高一数学第二章函数单元过关试题

合集下载

高中数学必修1第二章基本初等函数单元测试题含参考答案

高中数学必修1第二章基本初等函数单元测试题含参考答案

高一数学单元测试题 必修1第二章《根本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m na a+= B .11mma a=C .log log log ()a a a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( )A .1B . 2C .12D .8 4.若(0,1)x ∈,则下列结论正确的是( )A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是( )A .(3,4)B .(2,5)C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年进步10%,后两年每年降低10%,则四年后的价格及原来价格比拟,改变的状况是 ( )A .削减1.99%B .增加1.99%C .削减4%D .不增不减 7.若1005,102a b ==,则2a b +=( )A .0B .1C .2D .3 8.函数()lg(101)2x x f x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:17.求下列各式中的x 的值(共15分,每题5分) 18.(共12分)(Ⅰ)解不等式2121()x x aa--> (01)a a >≠且. (Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求ST ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值及最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对随意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 22.已知函数)1a (log )x (f xa -= )1a 0a (≠>且, (1)求f(x)的定义域;(2)探讨函数f(x)的增减性。

高中数学必修一第二章基本初等函数单元测试题(含答案)

高中数学必修一第二章基本初等函数单元测试题(含答案)

第二章综合测试题一、选择题1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43+y ;④3-5=6(-5)2.其中正确的个数是 ( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是 ( )A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B = ( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x =3y ,则xy = ( )A.lg2lg3B.lg3lg2 C .lg 23D .lg 325.函数f (x )=x ln|x |的图象大致是 ( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则 ( ) A .f (x )与g (x )均为偶函数B .f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数 7.函数y =(m 2+2m -2)x 1m -1是幂函数,则m = ( )A .1B .-3C .-3或1D .28.下列各函数中,值域为(0,+∞)的是 ( ) A .y =2-x 2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x-1;④y =x 12;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是 ( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)= ( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,(12)x -1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为 ( )A .(-∞,2)B .(-∞,138]C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为 ( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 共90分)二、填空题 三、13.已知a 12=49(a >0),则log 23a =________. 14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________.15.若函数y =log 12(3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12,y =(22)x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.四、解答题17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax ,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2),(1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围. 参考答案: 1.[答案] B[解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2,∴log 215<20.1<20.2,选A.3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e<0,从而排除B ,故选A.6.[答案] D[解析] 因为f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ),所以f (x )是偶函数,g (x )为奇函数,故选D.7.[答案] B[解析] 因为函数y =(m 2+2m -2)x 1m -1是幂函数,所以m 2+2m -2=1且m ≠1,解得m =-3.8.[答案] A [解析] A ,y =2-x 2=(22)x的值域为(0,+∞). B ,因为1-2x ≥0,所以2x ≤1,x ≤0, y =1-2x 的定义域是(-∞,0], 所以0<2x ≤1,所以0≤1-2x <1, 所以y =1-2x 的值域是[0,1).C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞),D ,因为1x +1∈(-∞,0)∪(0,+∞),所以y =31x +1的值域是(0,1)∪(1,+∞).9.[答案] D[解析] 根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析] f (-2)=1+log 2(2-(-2))=3,f (log 212)=2log 212-1=2log 26=6, ∴f (-2)+f (log 212)=9,故选C. 11.[答案] B[解析] 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B.12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C. 13.[答案] 4[解析]∵a 12=49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4,∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2.则f (14)<0,∴f (f (14))=3-2=19.15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a 6,依题意,有⎩⎪⎨⎪⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8. ∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22x 的图象上,所以2=log 22x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12的图象上,所以2=x B 12,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14,所以点D 的坐标为(12,14).17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35=2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a =2,解得a =1.(2)由(1)知f (x )=(12)x ,又g (x )=f (x ),则4-x -2=(12)x ,即(14)x -(12)x -2=0,即[(12)x ]2-(12)x -2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1.19.[解析] (1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2,∴原不等式化为a 8-x 2>a-2x.当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数, ∴8-x 2<-2x ,解得x <-2或x >4. 故当a >1时,x 的集合是{x |-2<x <4}; 当0<a <1时,x 的集合是{x |x <-2或x >4}. 21.[解析] (1)∵f (x )=2x , ∴g (x )=f (2x )-f (x +2)=22x -2x +2.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1.于是g (x )的定义域为{x |0≤x ≤1}.(2)设g (x )=(2x )2-4×2x =(2x -2)2-4. ∵x ∈[0,1],∴2x ∈[1,2],∴当2x =2,即x =1时,g (x )取得最小值-4; 当2x =1,即x =0时,g (x )取得最大值-3. 22.[解析] (1)令log a x =t (t ∈R ),则x =a t , ∴f (t )=a a 2-1(a t -a -t ). ∴f (x )=a a 2-1(a x -a -x )(x ∈R ).∵f (-x )=a a 2-1(a -x -a x )=-a a 2-1(a x -a -x )=-f (x ),∴f (x )为奇函数.当a >1时,y =a x为增函数,y =-a -x为增函数,且a 2a 2-1>0,∴f (x )为增函数.当0<a <1时,y =a x为减函数,y =-a -x为减函数,且a 2a 2-1<0,∴f (x )为增函数. ∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即aa 2-1(a 2-a -2)≤4. ∴a a 2-1(a 4-1a2)≤4, ∴a 2+1≤4a ,∴a 2-4a +1≤0, ∴2-3≤a ≤2+ 3.又a ≠1,∴a 的取值范围为[2-3,1)∪(1,2+3].。

人教版高一数学必修2第二章单元测试题(含答案)

人教版高一数学必修2第二章单元测试题(含答案)

人教版高一数学必修2第二章单元测试题(含答案)一、选择题(每小题5分,共60分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定 A 、平行 B 、相交 C 、异面 D 、以上都有可能4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45o 角D 、11AC 与1B C 成60o 角5、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、47、空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么A 、点必P 在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个9、一个棱柱是正四棱柱的条件是A 、底面是正方形,有两个侧面是矩形B 、底面是正方形,有两个侧面垂直于底面C 、底面是菱形,且有一个顶点处的三条棱两两垂直D 、每个侧面都是全等矩形的四棱柱10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 A 、23 B 、76 C 、45D 、56B 1C 1A 1D 1BA C D 11、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB的距离为4,那么tan θ的值等于 A 、34B 、35 CD 12、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2VB 、3VC 、4VD 、5V 二、填空题(每小题4分,共16分)13、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).14、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为15、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .16、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件________ 时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)三、解答题(共74分,要求写出主要的证明、解答过程)17、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.(10分)18、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥BD . (12分)19、已知ABC ∆中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)20、一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.Q P C'B'A'C B A HG F E D BA C SD CB A D 1O D B AC 1B 1A 1C FE D BA C21、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1)O C 1∥面11AB D ; (2 )1AC ⊥面11AB D . (14分) 22、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AF AC ADλλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)高一数学必修2立体几何测试题参考答案一、选择题(每小题5分,共60分)ACDDD BCBDD DB二、填空题(每小题4分,共16分)13、小于 14、平行 15、菱形 16、1111AC B D 对角线与互相垂直三、解答题(共74分,要求写出主要的证明、解答过程)17、解:设圆台的母线长为l ,则 1分圆台的上底面面积为224S ππ=⋅=上 3分圆台的上底面面积为2525S ππ=⋅=下 5分所以圆台的底面面积为29S S S π=+=下上 6分又圆台的侧面积(25)7S l l ππ=+=侧 8分于是725l ππ= 9分即297l =为所求. 10分 18、证明:,EH FG EH ⊄Q P 面BCD ,FG ⊂面BCDEH ∴P 面BCD 6分又EH ⊂Q 面BCD ,面BCD I 面ABD BD =,EH BD ∴P 12分19、证明:90ACB ∠=oQ BC AC ∴⊥ 1分又SA ⊥面ABC SA BC ∴⊥ 4分 BC ∴⊥面SAC 7分 BC AD ∴⊥ 10分 又,SC AD SC BC C ⊥=I AD ∴⊥面SBC 12分20、解:如图,设所截等腰三角形的底边边长为xcm .在Rt EOF V 中,15,2EF cm OF xcm ==, 3分所以EO =分于是13V x = 10分 依题意函数的定义域为{|010}x x << 12分21、证明:(1)连结11A C ,设11111AC B D O =I连结1AO ,Q 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 11A C AC ∴P 且 11A C AC = 2分 又1,O O 分别是11,A C AC 的中点,11O C AO ∴P 且11O C AO =11AOC O ∴是平行四边形 4分 111,C O AO AO ∴⊂P 面11AB D ,1C O ⊄面11AB D∴1C O P 面11AB D 6分(2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 7分又1111A C B D ⊥Q , 1111B D AC C ∴⊥面 9分 111AC B D ⊥即 11分 同理可证11A C AB ⊥, 12分 又1111D B AB B =I∴1AC ⊥面11AB D 14分 22、证明:(Ⅰ)∵AB ⊥平面BCD , ∴AB ⊥CD ,∵CD ⊥BC 且AB ∩BC=B , ∴CD ⊥平面ABC. 3分 又),10(<<==λλAD AFAC AEΘ∴不论λ为何值,恒有EF ∥CD ,∴EF ⊥平面ABC ,EF ⊂平面BEF,∴不论λ为何值恒有平面BEF ⊥平面ABC. 6分 (Ⅱ)由(Ⅰ)知,BE ⊥EF ,又平面BEF ⊥平面ACD ,∴BE ⊥平面ACD ,∴BE ⊥AC. 9分 ∵BC=CD=1,∠BCD=90°,∠ADB=60°, ∴,660tan 2,2===οAB BD 11分 ,722=+=∴BC AB AC 由AB 2=AE ·AC 得,76,76==∴=AC AEAE λ 13分 故当76=λ时,平面BEF ⊥平面ACD. 14分。

