第 8 章 数模和模数转换器..
第八章 数模、模数转换器
上一页 下一页 返回
A/D转换器 8.2 A/D转换器
用二进制代码来表示各个量化电平的过程叫做编码。 用二进制代码来表示各个量化电平的过程叫做编码。 由于数字量的位数有限,一个n位的二进制数只能表示2 由于数字量的位数有限,一个n位的二进制数只能表示2n 个值,因而任何一个采样-保持信号的幅值, 个值,因而任何一个采样-保持信号的幅值,只能近似地逼近 某一个离散的数字量。 某一个离散的数字量。因此在量化过程中不可避免的会产生 误差,通常把这种误差称为量化误差。显然,在量化过程中, 误差,通常把这种误差称为量化误差。显然,在量化过程中, 量化级分得越多,量化误差就越小。 量化级分得越多,量化误差就越小。
上一页 下一页 返回
A/D转换器 8.2 A/D转换器
3.逐次逼近型模-数转换器 逐次逼近型模逐次逼近型模-数转换器一般由顺序脉冲发生器、 逐次逼近型模-数转换器一般由顺序脉冲发生器、逐次逼 近寄存器、 数转换器和电压比较器等几部分组成, 近寄存器、模-数转换器和电压比较器等几部分组成,其原理 框图如图 12所示 所示。 框图如图8-12所示。 一次转换过程如表 一次转换过程如表8-3和图8-15所示。 15所示。 所示
上一页 下一页 返回
D/A转换器 8.1 D/A转换器
8.1.3 T形电阻网络D/A转换器 T形电阻网络D/A转换器 形电阻网络D/A
为了克服权电阻网络D/A转换器中电阻阻值相差过大的缺 为了克服权电阻网络D/A转换器中电阻阻值相差过大的缺 D/A 点,又研制出了如图8-3所示的T形电阻网络D/A转换器,由R 又研制出了如图 所示的T形电阻网络D/A转换器, D/A转换器 和2R两种阻值的电阻组成T形电阻网络(或称梯形电阻网络) 2R两种阻值的电阻组成T形电阻网络(或称梯形电阻网络) 两种阻值的电阻组成 为集成电路的设计和制作带来了很大方便。网络的输出端接 为集成电路的设计和制作带来了很大方便。 到运算放大器的反相输入端。 到运算放大器的反相输入端。 提高转换速度和减小尖峰脉冲的有效方法是将图 提高转换速度和减小尖峰脉冲的有效方法是将图8-4电路 改成倒T形电阻网络D/A转换电路, D/A转换电路 所示。 改成倒T形电阻网络D/A转换电路,如图8-6所示。
第八章数模和模数变换
模数转换器
• 模数转换的一般过程
– 在具体进行模数转换之前,要对模拟信号离散 化。模数转换的一般过程是:取样、保持和模 数转换。
模数转换器
• 模数转换器的主要参数
1. 分辨率 – 分辨率就是模数转换器的位数。它反映了数字 输出变化1位时所对应的模拟输入的变化。就 是数字变化1位时所可以分辨的输入的变化。
数模转换器
• 数模转换器 的一般框图
– 输入的n位数字量存储在一个寄存器中。每一 位数字量di控制一个模拟电子开关:di等于0时 开关断开,di等于1时,开关接通。di等于1时 将位权网络的一个支路与求和放大器连接,并 给放大器提供与di的权值成比例的输入电流, 经过放大器的求和,再转换为与数字量成比例 的模拟量的输出。
流入运算放大器的电流:
若取反馈电阻RF=R,则n位转换器的输出电压为:
在实际的集成电路设计中,不同电流值的电流源可 以通过多发射极晶体管来实现。
数模转换器
• 单电流源网络数模转换器
– 从集成电路制造来说,电流源的值比例不能很 大,权电流源网络数模转换器的位数不能很大。 – 单电流源网络数模转换器也是通过电流源为每 个支路提供电流,但是,使用的电流源都有相 同的电流值。然后,再通过电阻的分流,获得 每个支路所需要的电流值。 – 下面是4位单电流源网络数模转换器的原理图 。
FSR:满量程,对应于数 模转换器的最大输出 范围。
VFSR = (2n-1)×1位幅度
数模转换器
• 数模转换器的主要参数
1.分辨率 – 分辨率(resolution)就是数模转换器输入的 二进制数的最高位数。单位是比特(bit)。有 时候也直接用“位”作为单位。 – 分辨率是数模转换器的一个主要指标,反映转 换后能够区分的模拟信号的大小。 VFSR – n位数模转换器可以分辩的模拟量是: n
数模和模数转换器的应用
的内容在DAC 寄存器中锁存。
• (3) 进入DAC 寄存器的数据送入D/ A 转换器转换成模拟信号, 且随时 可读取。DAC0832 在不同信号组合的控制下可实现三种工作方式: 双缓冲器型、单缓冲器型和直通型, 如图8-6 所示。
上一页 下一页 返回
8. 2 数/ 模转换器(DAC)
• ①双缓冲器方式, 如图8-6 (a) 所示: 首先, 给
下一页 返回
8. 3 模/ 数转换器(ADC)
• 1. 取样和保持 • 取样(又称抽样或采样) 是将时间上连续变化的模拟信号转换为时间上
