x )=√2sin (2x +π4)的图象B .若f (x 1)=f(x 2),则x 1−x 2=kπ,k ∈ZC .f (x )的图象关于直线x =58π对称D .f (x )的图象关于点(−38π,0)对称7、(茂名市2017届高三第一次综合测试)如图1,函数)2sin()(φ+=x A x f 2||,0(πφ<>A )的图象过点)3,0(,则)(x f 的图象的一个对称中心是( )A .(,0)3π-B .(,0)6π-C .(,0)6πD .(,0)4π8、(清远市清城区2017届高三上学期期末)函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期是π,若其图象向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图象( )A .关于点)0,6(π对称 B .关于6π=x 对称C .关于点,012π⎛⎫ ⎪⎝⎭对称 D .关于12x π=对称9、(汕头市2017届高三上学期期末)函数)0)(6sin(>+=ωπωx y 的图象与34-轴正半轴交点的横坐标构成一个公差为34-的等差数列,若要得到函数34-的图象,只要将34-的图象( )个单位A .向左平移6π B .向左平移6π C 。
北京市部分区2017届高三上学期考试数学理试题分类汇编:三角函数含答案
北京市部分区2017届高三上学期考试数学理试题分类汇编三角函数一、选择、填空题1、(昌平区2017届高三上学期期末)已知函数()2sin()(0,)2f x x πωϕωϕ=+><的图象如图所示,则函数()f x 的解析式的值为(A)()2sin(2)6f x x π=+(B )()2sin(2)3f x x π=+(C )()2sin()6f x x π=+(D )()2sin()3f x x π=+2、(朝阳区2017届高三上学期期末)在△ABC 中,已知45,2B AC BC ∠=︒=,则C ∠= .3、(朝阳区2017届高三上学期期中)函数22()cos sin f x x x =-的单调递减区间为 .4、(东城区2017届高三上学期期末)在△ABC 中,若2AB =,3AC =,60A ∠=,则BC = ; 若AD BC ⊥,则AD =_______.5、(丰台区2017届高三上学期期末)如果函数()sin 3cos f x x xωω=的两个相邻零点间的距离为2,那么(1)(2)(3)(9)f f f f ++++的值为(A )1(B)-1(C 3(D )3-6、(海淀区2017届高三上学期期末)已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><。
① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.7、(海淀区2017届高三上学期期中)已知函数42()cos sin f x x x=+,下列结论中错误..的是A 。
()f x 是偶函数 B. 函数()f x 最小值为34C 。
π2是函数()f x 的一个周期D 。
函数()f x 在π0,2()内是减函数8、(石景山区2017届高三上学期期末)已知ABC △中,AB =1BC ,sin C C,则ABC △的面积为 .9、(通州区2017届高三上学期期末)在△ABC 中,2a =,3B π=,△ABC 的面积等于,则b 等于AB .1CD .10、(西城区2017届高三上学期期末)在△ABC 中,角,,A B C 的对边分别为,,a b c .若3c =,3C π=,sin 2sin B A =,则a =____.11、(昌平区2017届高三上学期期末)已知角α终边经过点(3,4)P ,则cos 2α=___________。
2017年三角函数高考真题
8【. 2017年新课标Ⅲ卷,17】ABC 的内角A,B,C的对边分别为a,b,c,已知 sin A a 2 7 ,b2.
(1)求c; (2)设 D 为 BC 边上一点,且 AD AC ,求 △ABD 的面积.
3 cos A 0 ,
A. f (x) 的一个周期为 2π
B. y f (x) 的图像关于直线 x 8π 对称 3
C.
f
(x
)
的一个零点为
x
π 6
D.
f
(x)
在
(π 2
,
π)
单调递减
3.【2017 年新课标Ⅱ卷,14】函数 f x sin2 x
3
cos
x
3 4
(
x
0,
2
)的最大值
是
.
4. 【2017 年新课标Ⅱ卷,文 13】函数 f (x) 2 cos x sin x 的最大值为
.
5. (【 2017 年 新 课 标 Ⅱ 卷 , 文 16 】 △ABC 的 内 角 A, B, C 的 对 边 分 别 为 a, b, c , 若 2bcosB=acosC+ccosA,则 B= 6.【2017 年新课标Ⅰ卷,17】△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知△ABC
2017 年 高考真题(三角)
2π
1.【2017 年新课标Ⅰ卷,9】已知曲线 C1:y=cos x,C2:y=sin (2x+ ),则下面结正确的
3
是( )
π A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6
2017-2019年高考真题数学(理)分项汇编_专题09 三角函数
专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2s i n fx x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()s i n s i n 0fx x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C .3D .5【答案】B 【解析】2s i n 2c o αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又s i n 0α>,sin α∴=,故选B . 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-【答案】B【解析】2217cos 212sin 12()39αα=-=-⨯=. 故选B.【名师点睛】本题主要考查三角函数的求值,考查考生的运算求解能力,考查的核心素养是数学运算. 8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π【答案】A【解析】因为()πcos sin 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z , 因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【名师点睛】解答本题时,先确定三角函数单调减区间,再根据集合包含关系确定a 的最大值.函数()sin (0,0)y A x B A =++>>ωϕω的性质:(1)max min =+y A B y A B =-,. (2)周期2.T =πω(3)由()ππ2x k k +=+∈Z ωϕ求对称轴. (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.【名师点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D.【名师点睛】解答本题时,先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可作出判断.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.11.【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 12.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π, 由ϕ<π得12ϕπ=,故选A . 【名师点睛】关于sin()y A x ωϕ=+的问题有以下两种题型:①提供函数图象求解析式或参数的取值范围,一般先根据图象的最高点或最低点确定A ,再根据最小正周期求ω,最后利用最高点或最低点的坐标满足解析式,求出满足条件的ϕ的值;②题目用文字叙述函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己画出大致图象,然后寻求待定的参变量,题型很活,一般是求ω或ϕ的值、函数最值、取值范围等. 14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 24α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】2-【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭,所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时sin 22x x =-=-,所以()min2f x ⎛=⨯= ⎝⎭,故答案是. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________. 【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【名师点睛】由对称轴得2πππππ()326k k k +=+=-+∈Z ,ϕϕ,再根据限制范围求结果.函数()sin y A x B =++ωϕ(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT =ω;(3)由()ππ2x k k +=+∈Z ωϕ求对称轴; (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.20.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是. 【答案】1【解析】化简三角函数的解析式:()222311cos cos cos 144f x x x x x x ⎛=-+-=-+=--+ ⎝⎭, 由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当cos x =时,函数()f x 取得最大值1. 【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1s i n s i n 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【答案】12-【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【名师点睛】本题主要考查三角恒等变换,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算.23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈, 因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.25.