高一数学第二章《基本初等函数》单元测试卷4

高一数学第二章《基本初等函数》单元测试卷4

高一数学第二章《基本初等函数》单元测试卷班级 学号 姓名一、选择题(每小题5分,共40分) 1.3334)21()21()2()2(---+-+----的值( ) A 437 B 8 C -24 D -8 2.函数x y 24-=的定义域为( )A ),2(+∞B (]2,∞-C (]2,0D [)+∞,13.下列函数中,在),(+∞-∞上单调递增的是( ) A ||x y = B x y 2log = C 31x y = D x y 5.0=4.函数x x f 4log )(=与x x f 4)(=的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a6.若函数)1,0)(1(≠>+-=a a b a y x 的图象在第一、三、四象限,则有( )A 1>a 且1<bB 1>a 且0>bC 10<<a 且0>bD 10<<a 且0<b7.已知10<<a ,0log log <<n m a a ,则 ( )A m n <<1B n m <<1C 1<<n mD 1<<m n8.函数⎩⎨⎧>-≤-=--)1(23)1(2311x x y x x 的值域是A )1,2(--B ),2(+∞-C ]1,(--∞D ]1,2(--二、填空题(每小题5分,共20分)9.若n m a a )()(->-ππ,且1>>n m ,则实数a 的取值范围为 。

10.已知函数)(x f 为偶函数,当),0(+∞∈x 时,12)(+-=x x f ,当)0,(-∞∈x 时,=)(x f _____________.11.已知函数⎩⎨⎧<+≥=-),3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________.12.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________三、解答题(共40分)13(本题满分10分)计算下列各式的值:(写出化简过程)(1)5.02120)01.0()412(2)532(-⨯+--;(5分)(2)432981⨯;(5分)14.已知函数x y 2=(1)作出其图象;(4分)(2)由图象指出单调区间;(2分)(3)由图象指出当x 取何值时函数有最小值,最小值为多少?(4分)15.已知[]2,1,4329)(-∈+⨯-=x x f x x(1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值;(4分)(2)求)(x f 的最大值与最小值;(6分)16.已知函数.11lg )(xx x f +-= (1) 求证:);1()()(xyy x f y f x f ++=+(4分) (2) 若,2)1(,1)1(=--=++abb a f ab b a f 求)(a f 和)(b f 的值.(6分)《基本初等函数》参考答案一、1~8 CBCD ABAD二、9、{}1-<πa a 10、12)(+-=-x x f11、12112、{}21<<a a三、13、(1)1516(2) 67314、(1)如图所示:(2)单调区间为()0,∞-,[)+∞,0.(3) 由图象可知:当0=x 时,函数取到最小值1min =y15、解:(1)x t 3= 在[]2,1-是单调增函数∴ 932max ==t ,3131min ==-t(2)令x t 3=,[]2,1-∈x ,⎥⎦⎤⎢⎣⎡∈∴9,31t 原式变为:42)(2+-=t t x f ,1xy3)1()(2+-=∴t x f ,⎥⎦⎤⎢⎣⎡∈9,31t ,∴当1=t 时,此时1=x ,3)(min =x f ,当9=t 时,此时2=x ,67)(max =x f 。

高一数学必修一第二章单元测试题.doc

高一数学必修一第二章单元测试题.doc

高一数学模块一第二章单元测试试题说明:本试题测试时间为50分钟,满分100分一、选择题:(本大题共8小题,每小题6分,共48分)答案填在答题卷答题卡内,否则不计分. 1、 函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( ) (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2、三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( )(A )b c a <<. (B ) c b a << (C )c a b << (D )a c b << 3、函数 的定义域为( )(A )[1,3] (B )),3()1,(+∞⋃-∞ (C )(1,3) (D )(1,2)∪(2,3) 4、已知镭经过1,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( ) (A )y =(0.9576)100x (B )y =(0.9576)100x (C )y =()x(D )y =1-(0.0424)100x5、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( )(A ) (B ) 2 (C ) 3 (D ) 6、下列函数中,在区间(0,2)上不是增函数的是( ) (A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22=7、函数 与 ( )在同一坐标系中的图像只可能是( ); ; ; 。

8、(4~10班做)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 ) ;③1212()()f x f x x x -->0;④1212()()()22x x f x f x f ++<.当f (x )=lo g 2 x 时,上述结论中正确结论的序号选项是(A ) ①④ (B ) ②④ (C )②③(D )①③8、(1~3班做)已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)7二、填空题(本大题共4小题,每小题5分,共9、 函数)5lg()(-=x x f 的定义域是 .1009576.02131xa y =x y a log -=1,0≠>a a 且)34(log 1)(22-+-=x x x f10、求值:013312log log 12(0.7)0.252-+-+=________ _. 11、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为 .12、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________ 三、解答题(第12题7分,13题10分,第14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤)13、求log 2.56.25+lg1001+ln e +3log 122+的值.14、已知m >1,试比较(lg m )0.9与(lg m )0.8的大小.15、已知()(01)xxf x a a a a -=+>≠且(Ⅰ)证明函数f ( x )的图象关于y 轴对称;(4分 )(Ⅱ)判断()f x 在(0,)+∞上的单调性,并用定义加以证明;(7分)(4~10班做)(Ⅲ)当x ∈[1,2]时函数f (x )的最大值为25,求此时a 的值. (4分)(1~3班做)(Ⅲ)当x ∈[-2,-1]时函数f (x )的最大值为25,求此时a 的值. (4分)高一数学模块一第二章单元测试答题卷班级座号姓名得分二、填空题(本大题共4小题,每小题5分,共9、;10、;11、;12、.三、解答题(第12题7分,13题10分、14题15分,共32分,解答应写出文字说明,证明过程或演算步骤)13、14、15、高一数学模块一第二章单元测试参考答案一、选择题 DBDA CCAC 7、取a =2和a = 作图筛选得A8、解:依题意,有0<a <1且3a -1<0,解得0<a <13,又当x <1时,(3a -1)x +4a >7a -1,当x ≥1时,log a x ≤0,所以7a -1≥0解得a ≥17故选C二、填空题8、 ;9、 4 ;10、 ;11、 .11、设这个幂函数的解析式为 ,将(3, )代入得21=α12、.【解析】1ln 2111(())(ln )222g g g e ===.三、解答题 (本大题有3小题,共32分) 解答应写出文字说明,证明过程或演算步骤)12、解: 原式=2-2+ ln e +6log 22…………3分= +6 …………5分=216 …………7分14、解:∵m >1,∴lg m >0;以下分类为①lg m >1,②lg m =1;③0<lg m <1三种情形讨论(lg m )0.9与(lg m )0.8的大小.…………2分①当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;…………5分②当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;…………7分③当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.…………10分15、解:(Ⅰ)要证明函数f ( x )的图象关于y 轴对称则只须证明函数f ( x )是偶函数…1分∵x ∈R …………2分 由)()(x f a a a ax f x x x x=+=+=--- …………3分∴函数f ( x )是偶函数,即函数f ( x )的图象关于y 轴对称…………4分(Ⅱ)证明:设210x x <<,则12()()f x f x -=21211111112211)1)(()11()()(x x x x x x x x x x x x x a a a a a a a a a a a a x ++----=-+-=+-+ (1)当a >1时,由0<12x x <,则x 1+x 2>0,则01>x a 、02>x a 、21x x a a <、121>+x x a ;12()()f x f x -<0即12()()f x f x <;(2)当0<a <1时,由0<12x x <,则x 1+x 2>0,则01>x a、02>x a 、21x x a a >、1021<<+x x a ;12()()f x f x -<0即12()()f x f x <;)5,(-∞21x y =21αx y =2121213所以,对于任意a (10≠>a a 且),f (x )在(0,)+∞上都为增函数.(4~10班做)(Ⅲ)由(Ⅱ)知f (x )在(0,)+∞上为增函数,则当x ∈[1,2]时,函数f (x )亦为增函数;由于函数f (x )的最大值为25,则f (2)= 25即25122=+aa ,解得2=a ,或22=a (1~3班做)(Ⅲ)由(Ⅰ)(Ⅱ)证知f (x ) 是偶函数且在(0,)+∞上为增函数,则知f (x )在)0,(-∞上为减函数;则当x ∈[-2,-1]时,函数f (x )为减函数 由于函数f (x )的最大值为25,则f (-2)= 25即25122=+a a ,解得2=a ,或22=a。

一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

 一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。

一、单项选择题(本大题共5小题,每小题5分,共计25分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。