离散的模拟信号, 即转换为一系列等间隔的脉冲。其过程如图8-7 信 号, UO 为取样后输出信号。 • 取样电路实质上是一个受控开关。在取样脉冲CP 有效期τ 内, 取样开 关接通, 使UO =UI; 在其他时间(Ts -τ) 内, 输出UO =0。因此, 每经过一 个取样周期, 在输出端便得到输入信号的一个取样值。 • 为了不失真地用取样后的输出信号UO 来表示输入模拟信号UI, 取样频 率f s 必须满足fs≥2fmax (此式为取样定理)。其中, fmax 为输入信号UI 的 上限频率(即最高次谐波分量的频率)。
• 倒T 型电阻网络DAC 的组成框图如图8-2 所示, 数据锁存器用来暂时 存放输入的数字量, 这些数字量控制模拟电子开关, 将参考电压源UREF 按位切换到电阻译码网络中变成加权电流, 然后经运放求和输出相应 的模拟电压, 完成D/ A 转换过程。
下一页 返回
8. 2 数/ 模转换器(DAC)
输入寄存器直接存入DAC 寄存器中并进行转换。这种工作方式称为
单缓冲方式, 即通过控制一个寄存器的锁存, 达到使两个寄存器同时选
通及锁存。
第8章模数及数模转换
D0
…
D/A 转换器
V(或I)
8.2 D/A转换器
❖ 8.2.1 权电阻网络D/A转换器
❖ 图是4位权电阻网络D/A转换器的原理图,由模拟电子开关阵列、权电阻网络、
运算放大器和基准参考电压源组成。
D3
D2
D1
D0
VREF
数字寄存器
S3
S2
S1
S0
RF
R
2R
4R
8R
—
V
+
8.2 D/A转换器
❖ (1)数码寄存器:在锁存指令控制下,将输入数字量D3~D0存入寄存器中,使得 在一次完整的转换过程中输入的数字量保持稳定。
8.3 A/D转换器
❖ 8.3.1 A/D转换的基本原理
❖ A/D转换的功能就是将模拟信号转换为对应的数字信号。通常要求这种转换是线 性的,使得每次转换产生的若干位数字量可以真实地反映当前模拟量的大小。
采样
保持
量化
编码
Vi
S
Vs
Vo
C
S (t) ( a)
8.3 A/D转换器
❖ 通常采样和保持是由采样保持电路来实现的,
❖ 当第三个CP脉冲到达后,节拍脉冲CP2的下降沿使JK触发器FF1的输出Q1为0, FF0被直接置为l,Q2Q1Q0=D2D1D0=101,3位D/A转换器输出的比较电压为 VR=5V,此时因Vi>VR,故比较器输出仍为CO =l,各JK触发器的J=1,K=0。
8.2 D/A转换器
❖ 8.2.3 权电流型D/A转换器
❖ 上述两种D/C转换器都是利用电子开关将基准电压接到电阻网络中去,由于电子 开关存在导通电阻和导通压降,而且其值也各不相同,不可避免会引起转换误差; 而权电流型D/A转换器是将一系列的电流源通过控制开关引导到负载上,可以很 好地克服上述两种D/C转换器存在的缺陷。
数模和模数转换
自动控制系统
通过模数转换,实现模拟信号与数字信号之 间的转换,构建自动控制系统。
05
数模和模数转换的挑战与未 来发展
精度和分辨率的提高
总结词
随着技术的发展,对数模和模数转换 的精度和分辨率的要求越来越高。
详细描述
为了满足高精度和分辨率的需求,需 要采用先进的工艺、算法和校准技术, 以提高转换器的性能。这涉及到对噪 声抑制、非线性校正等方面的深入研 究和技术创新。
重要性
实现数字信号和模拟信号之间的相互转换,使得数字系统和模拟系统能够进行有效 的信息交互。
在信号处理中,数模和模数转换是实现信号滤波、放大、调制解调等操作的基础。
在通信中,数模和模数转换是实现信号传输、编解码、调制解调等操作的关键环节。
历史背景
早期的数模和模数转换器主要依 赖于机械和电子元件,精度和稳
于长距离传输和低功耗应用。
Σ-Δ DAC
03
Σ-Δ DAC采用过采样和噪声整形技术,具有高分辨率和低噪声
的特点,适用于音频和其他高精度应用。
DAC的应用
音频处理
DAC可将数字音频信号转换为模拟音频信号,用 于音频播放和处理。
仪器仪表
DAC可用于将数字信号转换为模拟信号,实现各 种物理量的测量和输出。
测量仪器
ADC在测量仪器中应用广泛,如电压表、电 流表、温度计等。
控制系统
ADC在控制系统中用于实时监测和调节系统 参数,如工业控制、汽车电子等。
音频处理
ADC在音频处理中用于将模拟音频信号转换 为数字信号,便于存储、传输和处理。
04
数模和模数转换的应用场景
音频处理
第8章数模转换器与模数转换器
R ∞
O1 O2
-
+
uo
I /1 6
2R 2R
I /8
2R
I/4
2R
I/2
2R
I= V REF / R
R
A B
R
C
R
D
I/8
I/4
I/2
I
-VREF
1. 倒T形电阻网络DAC
(1)电阻译码网络
电阻译码网络由R及2R两种电阻接成倒T形构成。由于网络两个输出端O1,O2都处 于零电位(O1点为虚地),所以从A、B、C任一节点向左看等效电阻都是2R, 如图(b)所示,因此,基准源电流I为
数据总线 d0~d7 (CS1)① (CS2)② 数据1锁存到①输入锁存器 (WR1)① 数据1输入①输入锁存器 (WR1)② 数据2输入②输入锁存器 WR2(XFER) ILE=1 D/A寄存器锁存 数据2锁存到②输入锁存器
刷新模拟输出
8.1 DAC
8.1.3 1.