【2017年高考浙江卷】已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.【答案】(1)2;(2)()f x 的最小正周期是π;单调递增区间是2[,],63k k k ππ+π+π∈Z .【解析】(1)由2sin 3π=21cos 32π=-,22211()()()322f π=----. 得2()23f π=. (2)由22cos 2cos sin x x x =-与sin 22sin cos x x x =得()cos 22f x x x =-2sin(2)6x π=-+.所以()f x 的最小正周期是π.由正弦函数的性质得3222,262k x k k πππ+π≤+≤+π∈Z , 解得2,63k x k k ππ+π≤≤+π∈Z ,所以,()f x 的单调递增区间是2[,],63k k k ππ+π+π∈Z .【名师点睛】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x 取到最小值-.【解析】(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值-27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=.(2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 【名师点睛】本题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、解决问题的能力,运算求解能力,考查的数学核心素养是数学运算.求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换. (1)首先利用三角函数的定义求得sin α,然后利用诱导公式,计算sin (α+π)的值;(2)根据sin (α+β)的值,结合同角三角函数的基本关系,计算cos()+αβ的值,要注意该值的正负,然后根据()βαβα=+-,利用两角差的余弦公式,通过分类讨论,求得cos β的值.28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()5+=-αβ.(1)求cos2α的值; (2)求tan()-αβ的值.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3=α,sin tan cos =ααα,所以4sin cos 3=αα.因为22sin cos 1+=αα, 所以29cos 25=α, 因此,27cos 22cos 125=-=-αα. (2)因为,αβ为锐角,所以(0,)+∈παβ.又因为cos()+=αβ,所以sin()+==αβ, 因此tan()2+=-αβ. 因为4tan 3=α,所以22tan 24tan 21tan 7==--ααα, 因此,tan 2tan()2tan()tan[2()]1tan 2tan()11-+-=-+==-++ααβαβααβααβ.【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中03ω<<.已知π()06f =.(1)求ω;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数()y g x =的图象,求()g x 在π3π[,]44-上的最小值. 【答案】(1)2ω=;(2)最小值为32-.【解析】(1)因为ππ()sin()sin()62f x x x ωω=-+-,所以1()cos cos 22f x x x x ωωω=--3sin cos 22x x ωω=-13(sin )2x x ωω=-π)3x ω=-.由题设知π()06f =,所以πππ63k -=ω,k ∈Z . 故62k ω=+,k ∈Z , 又03ω<<, 所以2ω=.(2)由(1)得()23f x x π⎛⎫=- ⎪⎝⎭.所以()4312g x x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 因为π3π[,]44x ∈-, 所以2,1233x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等.。
最新-高考三角函数大题
2017-2018高考三角函数大题一.解答题(共14小题)2.(2018•新课标Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.3.(2018•北京)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.6.(2018•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.7.(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.8.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.9.(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.10.(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.11.(2017•北京)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.2017-2018高考三角函数大题参考答案与试题解析一.解答题(共14小题)1.(2018•新课标Ⅰ)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.2.(2018•新课标Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.3.(2018•北京)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.5.(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣6.(2018•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.7.(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.8.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.9.(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.【解答】解:(1)∵sinA+cosA=0,∴tanA=,∵0<A<π,∴A=,由余弦定理可得a2=b2+c2﹣2bccosA,即28=4+c2﹣2×2c×(﹣),即c2+2c﹣24=0,解得c=﹣6(舍去)或c=4,故c=4.(2)∵c2=b2+a2﹣2abcosC,∴16=28+4﹣2×2×2×cosC,∴cosC=,∴CD===∴CD=BC∵S△ABC=AB•AC•sin∠BAC=×4×2×=2,∴S△ABD =S△ABC=10.(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.11.(2017•北京)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.。
2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。
(完整word)(完整word版)2017年高考数学理试题分类汇编:三角函数,推荐文档
2017年高考数学理试题分类汇编:三角函数二填空选择题【答案】【答案】【解析】1. (2017年天津卷文)设函数f(X )2sin( x ),x R ,其中o’ 丨兀若 f(5n )2,f0,且f(x)的 最小正周期大2 n ,则2 3 1 3n12 11 n 24(B ) (D)2 3 1 311 n 72 7n 24【解析】由题意得58 11 82匕k2,其中k i ,k 2所以3(k 22kJ -,又 T —23,所以1,所以2k 1,由|也,故选A .2. (2017年天津卷理 )设函数f(x) 2si n(R ,其中)0,且f (x)的最小正周期大于2 ,则(A )12 (B )12 24(D)24【解析】由题意81182k 1 k2所以 2k 11 12 ,3.( 2017年全国川卷文22,其中 k 1,k 2 Z,所以故选A.ABC 内角 3(k2A, B,C 的对边分别为a,b,c ,已知2kJ ,又T 0■,所以015根据正弦定理有:sin 600sin B2 n已知曲线 C 1: y =cos x ,C 2: y =sin (2x +),则下面结论正确的是3冗A •把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2450 A7504.(2017年新课标I ) 9.A.4B.2C.D.B .把C 1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移n 个单位长度,得到曲线12 C 2C . 把C 1上各点的横坐标缩短到原来的1倍, 2纵坐标不变, 再把得到的曲线向右平移n个单位长度,得到曲线6C 2D . 把C 上各点的横坐标缩短到原来的1倍, 2纵坐标不变, 再把得到的曲线向左平移n个单位长度,得到曲线12C2【答案】D6.(2017年浙江卷)14 .已知△ABC , AB = AC =4 , BC =2.点D 为AB 延长线上一点,BD=2,连结CD ,贝U △BDC 的面积是 _____ cos Z BDC = _____ ,8.( 2017年新课标n 文)16.△ ABC 的内角 A,B,C 的对边分别为 a,b,c 若2b cosB= a cosC+c cosA,则B=— 39. ( 2017年新课标n 文)3.函数f x = sin ( 2x+—)的最小正周期为 (C )3【解析】f x 1 cos 2 x , 3cosx3 cos 2x \ 3 cosx -44cosx乜21, x 0,:那么cosx 0,1,当 cosx3时函数取得最大值222【答案】11.【解析】取 BC 中点E , DC 中点F , 由题意:AE BC,BF CD , .15 △ ABE 中,BE 1DBC1DBC 1cos ABCcos一 ,siL 1—AB 44:164SA BCD5. ( 2017年新课标n 卷理)14•函数f x .2sin x 3 cosx 0,2的最大值是-BD BC sin DBC .2 22又 cos DBC 1 2s in DBF1, sin DBF 410 4cos BDC sin DBF综上可得,△ BCD 面积为cos BDC-10 47.(2017年新课标n 文).13函数f x =2cosxsinx 的最大值为10.(2017年浙江卷)11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率 n,理论上能把n 的值计算到任意精度.【解析】本题选择D 选项.4]! tan( -)ta^ 1 丄 4 4 614.(2017年江苏卷 5. tan()若15. (2017年新课标I 文)11 . △ABC 的内角A 、B 、C 的对边分别为 a 、b 、c 。