$ab<bc$B。

$ab<ac$XXX<bc$D。

$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。

6B。

12C。

24D。

363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。

$(12,20)$B。

$(12,18)$C。

$(18,20)$D。

$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。

2B。

$\frac{2}{3}$C。

$2+\frac{2}{3}$D。

$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。

$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。

$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。

$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。

$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)1.已知不等式210ax bx --≥的解集是1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式20x bx a --<的解集是( ) A .{}23x x << B .{2x x <或}3x > C .1132xx ⎧⎫<<⎨⎬⎩⎭D .13x x ⎧<⎨⎩或12x ⎫>⎬⎭2.已知0a >,0b >,且3为3a 与3b 的等比中项,则49aba b+的最大值为( )A .124B .125C .126 D .1273.函数2()(0)f x x x x=+>的最小值是( ). A .2B .2C .22D .34.若正数x ,y 满足x 2+3xy ﹣1=0,则x+y 的最小值是( ) A .23B .223C .33D .2335.如果不等式2()0f x ax x c =-->的解集为{|21}x x -<<,那么函数()y f x =的大致图像是( )A .B .C .D .6.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <7.不等式()()0x b x c a x++≤-的解集为[)[)1,23,-+∞,则b c +=( )A .5-B .2-C .1D .38.如图在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.我们教材中利用该图作为一个说法的一个几何解释,这个说法正确的是( )A .如果0a b >>,a b >B .如果0a b >>,那么22a b >C .对任意正实数a 和b ,有222a b ab +≥, 当且仅当a b =时等号成立D .对任意正实数a 和b ,有2a b ab +≥,当且仅当a b =时等号成立9.设()121p a a -=++,21q a a =-+,则( ).A .p q >B .p q <C .p q ≥D .p q ≤10.已知实数0a >,0b >,2a b +=,则12aa b+的最小值为( ) A .32B .322C .2D .5211.设0a >,0b >55a 与5b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1D .1412.已知命题p :R x ∃∈,使2254x x ++≤;命题q :当0,2x π⎛⎫∈ ⎪⎝⎭时,()4sin sin f x x x=+的最小值为4.下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝第II 卷(非选择题)二、填空题13.若0x >时,函数21ax y x+=的最小值为5,则正实数a =____________.14.如图,等腰梯形ABCD 中,//AB CD 且2AB =,1AD =,2DC x =((0,1)x ∈).以,A B 为焦点,且过点D 的双曲线的离心率为1e ;以,C D 为焦点,且过点A 的椭圆的离心率为2e ,则12e e +的取值范围为_________15.若1x >,则函数()21f x x x =+-的最小值为___________. 16.设a 、b 是实数,且3a b +=,则22a b +的最小值是__________.三、解答题17.已知:(1)(2)0,:p x x q +-≥关于x 的不等式2260x mx m +-+>恒成立 (1)当x ∈R 时q 成立,求实数m 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.18.已知,,2παβπ⎛⎫∈⎪⎝⎭,求,,ααβαββ+-的取值范围.19.设数列{a n }满足a 1=t ,a 2=t 2,且t ≠0,前n 项和为S n ,且S n +2﹣(t +1)S n +1+tS n =0(n ∈N *). (1)证明数列{a n }为等比数列,并求{a n }的通项公式; (2)当t <2时,比较2n +2﹣n 与t n +t ﹣n 的大小;(3)若t <2,b n ,求证:2n.20.已知0,0a b >>,2224a b c ++=.(1)当1c =时,求证:()()339a b a b ++≥;(2)求2224411a b c +++的最小值.21.当[]13x ∈,时,一元二次不等式2280x x a -+-≤恒成立,求实数a 的取值范围.22.已知关于x 的不等式2520,ax x a R -+<∈. (1)当2a =时,解此不等式;(2)若此不等式的解集为{|2x x <-或1}3x >,求实数a 的值.23.你能从“盐水加盐变得更咸了”这一生活常识中提炼出一个不等式吗?若能,请写出这个不等式并证明;若不能,此题你将没有分.24.已知集合{}211600A x x x =--≤,{}133B x m x m =-≤≤+,若()AB A ⊆,求实数m 的取值范围.25.命题p :x ∀∈R ,2230x m +->成立;命题q :x ∃∈R ,2220x mx m -++<成立. (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题q 为真命题,求实数m 的取值范围;(3)若命题p 、q 至少有一个为真命题,求实数m 的取值范围.参考答案1.A2.B3.C4.B5.D6.D7.B8.C9.D10.D11.B12.D 13.25414.)+∞15.1+16.17.(1) ()3,2m ∈- (2)10733m <<- 18.12,,2222aπππαβπαββ<+<-<-<<< 19.(1)证明见解析,a n =t n (2)t n +t ﹣n <2n +2﹣n (3)见解析 20.(1)详见解析;(2)9. 21.5a ≤ 22.(1)1|22x x ⎧⎫<<⎨⎬⎩⎭;(2)3-. 23.x x a y y a+<+,0x y <<,0a >,证明见解析. 24.4m ≤25.(1)32m m ⎧⎫>⎨⎬⎩⎭;(2){1m m <-或}2m >;(3){1m m <-或32m ⎫>⎬⎭。

