2009年高考理科数学试题(辽宁卷)
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.257.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选:A.【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x |<0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选:D.【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA1∥CD1,知∠A1BE是异面直线BE与CD1所形成角,由此能求出异面直线BE与CD1所形成角的余弦值.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,∴BA1∥CD1,∴∠A1BE是异面直线BE与CD1所形成角,设AA1=2AB=2,则A1E=1,BE==,A1B==,∴cos∠A1BE===.∴异面直线BE与CD1所形成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.25【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选:C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.7.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx +)的图象重合,比较系数,求出ω=6k +(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx +),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan(ωx +)∴﹣ω+kπ=∴ω=k +(k∈Z),又∵ω>0∴ωmin =.故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA:双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB 的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选:A.【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于8π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A +C)得cos (A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG ,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n+1=4a n+2,①则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n+1=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),又b n=a n+1﹣2a n,所以b n=2b n﹣1(b n≠0),所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ01 2 3P故Eξ==.【点评】本题较常规,比08年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l 的距离为则,解得c=1又,∴(II)由(I )知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P 在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I )令g(x)=2x2+2x+a ,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当时,h'(x)>0,∴h(x )在单调递增,故.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
2009年全国高考理科数学试题(含答案)
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u A B I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,A B = ,{4,7,9}()U A B C AB =∴= 故选A 。
也可用摩根律:()()(U U UC A B C A C B=(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。
2009年高考试题——(辽宁卷)数学理(全解析)
2009年普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回. 第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A·B)=P(A)·P(B) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,kkn kn n P k C Pp k n -=-=其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|35},{|55}M x x N x x =-<≤=-<<,则集合M N ⋂=(A ){|55}x x -<< (B ){|35}x x -<< (C ) {|55}x x -<≤ (D ) {|35}x x -<≤ (1)B 解析:M N ⋂={|35}x x -<<。
(2) 已知复数12z i =-,那么1z=()55A + ()55B - 12()55C i + 12()55D i - (2)D 解析:111212,125iz i i z-=+==+。
(3)平面向量a 与b 的夹角为060, (2,0),||1a b ==,则|2|a b +=(B) (C)4 (D)12 (3)B 解析:1cos ,2a b <>=,||2a =,||1b =,222(2)44a b a ab b +=++ 144214122=+⨯⨯⨯+=,|2|a b +=(4) 若圆C 且与直线0x y -=和40x y --=都相切,圆心在直线0x y +=,则圆Cx y23-O 2π712π1112π的方程为(A )()22(1)12x y ++-=(B )22(1)(1)2x y -++= (C )22(1)(1)2x y -+-=(D )()221(1)2x y +++=(4) B 解析:(法一)设圆心为(,)a a -,半径为r ,|r ==,∴1,a r = (法二)由题意知圆心为直线0x y -=、40x y --=分别与直线0x y +=的交点的中点, 交点分别为(0,0)、(2,-2),∴圆心为(1,-1。
mjt-2009年普通高等学校招生全国统一考试(辽宁卷)试题及点评