2017年高考数学—三角函数(解答+答案)
2017年高考数学—三角函数(解答+答案)1.(17全国1理17.(12分))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3B C a ==,求△ABC 的周长.2.(17全国2理17.(12分))ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知2sin()8sin 2B AC +=, (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .3.(17全国3理17.(12分))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin 0,2A A a b +===(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.4.(17北京理(15)(本小题13分))在ABC ∆中,360,7A c a ∠==o(Ⅰ)求sin C 的值;(Ⅱ)若7a =,求ABC ∆的面积.已知函数())2sin cos 3f x x x x π=--(Ⅰ)求()f x 的最小正周期; (Ⅱ)求证:当[,]44x ππ∈-时,1()2f x ≥-6.(17山东理16)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=. (Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.7.(17山东文(17)(本小题满分12分))在△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,6AB AC =-u u r u u u rg ,3ABC S ∆=,求A 和a 。
8.(17天津理15.(本小题满分13分))在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.10.(17浙江18.(本题满分14分))已知函数22()sin cos 23sin cos ()f x x x x x x R =--∈(Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.11.(17江苏16. (本小题满分14分))已知向量(cos ,sin ),(3,3),[0,]a x x b x π==-∈. (1)若//a b ,求x 的值; (2)记,求()f x 的最大值和最小值以及对应x 的值参考答案:1.解:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =故2sin sin 3B C =。
2017年高考数学—三角函数(选择+填空+答案)
2017年高考数学—三角函数(选择+填空+答案)1.(17全国1理9)已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是 A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 2.(17全国1文8).函数sin21cos xy x=-的部分图像大致为3.(17全国1文11)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12B .π6C .π4D .π34.(17全国2文3)函数()sin(2)3f x x π=+的最小正周期为A.4πB.2πC. πD.2π 5.(17全国3文4)已知4sin cos 3αα-=,则sin 2α= A .79-B .29-C .29D .796.(17全国3文6)函数1()sin()cos()536f x x x ππ=++-的最大值为 A .65 B .1 C .35 D .157.(17全国3文7)函数2sin 1xy x x=++的部分图像大致为A .B .C .D .8.(17山东理(9))在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 9.(17山东文(4))已知34cosx =,则2cos x = A .-14B. 14C. - 18D.1810.(17山东文(7))函数sin2cos23+=y x x 最小正周期为A.2πB.23πC.πD.2π11.(17天津理(7))设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=12.(17全国3理6)设函数()cos()3f x x π=+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线83x π=对称 C .()f x π+的一个零点为6x π=D .()f x 在(,)2ππ单调递减13. (17全国1文15)已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
湖北省各地2017届高三最新考试数学理试题分类汇编:三角函数含答案
湖北省各地2017届高三最新考试数学理试题分类汇编三角函数 2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ=A. 35B.35-C 。
45D.45-2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)已知α为第四象限角,1sin cos 5αα+=,则tan 2α的值为A.12- B 。
12 C.13- D.133、(荆门市2017届高三元月调考)若将函数1π()sin(2)23f x x =+图象上的每一个点都向左平移π3个单位,得到()g x 的图象, 则函数()g x 的单调递增区间为 A .ππ[π,π]()44k k k Z -+∈ B .π3π[π,π]()44k k k Z ++∈C .2ππ[π,π]()36k k k Z --∈ D .π5π[π,π]()1212k k k Z -+∈4、(荆州市五县市区2017届高三上学期期末)计算sin 46cos16cos314sin16⋅-⋅=A.2B.2C.3D .125、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+-等于A. B.C. D6、(武汉市2017届高三毕业生二月调研考)已知函数()()17sin cos 0326f x x x ππωωω⎛⎫⎛⎫=+--> ⎪ ⎪⎝⎭⎝⎭的最小正周期为2π,则6f π⎛⎫-= ⎪⎝⎭A. 34B. 32C.D7、(武汉市武昌区2017届高三1月调研)在锐角ABC ∆中,角,,A B C 的对边分别为a ,b ,c ,若2sin a b C =,则tan tan tan A B C ++的最小值是( ) A .4 B. C 。
2017年高考真题——理科数学(全国Ⅲ卷) Word版含解析
2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为()A .3B .2C .1D .0 【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B I 表示两直线与圆的交点,由图可知交点的个数为2,即A B I 元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =() A .12B 2C 2D .2【答案】C【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+ C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.2014年 2015年 2016年根据该折线图,下列结论错误的是() A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .80 【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为5y =,且与椭圆221123x y +=有公共焦点.则C 的方程为() A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=【答案】B【解析】∵双曲线的一条渐近线方程为5y x =,则5b a =又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π23π53-π36πg x y O 7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A .5B .4C .3D .2 【答案】D【解析】程序运行过程如下表所示:S M初始状态0 100 1 第1次循环结束100 10- 2 第2次循环结束90 1 3 此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径221312r ⎛⎫=-= ⎪⎝⎭,则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8 【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为. 则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为() ABCD .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离等于半径,∴d a == 又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴c e a == A11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为() A .3 B. CD .2【答案】A【解析】由题意,画出右图.设BD 与C e 切于点E ,连接CE . 以A 为原点,AD 为轴正半轴, AB 为轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C e 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即C e. ∵P 在C e 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩ 而00(,)AP x y =u u u r ,(0,1)AB =u u u r ,(2,0)AD =u u u r. ∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=u u u r u u u r u u u r∴0112x μθ==+,01y λθ==. 两式相加得:112)2sin()3λμθθθϕθϕ+=++=+=++≤(其中sin ϕ=,cos ϕ当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.