第二章《一元二次函数、方程和不等式》单元测试A卷——高一上学期数学人教A版(2019)必修第一册含答

第二章《一元二次函数、方程和不等式》单元测试A卷——高一上学期数学人教A版(2019)必修第一册含答

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章《一元二次函数、方程和不等式》单元测试A 卷(答卷时间:40分钟,满分:100分)一、单选题(本题共 7 小题,每小题 5 分,共 35 分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知a b >,c R Î则下列结论正确的是( )A .22a b > B .22ac bc > C .a c b c +>+ D .ac bc<2.若0x >,则1x x +的最小值为( )A .2B .3C .D .43.不等式2230x x --<的解集为( )A .{}|31x x -<< B .{}|13x x -<<C .{}|13x x x <->或D .{}|31x x x <->或4.已知01x <<,则(1)x x -的最大值为( )A .13 B .12 C .14 D .235.已知25,1,4A x B x =+=+则A 和B 的大小关系是( )A .A B > B .A B < C .A B ³ D .无法确定6.已知不等式230ax bx +->的解集为{}|13x x <<,则a b -=( )A .3- B .1- C .3 D .5-7.若1x >,则函数411y x x =-+-取得最小值时x 的值为 ()A .2B .32C .3D .4二、多选题(本题共 3小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多个选项符合题目要求,完全正确得5分,选对部分得3分,出现错误选项得0分)8. 设,a b 为任意两个非零实数,那么“不等式11a b<成立”的一个充分不必要条件是 ( )A .0a b <<B .0a b -<C .0a b >>D .a b>9.已知0,0,a b >>下列说法一定成立的是 ( )A .222a b ab +³2a b+£C .a b +> D.22433a a +++()的最小值为410.对于任意实数x ,不等式230x ax -+>恒成立,则实数a 可以是 ( )A .2B .3C .D .4三、填空题(本题共 4小题,每小题 5 分,共 20分,其中14题第一个空2分,第二个空3分)11.不等式201x x ->+的解集是________.12.已知0,a >1,a b +=则a b a a ++的最小值是________.13.设,,a b c R Î则“a b >”是“22ac bc >”的_______________条件.14.已知0,0,m n >>且m 和n 的算术平均数不小于它们的几何平均数,则此不等关系的表达式为______________,8m n +=时,mn 的最大值为____________.四、解答题(本题共 3道大题,每道大题 10分,共 30分.解答应写出必要的文字说明、证明过程或演算步骤.)15.解下列一元二次不等式(1)23100x x -->; (2)22950x x --+>.16.已知,x R Î21,4M x =+N x =,比较M 和N 的大小关系,写出详细过程.17. 若0,a b >>0c d <<求证:(1)11a b<; (2)a c b d->-第二章《一元二次函数、方程和不等式》单元测试A 卷参考答案一、单选题(本题共 7 小题,每小题 5 分,共 35 分.在每小题给出的四个选项中,只有一项符合题目要求)1.C.解析:A 选项中当22()()a b a b a b -=+-无法判断a b +的正负所以无法确定2a 与2b 的大小关系,另外也可以根据不等式的性质中只有满足条件0a b >³,才能得到22a b >因此A 错误;B 选项中当0c =时22ac bc =,0c ¹时22ac bc >,因此B 错误;C 选项中由于a b >,不等式两边同时加上同一实数c ,不等号的方向不变(同向可加性)因此C 正确;D 选项中由于不清楚实数c 的正负,无法通过a b >得到ac 和bc 的大小关系, 故选C.2.A.解析:基本不等式:0,0a b >>2a b +£,当且仅当a b =时等号成立.其中式子2a b +£可变形为a b +³.由于0x >则10x >,因此1x x +³即12x x +³, 当且仅当1x x =即1x =时12x x +=,等号成立,所以1x x +的最小值为2, 故选A.(注意利用基本不等式求最大值或最小值需要满足的条件)3.A.解析:解一元二次方程2230x x --=得1213x x =-=,, 且二次函数223y x x =--的图象开口向上,由此该二次函数的图象如图.通过对该函数图象的观察,得到不等式2230x x --<的解集为{}|13x x -<<, 故选A. (注意借助二次函数与一元二次方程、不等式之间的联系,是求解一元二次不等式的一般性方法).x02a b +£,当且仅当a b =时等号成立.变形得2()2a b ab +£.由01x <<可知0x >,10x ->,则211(1)(24x x x x +--£=,当且仅当1x x =-即12x =时等号成立,所以当12x =时1x x =-有最大值14,故选C.5.C. 分析:比较两项的大小关系,在性质特征不是很明显的情况下通常采用作差法,如果不能直接看出差值与0的大小关系,可将作差的结果进行适当变形,从而得出结论. 解析:22251110442A B x x x x x -=+-+-+=-³()=(),所以0A B -³,因此A B ³,故选C.6.D. 解析:因为不等式230ax bx +->的解集为{}|13x x <<,所以1和3是方程230ax bx +-=的两个解.解法一:将1x =和3x =分别代入230ax bx +-=得{2211303330a b a b +-=+-=g g g g 即{309330a b a b +-=+-=解得{14a b =-=所以5a b -=-,故选D.解法二:方程230ax bx +-=的两个解1和3,说明方程230ax bx +-=是一元二次方程, 0a ¹,则可利用根与系数的关系得到方程组13313ba a +=--´=-ìíî解得{14a b =-=所以5a b -=-,故选D.7.C. 解析:1x >则410,01x x ->>-,所以4141y x x =-+³=-,当且仅当且仅当411x x -=-,即3x =时411y x x =-+-取得最小值4, 所以411y x x =-+-取得最小值时3x =,故选C.二、多选题(本题共 3小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多个选项符合题目要求,完全正确得5分,选对部分得3分,出现错误选项得0分)8.AC.思路:题中考查选项中哪几个是“不等式11a b <成立”的充分不必要条件,则该条件成立时可以推出11a b <,而当11a b<成立时无法推出该条件成立.本题考查不等式相关知识,因此注重利用不等式性质及作差法的运用技巧.解析:A 选项,充分性:当0a b <<成立时11a b <也成立,因此充分性成立;必要性:当11a b<成立时无法判断0a b <<成立,因此必要性不成立.所以 “0a b <<”是“不等式11a b<成立”的充分不必要条件. B 选项,充分性:当0a b -<成立时11b a a b ab --=,由于无法确定ab 的符号,因此无法确定11a b<是否成立,因此充分性不成立;必要性:当11a b <成立时110b a a b ab--=<,由于无法确定ab 的符号,无法判断0a b -<成立,因此必要性不成立.所以 “0a b -<”是“不等式11a b<成立”的既不充分也不必要条件.C 选项,充分性:当0a b >>成立时10,ab>利用不等式的性质可知11,a b ab ab >g g 因此11b a >,即11a b <成立,因此充分性成立;必要性:当11a b<成立时无法判断0a b >>成立,因此必要性不成立.所以 “0a b >>”是“不等式11a b<成立”的充分不必要条件. D 选项,充分性:1111,,a b ab b ab a==g g 当a b >成立时由于无法确定1ab 的正负,所以无法确定1a ab g 和1b ab g 的大小关系,即无法确定11a b<成立,因此充分性不成立;必要性:同理当11a b<成立时无法确定a b >成立,因此必要性不成立.所以 “a b >”是“不等式11a b<成立”的既不充分也不必要条件.综上所述可知正确选项为AC.9.AB.解析:因为0,0,a b >>重要不等式222a b ab +³2a b +£均成立,故A,B 正确,当且仅当a b =2a b +=即a b +=,所以a b +>成立,C 错误, 由于2330a +³>,2403a >+则224343a a ++³=+() 当且仅当22433a a =++()成立时等号成立,由于22433a a =++()时21a =-无解,所以22433a a +++()无法取得最小值4,因此D 错误. 综上所述可知正确选项为AB.本题考查对基本不等式的理解及对是否符合利用基本不等式求最值条件的判定能力.10.ABC. 解析:任意实数x ,不等式230x ax -+>恒成立,则函数23y x ax =-+的最小值2min 413041a y ´´-=>´,解得a -<<则选项中满足该条件的实数a 可以是故选ABC.点评:将一元二次不等式恒成立问题转化为函数的最值问题是常见的解题策略,即若0(0)y y ><恒成立则只需min max 0(0)y y ><,这一结论是解决这类问题的关键,也是解决恒成立问题的总的思考方向.三、填空题(本题共 4小题,每小题 5 分,共 20分,其中14题第一个空2分,第二个空3分)11. {}|12x x x <->或解析:本道题考查分式不等式的等价转换.不等式201x x ->+等价于2)(1)0x x -+>(,解得12x x <->或,所以201x x ->+的解集为{}|12x x x <->或,注意解集要写成集合或区间的形式,区间形式将会在下一章学习到.12.2解析:本道题考查基本不等式的构造思维能力和对运用基本不等式求最值方法的掌握.1,a b +=则1=a b a a a a +++,因为10,0a a >>则1=a b a a a a +++³,当且仅当1=a a ,即=1a 时等号成立,因此a b a a++的最小值为2.13.必要不充分条件解析:充分性:,,a b c R Î,当a b >,0c =时2=0c ,22==0ac bc ,因此a b >Þ/22ac bc >,充分性不成立; 必要性:22ac bc >时说明20c ¹,那么一定有20c >,210c >,由不等式的性质可知此时222211ac bc c c>g g ,即a b >,因此22ac bc a b >Þ>必要性成立.综上所述“a b >”是“22ac bc >”的必要不充分条件.14. 第一空:+2m n ³第二空:16解析:0,0,m n >>且m 和n 的算术平均数是+2m n ,m 和n ,因此“m 和n 的算术平均数不小于它们的几何平均数”的符号表达式为+2m n ³+2m n ³变形可知2+(2m n mn £,当且仅当=m n 时等号成立, 8m n +=,mn £28(2=16,所以当且仅当4m n ==时mn 的最大值16.四、解答题(本题共 3道大题,每道大题 10分,共 30分.解答应写出必要的文字说明、证明过程或演算步骤.)15. 解:(1)解一元二次方程2310=0x x --得1=2x -,2=5x 则一元二次函数2=310y x x --的图象如图}5>.(2)不等式22950x x --+>的等价不等式为22+950x x -<解一元二次方程22+95=0x x -得15x =-,21=2x 则22+950x x -<的解集为1|52x x ìü-<<íýîþ即一元二次不等式22950x x --+>的解集为1|52x x ìü-<<íýîþ.方法指导:解一元二次不等式可以从解一元二次方程的根入手,了解一元二次方程与相应二次函数图象的联系,画出二次函数的图象,能根据具体函数图象得到相应一元二次不等式的解集.另外在学习本节课内容之后可以用课堂上推广的一般结论,解决相关问题.注意要明确课本上一般结论的推广过程,理解知识本质,体会数形结合和函数思想的应用,以及具体到抽象,特殊到一般的研究问题的基本方法.16. 分析:比较两项的大小关系,在性质特征不是很明显的情况下通常采用作差法,如果不能直接看出差值与0的大小关系,可将作差的结果进行适当变形,从而得出结论.解:221144M N x x x x -=+-=-+2211222x x =-+g (21=()2x - 因为,x R Î所以21(02x -³所以0M N -³,即M 和N 的大小关系是M N ³.17. 分析:通过观察不难发现两个小问均可采用作差法或利用不等式的性质直接证明.解:(1)0a b >>则10ab>由不等式的性质可知11a b ab ab >g g ,即11b a >,所以11a b<(2)0c d <<则0c d ->->又0a b >>Q ()()a cb d \+->+-ac bd \->-。

【高一数学试题精选】高一数学必修一第二章函数练习题(有答案和解释)

【高一数学试题精选】高一数学必修一第二章函数练习题(有答案和解释)
D.f(x)=x 2x和g(x)=x x 2
【解析】A中=x-1定义域为R,而=x2-1x+1定义域为{x|x≠1};
B中函数=x0定义域{x|x≠0},而=1定义域为R;
c中两函数的解析式不同;
D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.
【答案】D
故所求函数的定义域为{x|x≤0,且x≠-12}.
(2)要使=34x+83x-2有意义,
则必须3x-2 0,即x 23,
故所求函数的定义域为{x|x 23}.
11.已知f(x)=x21+x2,x∈R,
(1)计算f(a)+f(1a)的值;
(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.
高一数学必修一第二章函数练习题(有答案和解释)
5一、选择题
1.已知f(x)=x-1x+1,则f(2)=( )
A.1 B12 c13 D14
【解析】f(2)=2-12+1=13X
【答案】c
2.下列各组函数中,表示同一个函数的是( )
A.=x-1和=x2-1x+1
B.=x0和=1
c.=x2和=(x+1)2
【答案】B
二、填空题
6.集合{x|-1≤x 0或1 x≤2}用区间表示为________.
【解析】结合区间的定义知,
用区间表示为[-1,0)∪(1,2].
【答案】[-1,0)∪(1,2]
7.函数=31-x-1的定义域为________.
【解析】要使函数有意义,自变量x须满足
x-1≥01-x-1≠0
解得x≥1且x≠2
【解析】要使函数有意义,需
x-1≥0,x-2≠0,解得x≥1且x≠2,