DAC的主要参数
第8章 数模转换器与模数转换器
ADC与DAC在工业控制系统中的作用举例。
非电模拟量
传感器
模拟信号
ADC
数字信号
数字系统
数字信号
DAC
模拟信号
执行机构
8.1 DAC
8.1.1 D/A转换基本原理
数字量是用代码按数位组合起来表示的,每一位代码都有一定的 权值。例如,二进制数1010,第四位代码权是23,代码“1”表 示数值为“8”;第三位代码权是22 ,代码“0”表示这一位没有 数;第二位代码权是21 ,代码“1”表示数值为“2”;第一位代 码权是20,代码“0”表示这一位没有数,这样1010所代表的十 进制数是8×1+4×0+2×1+1×0=10。可见,数模转换只 要将数字量的每一位代码,按其权数值转换成相应的模拟量, 然后将各位模拟量相加,即得与数字量成正比的模拟量。
第八章数模和模数转换
R
D0 D1
2V REF 2 R 2V REF 2 R
i n n
(D0 2 )
0
V REF 2
n2
R
( D1 2 )
1
2V REF 2 R
n
(Di 2 )
I I 0 I 1 ... I n 1 2 V REF 2 R 2 V REF 2 R 2 V REF 2 R
模拟 电平 二进制 代码 代表的 模拟电平 模拟 电平 二进制 代码 代表的 模拟电平
1V
7/8
6/8 5/8 4/8 3/8
111
7= 7/ 8
6 = 6/8 5 = 5/8 4 = 4/0
1V 13/15 11/15 9/15 7/15 5/15
111 7 =14/15
二、转换速度 (一)建立时间 ts ts 为在大信号工作下(输入由全 0 变为全 1,或由 全 1 变为全 0), 输出 电压达到某一规定值所需时间 。 不包含 UREF 和运放的单片 DAC 最短 ts < 0.1 s;包含 UREF 和运放的单片 DAC 最短 t s < 1.5 s。 (二)转换速率 SR 用大信号工作状态下模拟电压的变化率表示 完成一次转 上升时间 换所需时间 TTR = ts + tr (tf) 下降时间
I1
→I
- +
A
模拟输出 VO
(2)工作原理
当输入数字D0=1时 I 0 当输入数字D1=1时 I 1 当输入数字Di=1时 I i
· · ·
Sn-1 VREF
Rn-1=20R
→In-1
V REF R0 V REF R1 V REF Ri
计算机数模和模数转换接口技术
逐次逼近式A/D转换
如:实现模拟电压4.80V相当于数字量123(01111011B)的A/ D转换. 具体过程如下: 当出现启动脉冲 时,逐次逼近寄存器清“0”;
数字 输出量 111 110 101 100 011 010 001 000
输入 -0.5~0.5v 0.5~1.5v 1.5~2.5v
输出 000 001 010 110 111
、、、
5.5~6.5v
1v 2v 3v 4v 5v 6v 7v
6.5~7.5v
模拟输入量
8
ADC的性能指标
3.转换时间和转换速率
22
四、逐次逼近A/D转换原理
4种常用的A/D转换方法 计数器式 逐次逼近式 微机系统中应用较多 双积分式 并行式
23
逐次逼近式A/D转换
• •
逐次逼近式A/D转换是用得最多的一种方法。
组成:
D/A转换器、比较器、控制逻辑,逐次逼近寄存器.