2009年普通高等学校招生全国统一考试(辽宁卷)数学(理科类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷22.---24.题为选考题,其它题为必答题.第I 卷1至3页,第II 卷4至6页.考试结束后,将本试卷和答题卡一并交回. 参考公式: 样本数据123,,,,n x x x x ⋅⋅⋅的标准差s =其中x 为样本的平均数柱体的体积公式 V sh = 其中S 为底面积,h 为高锥体的体积公式 13V sh =其中S 为底面积,h 为高 球的表面积、体积公式 24πS R = 34π3V R = 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一项是符合题目要求的.1.已知集合M ={x|-3<x ≤5},N ={x |-5<x<5},则M ∩N =( ).A. {x |-5<x <5}B. {x |-3<x <5}C. {x |-5<x ≤5}D. {x |-3<x ≤5}2.已知复数12i z =-,那么1z=( ).+ C.12i 55+ D.12i 55- 3.平面向量a 与b 的夹角为60︒,(2,0)=a ,1=b 则2+=a b ( ).B. 4.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x+y =0上,则圆C 的方程为( ).A.22(1)(1)2x y ++-=B.22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D.22(1)(1)2x y +++=5.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ).A.70种B. 80种C. 100种D.140种 6.设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =( ). A. 2 B. 73C. 83D. 37.曲线y =2xx -在点(1,-1)处的切线方程为( ). A.2=-y x B.32=-+y x C.23=-y x D.22=-+y x 8.已知函数()f x =Acos(x ωϕ+)的图象如图所示,π223⎛⎫=- ⎪⎝⎭f ,则(0)f =( ).A.23-B. 12-C. 23D. 129.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<13⎛⎫⎪⎝⎭f 的x 取值范围是( ). A. 13⎛⎝,23⎫⎪⎭ B. 13⎡⎢⎣,23⎫⎪⎭ C. 12⎛ ⎝,23⎫⎪⎭ D. 12⎡⎢⎣,23⎫⎪⎭10.某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,...N a ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( ).A. A>0,V=S-TB. A<0,V=S-TC. A>0, V=S+TD.A<0, V=S+T11.正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥D-GAC 与三棱锥P-GAC 体积之比为( ). A.1:1 B. 1:2 C. 2:1 D. 3:212.若1x 满足2x+2x =5, 2x 满足2x+22log (x-1)=5, 则1x +2x =( ). A.52 B.3 C. 72D.4第II 卷本卷包括必考题和选考题两部分.第13.---21.题为必考题,每个试题考生都必须做答.第22.---24.题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1, 用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用 寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分 别为980h ,1020h ,1032h ,则抽取的100件产品的使用寿命的平均值为 h . 14.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a =15.设某几何体的三视图如下(尺寸的长度单位为m ). 则该几何体的体积为 3m16.已知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA +的最小值 为 .三、解答题:解答应写出文字说明,证明过程或解题步骤 17.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=0.1km .试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km 2≈1.4146≈2.449)18.(本小题满分12分)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 . (I )若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正值弦;(II )用反证法证明:直线ME 与 BN 是两条异面直线. 19.(本小题满分12分)某人向一目射击4次,每次击中目标的概率为13.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(Ⅰ)设X 表示目标被击中的次数,求X 的分布列;223221(Ⅱ)若目标被击中2次,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P (A ).(20)(本小题满分12分)已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值. 21.(本小题满分12分) 已知函数f(x)=21x 2-ax+(a-1)ln x ,1a >. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.请考生在第22.、23.、24.三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4-1:几何证明讲已知 ∆ABC 中,AB=AC, D 是 ∆ABC 外接圆劣弧»AC 上的点(不与点A,C 重合),延长BD 至E .(Ⅰ)求证:AD 的延长线平分∠CDE ; (Ⅱ)若∠BAC=30,∆ABC 中BC 边上的高为23+∆ABC外接圆的面积.23.(本小题满分10分)选修4-4 :坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos (3πθ-)=1,M,N 分别为C 与x 轴,y 轴的交点.(Ⅰ)写出C 的直角坐标方程,并求M,N 的极坐标; (Ⅱ)设MN 的中点为P ,求直线OP 的极坐标方程. 24.(本小题满分10分)选修4-5:不等式选讲 设函数()|1|||f x x x a =-+-.(Ⅰ)若1,a =-解不等式()3f x ≥;(Ⅱ)如果x R ∀∈,()2f x ≥,求a 的取值范围.2009年普通高等学校招生全国统一考试(辽宁卷)数学(理科)试题答案及解读一、选择题:(1)B 【解读与点评】M N ⋂={|35}x x -<<.【命题立意】考查集合的交集运算,并用数轴观察法得到相对应答案. (2)D 【解读与点评】111212,125iz i iz -=+==+. 易错点:受分数线干扰,考生没有看到共轭符号“—”,直接将12z i =-代入而得错误答案C .课本原型:选修2-2 第96页练习B 2题【命题立意】考察复数的基本运算及共轭复数的概念。
2009年全国高考辽宁省试题答案(文数)
4 3 2 3 ,B ,a ,b , 3 3 2 6
当 cos A 0 时,得 sin B 2sin A ,由正弦定理得 b 2a , 联立方程组
a 2 b 2 ab 4, b 2a,
解得 a
2 3 4 3 ,b . 3 3
所以 △ABC 的面积 S
21. (本小题满分 12 分) 在数列 | an | , | bn | 中,a1=2,b1=4,且 an,bn,an1 成等差数列, bn,an1,bn1 成等比数 列( n N )
*
(Ⅰ)求 a2,a3,a4 及 b2,b3,b4,由此猜测 | an | , | bn | 的通项公式,并证明你的结论; (Ⅱ)证明:
( 0),f 3
且 f , f ( x) 在区间 , 有最小值, 6 3 6 3
无最大值,则 =__________. 三、解答题:本大题共 6 小题,共 74 分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分 12 分) 在 △ABC 中,内角 A B,C 对边的边长分别是 a,b,c ,已知 c 2 , C , (Ⅰ)若 △ABC 的面积等于 3 ,求 a,b ; (Ⅱ)若 sin C sin( B A) 2sin 2 A ,求 △ABC 的面积.
x3 的 x4
C. 8
D. 8
第Ⅱ卷(非选择题共 90 分)
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分. 13.函数 y
x 1,x 0, e ,
x
x≥0
的反函数是__________.