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)一、单选题 1.已知1x >,则91x x +-的最小值为( ) A .4B .6C .7D .102.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)( )A .89πB .169πC .321)πD .321)π3.已知正项等比数列{}n a 满足:7652a a a =+,若存在两项,m n a a ,使得2116m n a a a =,则14m n +的最小值为( ) A . 43B .9C .32D .不存在4.对任意0,6x π⎡⎤∈⎢⎥⎣⎦任意()0,y ∈+∞,不等式292cos sin 4y x a x y -≥-恒成立,则实数a 的取值范围是 A .(],3-∞B .22,3⎡⎤-⎣⎦C .22,22-⎡⎣D .[]3,3-5.下列函数中,y 的最小值为2的是( )A .1y xx=+B .2y =C .x x y e e -=+D .1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭6.关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,且:2115x x -=,则a =( ) A .52B .72C .154D .1527.若,a b 为正实数,且1a b +=,则122a b+的最小值为 A .5 B .4C .92D .38.不等式102xx -≥+的解集为( ). A .[]2,1- B .(]2,1-C .[)2,1-D .(][),21,-∞-+∞9.如果不等式ax 2+bx+c<0 (a≠0)的解集是空集,那么 ( ) A .a<0,且b 2-4ac>0 B .a<0且b 2-4ac≤0 C .a>0且b 2-4ac≤0 D .a>0且b 2-4ac>010.若直线1(00)x ya b a b+=>>,过点()1,2,则2a b +的最小值为( )A .6B .4+C .8D .911.已知0a b <<,则( ) A .11a b< B .2a ab <C .22a b <D .11a b a<- 12.若0x >,则1x x -+的最小值为( )A .12B .1CD .2第II 卷(非选择题)二、填空题13.若13a b -<+<,24a b <-<,则b 的取值范围___________.14.已知等差数列{}n a 的公差为d ,关于x 的不等式2120dx a x +≥的解集为[]0,9,则使数列{}n a 的前n 项和n S 取最大值的正整数n 的值是______.15.设0,0a b >>.若2是2a 与2b 的等比中项,则11a b+的最小值为 . 16.已知p :2230x x --<,若1a x a -<-<是p 的一个必要不充分条件,则实数a 的取值范围是_________.三、解答题17.解不等式2024x x <--<18.不等式2260(0)kx x k k -+->≠(1)若不等式的解集为{|3x x <-或}2x >-,求k 的值 (2)若不等式的解集为R ,求k 的取值范围19.已知对于正数a 、b ,存在一些特殊的形式,如:22a b a b ++、222a b +、2a b +等. (1)判断上述三者的大小关系,并证明;(2)定义:间距22221||2a b a b a b ++∆=-+,间距222||22a b a b++∆=-,判断两者的大小关系,并证明.20.已知a,b,c 为互不相等的非负数,求证:a 2+b 2+c 2>(++).21.已知函数()222y ax a x =-++,a R ∈(1)32y x <-恒成立,求实数a 的取值范围; (2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.22.如图所示,设矩形()ABCD AB BC >的周长为24,把它沿AC 翻折,翻折AB '后交DC 于点P ,设AB x =.(1)用x 表示DP ,并求出x 的取值范围; (2)求ADP △面积的最大值及此时x 的值.23.证明下列不等式:(167225; (2)如果0a >,0b >,则lg lg lg 22a b a b++≥24.某农贸公司按每担200元的价格收购某农产品,并按每100元纳税10元(又称征税率为10个百分点)进行纳税,计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税降低x (0x >)个百分点,预测收购量可增加2x 个百分点. (1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调整后不少于原计划税收的83.2%,试确定x 的取值范围25.在一个限速40km /h 的弯道上,甲.乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m .又知甲,乙两种车型的刹车距离s m 与车速x km /h 之间分别有如下关系:20.10.01s x x =+甲,20.050.005s x x =+乙.问超速行驶谁应负主要责任?参考答案1.C2.A3.C4.A5.C6.A7.C8.B9.C10.C11.D12.D 13.51,22⎛⎫- ⎪⎝⎭14.5 15.4 16.2a >17.{x|21x -<<-或23}x <<18.(1)25k =-;(2),⎛-∞ ⎝⎭19.(1)222a b a ba b++≥≥+;证明见解析;(2)12∆≥∆,证明见解析. 20.见解析21.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞--22.(1)()7212612DP x x=-<<;(2)当x =108-. 23.(1)见解析;(2)见解析 24.(1)1(50)?(10)(010)25y a x x x =+-<<;(2){|02}.x x <≤. 25.乙应负主要责任.。

第2章 一元二次函数、方程和不等式高一数学上学期期中期末考试满分全攻略(人教A 版2019)解析版

第2章 一元二次函数、方程和不等式高一数学上学期期中期末考试满分全攻略(人教A 版2019)解析版
【详解】“ 不是直角三角形”,则 “ ”,所以充分条件成立.
若 ,则角 不为直角 ,有可能 是直角,所以必要条件不成立,“ 不是直角三角形”是“ ”的充分不必要条件
答案选A
【点睛】命题真假的判断也可通过逆否命题进行判断
4.(2020·浙江高一单元测试)关于x的不等式x2﹣(a+1)x+a<0的解集中恰有两个正整数,则实数a的取值范国是( )
故选:D
8.(2021·浙江)已知函数 恒成立,则实数a的取值范围是( )
A. B.
C. D.
【答案】B
【分析】将不等式化简,参变分离,利用换元法构造新函数并求出值域,可得实数a的取值范围.
【详解】 ,即
当 时,不等式恒成立, ;
当 时, ,则
令 ,则
即 ,解得
故选:B
9.(2020·全国高一单元测试)已知不等式 对任意实数 、 恒成立,则实数 的最小值为( )
A. B. C. D.
【答案】C
【分析】由题意可知, ,将代数式 展开后利用基本不等式求出该代数式的最小值,可得出关于 的不等式,解出即可.
【详解】 .
若 ,则 ,从而 无最小值,不合乎题意;
若 ,则 , .
①当 时, 无最小值,不合乎题意;
②当 时, ,则 不恒成立;
③当 时, ,
当且仅当 时,等号成立.
所以 ,
所以实数 的取值范围为 .
【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般.
22.(2021·全国高一单元测试)已知不等式 的解集为 .
(1)解不等式 ;
(2)b为何值时, 的解集为R?

高一数学:函数章节测试题(含解析)

高一数学:函数章节测试题(含解析)

函数章节测试卷(时间120,满分150)一.选择题1. 函数f (x )=)12(log 13-12++x x的定义域为( )A .(-21,0) B .(-21,+∞) C .(-21,0)∪(0,+∞) D .(-21,2) 2. 已知函数f (x )= ⎪⎩⎪⎨⎧≤>0,30,log 21x x x x ,则f (f (4))=( )A .-91B .-9C .91 D .93. 设a =log 54-log 52,b=3ln 32ln +,c=5lg 2110,则a ,b,c 的大小关系为( )A .a<b<cB .b <c<aC .c<a<bD .b <a <c4. 函数y=21x -1的图像关于x 轴对称的图像大致为( )5. 已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞)B .(0,21)∪ (2,+∞) C .(0,22)∪ (2,+∞)D . (2,+∞)6. 设函数f (x )满足f (x+π)=f (x )+sin x ,当0≤x <π时,f (x )=0,则f (623π)=( ) A .21B .23C .0D .-217. 函数y=)106(log 231+-x x 在区间[1,2]上的最大值为( )A .0B .5log 31 C .2log 31D .18. 设函数f (x )=))((22b ax x x x +++,若对任意的x ,都有f (x )=f (2-x ),则f (x )的零点个数为( )A .5B .4C .3D .29. 已知函数f (x )=  ⎩⎨⎧<≥+-0,0,3x a x a x x,是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B .(0,31] C .[31,1) D .[31,+∞) 10. 函数f (x )的图像与函数g (x )=x)21(的图像关于直线y=x 对称,则f (2x -x 2)的单调递减区间为( )A .(-∞,1)B .[1,+∞)C .(0,1)D .[1,2]11. 在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于300m 2的内接矩形花园,则其边长x 的取值范围为( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]12. 已知函数f (x )= ⎪⎩⎪⎨⎧≥+--<-1,2)2(1,)1(log 25x x x x ,则方程f (x+x 1-2)=a 的实根的个数不可能为( )A .5B .6C .7D .8二. 填空题13. 已知函数f (x )=  ⎩⎨⎧<≥+0),(0,22x x g x x x 为奇函数,则f (g (-1))= . 14. 已知函数f (x )=x 2+mx -1,若对于任意的x ∈[m ,m+1]都有f (x )<0,则m 取值范围为 .15. 已知函数f (x )=  ⎪⎩⎪⎨⎧∈-∈]3,1(,2329]1,0[,3x x x x ,当t ∈[0,1]时,f (f (t))∈[0,1],则t 取值范围为 . 16. 函数f (x )=  ⎩⎨⎧≤+>+-0,140,2ln 2x x x x x x 的零点个数为 . 三.解答题17. 函数f (x )=ax)21(,a 为常数,且函数图像过点(-1,2). (1)求a 的值(2)若g (x )=x-4-2, 且g (x )=f (x ),求满足条件的x 的值。