•
工作过程: 从最高位开始通过试探值逐次进行测试,
15
ADC0809逻辑结构
ADDC 0 0 0 0 1 1 1 1 ADDB 0 0 1 1 0 0 1 1 ADDA 0 1 0 1 0 1 0 1 通道 IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7
ADDA、ADDB、ADDC: 3个地址输入线 ALE:地址锁存允许信号
16
ADC0809逻辑结构
START: ADC启动控制信号输入端, EOC: End Of Conversion 要求正脉冲信号。 脉冲的上升沿使所有内 在START之后变低,A/D转 部寄存器清0,下降沿启 换结束后变高。可用来申 请中断。 动A/D转换
数字电子技术基础第八章
u D I “[ ]”表示取整。 △ 称为 ADC 的单位量化电压或量化单位, 它是 ADC 的最小分辨电压。
可见,输出数字量 D 正比于输入模拟量 uI 。
EXIT
…
数模和模数转换器
A /D 转换的一般步骤
输入模拟量 输出数字量
u I( t) S
C
u I ( t)
量化 编码 电路
EXIT
数模和模数转换器
2R
2R
I0
I0 2R R
I1 A
I12R R
I2 B
I22R R
I3 C
I3
VREF I
从 A、B、C 节点向左看去,各节点对地的等效电阻均为 2R。 VREF 因此,I = R I3 I I I 2 ( I ), 3 = 2 I3 = I = = 2 = 2 ( 24 ), 2 2 24 4 I1 I2 I I I 0( I ) 1 = 2 = 2 ( 4 ),I0 = 2 = I1 = = 24 16 2 2 8 I VREF 3 2 1 0 4 即 I3 = 2 I0 , I2 = 2 I0 , I1 = 2 I0 , I 0 = 2 I0 4 2 2 R 可见,支路电流值 Ii 正好代表了二进制数位 Di 的权值 2i 。 EXIT
数模和模数转换器
模拟开关 Si 受相应数字位 Di 控制。当 Di = 1 时,开 关合向“1”侧,相应支路电流 Ii 输出;Di = 0 时,开关 合向“0”侧, Ii 流入地而不能输出。 iΣ = D3 I3 + D2 I2 + D1 I1 + D0 I0 = ( D3 23 + D2 22 + D1 21 + D0 20 ) I0 = D I0 VREF RF V R REF u = D I0 RF 4 0O ΣR F = -4 F = -D· u =- iD · 2 R 2 R RF D0 D1 D2 D3 VREF R iF Σ ∞ u = D · 对 n 位 DAC, O n - + 2 R VREF + 1 1 1 1 0 R =R 0 0 0· n 若取 S1 uO= SD F S0 , 则 2 2 S3 2R n 位 2RDAC R I12R V 2R 分成 将参考电压 I0 2 I2REF I3 2n 份,uO 是 R R DAC 的输出电压。 R 可调节 每份的 D 倍。调节 VREF VREF I0 I1 I2 I3 I
第8章 数模和模数转换习题解答
思考题与习题8-1 选择题1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。
A. R V 10REF 2B. RV 10REF 22⨯ C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。
A. LSB 21VB. LSB VC. MSB VD. MSB 21V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。
A.成正比B. 成反比C. 无4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。
A.0.5 SB. 1 SC. 1.5 SD. 2 S5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。
A.电源电压B. 0C. 基准电压6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。
A.越稳定B. 越弱C. 越强7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。
A.成正比B. 成反比C. 无8)集成ADC0809可以锁存 8 模拟信号。
A.4路B. 8路C. 10路D. 16路5)双积分型ADC 的缺点是 a 。
A.转换速度较慢B. 转换时间不固定C. 对元件稳定性要求较高D. 电路较复杂8-2 填空题1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。
转换精度是指DAC 输出的实际值和理论值__之差_。
2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。
3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。
4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 0.5s 。
5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。