14.在体积为 4 3 的球的表面上有 A,B,C 三点,AB=1,BC= 2 ,A,C 两点的球面距
2009年全国高考理科数学试题及答案-全国1
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}AB =,{4,7,9}(){3,5,8}U A BC A B =∴=故选A 。
也可用摩根律:()()()U U U C AB C A C B =(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。
09年全国高考理科数学试题及答案
2009年全国高考理科数学试题及答案2009年普通高等学校招生全国统一考试数学第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A,B互斥,那么球的表面积公式S?4πR 其中R表示球的半径2P(A?B)?P(A)?P(B) 如果事件A,B相互独立,那么球的体积公式V?43πR 3P(AB)?P(A)P(B) 一、选择题:其中R表示球的半径21. 设集合S?x|x?5,T?x|x?4x?21?0,则S????T? A.?x|?7?x??5?B.?x|3?x?5? C.?x|?5?x?3?D.?x|?7?x?5? ?a?log2x(当x?2时)?2.已知函数f(x)??x2?4在点x?2处连续,则常数a的值是(当x?2时)??x?2A.2B.3C.4D.5(1?2i)23.复数的值是3?4iA.-1B.1C.-iD.i 4.已知函数f(x)?sin(x??2)(x?R),下面结论错误的是.. A.函数f(x)的最小正周期为2? B.函数f(x)在区间?0,???上是增函数??2?1 C.函数f(x)的图像关于直线x?0对称D.函数f(x)是奇函数 5.如图,已知六棱锥P?ABCDEF的底面是正六边形,PA?平面ABC,PA?2AB,则下列结论正确的是 A. PB?AD B. 平面PAB?平面PBC C. 直线BC∥平面PAE D. 直线PD与平面ABC所称的角为45 6.已知a,b,c,d为实数,且c?d。
则“a?b”是“a?c?b?d”的 A. 充分而不必要条件 B. 必要而不充分条件C.充要条件 D. 既不充分也不必要条件?x2y2?2?1(b?0)的左右焦点分别为F1,F2,其一条渐近线方程为y?x,7. 已知双曲线2b点P(3,y0)在该双曲线上,则PF1?PF2= A. -12 B. -2C. 0D. 4 8. 如图,在半径为3的球面上有A,B,C三点,?ABC?90,BA?BC,?球心O到平面ABC的距离是32,则B、C两点的球面距离是2A.?4? B.?C.? 3329. 已知直线l1:4x?3y?6?0和直线l2:x??1,抛物线y?4x 上一动点P到直线l1和直线l2的距离之和的最小值是 C. 1137D. 51610. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)
2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n=4a n+2,①+1则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
09年高考数学卷(辽宁.理)含详解.doc
2009年普通高等学校招生全国统一考试(辽宁卷)数学(理工农医类)一- 选择题(每小题5分,共60分)分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N= (A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5} 【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B (2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - 【解析】211121212(12)(12)12i i i i i z --===++-+=1255i -【答案】D (3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 【解析】由已知|a|=2,|a +2b|2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴2a b +=23【答案】B (4) 已知圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上,则圆C 的方程为的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++=(C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B (5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种【解析】直接法:一男两女,有C 51C 42=5×6=30种,两男一女,有C 52C 41=10×4=40种,共计70种间接法:任意选取C 93=84种,其中都是男医生有C 53=10种,都是女医生有C 41=4种,于是符合条件的有84-10-4=70种. 【答案】A (6)设等比数列{ n a }的前n 项和为n S ,若,若63S S =3 ,则,则 69S S=(A ) 2 (B )73 (C ) 83 (D )3 【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 Þ q 3=2 于是63693112471123S q q S q ++++===++【答案】B (7)曲线y= 2x x -在点(1,-1)处的切线方程为)处的切线方程为(A )y=x -2 (B) y=-3x+2 (C)y=2x -3 (D)y=-2x+1 【解析】y ’=2222(2)(2)x xx x ---=--,当x =1时切线斜率为k =-2 【答案】D (8)已知函数()f x =Acos(x w j +)的图象如图所示,2()23f p=-,则(0)f = (A )23-(B) 23 (C)- 12 (D) 12【解析】由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称对称所以f(2π3)=-f(π2)=23【答案】B (9)已知偶函数()f x 在区间[0,)+¥单调增加,则满足(21)f x -<1()3f 的x 取值范围是取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23)【解析】由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x -1|)<f(13),再根据f(x)的单调性的单调性 得|2x -1|<13 解得13<x <23【答案】A 10)某店一个月的收入和支出总共记录了)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2009高考数学全国卷及答案理
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。
2009年普通高考辽宁省试题答案(理综)
2009年普通高等学校招生全国统一考试(宁夏)理科综合能力测试第Ⅰ卷(必做,共88分)注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至8页,第Ⅱ卷9至 15页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,并帖好条形码。
请认真核准条形码的准考证号、姓名和科目。
2.选择题答案使用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把题号涂黑。