2高中数学必修第一册《第二章 一元二次函数、方程和不等式》单元检测试题

2高中数学必修第一册《第二章 一元二次函数、方程和不等式》单元检测试题
故选:A.
【点睛】
关键点睛:解答本题的关键是对式子 进行合理的变形和拼凑,使之能使用基本不等式求最值.
3.C
【分析】
由题意可得 恒成立,令 ,可得 ,求出 可得答案.
【详解】
解:由题意当 时, 恒成立,
令 ,可得 ,
由 ,可得 ,所以 ,
故选:C.
【点睛】
本题主要考查函数恒成立的问题及求二次函数的最值,考查学生分析问题和解决问题的能力,属于中档题.
4.D
【分析】
根据条件分别利用特殊值以及反证法进行判断即可.
【详解】
①当a=b=1时,满足a+b=2,但此时推不出结论 , 中至少有一个大于1;
②由反证法知,若 ,b≤1,则a+b≤2,与a+b> 2,矛盾,即a+b>2,可以推出 , 中至少有一个大于1;
③当 时,满足条件a+b>-2,但不能推出 , 中至少有一个大于1;
当 时,由题得 且 ,
解之得 .
综上所述, .
故选:C
【点睛】
本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.
6.A
【分析】
由已知得出 ,将代数式 与 相乘,展开后利用基本不等式可求得 的最小值,即可得出实数 的最大值.
【详解】
已知正数 、 满足 ,可得 ,
所以, ,
当且仅当 时,等号成立,所以, 的最小值为 , .
(1)写出年利润 (万元)关于年产量 (万件)的函数解析式;
(2)当年产量为多少时,该扶贫车间的年利润最大?并求出最大年利润.
19.(2020·福建高一期中)已知函数 .
(1)若对任意的 恒成立,求实数 的取值范围;
(2)若对任意的 恒成立,求实数 的取值范围.

高一数学必修一第二单元试题

高一数学必修一第二单元试题

第二章 基本初等函数(Ⅰ)一、选择题 1.对数式log32-(2+3)的值是( ).A .-1B .0C .1D .不存在2.当a >1时,在同一坐标系中,函数y =a -x与y =log a x 的图象是( ).A B C D3.如果0<a <1,那么下列不等式中正确的是( ). A .(1-a )31>(1-a )21 B .log 1-a (1+a )>0 C .(1-a )3>(1+a )2D .(1-a )1+a>14.函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 的大小顺序是( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34B .8C .18D .21 6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫ ⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥37.函数f (x )=2-x-1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R8.已知-1<a <0,则( ).(第4题)A .a <a⎪⎭⎫ ⎝⎛21<2aB .2a<a⎪⎭⎫ ⎝⎛21<aC .2a<a<a⎪⎭⎫⎝⎛21D .a⎪⎭⎫ ⎝⎛21<a <2a9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)二、填空题11.满足2-x >2x的x 的取值范围是 .12.已知函数f (x )=(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 . 16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.18.已知函数f (x)=lg(ax2+2x+1) .(1)若函数f (x)的定义域为R,求实数a的取值范围;(2)若函数f (x)的值域为R,求实数a的取值范围.19.求下列函数的定义域、值域、单调区间:(1)y=4x+2x+1+1;(2)y=2+3231x-x⎪⎭⎫⎝⎛.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.参考答案一、选择题 1.A 解析:log 32-(2+3)=log 32-(2-3)-1,故选A . 2.A解析:当a >1时,y =log a x 单调递增,y =a -x单调递减,故选A . 3.A解析:取特殊值a =21,可立否选项B ,C ,D ,所以正确选项是A .4.B解析:画出直线y =1与四个函数图象的交点,它们的横坐标的值,分别为a ,b ,c ,d 的值,由图形可得正确结果为B .5.D解析:解法一:8=(2)6,∴ f (26)=log 22=21. 解法二:f (x 6)=log 2 x ,∴ f (x )=log 26x =61log 2 x ,f (8)=61log 28=21. 6.D解析:由函数f (x )在⎪⎭⎫⎝⎛121 ,上是减函数,于是有21-a ≥1,解得a ≥3. 7.C解析:函数f (x )=2-x-1=x ⎪⎭⎫ ⎝⎛21-1的图象是函数g (x )=x⎪⎭⎫ ⎝⎛21图象向下平移一个单位所得,据函数g (x )=x⎪⎭⎫⎝⎛21定义域和值域,不难得到函数f (x )定义域是R ,值域是(-1,+∞).8.B解析:由-1<a <0,得0<2a<1,0.2a>1,a⎪⎭⎫⎝⎛21>1,知A ,D 不正确.当a =-21时,2121-⎪⎭⎫⎝⎛=501.<201.=2120-.,知C 不正确.∴ 2a<a⎪⎭⎫ ⎝⎛21<0.2a.9.C解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0<a <1 ①,又由f (x )在(-∞,1]上单减,∴ 3a -1<0,∴ a <31②,又由于由f (x )在R 上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.∴ 7a -1≥0,即a ≥71③.由①②③可得71≤a <31,故选C . 10.B解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且a ≠1,于是得函数的定义域x <a2.又函数的递减区间[0,1]必须在函数的定义域内,故有1<a2,从而0<a <2且a ≠1.若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0. 12.参考答案:f (3)<f (4).解析:∵ f (3)= 8,f (4)= 5,∴ f (3)<f (4). 13.参考答案:21. 解析:64log 2log 273=3lg 2lg ·64lg 27lg =63=21.14.参考答案:41. 解析:⎪⎭⎫⎝⎛91f =log 391=-2,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f =f (-2)=2-2=41. 15.参考答案:⎥⎦⎤⎝⎛143 ,. 解析:由题意,得 ⎪⎩⎪⎨⎧0 34log 0345.0≥)-(>-x x ⇔ ⎪⎩⎪⎨⎧13443 ≤->x x ∴ 所求函数的定义域为⎥⎦⎤⎝⎛143 ,. 16.参考答案:a =21. 解析:∵ f (x )为奇函数,∴ f (x )+f (-x )=2a -121+x -121+x -=2a -1212++x x =2a -1=0,∴ a =21. 三、解答题17.参考答案:a =100,b =10.解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0(x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100. 18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值. ①当a =0时,a x 2+2x +1=2x +1,当x ∈(-21,+∞)时满足要求; ②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.参考答案:(1)定义域为R .令t =2x(t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x+2x +1+1在(-∞,+∞)上单调递增.(2)定义域为R .令t =x 2-3x +2=223⎪⎭⎫ ⎝⎛x --41⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡,+∞41-t ∈. ∴ 值域为(0,43].∵ y =t⎪⎭⎫⎝⎛31在t ∈R 时为减函数,∴ y =2+3-231x x ⎪⎭⎫⎝⎛在 ⎝⎛-∞,⎪⎭⎫23上单调增函数,在 ⎝⎛23,+∞⎪⎪⎭⎫为单调减函数. 20.参考答案:(1){x |-1<x <1}; (2)奇函数;(3)当0<a <1时,-1<x <0;当a >1时,0<x <1.解析:(1)f (x )-g (x )=log a (x +1)-log a (1-x ),若要式子有意义,则 即-1<x <1,所以定义域为{x |-1<x <1}.(2)设F (x )=f (x )-g (x ),其定义域为(-1,1),且F (-x )=f (-x )-g (-x )=log a (-x +1)-log a (1+x )=-[log a (1+x )-log a (1-x )]=-F (x ),所以f (x )-g (x )是奇函数.(3)f (x )-g (x )>0即log a (x +1)-log a (1-x )>0有log a (x +1)>log a (1-x ).当0<a <1时,上述不等式 解得-1<x <0;当a >1时,上述不等式 解得0<x <1. x +1>01-x >0x +1>01-x >0 x +1<1-x x +1>0 1-x >0 x +1>1-x。