()A O DxyB P gCE二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,值越小. 由图可知:在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. 【答案】8-【解析】{}n a Q 为等比数列,设公比为.121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =, ()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩Q x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:1)2-)由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.,为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与成60︒角时,AB 与成30︒角; ②当直线AB 与成60︒角时,AB 与成60︒角; ③直线AB 与所成角的最小值为45︒; ④直线AB 与所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号) 【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1, 故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD u u u r 为轴正方向,CB u u u r为轴正方向, CA u u u r为轴正方向建立空间直角坐标系. 则(1,0,0)D ,(0,0,1)A ,直线的方向单位向量(0,1,0)a =r ,||1a =r. B 点起始坐标为(0,1,0),直线的方向单位向量(1,0,0)b =r,||1b =r .设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--u u u r ,||2AB '=u u u r .设AB 'u u u r 与所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]a AB θθαθ--⋅==∈'r u u u r. 故ππ[,]42α∈,所以③正确,④错误.设AB 'u u u r 与所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)2|cos |AB bb AB b AB βθθθ'⋅='-⋅='=u u u r r r u u u rr u u u r .当AB 'u u u r 与夹角为60︒时,即π3α=,12sin 2cos 2cos 232πθα====. ∵22cos sin 1θθ+=,∴|cos |θ.∴1cos |cos |2βθ=.∵π[0,]2β∈.∴π=3β,此时AB 'u u u r 与夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-=∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABDS AD AB =⋅⋅△18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量(单位:瓶)为多少时,Y 的数学期望达到最大值? 【解析】⑴易知需求量可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.⑵①当200n ≤时:,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦ 880026800555n n n -+=+= 此时max 520Y =,当300n =时取到. ③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ 320025n -=此时520Y <.④当500n ≥时,易知一定小于③的情况. 综上所述:当300n =时,取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABD CBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.【解析】⑴取AC 中点为O ,连接BO ,DO ; ABC ∆Q 为等边三角形 ∴BO AC ⊥ ∴AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. ∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点DA B C ED A BC EO∴DO AC ⊥令AB a =,则AB AC BC BD a ====易得:2OD a =,OB = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥ OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩I 平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面 ⑵由题意可知V V D ACE B ACE --= 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA u u u r 为轴正方向,OB u u u r为轴正方向,OD u u u r为轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,,0B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,0,22a a AD ⎛⎫=- ⎪⎝⎭u u u r ,,0,02a OA ⎛⎫= ⎪⎝⎭u u u r 设平面AED 的法向量为1n u u r ,平面AEC 的法向量为2n u u r,则1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u r u u u r u u r,解得1n =u u r 2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u r u u u r u u r,解得(20,1,n =u u r 若二面角D AE C --为,易知为锐角,则1212cos n n n n θ⋅==⋅u u r u u r uu r u u r20.(12分)已知抛物线2:2C y x =,过点(2,0)的直线交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线与圆M 的方程.【解析】⑴显然,当直线斜率为时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于,122y y m +=,124y y =-. 1212OA OB x x y y ⋅=+uu r uu u r12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0= ∴OA OB ⊥u u r u u u r,即O 在圆M 上.⑵若圆M 过点P ,则0AP BP ⋅=uu u r uu r1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径||r OQ =则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径||r OQ ==则圆22:(3)(1)10M x y -+-=21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求的值;(2)设m 为整数,且对于任意正整数,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值. 【解析】⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾 ③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k+<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1) (112222222)n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为.22.选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m my k =-2+⎧⎪⎨=⎪⎩(m 为参数),设与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+0,M 为与C 的交点,求M 的极径. 【解析】⑴将参数方程转化为一般方程()1:2l y k x =- ……①()21:2l y x k=+ ……②①②消可得:224x y -=即P 的轨迹方程为224x y -=; ⑵将参数方程转化为一般方程3:0l x y +-= ……③ 联立曲线C和224x y x y ⎧+⎪⎨-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 由cos sin x y ρθρθ=⎧⎨=⎩解得ρ即M.23.选修4-5:不等式选讲](10分)已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭; ③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦. 综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
三角函数高考试题精选(含详细答案解析)
三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin 2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx 的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC 的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos (﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin (3x﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin 2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t 2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 4 .【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7 .【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx 的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC 的最小值是8 .【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x ﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。