可能用到的相对原子质量:H l C 12 N 14 O 16 Na 23 Cl 35.5 第Ⅰ卷一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项只有一项符合题要求的。
1.下列关于动物细胞编程性死亡的叙述,正确的是A.细胞癌变属于细胞编程性死亡B.细胞编程性死亡属于正常生理过程C.细胞编程性死亡属于细胞分化过程D.细胞编程性死亡与基因表达无关2.右图表示酶活性与温度的关系。
下列叙述正确的是A.当反应温度由t2调到最适温度时,酶活性下降B.当反应温度由t1调到最适温度时,酶活性上升C.酶活性在t2时比t1高,故t2时更适合酶的保存D.酶活性在t1时比t2低,表明t1时酶的空间结构破坏更严重理科综合试题第1页(共16页)3.下列关于物质跨膜运输的叙述,错误的是A.植物细胞积累K+需消耗能量B.细胞对离子的吸收具有选择性C.海水中的海藻细胞可通过积累溶质防止质壁分离D.液泡中积累大量离子,故液泡膜不具有选择透过性4.下列关于激素的叙述,错误的是A.肾上腺素发挥作用后被灭活B.体内失水过多时抗利尿激素释放减少C.激素调节过程中存在反馈调节D.对血样中相关激素水平的分析可帮助诊断甲状腺疾病5.下列对于神经兴奋的叙述,错误的是A.兴奋部位细胞膜两侧的电位表现为膜内为正、膜外为负B.神经细胞兴奋时细胞膜对Na+通透性增大C.兴奋在反射弧中以神经冲动的方式双向传递D.细胞膜内外K+、Na+分布不均匀是神张纤维兴奋传导的基础6.已知某闭花受粉植物高茎对矮茎为显性,红花对白花为显性,两对性状独立遗传。
2009年辽宁省高考数学试卷(理科)及答案
2009年辽宁省高考数学试卷(理科)一、选择题1.(5分)已知集合M={x|﹣3<x≤5},N={x|﹣5<x<5},则M∩N=()A.{x|﹣5<x<5}B.{x|﹣3<x<5}C.{x|﹣5<x≤5}D.{x|﹣3<x≤5} 2.(5分)已知复数z=1﹣2i,那么=()A.B. C.D.3.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B.C.4 D.124.(5分)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2 C.(x﹣1)2+(y﹣1)2=2 D.(x+1)2+(y+1)2=25.(5分)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种6.(5分)设等比数列{a n}的前n项和为S n,若=3,则=()A.2 B.C.D.37.(5分)曲线y=在点(1,﹣1)处的切线方程为()A.y=x﹣2 B.y=﹣3x+2 C.y=2x﹣3 D.y=﹣2x+18.(5分)已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f(0)=()A.﹣ B.﹣ C.D.9.(5分)已知函数f(x)是定义在区间[0,+∞)上的增函数,则满足f(2x﹣1)<f()的x的取值范围是()A.(,)B.[,)C.(,)D.[,)10.(5分)某店一个月的收入和支出总共记录了N个数据a1,a2,…a N,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()A.A>0,V=S﹣T B.A<0,V=S﹣T C.A>0,V=S+T D.A<0,V=S+T 11.(5分)正六棱锥P﹣ABCDEF中,G为PB的中点,则三棱锥D﹣GAC与三棱锥P﹣GAC体积之比为()A.1:1 B.1:2 C.2:1 D.3:212.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4二、填空题13.(5分)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为h.14.(5分)等差数列{a n}的前n项和为S n,且6S5﹣5S3=5,则a4=.15.(5分)设某几何体的三视图如图(尺寸的长度单位为m)则该几何体的体积为m3.16.(5分)已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为.三、解答题(共8小题,满分70分)17.(12分)如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D 间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,≈1.414,≈2.449).20.(12分)如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.21.(12分)某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(Ⅰ)设X表示目标被击中的次数,求X的分布列;(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).22.(12分)已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.23.(12分)已知函数f(x)=x2﹣ax+(a﹣1)lnx,a>1.(1)讨论函数f(x)的单调性;(2)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有.24.(10分)选修4﹣1:几何证明讲已知△ABC中,AB=AC,D是△ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.25.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos()=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.26.设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.2009年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2009•辽宁)已知集合M={x|﹣3<x≤5},N={x|﹣5<x<5},则M ∩N=()A.{x|﹣5<x<5}B.{x|﹣3<x<5}C.{x|﹣5<x≤5}D.{x|﹣3<x≤5}【分析】由题意已知集合M={x|﹣3<x≤5},N={x|﹣5<x<5},然后根据交集的定义和运算法则进行计算.【解答】解:∵集合M={x|﹣3<x≤5},N={x|﹣5<x<5},∴M∩N={x|﹣3<x<5},故选B.2.(5分)(2009•辽宁)已知复数z=1﹣2i,那么=()A.B. C.D.【分析】复数的分母实数化,然后化简即可.【解答】解:=故选D.3.(5分)(2009•辽宁)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B.C.4 D.12【分析】根据向量的坐标求出向量的模,最后结论要求模,一般要把模平方,知道夹角就可以解决平方过程中的数量积问题,题目最后不要忘记开方.【解答】解:由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B.4.(5分)(2009•辽宁)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2 C.(x﹣1)2+(y﹣1)2=2 D.(x+1)2+(y+1)2=2【分析】圆心在直线x+y=0上,排除C、D,再验证圆C与直线x﹣y=0及x﹣y ﹣4=0都相切,就是圆心到直线等距离,即可.【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(﹣1,1)到两直线x﹣y=0的距离是;圆心(﹣1,1)到直线x﹣y﹣4=0的距离是.故A错误.故选B.5.