高一(上)数学第二章函数单元测试题7-8 人教版

高一(上)数学第二章函数单元测试题7-8 人教版

高一(上)数学第二章函数单元测试题7-8(时间:45分钟 满分100分)一、 选择题1.若3a=2,则log 38-2log 36用a 的代数式可表示为( )(A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 22.2log a (M-2N)=log a M+log a N,则NM的值为( ) (A )41(B )4 (C )1 (D )4或1 3.已知x 2+y 2=1,x>0,y>0,且log a (1+x)=m,logaya n xlog ,11则=-等于( ) (A )m+n (B )m-n (C )21(m+n) (D )21(m-n)4.如果方程lg2x+(lg5+lg7)lgx+lg5·lg7=0的两根是α、β,则α·β的值是( ) (A )lg5·lg7(B )lg35(C )35 (D )351 5.已知log 7[log 3(log 2x)]=0,那么x 21-等于( )(A )31(B )321 (C )221 (D )331 6.函数y=lg (112-+x)的图像关于( ) (A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线y=x 对称 7.函数y=log 2x-123-x 的定义域是( )(A )(32,1)⋃(1,+∞) (B )(21,1)⋃(1,+∞) (C )(32,+∞) (D )(21,+∞)8.函数y=log 21(x 2-6x+17)的值域是( )(A )R (B )[8,+∞](C )(-∞,-3) (D )[3,+∞] 9.函数y=log 21(2x 2-3x+1)的递减区间为( )(A )(1,+∞) (B )(-∞,43] (C )(21,+∞) (D )(-∞,21]10.函数y=(21)2x +1+2,(x<0)的反函数为( )(A )y=-)2(1log )2(21>--x x (B ))2(1log )2(21>--x x(C )y=-)252(1log )2(21<<--x x (D )y=-)252(1log )2(21<<--x x11.若log m 9<log n 9<0,那么m,n 满足的条件是( )(A )m>n>1 (B )n>m>1 (C )0<n<m<1 (D )0<m<n<112.log a132<,则a 的取值X 围是( ) (A )(0,32)⋃(1,+∞) (B )(32,+∞)(C )(1,32) (D )(0,32)⋃(32,+∞)13.若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( )(A )a<b<c (B )a<c<b (C )c<b<a (D )c<a<b 14.下列函数中,在(0,2)上为增函数的是( ) (A )y=log 21(x+1) (B )y=log 212-x(C )y=log 2x 1(D )y=log 21(x 2-4x+5) 15.下列函数中,同时满足:有反函数,是奇函数,定义域和值域相同的函数是( )(A )y=2x x e e -+(B )y=lg xx+-11(C )y=-x3(D )y=x16.已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值X 围是( )(A )(0,1) (B )(1,2) (C )(0,2) (D )[2,+∞) 17.已知g(x)=log a 1+x (a>0且a ≠1)在(-1,0)上有g(x)>0,则f(x)=a1+x 是( )(A )在(-∞,0)上的增函数 (B )在(-∞,0)上的减函数 (C )在(-∞,-1)上的增函数 (D )在(-∞,-1)上的减函数18.若0<a<1,b>1,则M=a b ,N=log b a,p=b a的大小是( ) (A )M<N<P (B )N<M<P (C )P<M<N (D )P<N<M19.“等式log 3x 2=2成立”是“等式log 3x=1成立”的( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 20.已知函数f(x)=x lg ,0<a<b,且f(a)>f(b),则( )(A )ab>1 (B )ab<1 (C )ab=1 (D )(a-1)(b-1)>0 二、填空题1.若log a 2=m,log a 3=n,a 2m+n=。

高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题

高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题

第二章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,在(-∞,0)上为递增的是( ) A .f (x )=-2x +1 B .g (x )=|x -1| C .y =1xD .y =-1x[答案] D[解析] 熟悉简单函数的图像,并结合图像判断函数单调性,易知选D. 2.下列四个图像中,表示的不是函数图像的是( )[答案] B[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.3.函数f (x )=x -2+1x -3的定义域是( ) A .[2,3)B .(3,+∞)C .[2,3)∪(3,+∞)D .(2,3)∪(3,+∞)[答案] C[解析] 要使函数有意义,x 需满足⎩⎪⎨⎪⎧x -2≥0x -3≠0解得x ≥2且x ≠3.故选C.4.二次函数y =-2(x +1)2+8的最值情况是( ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值 [答案] C[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值. 5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别是3和10,则5在f 作用下的像是( )A .3B .4C .5D .6[答案] A[解析] 由已知可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1b =-2.于是y =x -2,因此5在f 下的像是5-2=3.6.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f x +2,x <0,那么f (-3)的值为( ) A .-2 B .2 C .0 D .1[答案] B[解析] 依题意有f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2,即f (-3)=2.7.不论m 取何值,二次函数y =x 2+(2-m )x +m 的图像总过的点是( ) A .(1,3) B .(1,0) C .(-1,3) D .(-1,0)[答案] A[解析] 由题意知x 2+2x -y +m (1-x )=0恒成立,∴⎩⎪⎨⎪⎧x 2+2x -y =01-x =0,解得⎩⎪⎨⎪⎧x =1y =3,∴图像总过点(1,3).8.定义在R 上的偶函数f (x )在区间[-2,-1]上是增函数,将f (x )的图像沿x 轴向右平移2个单位,得到函数g (x )的图像,则g (x )在下列区间上一定是减函数的是( )A .[3,4]B .[1,2]C .[2,3]D .[-1,0][答案] A[解析] 偶函数f (x )在[-2,-1]上为增函数,则在[1,2]上为减函数,f (x )向右平移2个单位后在[3,4]上是减函数.9.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( ) A .f (3)+f (4)<0 B .f (-3)-f (-2)<0 C .f (-2)+f (-5)<0 D .f (4)-f (-1)>0 [答案] D[解析] 由题意知函数f (x )在[0,6]上递增.A 中f (3)+f (4)与0的大小不定,A 错;B 中f (-3)-f (-2)=f (3)-f (2)>0,B 错;C 中f (-2)+f (-5)=f (2)+f (5)与0的大小不定,C 错;D 中f (4)-f (-1)=f (4)-f (1)>0,D 正确. 10.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值X 围为( )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[答案] D[解析]∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立;k ≠0时,Δ<0,也成立.∴0≤k <34.11.函数y =ax 2-bx +c (a ≠0)的图像过点(-1,0),则ab +c +ba +c -ca +b的值是( )A .-1B .1 C.12 D .-12[答案] A[解析]∵函数y =ax 2-bx +c (a ≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b . ∴ab +c +ba +c -ca +b=-1.12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值X 围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23[答案] A[解析]由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A. 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y=x2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是________.[答案]y=x2+4x+2[解析]y=(x+2)2+1-3=(x+2)2-2=x2+4x+2.14.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.[答案]0[解析]本题考查偶函数的定义等基础知识.∵f(x)为偶函数,∴f(-x)=f(x),即x2-|-x+a|=x2-|x+a|,∴|x-a|=|x+a|,平方,整理得:ax=0,要使x∈R时恒成立,则a=0.15.已知函数f(x),g(x)分别由下表给出则f[g(1)]的值为当g[f(x)]=2时,x=________.[答案] 1 1[解析]f[g(1)]=f(3)=1,∵g[f(x)]=2,∴f(x)=2,∴x=1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”有________个.[答案] 3[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎩⎪⎨⎪⎧x 2|x |≤11 |x |>1,(1)画出f (x )的图像; (2)求f (x )的定义域和值域.[分析] 解答本题可分段画出图像,再结合图像求函数值域. [解析] (1)利用描点法,作出f (x )的图像,如图所示.(2)由条件知,函数f (x )的定义域为R .由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].18.(本小题满分12分)已知函数f (x )=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f (x )的最大值和最小值;(2)某某数a 的取值X 围,使y =f (x )在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f (x )=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5, 所以当x =-3时,f (x )min =-19, 当x =3时,f (x )max =41.(2)函数f (x )=(x -a )2+2-a 2的图像的对称轴为x =a ,因为f (x )在[-3,3]上是单调函数,所以a ≤-3或a ≥3.19.(本小题满分12分)已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增加的;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2.则f (x 1)-f (x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2). ∴函数f (x )在(0,+∞)上是增加的. (2)∵f (x )在[12,2]上的值域是[12,2],又∵f (x )在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f 12=12,f 2=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z },满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足(1),(2)的幂函数f (x )的解析式,并求x ∈[0,3]时f (x )的值域. [解析] 由{x |-2<x <2,x ∈Z }={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m <1,∴m =-1或0.由(2)知f (x )是奇函数.当m =-1时,f (x )=x 2为偶函数,舍去. 当m =0时,f (x )=x 3为奇函数. ∴f (x )=x 3.当x ∈[0,3]时,f (x )在[0,3]上为增函数, ∴f (x )的值域为[0,27].21.(本小题满分12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:f (x )是偶函数;(2)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称,f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2, 当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -12-2,x ≥0,x +12-2,x <0.根据二次函数的作图方法,可得函数图像,如图函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1]上为减函数,在[-1,0),[1,3]上为增函数.(3)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2. 当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2. 故函数f (x )的值域为[-2,2].22.(本小题满分12分)已知函数f (x )=x +x 3,x ∈R . (1)判断函数f (x )的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b >0,试比较f (a )+f (b )与0的大小. [解析] (1)函数f (x )=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1)=(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=x +x 3,x ∈R 是增函数. (2)由a +b >0,得a >-b ,由(1)知f (a )>f (-b ), 因为f (x )的定义域为R ,定义域关于坐标原点对称, 又f (-x )=(-x )+(-x )3=-x -x 3=-(x +x 3)=-f (x ), 所以函数f (x )为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.。