数模转换和模数转换原理
8.2 数模转换器
当Dn=Dn-1…D0=0时,uO=0
2n 1 当Dn=Dn-1…D0=11…1时, uO 2n U REF 。
因而uO的变化范围是
0
~
2n 2n
1 U REF
权电阻网络D/A转换器的特点 ①优点:结构简单,电阻元件数较少; ②缺点:阻值相差较大,制造工艺复杂。
U REF 2n-1 R
n-1
di 2i
i0
虚断 运算放大器输出电压为
uO
RF I
RF
U REF 2n1 R
n1
di 2i
i0
令 RF=R/2 ,则
uO
U REF 2n
n1
di 2i
i0
U REF 2n
Dn
即:输出的模拟电压uO正比于输入的数字量Dn,从而实现
8.3 模数转换器
一、A/D转换器的基本工作原理 A/D转换是将模拟信号转换为数字信号,转换过程通
过取样、保持、量化和编码四个步骤完成。
模拟量输入
数字量输出
VI 采样 保持 量化 编码 DO
8.3 模数转换器
1.取样和保持
取样(也称采样)是将时间上连续变化的信号,转换为时 间上离散的信号,即将时间上连续变化的模拟量转换为一系列 等间隔的脉冲,脉冲的幅度取决于输入模拟量。
WR1:输入数据选通信号,低电平有效。(
上升沿锁存)
XFER:数据传送选通信号,低电平有效。 WR2:数据传送选通信号,低电平有效。(
上升沿锁存)
IOUT1:DAC输出电流1。当DAC锁存器中为全1时,IOUT1最大(满 量程输出);为全0时,IOUT1为0。
数模和模数转换器
第八章 数模和模数转换器
所以电路中的电流关系如下:
第八章 数模和模数转换器
流入运放反相端的总电流在二进制数D控制下的表达式为
第八章 数模和模数转换器
输出电压
由上式可以看出,此电路完成了从数字量到模 拟量的转换。倒T形电阻网络由于其各支路电流不 随开关状态而变化,有很高的转换速度, 因此在 D/A转换器中被广泛使用。
2. ICL7106 A/D转换器 转换器 转换器
第八章 数模和模数转换器
ICL7106是双积分型CMOS工艺4位BCD码输出A/D转换器, 它包含双积分A/D转换电路、基准电压发生器、时钟脉冲产生 电路、自动极性变换、调零电路、七段译码器、LCD驱动器及 控制电路等。电路采用9 V单电源供电,CMOS差动输入, 可 直接驱动 位液晶显示器(LCD)。
3) 转换时间 转换时间 转换时间是A/D转换器完成一次从模拟量到数字 转换时间是A/D转换器完成一次从模拟量到数字 量的转换所需的时间,它反映了A/D转换器的转换速度。 量的转换所需的时间,它反映了A/D转换器的转换速度。
第八章 数模和模数转换器
8.2.2 典型的 典型的A/D转换器原理 转换器原理 1. 逐次比较型 逐次比较型A/D转换器 转换器
第八章 数模和模数转换器
在第二次积分结束时, 有 (8-3) 设CP脉冲的周期为TC,则式(7-3)可变为 即 (8-4)
(8-5)
第八章 数模和模数转换器
8.2.3 集成 集成A/D转换器及其应用 转换器及其应用 1. ADC0804 A/D转换器
图8-13 ADC0804外引线图
第八章 数模和模数转换器
1) 采样保持
第八章 数模和模数转换器
采样是在在时间上连续变化的信号中选出可供转换成数字 量的有限个点。根据采样定理,只要采样频率大于二倍的模拟 信号频谱中的最高频率, 就不会丢失模拟信号所携带的信息。 这样就把一个在时间上连续变化的模拟量变成了在时间上离散 的电信号。由于每次把采样电压转换成数字量都需要一定的时 间,因此在每次采样后必须将所采得的电压保持一段时间。 完 成这种功能的便是采样保持电路。图8-9示出了采样保持电路的 原理电路。
内工大微机原理 第八章 数模和模数转换器1
A/D转换器 8-3 A/D转换器
一、A/D转换器的功能 转换器的功能 将模拟量(电压或电流) 将模拟量(电压或电流)转换为与该数值成正 比的数字量输出 。 二、A/D转换器的类型 A/D转换器的类型 计数型 逐次逼近型 双积分型
1、计数型A/D转换器的转换原理 计数型A/D转换器的转换原理 A/D
0809转换时间大约为100µs,可在启动0809后,延时等 待100µs,此时可确定A/D已转换结束,直接采集数据。
如:设0809端口地址为98H,将通道7(IN7)的模拟 0809端口地址为98H,将通道7 IN7) 端口地址为98H 量转换为数字量送存AL。 量转换为数字量送存AL。 AL MOV OUT CALL IN AL, AL,0000 0111B 98H, 98H,AL D150µ D150µs AL, AL,98H ;选择IN7 选择IN7 ;启动A/D转换器 启动A/D转换器 A/D ;延时150 µs 延时150 ;采集数据
2、逐次逼近型A/D转换器的转换原理 逐次逼近型A/D转换器的转换原理 A/D
输出数字量1000 0000
逐次逼近型A/D转换器的 逐次逼近型A/D转换器的 A/D 转换原理与计数型基本相 同,但转换速度快。 但转换速度快。
N
模拟输入>D/A转换值?
Y
输出数字量0100 0000 输出数字量1100 0000
输入数字量
8-2 DAC0832
一、DAC0832的结构及主要管脚