(5分)(2009•辽宁)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种【分析】不同的组队方案:选3名医生组成一个医疗小分队,要求其中男、女医生都有,方法共有两类,一是:一男二女,另一类是:两男一女;在每一类中都用分步计数原理解答.【解答】解:直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84﹣10﹣4=70种.故选A6.(5分)(2009•辽宁)设等比数列{a n}的前n项和为S n,若=3,则=()A.2 B.C.D.3【分析】首先由等比数列前n项和公式列方程,并解得q3,然后再次利用等比数列前n项和公式则求得答案.【解答】解:设公比为q,则===1+q3=3,所以q3=2,所以===.故选B.7.(5分)(2009•辽宁)曲线y=在点(1,﹣1)处的切线方程为()A.y=x﹣2 B.y=﹣3x+2 C.y=2x﹣3 D.y=﹣2x+1【分析】根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.【解答】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D8.(5分)(2009•辽宁)已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f(0)=()A.﹣ B.﹣ C.D.【分析】求出函数的周期,确定ω的值,利用f()=﹣,得Asinφ=﹣,利用f()=0,求出(Acosφ+Asinφ)=0,然后求f(0).【解答】解:由题意可知,此函数的周期T=2(π﹣π)=,故=,∴ω=3,f(x)=Acos(3x+φ).f()=Acos(+φ)=Asinφ=﹣.又由题图可知f()=Acos(3×+φ)=Acos(φ﹣π)=(Acosφ+Asinφ)=0,∴f(0)=Acosφ=.故选C.9.(5分)(2009•辽宁)已知函数f(x)是定义在区间[0,+∞)上的增函数,则满足f(2x﹣1)<f()的x的取值范围是()A.(,)B.[,)C.(,)D.[,)【分析】由函数的单调性的性质可得0≤2x﹣1<,由此求得x的取值范围.【解答】解:∵函数f(x)是定义在区间[0,+∞)上的增函数,则满足f(2x ﹣1)<f(),∴0≤2x﹣1<,解得≤x<,故选D.10.(5分)(2009•辽宁)某店一个月的收入和支出总共记录了N个数据a1,a2,…a N,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()A.A>0,V=S﹣T B.A<0,V=S﹣T C.A>0,V=S+T D.A<0,V=S+T 【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知S 表示月收入,T表示月支出,V表示月盈利,根据收入记为正数,支出记为负数,故条件语句的判断框中的条件为判断累加量A的符号,由分支结构的“是”与“否”分支不难给出答案,累加完毕退出循环后,要输出月收入S,和月盈利V,故在输出前要计算月盈利V,根据收入、支出与盈利的关系,不难得到答案.【解答】解析:月总收入为S,支出T为负数,因此A>0时应累加到月收入S,故判断框内填:A>0又∵月盈利V=月收入S﹣月支出T,但月支出用负数表示因此月盈利V=S+T故处理框中应填:V=S+T故选A>0,V=S+T11.(5分)(2009•辽宁)正六棱锥P﹣ABCDEF中,G为PB的中点,则三棱锥D ﹣GAC与三棱锥P﹣GAC体积之比为()A.1:1 B.1:2 C.2:1 D.3:2【分析】由于G是PB的中点,故P﹣GAC的体积等于B﹣GAC的体积;求出DH=2BH,即可求出三棱锥D﹣GAC与三棱锥P﹣GAC体积之比.【解答】解:由于G是PB的中点,故P﹣GAC的体积等于B﹣GAC的体积在底面正六边形ABCDER中BH=ABtan30°=AB而BD=AB故DH=2BH=2V B﹣GAC=2V P﹣GAC于是V D﹣GAC故选C.12.(5分)(2009•辽宁)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【分析】先由题中已知分别将x1、x2所满足的关系表达为,2x1=2log2(5﹣2x1)…系数配为2是为了与下式中的2x2对应2x2+2log2(x2﹣1)=5,观察两个式子的特点,发现要将真数部分消掉求出x1+x2,只须将5﹣2x1化为2(t﹣1)的形式,则2x1=7﹣2t,t=x2【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C二、填空题13.(5分)(2009•辽宁)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为1013h.【分析】由三个分厂的产量比,可求出各厂应抽取的产品数,再计算均值即可.【解答】解:从第一、二、三分厂的抽取的电子产品数量分别为25,50,25,则抽取的100件产品的使用寿命的平均值为=1013.故答案为:101314.(5分)(2009•辽宁)等差数列{a n}的前n项和为S n,且6S5﹣5S3=5,则a4=.【分析】根据等差数列的前n项和的公式表示出S5和S3,然后把S5和S3的式子代入到6S5﹣5S3=5中合并后,利用等差数列的通项公式即可求出a4的值.【解答】解:∵S n=na1+n(n﹣1)d∴S5=5a1+10d,S3=3a1+3d∴6S5﹣5S3=30a1+60d﹣(15a1+15d)=15a1+45d=15(a1+3d)=15a4=5解得a4=故答案为:15.(5分)(2009•辽宁)设某几何体的三视图如图(尺寸的长度单位为m)则该几何体的体积为4m3.【分析】由三视图可知几何体是三棱锥,明确其数据关系直接解答即可.【解答】解:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,体积等于×2×4×3=4故答案为:416.(5分)(2009•辽宁)已知F是双曲线的左焦点,A(1,4),P 是双曲线右支上的动点,则|PF|+|PA|的最小值为9.【分析】根据A点在双曲线的两支之间,根据双曲线的定义求得a,进而根据PA|+|PF′|≥|AF′|=5两式相加求得答案.【解答】解:∵A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|﹣|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.故答案为9.三、解答题(共8小题,满分70分)17.(12分)(2009•辽宁)如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,≈1.414,≈2.449).【分析】在△ACD中,∠DAC=30°推断出CD=AC,同时根据CB是△CAD底边AD 的中垂线,判断出BD=BA,进而在△ABC中利用余弦定理求得AB答案可得.【解答】解:在△ACD中,∠DAC=30°,∠ADC=60°﹣∠DAC=30°,所以CD=AC=0.1.又∠BCD=180﹣60°﹣60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA、在△ABC中,=,sin215°=,可得sin15°=,即AB==,因此,BD=≈0.33km.故B、D的距离约为0.33km.20.(12分)(2009•辽宁)如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.【分析】(1)(解法一)由面面垂直的性质定理,取CD的中点G,连接MG,NG,再证出∠MNG是所求的角,在△MNG中求解;(解法二)由垂直关系建立空间直角坐标系,求出平面DCEF的法向量,再用向量的数量积求解;(2)由题意假设共面,由AB∥CD推出AB∥平面DCEF,再推出AB∥EN,由得到EN∥EF,即推出矛盾,故假设不成立;【解答】解:(1)解法一:取CD的中点G,连接MG,NG.设正方形ABCD,DCEF的边长为2,则MG⊥CD,MG=2,NG=.