(word完整版)2017三角函数高考真题
2017三角函数1.(2017北京理科)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若1sin3α=,则cos()αβ-=___________.79-2.(2017北京文科)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sinα=13,则sinβ=_________.133.(2017江苏).若tan1-=46πα⎛⎫⎪⎝⎭,则tanα= .754.(2017全国卷1理科)已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是()DA.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C25.(2017全国卷1文科)函数sin21cosxyx=-的部分图像大致为 C6.(2017全国卷1文科)已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
310107.(2017全国卷2理科)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .1 8.函数()fx =πsin (2x+)3的最小正周期为 CA.4πB.2πC. πD.2π9.函数()cos sin =2+fx x x 的最大值为10.(2017全国卷3理科)设函数f (x )=cos(x +3π),则(百度搜索“童老师高中数学”,快速提分课程)下列结论错误的是 D A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 11.(2017全国卷3文科)已知4sin cos 3αα-=,则sin 2α= A A .79-B .29-C .29D .7912.(2017全国卷3文科)函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为 AA .65B .1C .35D .1513.(2017山东理科)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为(百度搜索“童老师高中数学”,快速提分课程)原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.解:(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=--3cos 2x x ωω=-13(sin cos )22x x ωω=-)3x πω=-由题设知()06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-. 因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-.14.(2017山东文科)已知3cos 4x =,则cos2x = (A)14- (B)14 (C)18- (D)1815.(2017山东文科)函数2cos 2y x x =+最小正周期为(A )π2 (B )2π3(C )π (D ) 2π16.(2017天津文、理科)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 A (A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==17.(2017浙江)已知函数()()22sin cos cos =--∈f x x x x x x R (I )求23π⎛⎫⎪⎝⎭f 的值 (II )求()f x 的最小正周期及单调递增区间.(I )由221sin,cos 332ππ==-, 22211322f π⎛⎫⎛⎫⎛⎫=---⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得223f π⎛⎫= ⎪⎝⎭ (II )由22cos 2cos sin =-x x x 与sin 22sin cos =x x x 得()2cos 22sin 26f π⎛⎫=--+⎪⎝⎭x x x =-x所以()f x 的最小正周期是π 由正弦函数的性质得 3+22+2,262πππππ≤+≤∈k x k k Z 解得2++,63ππππ≤≤∈k x k k Z 所以()f x 的单调递增区间是2+,+63ππππ⎡⎤∈⎢⎥⎣⎦k k k Z。
江西省各地2017届高三最新考试数学理试题分类汇编:三角函数
江西省各地2017届高三最新考试数学理试题分类汇编三角函数2017.02一、选择、填空题 1、(红色七校2017届高三第二次联考).△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列,若sinB=,cosB=,则a +c 的值为2、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))设 x y ,满足约束条件430 0x yy x x y ≥⎧⎪≥-⎨⎪≥≥⎩,,若目标函数()220z x ny n =+>,z 最大值为2,则tan 6y nx π⎛⎫=+ ⎪⎝⎭的图象向右平移6π后的表达式为( )A .tan 26y x π⎛⎫=+ ⎪⎝⎭B .cot 6y x π⎛⎫=- ⎪⎝⎭ C.tan 26y x π⎛⎫=- ⎪⎝⎭ D .tan 2y x =3、(赣中南五校2017届高三下学期第一次联考)已知()sin 2017cos 201766f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为A,若存在实数12,x x 使得对任意实数x 总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( ) A.2017π B.22017π C. 42017π D.4034π4、(赣州市2017届高三上学期期末考试)将函数()cos 2f x x ω=的图象向右平移34πω个单位,得到函数()y g x =的图象,若()y g x =在[,]46ππ-上为减函数,则正实数ω的最大值为( )A .12 B .1 C. 32D .3 5、(上饶市2017届高三第一次模拟考试)已知1sin()123πα-=,则17cos()12πα+的值等于( )A .13B .23C .13-D .23-6、(江西省师大附中、临川一中2017届高三1月联考)已知将函数()213cos cos 2f x x x x =+-的图像向左平移512π个单位长度后得到()y g x =的图像,则()g x 在,123ππ⎡⎤-⎢⎥⎣⎦上的值域为 ( )A. 1,12⎡⎤-⎢⎥⎣⎦ B. 11,2⎡⎤-⎢⎥⎣⎦ C. 1,22⎡⎤-⎢⎥⎣⎦ D. 1,22⎡-⎢⎣⎦7、(新余市2017高三上学期期末考试)若函数()sin ()f x x x x R ωω=+∈,又()2f α=-,()0f β=,且||αβ-的最小值为34π,则正数ω的值是( ) A.13 B.32 C.43 D.23 8、(宜春中学2017届高三2月月考)已知函数()sin()4f x x ππ=+和函数()cos()4g x x ππ=+在区间57[,]44-上的图像交于,,A B C 三点,则ABC ∆的面积是( )A.2B.4 D.49、(江西省重点中学协作体2017届高三下学期第一次联考)为了得到函数3cos2y x =的图象,只需把函数3sin(2)6y x π=+的图象上所有的点 A .向右平移3π个单位 B .向右平移6π个单位C .向左平移3π个单位D .向左平移6π个单位 10、(九江市十校2017届高三第一次联考)︒570sin 的值是( )A .21-B .21CD .23-11、(九江市十校2017届高三第一次联考)已知函数3()sin(2)f x x π=+,若存在(0,)a π∈,使得(2)()f x a f x +=恒成立,则a 的值是( )A . 6πB .4π C .3π D .2π二、解答题 1、(红色七校2017届高三第二次联考)已知函数f (x )=2sinxcosx ﹣3sin 2x ﹣cos 2x +3.(1)当x ∈[0,]时,求f (x )的值域;(2)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A +C ),求f (B )的值.2、(赣中南五校2017届高三下学期第一次联考)已知函数,.(Ⅰ)若在上单调函数,求的取值范围;(Ⅱ)若时,在上的最小值为,求的表达式.3、(赣州市2017届高三上学期期末考试)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,222a b c ac bc ca ++=++.(1)证明:ABC ∆是正三角形;(2)如图,点D 的边BC 的延长线上,且2BC CD =,7AD =,求sin BAD ∠的值.4、(宜春中学2017届高三2月月考)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .(1)A=60°,32,求B ;(2)已知3c=2,B=150°,求边b 的长.5、(江西师范大学附属中学2017届高三12月月考)设ABC ∆的内角,,A B C 所对应的边分别为,,a b c , 已知sin()sin sin a b a cA B A B+-=+-(Ⅰ)求角B ; (Ⅱ)若63,cos b A ==,求ABC ∆的面积.6、(南昌市八一中学2017届高三2月测试)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos 2cos C a cB b-=,且2a c +=. (1)求角B ;(2)求边长b 的最小值. 7、(九江市十校2017届高三第一次联考)已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,1sin sin B C R+=(其中R 为ABC ∆的外接圆的半径)且ABC ∆的面积22()S a b c =--. (1)求tan A 的值;(2)求ABC ∆的面积S 的最大值.