说明: 1、当ILE、CS、WR1有效时,输入寄存器的输出随输入而变。 输入寄存器的输出随输入而变。 输入寄存器的输出随输入而变 DAC寄存器的输出随输入而变。 2、当XFER、WR2有效时,DAC寄存器的输出随输入而变。 DAC寄存器的输出随输入而变 任一控制信号无效时,数据则被锁存 锁存。 锁存 3、0832D/A转换器为电流输出型(数字量 需要外接运算放大器将电流转换为电压。 4、0832采用双缓冲器(锁存器)结构,提供三种工作方式。 三种工作方式。 三种工作方式 ①无缓方式 ②单缓方式 ③双缓方式 电流),
中职数模和模数转换电路PPT课件
WR2 Uref
Uref
直通工作方式
(c)
DAC0832的三种工作方式
8.3 ADC转换的原理
第8章 数模转换和模数转换电路
AD转换的过程:采样 保持量化 编码8.3 ADC转换的原理 8.3.1 AD转换的过程
第8章 数模转换和模数转换电路
采样的工作过程
8.3 ADC转换的原理 8.3.1 AD转换的过程
C
UI 开关
输入电压
-
标准
+
电压
A
积
A
B
分
输
B
时钟
控制逻辑
出
计数器
T1
开始 固定积分时间
T2
t
双积分式A/D转换器工作原理图 五、简易电压表的设计与制作
8.3 ADC转换的原理
第8章 数模转换和模数转换电路
8.3.3 A/D转换器的主要参数
1、A/D转换器的转换精度
8.3 ADC转换的原理
第8章 数模转换和模数转换电路
D0~D7
Rb
D0~D7
Rb
I0
-
“1”
ILE
I1
+
地址 译码
WR
CS WR1
XFER
“1” Uo
地址 译码
I0
ILE
I1
CS XFER WR1
-
+
U0
WR2 Uref Uref
WR
WR2 Uref
Uref
双缓冲工作方式
单缓冲工作方式
(a)
(b)
D0~D7
Rb
“1”
I0
ILE
I1
+
U0
数字电子技术课件 第8章_数模和模数转换器
2.转换速度
(1)建立时间tset 在输入数字量各位由全0变为全
1,或由全1变为全0,输出电压达到 某一规定值(例如最小值取LSB或 满度值的0.01%)所需要的时间
(2)转换速率SR
D/A转换器建立时间
在大信号工作时,即输入数字量的各位由全0变为全1,或由 全1变为0时,输出电压的变化率。这个参数与运算放大器的 压摆率类似。
IOUT2 +
VREF
D0
D1
D2
D3 D4
AD7520
D5 Ⅱ
D6
D7
D8
D9
RF
IOUT1 –
IOUT2 +
uO1 uO2
Q0 Q9
CP
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
10 位可逆计数器 加/减
计数脉冲
加减控制 电路
v0
VREF 2n
•
Rf R
n1
[ (Di
i0
• 2i )]
v01
VREF 210
•
9 i0
Di
•
2i
9
2
Di
•
2i
v02
VREF
i0
210
8.3 A/D转换器
8.3.1 A/D转换的一般过程 8.3.2 并行比较型A/D转换器 8.3.3 逐次逼近型A/D转换器 8.3.4 双积分型A/D转换器 8.3.5 A/D转换器的主要参数
8.3 A/D转换器
根据虚断有: v / R I
I
OUT 1
V
O
REF
vI
/
R u
vO (D0 20
D1 21
...D9 29 )
数模转换器与模数转换器基本原理
数模转换器与模数转换器基本原理数模转换器(DAC)和模数转换器(ADC)是现代电子设备中常见的模拟信号处理电路,它们用于将数字信号转换为模拟信号或将模拟信号转换为数字信号。
本文将详细介绍数模转换器和模数转换器的基本原理。
一、数模转换器(DAC)基本原理数模转换器将数字信号转换为模拟信号,通常用于将数字数据转换为模拟信号输出,如音频、视频等。
数模转换器的基本原理如下:1. 数字信号表示:数字信号由一系列离散的数值表示,通常用二进制表示。
比如,一个八位的二进制数可以表示0-255之间的数字。
2. 数字量化:数字量化是将连续的模拟信号离散化,将其转换为一系列离散的数值。
这可以通过将模拟信号分成若干个均匀的间隔来实现。
例如,将模拟信号分为256个等间隔的量化等级。
3. 数字到模拟转换:数字到模拟转换的过程是将离散的数字信号转换为连续的模拟信号。
这可以通过使用数字信号的离散值对应的模拟信号的电压值来实现。
比如,将一个八位的二进制数转换为0-5V之间的电压。
4. 输出滤波:为了减少转换过程中的噪声和失真,通常需要对转换器的输出信号进行滤波。
滤波器可以通过消除高频噪声、平滑信号等方式来实现,以获得更好的模拟输出信号。
二、模数转换器(ADC)基本原理模数转换器将模拟信号转换为数字信号,通常用于模拟信号的数字化处理,如传感器信号采集、音频信号编码等。
模数转换器的基本原理如下:1. 模拟信号采样:模拟信号是连续变化的信号,模数转换器需要将其离散化。
采样是指周期性地测量模拟信号的幅度。
采样频率越高,采样精度越高,对原始模拟信号的还原能力越强。
2. 量化和编码:量化是将采样后的模拟信号转换为离散的数字量,包括离散幅度和离散时间。
编码是将量化后的信号用二进制表示。
常用的编码方式有二进制编码、格雷码等。
3. 数字信号处理:模数转换器的输出是数字信号,可以通过数字信号处理进行后续的处理和分析。
例如,可以对采集到的传感器数据进行滤波、数学运算等。
电路中的数模转换器与模数转换器
电路中的数模转换器与模数转换器电子设备在现代社会中扮演着重要的角色,而电路则是电子设备的基础。