∵平面ABCD⊥平面DCED,∴MG⊥平面DCEF,∴∠MNG是MN与平面DCEF所成的角.∵MN==,∴sin∠MNG=为MN与平面DCEF所成角的正弦值解法二:设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.则M(1,0,2),N(0,1,0),可得=(﹣1,1,﹣2).又∵=(0,0,2)为平面DCEF的法向量,∴cos(,)=•∴MN与平面DCEF所成角的正弦值为cos•(2)假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN由已知,两正方形不共面,∴AB⊄平面DCEF.又∵AB∥CD,∴AB∥平面DCEF.∵面EN为平面MBEN与平面DCEF的交线,∴AB∥EN.又∵AB∥CD∥EF,∴EN∥EF,这与EN∩EF=E矛盾,故假设不成立.∴ME与BN不共面,它们是异面直线.21.(12分)(2009•辽宁)某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(Ⅰ)设X表示目标被击中的次数,求X的分布列;(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).【分析】(1)由题意知目标被击中的次数X的取值是0、1、2、3、4,当X=0时表示四次射击都没有击中,当X=1时表示四次射击击中一次,以此类推,理解变量取值不同时对应的事件,用独立重复试验概率公式得到概率,写出分布列(2)第一部分至少被击中1次或第二部分被击中2次所表示的事件,记出事件,根据事件之间的互斥关系,表示出事件,用相互独立事件同时发生和互斥事件的概率公式,得到结果.【解答】解:(Ⅰ)由题意知目标被击中的次数X的取值是0、1、2、3、4,∵当X=0时表示四次射击都没有击中,∴P(X=0)==,∵当X=1时表示四次射击击中一次,P(X=1)==,∵当X=2时表示四次射击击中两次,∴P(X=2)==同理用独立重复试验概率公式得到X=3和X=4的概率,∴X的分列为01234P(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,,所求的概率为=0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.2822.(12分)(2009•辽宁)已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.【分析】(Ⅰ)由题意,c=1,可设椭圆方程代入已知条件得,求出b,由此能够求出椭圆方程.(Ⅱ)设直线AE方程为:,代入得,再点在椭圆上,结合直线的位置关系进行求解.【解答】解:(Ⅰ)由题意,c=1,可设椭圆方程为,解得b2=3,(舍去)所以椭圆方程为.(Ⅱ)设直线AE方程为:,代入得设E(x E,y E),F(x F,y F),因为点在椭圆上,所以由韦达定理得:,,所以,.又直线AF的斜率与AE的斜率互为相反数,在上式中以﹣K代K,可得,所以直线EF的斜率即直线EF的斜率为定值,其值为.23.(12分)(2009•辽宁)已知函数f(x)=x2﹣ax+(a﹣1)lnx,a>1.(1)讨论函数f(x)的单调性;(2)证明:若a<5,则对任意x1,x2∈(0,+∞),x1≠x2,有.【分析】(1)根据对数函数定义可知定义域为大于0的数,求出f′(x)讨论当a ﹣1=1时导函数大于0,函数单调递增;当a﹣1<1时分类讨论函数的增减性;当a﹣1>1时讨论函数的增减性.(2)构造函数g(x)=f(x)+x,求出导函数,根据a的取值范围得到导函数一定大于0,则g(x)为单调递增函数,则利用当x1>x2>0时有g(x1)﹣g(x2)>0即可得证.【解答】解:(1)f(x)的定义域为(0,+∞).(i)若a﹣1=1即a=2,则故f(x)在(0,+∞)单调增.(ii)若a﹣1<1,而a>1,故1<a<2,则当x∈(a﹣1,1)时,f′(x)<0;当x∈(0,a﹣1)及x∈(1,+∞)时,f′(x)>0故f(x)在(a﹣1,1)单调减,在(0,a﹣1),(1,+∞)单调增.(iii)若a﹣1>1,即a>2,同理可得f(x)在(1,a﹣1)单调减,在(0,1),(a﹣1,+∞)单调增.(2)考虑函数g(x)=f(x)+x=则由于1<a<5,故g'(x)>0,即g(x)在(0,+∞)单调增加,从而当x1>x2>0时有g(x1)﹣g(x2)>0,即f(x1)﹣f(x2)+x1﹣x2>0,故,当0<x1<x2时,有24.(10分)(2009•辽宁)选修4﹣1:几何证明讲已知△ABC中,AB=AC,D是△ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.【分析】首先对于(1)要证明AD的延长线平分∠CDE,即证明∠EDF=∠CDF,转化为证明∠ADB=∠CDF,再根据A,B,C,D四点共圆的性质,和等腰三角形角之间的关系即可得到.对于(2)求△ABC外接圆的面积.只需解出圆半径,故作等腰三角形底边上的垂直平分线即过圆心,再连接OC,根据角之间的关系在三角形内即可求得圆半径,可得到外接圆面积.【解答】解:(Ⅰ)如图,设F为AD延长线上一点∵A,B,C,D四点共圆,∴∠CDF=∠ABC又AB=AC∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,对顶角∠EDF=∠ADB,故∠EDF=∠CDF,即AD的延长线平分∠CDE.(Ⅱ)设O为外接圆圆心,连接AO交BC于H,则AH⊥BC.连接OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°.设圆半径为r,则r+r=2+,a得r=2,外接圆的面积为4π.故答案为4π.25.(2009•辽宁)在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos()=1,M,N分别为C与x轴,y 轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.【分析】(1)先利用三角函数的差角公式展开曲线C的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.(2)先在直角坐标系中算出中点P的坐标,再利用直角坐标与极坐标间的关系求出其极坐标和直线OP的极坐标方程即可.【解答】解:(Ⅰ)由从而C的直角坐标方程为θ=0时,ρ=2,所以M(2,0)(Ⅱ)M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)26.(2009•辽宁)设函数f(x)=|x﹣1|+|x﹣a|,(1)若a=﹣1,解不等式f(x)≥3;(2)如果x∈R,f(x)≥2,求a的取值范围.【分析】(1)当a=﹣1,原不等式变为:|x﹣1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数﹣左侧的点与表示实数右侧的点与表示实数﹣1与1的点距离之和不小3,从而得到不等式解集.(2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a﹣1|≥2即可求得结果.【解答】解:(1)当a=﹣1时,f(x)=|x﹣1|+|x+1|,由f(x)≥3有|x﹣1|+|x+1|≥3据绝对值几何意义求解,|x﹣1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,﹣1表示的点距离之和不小3,由于数轴上数﹣左侧的点与数右侧的点与数﹣1与1的距离之和不小3,所以所求不等式解集为(﹣∞,﹣]∪[,+∞)(2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(﹣∞,﹣1]∪[3,+∞)。
2009年全国高考理科数学试题(含答案)