人教版数学高一单元测试卷第二章_单元检测含解析

人教版数学高一单元测试卷第二章_单元检测含解析

)
则 f(log23)等于(
)
1 A.1 B. 8 1 1 C. D. 16 24 答案:D 解析:log23<4,f(log23)=f(log23+1)=f(log26),同理得 f(log26)=f(log26+1)=f(log212)= f(log224),而 log224>log216=4, 1 1 log 24 -log2 24 因此 f(log23)= 2 =2 = . 2 24 2-x 12.若 A={x∈Z|2≤2 <8},B={x∈R||log2x|>1},则 A∩(∁RB)中的元素有( ) A.0 个 B.1 个 C.2 个 D.3 个 答案:C 2-x 解析:∵A={x∈Z|2≤2 <8}={x∈Z|1≤2-x<3}={x∈Z|-1<x≤1}={0,1}, 1 而 B={x∈R||log2x|>1}={x∈R|0<x< 或 x>2}. 2 ∴A∩{∁RB)={0,1},故 A∩(∁RB)中的元素个数为 2. 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上. 13.函数 f(x)=2

1 2
A.a>b>c B.a>c>b C.c>b>a D.b>a>c 答案:C 解析:a=log 2 0.7=log20.49,c=log40.49=log20.7,
b=log2x(x>0)是单调增函数,而 0.49<0.6<0.7,∴a<b<c.
6.春天,池塘中小荷尖角渐露,已知每一天荷叶覆盖水面面积是前一天的 2 倍,若荷叶 30 天可以 完全覆盖池塘水面,当荷叶覆盖水面面积一半时,荷叶已生长了( ) A.15 天 B.20 天 C.29 天 D.30 天 答案:C x 解析:荷叶覆盖水面面积 y 与生长时间的函数关系 y=2 ,当 x=30 时,长满水面,所以生长 29 天, 布满水面的一半. x-1 7.函数 f(x)=4+a 的图象恒过定点 P,则 P 点坐标是( )

高一数学必修一第二章基础过关试卷

高一数学必修一第二章基础过关试卷

第二章 函数单元基础知识过关试题一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.二次函数y =x 2-2x +2的值域是( )A .RB .∅C .[0,+∞)D .[1,+∞) 2.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}3.下列函数中,在区间(1,+∞)上是增函数的是( ) A .y =-x +1 B .y =11-xC .y =-(x -1)2D .y =1x+14.设集合A ={-1,3,5},若f :x →2x -1是集合A 到集合B 的映射,则集合B 可以是( )A .{0,2,3}B .{1,2,3}C .{-3,5}D .{-3,5,9} 5.下列各个图形中,不可能是函数y =f (x )的图象的是( )6.幂函数的图象过点(2,14),则它的单调递增区间是( )A .(-∞,1)B .(0,+∞)C .(-∞,0)D .(-∞,+∞) 7.已知x ∈N +,f (x )=⎩⎨⎧x -5x f x +x <,则f (3)等于( )A .5B .4C .3D .2 8.下列四种说法正确的有( )①函数是从其定义域到值域的映射;②f (x )=x -3+2-x 是函数; ③函数y =2x (x ∈N )的图象是一条直线;④f (x )=x 2x与g (x )=x 是同一函数.A .1个B .2个C .3个D .4个 9.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 10.已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是( )A.⎣⎢⎡⎭⎪⎫13,23B.⎝ ⎛⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.已知函数f (x )=(m 2-m -1)xm 2-2m -3是幂函数,且在(0,+∞)上是减函数,则实数m =________.12.函数y =f (x )的图象如图所示,根据函数图象填空: (1)f (0)=________; (2)f (1)=________;(3)若-1<x 1<x 2<1,则f (x 1)与f (x 2)的大小关系是________.13.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.14.已知二次函数f (x )=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________.三、解答题(本大题共4小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)画出下列两个函数的图象,并写出各自的值域. (1)y =2x 2-4x -2,x ∈⎝ ⎛⎦⎥⎤-12,2;(2)y =⎩⎨⎧1+x ,x ∈[0,+1-x ,x -∞,.16.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.17.(12分)有甲、乙两种商品,经销这两种商品所能获得的利润依次是p 万元和q 万元,它们与投入的资金x 万元的关系有经验公式:p =110x ,q =25x .现欲将9万元资金投入甲、乙两种商品,问:甲、乙两种商品分别投入多少万元资金时能获得最大利润?18.(12分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是单调递增函数;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第二章函数单元过关试题
出题人:张国风 审核人:张纪清 时间:2010/10/20
一、 选择题(12*5分=60分) 1.设函数x
y 111+
=
的定义域为M ,值域为N ,那么 ( )
A .M={x |x ≠0},N={y |y ≠0}
B .M={x |x <0且x ≠-1,或x >0},N={y |y <0,或0<y <1,或y >1}
C .M={x |x ≠0},N={y |y ∈R }
D .M={x |x <-1,或-1<x <0,或x >0=,N={y |y ≠0}
2.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达
B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是 ( )
A .x =60t
B .x =60t +50t
C .x =⎩⎨⎧
>-≤≤)5.3(,50150)5.20(,60t t t t D .x =⎪⎩
⎪⎨⎧≤<--≤<≤≤)
5.65.3(),5.3(50150)
5.35.2(,150)
5.20(,60t t t t t 3、已知g (x )=1-2x,f [g (x )]=)0(122≠-x x
x ,则f (21
)等于
( )
A .1
B .3
C .15
D .30
4.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )
A 5
B 5-
C 6
D 6- 5..函数c x x y ++=42,则 ( ).
A )2()1(-<<f c f
B )2()1(->>f c f
C )2()1(->>f f c
D )1()2(f f c <-<
6.设函数f (x )是(-∞,+∞)上的减函数,又若a ∈R ,则 ( )
A .f (a )>f (2a )
B .f (a 2)<f (a)
C .f (a 2+a )<f (a )
D .f (a 2+1)<f (a )
7. 函数 y=x
x ++
-19
12是 ( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数
8.函数1)(5
--=x x x f 的一个正零点的存在区间可能是 ( B )
A. [0 , 1]
B. [1, 2]
C. [2, 3]
D. [3, 4]
9.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则图中四个图形中较符合该学生走法的是( )
10 函数962+-=kx kx y 的定义域为R ,则k 的取值范围是( )
A .0≤k 或1≥k
B .1≥k
C .10≤≤k
D .10≤<k
11. 设⎩
⎨⎧<+≥-=)10()],6([)
10(,2)(x x f f x x x f 则)5(f 的值为( )
A . 10 B. 11 C. 12 D. 13
12. 偶函数()f x ,奇函数()g x 的定义域均为[-4,4];f (x )在 [-4,0], g (x )在[0,4]上的图象如图,则不等式f (x )·g (x )<0的解集为( )
A .[2,4]
B .(-2,0)∪(2,4)
C .(-4,-2)∪(2,4)
D .(-2,0)∪(0,2)
13、12)(2++=x x x f ,]2,2[-∈x 的最大值是
14、已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f 11. 若二次函数2()f x ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,
则这个二次函数()f x
16.给出下列命题:①函数)2,2[,2-∈=x x y 是偶函数; ②奇函数)(x f 在0=x 有定义时,则0)0(=f ;
③0)(=x f 既是奇函数又是偶函数;④}2,1,1,2{,)(2--∈=x x x f 不是偶函数. 其中正确命题的序号是 . 三、解答题
17、(本题8分)已知集合}64|{},52|{,≤≤=≤≤-==x x B x x A R U 。

求:(1
)B A ⋂; (2)(A U
)B ⋂ (3)
)(B A U

18、 (本小题8分) 设函数⎩⎨⎧≥+-<++=)
0(,3)
0(,)(2x x x c bx x x f ,若
,1)2(),0()4(-=-=-f f f
(1)求函数)(x f 的解析式;
(2)画出函数)(x f 的图象,并说出函数)(x f 的单调区间。

18.(8分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x,求此框架围成的面积y与x的函数式y=f (x),
写出它的定义域.并求此图形的最大面积。

20(附加题)
二次函数)
(
)
(=
-
+,且1
)1
f满足x
(x
x
f
x
f2
f,
)0(=
(1)求)
f的解析式;
(x
(2)在区间[]1,1-上)(x f的图象恒在m
=2的图象上方,确定实数m的
y+
x
范围.
18、解: ,1)2(),0()4(-=-=-f f f ∴3416=+-c b ,124-=+-c b 解得:
3,4==c b
∴⎩

⎧≥+-<++=0,30
,34)(2x x x x x x f 图象为: 由图象可知单调区间为:
(]2,-∞-,(]0,2-,()+∞,0,其中增区间 为(]0,2-,减区间为(]2,-∞-、().,0+∞
18.解:AB=2x , CD =π
x ,于是AD=221x x π--, 因此,y =2x · 2
21x x π--+22
x
π,
即y =-
lx x ++22
4
π.
由⎪⎩
⎪⎨⎧>-->022102x x x π,得0<x <,21
+π 函数的定义域为(0,
2
1
+π). 19.解:(1)设11)0(,)(2==++=c f c bx ax x f ,所以因为,
1)(2++=∴bx ax x f ,又x x f x f 2)()1(=-+ x bx ax x b x a 2)1(1)1()1(22=++-++++∴
整理可得1,1-==b a , 1)(2+-=∴x x x f (2)由题意,得
[]上恒成立
在1,1,212-∈+>+-x m x x x , 即
[]上恒成立在1,1,132-∈+-<x x x m
令13)(2+-=x x x u , []上单调递减在1,1)(-x u ,1)(1m in
-==∴x u x 时当
1-<∴m。

相关文档
最新文档