在电路中,数模转换器和模数转换器是两种常见的组件,它们在数字信号和模拟信号之间起着桥梁的作用。
本文将就数模转换器和模数转换器进行探讨。
一、数模转换器数模转换器(DAC)是将数字信号转换为模拟信号的装置。
在电子设备中,数字信号通常是通过二进制编码来表示的,而模拟信号是连续变化的。
数模转换器的作用就是将数字信号转化为与之对应的模拟信号。
数模转换器通常由数字信号输入端、模拟信号输出端和控制端组成。
其中,数字信号输入端接收来自计算机或其他数字设备的二进制编码信号,而控制端可以进行精确的调节和控制。
通过内部的数学运算和电流输出,数模转换器能够将离散的数字信号转换为连续的模拟信号。
数模转换器在各个领域中都得到了广泛的应用。
在音频设备中,数模转换器能够将数字音频信号转换为模拟音频信号,使得人们能够用耳朵听到音乐。
在通信设备中,数模转换器则起到将数字信号转换为模拟信号的作用,使信息能够在物理媒介上传输。
二、模数转换器模数转换器(ADC)则是将模拟信号转换为数字信号的装置。
在电子设备中,模拟信号是连续变化的,而数字信号是离散的。
模数转换器的作用就是将模拟信号转化为与之对应的数字信号。
与数模转换器类似,模数转换器通常由模拟信号输入端、数字信号输出端和控制端组成。
模拟信号输入端接收来自传感器或其他模拟设备的信号,而控制端则用于对转换过程进行调节和控制。
通过内部的采样和量化处理,模数转换器能够将连续的模拟信号转换为离散的数字信号。
模数转换器同样在各个领域中发挥着重要作用。
在测量仪器中,模数转换器能够将模拟信号转换为数字信号,使得数据能够被处理和分析。
在自动控制系统中,模数转换器则起到将模拟输入转换为数字输入的作用,使得系统能够进行数字化的操作。
结语数模转换器和模数转换器在电子设备中起到了桥梁的作用,将数字信号和模拟信号进行转化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 8 章 数模和模数转换器
返回首页
8.2.3 权电流型 D/A转换器
一、 电路组成
模拟开关 权电流 恒流源 0 (LSB) D0 D1 D2 (MSB) D3 iΣ RF ∞
△
10 S0
10 S1
10 S2
I/4
1 S3
I/2
+
+
+ uO 运算放 大器
-VREF
I / 16 I / 8
i 位电子模拟开关 Si 由相应输入数据 Di 控制。当 Di=1时,Si接1,恒流源接运算放大器的反向端,并提 供恒流 Ii ;当Di = 0时, Si 接0,恒流源接地。
第 8 章 数模和模数转换器
返回首页
三、权电阻网络 D / A 转换器的优缺点
权电阻 D/A 转换器的优点是电路简单,转换速 度也比较快;它的缺点是各个电阻的阻值相差很大, 而且随着输入二进制代码位数的增多,电阻的差值也 随之增加,难以保证电阻精度的要求,这给电路的转
换精度带来很大影响,也不利于集成化。
对于 n 位权电流型 D / A 转换器,则有 RF I uO = 2n ( 2n-1 Dn-1+ 2n-2Dn-2+…+ 21D1+ 20D0 )
第 8 章 数模和模数转换器
返回首页
8.2.4 D / A 转换器主要参数
一、转换精度
1. 分辨率 D / A 转换器的最低位有效数字量 (00…01)对应输出的模拟电压 ULSB 与最大数字量(11…11)输出满刻度电 压 UFSR 的比值。
返回首页
在 D / A 转换过程中,产生误差的原因很多,常见 的原因有运放的零点漂移、电子模拟开关接通时的导 通压降、基准电压 VREF 的波动、R - 2R 倒 T 形电阻 网络中电阻阻值的误差等。 要获得较高精度的 D / A 转换器,应选用低漂移高 精度的运算放大器,采用高稳定度的 VREF 和选用高分 辨率的 D / A 转换器。
返回首页 第 8 章 数模和模数转换器 如图所示权电阻网络D/A转换器中,设 n=4,VREF=-10v, RF=R/2,试求:
(1)当输入数字量 D3D2D1D0=0001 时,输出电压的值;
(2)当输入数字量 D3D2D1D0=1001 时,输出电压的值;
(3)当输入数字量 D3D2D1D0=1111 时,输出电压的值。
由于倒 T 形电阻网络 D / A 转换器中各支路的电 流恒定不变,直接流入运算放大器的反相输入端,它 们之间不存在传输时间差,因而提高了转换速度,所 以,倒 T 形电阻网络 D / A 转换器的应用非常广泛。
第 8 章 数模和模数转换器
返回首页
8.2.3 权电流型 D/A转换器
在讨论倒 T 形电阻网络 D / A 转换时,电子模拟 开关看成是理想的。然而在实际上,这些开关都存在 一定的、大小不等的电阻,其上会产生大小不一的电 压,这就不可避免地会引起转换误差。为了提高转换 精度,可采用权电流型 D / A 转换器。
第 8 章 数模和模数转换器
链接演示文稿主页面
第8章
概
数模和模数转换器
述
D/A 转换器 A/D 转换器 本章小结
第 8 章 数模和模数转换器
返回首页
8.1 概
主要要求:
述
理解数模和模数转换器的概念和作用。
第 8 章 数模和模数转换器
返回首页
一、数模和模数转换器的作用
模拟 模拟 电量 A/D 数字 数字 量 数字控制 量
电流电压 转换电路 (简称 I/U 转换电路)
模拟开关 Si 打向1侧时,相应 2R 支路接虚地; 打向0侧时,相应 2R 支路接地。故无论开关打向哪 一侧,倒 T 型电阻网络均可等效为下图。