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u A B I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,A B = ,{4,7,9}()U A B C A B =∴= 故选A 。
也可用摩根律:()()(U U UC A B C A C B=(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。
(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( C )(A (B )2 (C (D 解:设切点00(,)P x y ,则切线的斜率为0'0|2x x yx ==.由题意有002y x x =又2001y x =+解得: 201,2,b x e a =∴===(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
辽宁历年高考理科数学试题及答案汇编十一数列
辽宁历年高考理科数学试题及答案汇编十一数列试题1、2.(5分)(2008辽宁)等于()A.B.C.1 D.22、6.(5分)(2009辽宁)设等比数列{a n}的前n项和为S n,若=3,则=()A.2 B.C.D.33、14.(5分)(2009辽宁)等差数列{a n}的前n项和为S n,且6S5﹣5S3=5,则a4= .4、6.(5分)(2010辽宁)设{a n}是有正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.5、16.(5分)(2010辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.n510n n+2n+1则数列{a n}的通项公式a n= .8、14.(5分)(2013辽宁)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6= .9、8.(5分)(2014辽宁)设等差数列{a n}的公差为d,若数列{}为递减数列,则()1、21.(12分)(2008辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.2、17.(12分)(2011辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和.答案1、解:依题故选B2、解:设公比为q,则===1+q3=3,所以q3=2,所以===.故选B.3、解:∵S n=na1+n(n﹣1)d∴S5=5a1+10d,S3=3a1+3d∴6S5﹣5S3=30a1+60d﹣(15a1+15d)=15a1+45d=15(a1+3d)=15a4=5解得a4=故答案为:4、解:由a2a4=a32=1,得a3=1,所以S3==7,又q>0,解得=2,即q=.所以a1==4,所以=.故选B.5、解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n 所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为6、解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.7、解:∵,∴,∴a1=q,∴,∵2(a n+a n+2)=5a n+1,∴,∴2(1+q2)=5q,解得q=2或q=(等比数列{a n}为递增数列,舍去)∴.故答案为:2n.8、解:解方程x2﹣5x+4=0,得x1=1,x2=4.因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,所以a1=1,a3=4.设等比数列{a n}的公比为q,则,所以q=2.则.故答案为63.9、解:∵等差数列{a n}的公差为d,∴a n+1﹣a n=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.解答题1、解:(1)由条件得2b n=a n+a n+1,a n+12=b n b n+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.猜测a n=n(n+1),b n=(n+1)2.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即a k=k(k+1),b k=(k+1)2,那么当n=k+1时,a k+1=2b k﹣a k=2(k+1)2﹣k(k+1)=(k+1)(k+2),b k+1==(k+2)2.所以当n=k+1时,结论也成立.由①②,可知a n=n(n+1),b n=(n+1)2对一切正整数都成立.(2)证明:.n≥2时,由(1)知a n+b n=(n+1)(2n+1)>2(n+1)n.故==综上,原不等式成立.2、解:(I)设等差数列{a n}的公差为d,由已知条件可得,解得:,故数列{a n}的通项公式为a n=2﹣n;(II)设数列{}的前n项和为S n,即S n=a1++…+①,故S1=1,=++…+②,当n>1时,①﹣②得:=a1++…+﹣=1﹣(++…+)﹣=1﹣(1﹣)﹣=,所以S n=,综上,数列{}的前n项和S n=.。
2009年辽宁省高考数学试卷(理科)【word版本、可编辑、附详细答案和解释】
2009年辽宁省高考数学试卷(理科)一、选择题1. 已知集合M ={x|−3<x ≤5},N ={x|−5<x <5},则M ∩N =( ) A.{x|−5<x <5} B.{x|−3<x <5} C.{x|−5<x ≤5} D.{x|−3<x ≤5}2. 已知复数z =1−2i ,那么1z ¯=( )A.√55+2√55iB.√55−2√55i C.15+25iD.15−25i3. 平面向量a →与b →的夹角为60∘,a →=(2, 0),|b →|=1,则|a →+2b →|=( ) A.√3B.2√3C.4D.124. 已知圆C 与直线x −y =0及x −y −4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y −1)2=2B.(x −1)2+(y +1)2=2C.(x −1)2+(y −1)2=2D.(x +1)2+(y +1)2=25. 从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ) A.70种B.80种C.100种D.140种6. 设等比数列{a n }的前n 项和为S n ,若S6S 3=3,则S9S 6=( ) A.2B.73C.83D.37. 曲线y =xx−2在点(1, −1)处的切线方程为( ) A.y =x −2B.y =−3x +2C.y =2x −3D.y =−2x +18. 已知函数f(x)=A cos (ωx +φ)的图象如图所示,f(π2)=−23,则f(0)=( )A.−23B.−12C.23D.129. 已知偶函数f(x)在区间[0, +∞)单调增加,则满足f(2x −1)<f(13)的x 取值范围是( ) A.(13, 23)B.[13, 23) C.(12, 23) D.[12, 23)10. 某店一个月的收入和支出总共记录了N 个数据a 1,a 2,…a N ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A.A >0,V =S −TB.A <0,V =S −TC.A >0,V =S +TD.A <0,V =S +T11. 正六棱锥P −ABCDEF 中,G 为PB 的中点,则三棱锥D −GAC 与三棱锥P −GAC体积之比为( )A.1:1B.1:2C.2:1D.3:212. 若x1满足2x+2x=5,x2满足2x+2log2(x−1)=5,x1+x2=()A.52B.3 C.72D.4二、填空题13. 某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980ℎ,1020ℎ,1032ℎ,则抽取的100件产品的使用寿命的平均值为________ℎ.14. 等差数列{a n}的前n项和为S n,且6S5−5S3=5,则a4=________.15. 设某几何体的三视图如图(尺寸的长度单位为m)则该几何体的体积为4m3.16. 已知F是双曲线x 24−y212=1的左焦点,A(1, 4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.三、解答题(共8小题,满分70分)17. 如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75∘,30∘,于水面C处测得B点和D点的仰角均为60∘,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,√2≈1.414,√6≈2.449)18. 如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.。