参考答案一、选择、填空题 1、37 2、答案:C解析:作出可行域与目标函数基准线2y x n =-,由线性规划知识,可得当直线2nz x y =+过点()1 1B ,时,z 取得最大值,即122n +=,解得2n =;则tan 6y nx π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后得到的解析式为tan 2tan 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为C.3、B4、B5、A6、B7、D 8、C 9、D 10、A 11、D二、解答题1、解:(1)∵f (x )=2sinxcosx ﹣3sin 2x ﹣cos 2x +3=sin2x﹣3﹣+3=sin2x+cos2x+1=2sin(2x+)+1,∵x∈[0,],∴2x+∈[,],∴sin(2x+)∈[,1],∴f(x)=2sin(2x+)+1∈[0,3];(2)∵=2+2cos(A+C),∴sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),∴﹣sinAcos(A+C)+cosAsin(A+C)=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA===,∴A=30°,由正弦定理可得sinC=2sinA=1,C=90°,由三角形的内角和可得B=60°,∴f(B)=f(60°)=22、解:⑴,对称轴为.···1分在上单调.或,····3分或.又,或.········5分⑵若,则,···6分当,即时,.···8分当,即时,.···10分综上所述:.······12分3、解:(1)由222a b c ac bc ca ++=++得222()()()0a b b c c a -+-+-=…………………………………………………………3分 所以0a b b c c a -=-=-=,所以a b c ==………………………………………………4分 即ABC ∆是正三角形…………………………………………………………………………5分 (2)因为ABC ∆是等边三角形,2BC CD =,所以2AC CD =,120ACD ∠=…………………………………………………………7分 所以在ACD ∆中,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-⋅∠, 可得22744cos120CD CD CD CD =+-⋅,解得1CD =………………………………9分 在ABC ∆中,33BD CD ==,由正弦定理可得33sin 3212sin 147BD BBAD AD⋅⋅∠===…………………………………………………12分4、解:(1)由正弦定理可知:∴b=7, 边b 的长7.5、解:(Ⅰ)因为sin()sin sin a b a c A B A B +-=+- 所以ba c a cb a --=+, 所以222a b ac c -=-, 所以21cos 222a c b ac B ac ac +-===,又因为π<<B 0,所以3B π=(Ⅱ)由36cos ,3==A b 可得3sin A =, 由BbA a sin sin =可得2=a ,而()sin sin sin cos cos sin C A B A B A B =+=+3326+= 所以ABC ∆的面积==C ab S sin 213322+ 6、(I )由已知cos 2sin sin ,cos sin C A CB B-=即()cos sin 2sin sin cos ,C B A C B =- ()sin 2sin cos ,B C A B +=7、 解:(1)由()22c b a S --=得A bc bc A bc cos 2-2sin 21= ……2分 ()412tan ,2sin 42cos 2sin ,cos 12sin 212==-=A A A A A A ……4分1582tan 12tan2tan 2=-=A AA …6分 (2)由RC B 1sin sin =+得2=+c b ……7分由158tan =A 得178sin =A ……9分1742174174sin 212=⎪⎭⎫ ⎝⎛+≤==c b bc A bc S ……11分当且仅当1==c b 时,取“=”号 于是,△ABC 的面积S 最大值为174.……12分。
2017年高考真题(全国Ⅰ卷)数学理科含答解析
2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。
2017年高考全国卷I卷(理数)试题及答案详细解析
2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为( ) A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为( ) A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入( ) A .A >1 000和n =n +1 B .A >1 000和n =n +2 C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1011.设x ,y ,z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。
2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A.12-B.13C.12D.112.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分。
福建各地2017届高三数学最新考试试题分类汇编 三角函数 理
福建省各地2017届高三最新考试数学理试题分类汇编三角函数2017.03一、选择、填空题 1、(福建省2017年普通高中毕业班单科质量检查模拟)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41 (B )43(C )42(D )322、(福州市2017届高三3月质量检测)要得到函数()cos 2f x x =的图象,只需将函数()sin 2g x x =的图象(A )向左平移12个周期 (B )向右平移12个周期(C )向左平移14个周期 (D )向右平移14个周期3、(莆田市2017届高三3月教学质量检查)已知函数())(0,)22f x wx w ππϕϕ=+>-<<,1(,0)3A 为图象()f x 的对称中心,,BC 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是A .24(2,2),33k k k Z -+∈ B .24(2,2),33k k k Z ππππ-+∈ C .24(,),33k k k Z -+∈ D .24(4,4),33k k k Z ππππ-+∈4、(漳州市八校2017届高三上学期期末联考)若函数()cos(2)6f x x π=-,为了得到函数()sin 2g x x =的图象,则只需将()f x 的图象( )A .向右平移6π个长度单位 B.向右平移3π个长度单位 C.向左平移6π个长度单位 D.向左平移3π个长度单位5、(漳州市八校2017届高三下学期2月联考)已知tan 2((0,))ααπ=∈,则5cos(2)2πα+=( )A.35B.45C.35-D.45-6、(漳州市第二片区2017届高三上学期第一次联考)已知sin α=35,则cos(π-2α)= · ( )A .-45B .-725C .725D .457、(福建省“永安、连城、华安、漳平一中等”四地六校2017届高三第二次(12月)月考) 已知4cos()25πθ+=,22ππθ-<<,则sin 2θ的值等于( ) A .2425-B. 2425C. 1225-D. 12258、(福建省八县(市)一中联考2017届高三上学期期中)若函数()f x 同时满足以下三个性质;①()f x 的最小正周期为π;②对任意的x R ∈,都有()()4f x f x π-=-;③()f x 在3(,)82ππ上是减函数,则()f x 的解析式可能是A.()cos()8f x x π=+B.()sin 2cos2f x x x =+C.()sin cos f x x x =D.()sin 2cos 2f x x x =-9、(福州市第八中学2017届高三第六次质量检查)已知,2παπ⎛⎫∈⎪⎝⎭,且sin cos 222αα+=,则cos α的值____________.10、(福州外国语学校2017届高三适应性考试(九))已知 A B ,均为钝角,2sin cos 23A A π⎛⎫++= ⎪⎝⎭sin B =,则A B +=( ) A .34π B .54π C .74π D .76π11、(晋江市季延中学等四校2017届高三第二次联考)已知函数)(x f 满足下列条件:①定义域为[)+∞,1;②当21≤<x 时)2sin(4)(x x f π=;③)2(2)(x f x f =.若关于x 的方程0)(=+-k kx x f 恰有3个实数解,则实数k 的取值范围是( )(A ))31,141[(B )]31,141( (C )]2,31( (D ))2,31[12、(厦门第一中学2017届高三上学期期中考试)若函数()()1tan cos ,36f x x x x ππ=+-≤≤,则()f x 的最大值为( )A .1B .2C 1+13、(福建省师大附中2017届高三上学期期中考试)在△ABC 中,角A ,B ,C 所对的边分别是a b c ,,,326a b A π===,,,则tan B =14、(福建省霞浦第一中学2017届高三上学期期中考试)将函数sin ()y x x x R =+∈的图象向右平移θ(θ>0)个单位长度后,所得到的图象关于y 轴对称,则θ的最小值是 A .12π B .6π C .3π D .56π15、(福建省2017年普通高中毕业班单科质量检查模拟)函数sin sin y x x =+图象的一条对称轴是(A )4x π=-(B )4x π=(C )2x π=(D )34x π=二、解答题 1、(福建省2017年普通高中毕业班单科质量检查模拟)设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan tan AB的值; (Ⅱ)求tan()A B -的最大值.2、(福州市2017届高三3月质量检测)已知ABC △的内角,,A B C 的对边分别为,,a b c ,且)tan cos cos c c a B b A =+.(Ⅰ)求角C ;(Ⅱ)若c =ABC △面积的最大值.3、(漳州市八校2017届高三上学期期末联考)已知C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .若向量(),3m a b =与()cos ,sin n =A B 共线.(Ⅰ)求A ;(II )若a =2b =求C ∆AB 的面积.4、(漳州市八校2017届高三下学期2月联考)ABC ∆中,角C B A 、、所对的边为c b a 、、,且满足22266cos A cos B cos(A )cos(A )ππ-=-+.(Ⅰ)求角B 的值;(Ⅱ)若a b ≤=3,求c a -2的取值范围.5、(漳州市第二片区2017届高三上学期第一次联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b -c )sin B +(2c -b )sin C .(I )求角A 的大小;(II )若a =10,cos B =255,D 为AC 的中点,求BD 的长.6、(福建省八县(市)一中联考2017届高三上学期期中)已知函数()cos f x x x m ωω=-+(0ω>,x R ∈,m 是常数)的图象上的一个最高点(,1)3π,且与点(,1)3π最近的一个最低点是(,3)6π--.