第 8 章 数模和模数转换器
返回首页
二、 工作原理
2R 2R I0 2R I12R I22R I3 A R B R C R D 从 A、B、C 、 D节点向左看去, 各节点对地的等效 电阻均为 R。
第 8 章 数模和模数转换器
返回首页
8.3 A / D 转换器
主要要求:
了解模数转换的一般过程。
理解常用 A / D 转换器的电路组成、工作原 理、特点及应用。 了解 A / D 转换器的主要参数。
第 8 章 数模和模数转换器
返回首页
8.3.1 A / D 转换的一般过程
输入模拟量 输出数字量
u I( t) S C
第 8 章 数模和模数转换器 故运算放大器的输出电压 uO 为 uO = iF RF= -iΣRF VREF 3 = -RF 4 ( 2 D3+ 22D2+ 21D1+ 20D0 ) 2R
返回首页
对于 n 位倒 T 形电阻网络 D/A 转换器,则有 VREF uO = -RF 2nR ( 2n-1 Dn-1+ 2n-2Dn-2+…+ 21D1+ 20D0 )
微机控制系统中。
第 8 章 数模和模数转换器
返回首页
一、电路组成
CMOS 电子模拟开关
内部反馈 电阻RF
输出模拟电压uO为
倒 T 形电 阻网络
基准电压输入端 VREF 可正可负
VREF uO= - RF 210R ( 29 D9 + 28D8 + … + 21D1 + 20D0 )
第 8 章 数模和模数转换器
2 0.625V
解: uO - - 10 (0 2 3 0 2 2 0 21 1 20 ) 4
- 10 uO - 4 (1 2 3 0 2 2 0 21 1 20 ) 2 5.625V - 10 uO - 4 (1 2 3 1 2 2 1 21 1 20 ) 2 9.375V
传感器
转换器
计算机
转换器
D/A
模拟 电量 模拟
控制器
非电量
生产过程控制对象
控制操作
由此可见,模拟-数字转换器和数字-模拟转换器是数 字系统和模拟系统相互联系的桥梁,是数字系统中不可缺 少的组成部分。
第 8 章 数模和模数转换器
返回首页
二、数模和模数转换的概念
数模转换是把数字量转换为模拟量的过程。 实现数模转换的电路称数模转换器。 Digital - Analog Converter,简称 D / A 转换器。 常见 权电阻网络 D / A转换器 权电流网络 D / A转换器 D /A 转换器 倒 T 形电阻网络 D / A转换器 模数转换是把模拟量转换为数字量的过程。 实现模数转换的电路称模数转换器。 Analog - Digital Converter,简称 A / D 转换器。 A / D 直接 A / D转换器 并联比较型 逐次逼近型 转换器 间接 A / D转换器 双积分型
第 8 章 数模和模数转换器
返回首页
8.2.1 权电阻网络 D / A 转换器
一、 电路组成
权电阻网络 iΣ I0 23R S0 1 D0 (LSB) I1 22R S1 01 I2 21R S2 0 1 D2 I3 20R S3 0 1 D3 (MSB)
RF A
+ ∞
△
iF +
+ uO 求和运算 放大器
VREF
I0 I1 I2 I3 I 因此,由 VREF 流出的总电流 I 是固定不变的,其值为 VREF I= ,并且每经过一个节点,电流被分流一半,从数字量高 R I I I I I = 位到低位的电流分别为:I3 = 2 、I2 = 4 、I1 = 8 、 0 16 。 故流入求和运算放大器输入端的总电流 iΣ为 I I I I iΣ = 2 D3+ 4 D2+ 8 D1+ 16 D0 I = 24 ( 23D3+ 22D2+ 21D1+ 20D0 ) VREF 3 = 4 ( 2 D3+ 22D2+ 21D1+ 20D0 ) 2R
第 8 章 数模和模数转换器
返回首页
8.2 D/A 转换器
主要要求:
理解数模转换的基本原理。
理解常用 D/A 转换器的电路组成、工作原理、 特点及应用。 了解常用 D/A 转换器的主要参数。
第 8 章 数模和模数转换器
返回首页
数模转换的基本原理
n 位二 进制数 输入 Dn-1 Dn-2 D1 D0 … D/A 转换器 uO 模拟电压输出
第 8 章 数模和模数转换器
返回首页
8.2.2 R-2R 倒 T 形电阻网络 D/A转换器
一、 电路组成
模拟开关 倒T型 电阻网络 2R
D0
10 S0 I0 2R R I1
D1
10 S1 I12R R I2
D2
10 S2 I22R R I3
D3
RF
iΣ + ∞
△
+
uO
0 2R I0
1 S3 I3
VREF I
取样保持电路
u I ( t)
量化 编码 电路
Dn-1 D1 D0
取样:将模拟信号转换为在时间断续变化、在幅度上等于取样期 间模拟信号大小的一串脉冲。 保持:保持取样信号,使其有充分时间转换为数字信号。 量化:把取样保持电路输出的样值电压变为量化单位整数倍的 过程。
U LSB 1 分辨率 n U FSR 2 - 1
由此可见,D / A 转换器的位数 n 越多,分辨率 值就越小,能分辨的最小输出电压值也越小,分辨能 力就越强。对于一个 10 位的 D/ A 转换器,分辨率为 0.000 978。
第 8 章 数模和模数转换器 2. 转换误差 指 D / A 转换器输出模拟电压与理 论输出模拟电压的最大差值。