实数系到复数系的发展史
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数系到复数系的发展史
数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了自然数;随着生产和科学的发展,数的概念也得到了发展:为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了满足记数需要和表示具有相反意义的量,人们引进了负数;为了解决开方开不尽的矛盾,人们引进了无理数;在解方程时,为了使负数开平方有意义,人们就
引进了虚数,使实数域扩大到复数域.
十六世纪中叶,意大利数学家卡尔丹在解一元二次方程和一元三次方程时,分别得到类似下面的结果:由于负数在实数系内没有平方根,于是他首先产生了将负数开平方的思想,基于自己的设想,卡尔丹研究了类似于的新数,并进行了计算.后来又有一位意大利数学家帮加利探究了这类新数的运算法则.但最初,人们对复数的概念和性质的了解不甚清楚,对于卡尔丹将40表示成的乘积认为只不过是一种纯形式的表示而已,莫名其妙;再者用这类新数的运算法则计算又会得到一些矛盾,因而长期以来,人们把复数看作是不能接受的“虚数”.直到十七世纪和十八世纪,随着微积分的发明与发展,以及这个时期复数有了几何的解释,“虚数”才被揭去缥缈的面纱,渐露端倪.1637年,法国数学家笛卡尔正式开始使用“实数”、“虚数”这两个名词;同一时期,德国数学家莱布尼茨、瑞士数学家欧拉和法国数学家棣莫弗等研究了虚数与对数函数、三角函数之间的关系,除了解方程外,还把它用于微积分等方面进行应用研究,得到很多有价值的结果.1777年,欧拉系统地建立了复数理论,创立了复变函数论的一些基本定理,并开始把它们用到水力学和地图制图学上;欧拉首先用符号“i”作为虚数的单位,并定义1797年,挪威数学家维赛尔在平面内引进数轴,以实轴与虚轴所确定的平面向量表示虚数,不同的向量对应不同的点,他还用几何术语定义了虚数与向量的运算,揭示了虚数及其运算所具有的几何意义.
十八世纪末十九世纪初,著名的德国数学家高斯在证明代数基本定理“任何一元n次方程在复数集内有且仅有n个根”时,就应用并论述了卡尔丹所设想的新数,并首次引进了“复数”这个名词,把复数与平面内的点一一对应起来,创立了复平面,依赖于平面内的点或有向线段(向量)建立了复数的几何基础.这样历经300年的努力,数系从实数系到复数系的扩张才基本完成,复数才被人们广泛承认和使用.
复数在数学中起着重要的作用,除了上述的代数基本定理外,还有“实系数的一元n次方程虚根成对出现”定理等,特别是以复数为变量的“复变函数论”,是数学中一个重要分支.十九世纪,复变函数论经过法国数学家柯西、德国数学家黎曼和维尔斯特拉斯的巨大努力,已经形成了非常系统的理论,并且深刻地渗入到代数学、解析数论、微分方程,概率统计、计算数学和拓扑学等数学分支.同时,它在电学、热力学、
弹性理论和天体力学等方面都得到了实际应用.
虚数不虚
在学习开方时,总是要再三强调,被开方数一定要是非负数,被开方数为负数时,开方没有意义,众所周知,人们对事物的认识总是螺旋式上升的。现在,我们知道对负数进行开方可以用来表示一个虚数。
在很久以前,大多数学家都认为负数没有平方根。到1545年,意大利数学家卡尔丹在所著《重要的艺术》的第37章中列出并解出把10分成两部分,使其乘积为40的问题,方程是x(10-x)=40,他求得根为,然后说,"不管会受到多大的良心责备",把相乘,得乘积为25-(-15)或即40,卡尔丹在解三次方程时,又一次运用了负数的平方根。卡尔丹肯定了负数的平方根的用处,但当时,人们对它的认识也仅止于此。
"实数"、"虚数"这两个词是由法国数学家笛卡尔在1637年率先提出来的。而用i=表示虚数的单位是18世纪著名数学家欧拉的功绩。后来的人在这两个成果的基础上,把实数和虚数结合起来,记成a+b
i形式,称为复数。
在虚数刚进入数的领域时,人们对它的用处一无所知,实际生活中也没有用复数来表示的量,因而,最初人们对虚数产生怀疑和有一种不接受的态度。莱布尼兹称虚数是既存在又不存在的两栖物。欧拉尽管用它,但也认为虚数是虚幻的。
测量学家维塞尔用a+bi表示平面上的点。后来,高斯的复平面的概念,使复数有了真正的立足之地,从此复数就开始表示向量(有方向的数量),在水力学、地图学、航空学中有着日益广泛的应用。
复数来表示的量,因而,最初人们对虚数产生怀疑和有一种不接受的态度。莱布尼兹称虚数是既存在又不存在的两栖物。欧拉尽管用它,但也认为虚数是虚幻的。
测量学家维塞尔用a+bi表示平面上的点。后来,高斯的复平面的概念,使复数有了真正的立足之地,从此复数就开始表示向量(有方向的数量),在水力学、地图学、航空学中有着日益广泛的应用。