(Ⅰ)求函数()f x 的解析式及其单调递增区间;(Ⅱ)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且12A B B C a c ⋅=-,求函数()f A 的值域.7、(福州市第八中学2017届高三第六次质量检查)在AB C ∆中,角,,A B C 所对的边分别为,,a b c ,cos220C C ++=.(Ⅰ)求角C 的大小;(Ⅱ)若b =,AB C ∆的面积为sin 2A B ,求sin A 及c 的值.8、(福州外国语学校2017届高三适应性考试(九))已知 a b c ,,分别为ABC △三个内角 A B C ,,的对边,且cos sin 0b C C a c --=. (Ⅰ)求B ;(Ⅱ)当2b =且ABC △的面积最大时,求2a c -的值.9、(晋江市季延中学等四校2017届高三第二次联考)在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边长,已知A A cos 3sin 2=.(I)若a 2-c 2=b 2-mbc ,求实数m 的值; (II)若a =3,求△ABC 面积的最大值.10、(厦门第一中学2017届高三上学期期中考试)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且()()2sin 2sin 2sin a A b B c C =+. (1)求A 的大小;(2)若a b ==,D 是BC 的中点,求AD 的长.11、(福建省师大附中2017届高三上学期期中考试)如图,在ABC ∆中,点D 在边BC 上,,4π=∠CAD 27=AC ,102cos -=∠ADB .(Ⅰ)求C ∠sin 的值;(Ⅱ)若ABD ∆的面积为7,求AB 的长.12、(福建省霞浦第一中学2017届高三上学期期中考试)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知sin 1sin sin b Ca c A B=-++,且5b =,5CA CB ⋅=-. (Ⅰ)求△ABC 的面积.(Ⅱ)若等差数列{}n a 的公差不为零,且1cos 1a A =,2a 、4a 、8a 成等比数列,求28{}n n a a +的前n 项和n S .参考答案一、选择、填空题1、B2、C3、C4、A5、D6、B7、A8、D 9、2-10、C 11、D 12、C 13、42 14、D 15、C二、解答题 1、解:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -=可得33sin cos sin cos sin sin()55A B B A C A B -==+ ……………2分 所以33sin cos sin cos sin cos cos sin 55A B B A A B A B -=+即sin cos 4cos sin A B A B =,则tan 4tan AB=; ……………6分(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34……………10分 当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34. ……………12分2、3、解:(I )因为//m n ,所以sin cos 0a B A -=,…………2分由正弦定理,得sinAsinB A 0-=…………4分又sin 0B ≠,从而tan A =,…………5分 ∵0A p <<,∴3A p=…………6分(Ⅱ)解法一:由余弦定理,得2222cos a b c bc A =+-,…………7分而2,3a b A p ===∴2742c c =+-,即2230c c --=…………9分 ∵0c >∴3c =…………10分故ABC 的面积为1sin 2ABCSbc A ==…………12分2sin 3B =,从而sin B =8分 又由a b >,知A B >,所以cos B =.…………10分 故()sinC sin A B sin sin cos cos sin 333B B πππ⎛⎫=+=B +=+= ⎪⎝⎭…………11分 所以C ∆AB的面积为1bcsinA 2ABCS==.…………12分 4、解析:(I )由已知cos 2cos 22cos cos 66A B A A ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭得2222312sin 2sin 2cos sin 44B A A A ⎛⎫-=- ⎪⎝⎭,化简得sin B =故233B ππ=或(II )因为b a ≤,所以3B π=,由正弦定理2sin sin sin a c bA C B====, 得a=2sinA,c=2sinC ,224sin 2sin C 4sin 2sin 3a c π⎛⎫-=A -=A --A ⎪⎝⎭3sin 6π⎛⎫=A A =A - ⎪⎝⎭因为b a ≤,所以2,33662A A πππππ≤<≤-<, 所以)32,3[2∈-c a5、【解】(I )由2a sin A =(2b -c )sin B +(2c -b )sin C ,根据正弦定理 得2a 2=(2b -c )b +(2c -b )c ,整理得,a 2=b 2+c 2-2bc ···· (2分)由余弦定理 得 cos A =b 2+c 2-a 22bc =22··············· (4分)又A ∈(0,π) ,所以A =π4···················· (5分)(II )由cos B =255,可得sin B =1-cos 2B =55∴cos C =-cos(A +B )=sin A sin B -cos A cos B =22×55-22×255=-1010(7分) 又a =10,由正弦定理,可得b =a sin Bsin A=10×5522=2∴CD =12AC =1 ······· (9分)在△BCD 中,由余弦定理 得BD 2=BC 2+CD 2-2BC ·CD cos C =(10)2+12-2×10×1×(-1010)=13 ·· (11分) 所以BD =13. ·························· (12分)D CA6、解:(Ⅰ)∵()cos f x x x m ωω=-+,∴()2sin()6f x x m πω=-+,∵点(,1)3π,点(,3)6π--分别是函数()f x 图象上相邻的最高点和最低点,∴2()22362T ππππω==--=,且1(3)2m +-=,∴2ω=,1m =-. ∴()2sin(2)16f x x π=--. ∴令222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k Z ππππ-+≤≤+∈,∴函数()f x 的单调递增区间为[,],63k k k Z ππππ-++∈.(Ⅱ)∵在ABC ∆中,12AB BC ac ⋅=,∴1cos()2ac B ac π-=-,∴1cos 2B =,∵0B π<<,∴3B π=,∴23A C π+=.∵203A π<<,∴4023A π<<,72666A πππ-<-<,∴1sin(2)126A π-<-≤,∵()2sin(2)16f A A π=--,∴2()1f A -<≤,∴()f A的值域为(2,1]-.7、【解析】(Ⅰ) cos220C C ++=∴22cos 10,C C ++=-------------------------------------------2分即21)0,C +=cos C ∴=---------------------------------4分 又0C π<<,3.4C π∴=-------------------------------------------5分(Ⅱ)22222cos 5,,c a b ab C a c =+-=∴=----------------------6分由正弦定理,得sin ,C A =sinA C ∴==------------------8分1sin ,2ABC S ab C ∆=且sin ,ABC S A B ∆=----------------------9分1sin sin 22ab C A B ∴=,sin sin sin abC A B∴=由正弦定理得:2()sin sin c C C=解得 1.c =----------------------12分8、(Ⅰ)由正弦定理:sin cos sin sin sin 0B C B C A C --=, ()sin sin A B c =+sin cos sin sin 0B C B C C --=,sin 0C ≠,1sin 62B π⎛⎫-= ⎪⎝⎭,又()0 B π∈,,∴3B π=.(Ⅱ)由(Ⅰ),sin B =1sin 2ABC S ac B ==△, 又1cos 2B =,∴22424a c ac ac +-=≥-,∴4ac ≤,当且仅当a c =时等号成立.∴2a c ==,∴22a c -=. 9、解:(I)由A A cos 3sin 2=两边平方得2sin 2A =3cos A ……………………………………1分即(2cos A -1)(cos A +2)=0,解得cos A =12………………………………………………3分而a 2-c 2=b 2-mbc 可以变形为22222mbc a c b =-+……………………………………4分 即cos A =m 2=12,所以m =1………………………………………………………………6分(II)由(I)知cos A =12,则sin A =32……………………………………………………………7分由212222=-+bc a c b 得bc =b 2+c 2-a 2≥2bc -a 2,即bc ≤a 2……………………………9分故S △ABC =bc 2sin A ≤a 22·32=334(当用仅当3==c b 时,等号成立)…………………11分∴△ABC 面积的最大值为334.10、解:(1)由正弦定理,得:()()()()22sin 2sin 2sin 222a A b B c C a b b c c =+⇒=++,即222a b c =++,...............2分因为0c >,所以6c =............6分又()12AD AB AC =+,所以()()22221192cos 442AD AB AC c cb A b =+=++=, 所以AD =.......10分 11、解:(I) 因为102cos -=∠ADB ,所以1027sin =∠ADB........1分 又因为,4π=∠CAD 所以,4π-∠=∠ADB C ........2分所以4sin cos 4cos sin )4sin(sin πππADB ADB ADB C ∠-∠=-∠=∠41021025=+= ........6分(Ⅱ)在ADC ∆中,由正弦定理得ADCACC AD ∠=∠sin sin , 故2210275427sin sin )sin(sin sin sin =⨯=∠∠⋅=∠-∠⋅=∠∠⋅=ADB C AC ADB C AC ADC C AC AD π........8分 又,710272221sin 21=⋅⋅⋅=∠⋅⋅⋅=∆BD ADB AB AD S ABD 解得5=BD ........10分 在ADB ∆中,由余弦定理得.37)102(5222258cos 2222=-⨯⨯⨯-+=∠⋅⋅-+=ADB BD AD BD AD AB ........12分12、解:(Ⅰ)∵sin 1sin sin b C a c A B=-++,且5b =,5CA CB ⋅=-. ∴由正弦定理得:1b c a c a b =-++,即:222b c a bc +-=, ∵2221cos 222b c a bc A bc bc +-===, 又∵0A π<<,∴3A π= ∵2222225cos 5522a b c a c CA CB b a C a ab +-+-⋅=⋅⋅=⋅==- ∴2235a c -=- ………①∵2222cos a b c bc A =+-∴22255a c c =+-………②联立①、②解得:12c =,∴△ABC的面积11sin 51222S bc A ==⨯⨯= (Ⅱ)设数列{}n a 的公差为d 且d≠0,由1cos 1a A =,得12a =, ∵2a 、4a 、8a 成等比数列,∴2428a a a =,∴2(23)(2)(27)d d d +=++解得d=2 ∴2(1)22n a n n =+-⨯= ∴22(2)n a n +=+ ∴28211(2)2n n a a n n n n +==-++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省各地2017届高三最新考试数学理试题分类汇编三角函数2017.02一、选择、填空题 1、(红色七校2017届高三第二次联考).△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列,若sinB=,cosB=,则a +c 的值为2、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))设 x y ,满足约束条件430 0x yy x x y ≥⎧⎪≥-⎨⎪≥≥⎩,,若目标函数()220z x ny n =+>,z 最大值为2,则tan 6y nx π⎛⎫=+ ⎪⎝⎭的图象向右平移6π后的表达式为( ) A .tan 26y x π⎛⎫=+ ⎪⎝⎭ B .cot 6y x π⎛⎫=- ⎪⎝⎭ C.tan 26y x π⎛⎫=- ⎪⎝⎭D .tan 2y x =3、(赣中南五校2017届高三下学期第一次联考)已知()s i n2017c o s 201766f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为A,若存在实数12,x x 使得对任意实数x 总有()()()12f x f x f x ≤≤成立,则12A x x -的最小值为( ) A.2017π B.22017π C. 42017π D.4034π4、(赣州市2017届高三上学期期末考试)将函数()cos 2f x x ω=的图象向右平移34πω个单位,得到函数()y g x =的图象,若()y g x =在[,]46ππ-上为减函数,则正实数ω的最大值为( ) A .12 B .1 C. 32D .3 5、(上饶市2017届高三第一次模拟考试)已知1sin()123πα-=,则17cos()12πα+的值等于( ) A .13B.3C .13-D.3-6、(江西省师大附中、临川一中2017届高三1月联考)已知将函数()21cos cos 2f x x x x =+-的图像向左平移512π个单位长度后得到()y g x =的图像,则()g x 在,123ππ⎡⎤-⎢⎥⎣⎦上的值域为 ( )A. 1,12⎡⎤-⎢⎥⎣⎦B. 11,2⎡⎤-⎢⎥⎣⎦ C. 122⎡⎤-⎢⎥⎣⎦ D. 1,22⎡-⎢⎣⎦7、(新余市2017高三上学期期末考试)若函数()sin ()f x x x x R ωω=+∈,又()2f α=-,()0f β=,且||αβ-的最小值为34π,则正数ω的值是( ) A.13 B.32 C.43 D.23 8、(宜春中学2017届高三2月月考)已知函数()sin()4f x x ππ=+和函数()c o s ()4g x x ππ=+在区间57[,]44-上的图像交于,,A B C 三点,则ABC ∆的面积是( )A.2B.4 D.49、(江西省重点中学协作体2017届高三下学期第一次联考)为了得到函数3cos2y x =的图象,只需把函数3sin(2)6y x π=+的图象上所有的点 A .向右平移3π个单位 B .向右平移6π个单位C .向左平移3π个单位D .向左平移6π个单位 10、(九江市十校2017届高三第一次联考)︒570sin 的值是( )A .21-B .21CD .23-11、(九江市十校2017届高三第一次联考)已知函数3()sin(2)f x x π=+,若存在(0,)a π∈,使得(2)()f x a f x +=恒成立,则a 的值是( )A . 6πB .4π C .3π D .2π二、解答题1、(红色七校2017届高三第二次联考)已知函数f (x )=2sinxcosx ﹣3sin 2x ﹣cos 2x +3.(1)当x ∈[0,]时,求f (x )的值域;(2)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A +C ),求f (B )的值.2、(赣中南五校2017届高三下学期第一次联考)已知函数,.(Ⅰ)若在上单调函数,求的取值范围;(Ⅱ)若时,在上的最小值为,求的表达式.3、(赣州市2017届高三上学期期末考试)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,222a b c ac bc ca ++=++.(1)证明:ABC ∆是正三角形;(2)如图,点D 的边BC 的延长线上,且2BC CD =,AD =sin BAD ∠的值.4、(宜春中学2017届高三2月月考)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .(1)A=60°,,求B ;(2)已知c=2,B=150°,求边b 的长.5、(江西师范大学附属中学2017届高三12月月考)设ABC ∆的内角,,A B C 所对应的边分别为,,a b c , 已知sin()sin sin a b a cA B A B+-=+-(Ⅰ)求角B ; (Ⅱ)若3,cos b A ==求ABC ∆的面积.6、(南昌市八一中学2017届高三2月测试)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos 2cos C a cB b-=,且2a c +=. (1)求角B ;(2)求边长b 的最小值.7、(九江市十校2017届高三第一次联考)已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,1sin sin B C R+=(其中R 为ABC ∆的外接圆的半径)且ABC ∆的面积22()S a b c =--. (1)求tan A 的值;(2)求ABC ∆的面积S 的最大值.参考答案一、选择、填空题1、 2、答案:C解析:作出可行域与目标函数基准线2y x n =-,由线性规划知识,可得当直线2nz x y =+过点()1 1B ,时,z 取得最大值,即122n +=,解得2n =;则tan 6y nx π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后得到的解析式为tan 2tan 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为C.3、B4、B5、A6、B7、D8、C9、D10、A 11、D二、解答题1、解:(1)∵f(x)=2sinxcosx﹣3sin2x﹣cos2x+3=sin2x﹣3﹣+3=sin2x+cos2x+1=2sin(2x+)+1,∵x∈[0,],∴2x+∈[,],∴sin(2x+)∈[,1],∴f(x)=2sin(2x+)+1∈[0,3];(2)∵=2+2cos(A+C),∴sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),∴﹣sinAcos(A+C)+cosAsin(A+C)=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA===,∴A=30°,由正弦定理可得sinC=2sinA=1,C=90°,由三角形的内角和可得B=60°,∴f(B)=f(60°)=22、解:⑴,对称轴为. (1)分在上单调.或,····3分或.又,或.········5分⑵若,则,···6分当,即时,.···8分当,即时,.···10分综上所述:.······12分3、解:(1)由222a b c ac bc ca++=++得222()()()0a b b c c a-+-+-=…………………………………………………………3分所以0a b b c c a-=-=-=,所以a b c==………………………………………………4分即ABC∆是正三角形…………………………………………………………………………5分(2)因为ABC∆是等边三角形,2BC CD=,所以2AC CD=,120ACD∠=o…………………………………………………………7分所以在ACD∆中,由余弦定理可得:2222cosAD AC CD AC CD ACD=+-⋅∠,可得22744cos120CD CD CD CD=+-⋅o,解得1CD=………………………………9分在ABC∆中,33BD CD==,由正弦定理可得3sinsin14BD BBADAD⋅⋅∠===…………………………………………………12分4、解:(1)由正弦定理可知:∴b=7, 边b 的长7.5、解:(Ⅰ)因为所以ba c a cb a --=+, 所以222a b ac c -=-, 所以21cos 222a cb ac B ac ac +-===,又因为π<<B 0,所以3B π=(Ⅱ)由36cos ,3==A b 可得sin A =, 由BbA a sin sin =可得2=a ,而()sin sin sin cos cos sin C A B A B A B =+=+=所以ABC ∆的面积==C ab S sin 216、(I )由已知cos 2sin sin ,cos sin C A CB B-=即()cos sin 2sin sin cos ,C B A C B =- ()sin 2sin cos ,B C A B +=7、 解:(1)由()22c b a S --=得A bc bc A bc cos 2-2sin 21= ……2分 ()412tan ,2sin 42cos 2sin ,cos 12sin 212==-=A A A A A A ……4分1582tan 12tan2tan 2=-=A A A …6分 (2)由RC B 1sin sin =+得2=+c b ……7分由158tan =A 得178sin =A ……9分1742174174sin 212=⎪⎭⎫ ⎝⎛+≤==c b bc A bc S ……11分 当且仅当1==c b 时,取“=”号 于是,△ABC 的面积S 最大值为174.……12分。