2009年全国统一高考数学试卷(理科)(全国卷一)及答案
2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个2.(5分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0} 4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.5.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种6.(5分)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣7.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5分)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣210.(5分)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.411.(5分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数12.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF 交C于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=.15.(5分)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5分)若,则函数y=tan2xtan3x的最大值为.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12分)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.19.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.21.(12分)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.22.(12分)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个【分析】根据交集含义取A、B的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选A2.(5分)(2009•全国卷Ⅰ)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴故选B3.(5分)(2009•全国卷Ⅰ)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|﹣1<x<0}D.{x|x<0}【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选D4.(5分)(2009•全国卷Ⅰ)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2 C.D.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a和b 的关系,从而推断出a和c的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选择C.5.(5分)(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种【分析】选出的4人中恰有1名女同学的不同选法,1名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有C51•C31•C62=225种选法;(2)乙组中选出一名女生有C52•C61•C21=120种选法.故共有345种选法.故选D6.(5分)(2009•全国卷Ⅰ)设、、是单位向量,且,则•的最小值为()A.﹣2 B.﹣2 C.﹣1 D.1﹣【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值.【解答】解:∵、、是单位向量,,∴,=.∴•=﹣()•+=0﹣()•+1=1﹣cos=1﹣cos≥.故选项为D7.(5分)(2009•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选D.8.(5分)(2009•全国卷Ⅰ)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A9.(5分)(2009•全国卷Ⅰ)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B10.(5分)(2009•全国卷Ⅰ)已知二面角α﹣l﹣β为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1 B.2 C.D.4【分析】分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ中将PQ表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l于C,PB⊥β于B,PD⊥l于D,连CQ,BD则∠ACQ=∠PDB=60°,,∴AC=PD=2又∵当且仅当AP=0,即点A与点P重合时取最小值.故答案选C.11.(5分)(2009•全国卷Ⅰ)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2) D.f(x+3)是奇函数【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选D12.(5分)(2009•全国卷Ⅰ)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2 C.D.3【分析】过点B作BM⊥x轴于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B作BM⊥x轴于M,并设右准线l与x轴的交点为N,易知FN=1.由题意,故FM=,故B点的横坐标为,纵坐标为±即BM=,故AN=1,∴.故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•全国卷Ⅰ)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于﹣240.【分析】首先要了解二项式定理:(a+b)n=C n0a n b0+C n1a n﹣1b1+C n2a n﹣2b2++C n r a n﹣r b r++C n n a0b n,各项的通项公式为:T r=C n r a n﹣r b r.然后根据题目已知求解即可.+1【解答】解:因为(x﹣y)10的展开式中含x7y3的项为C103x10﹣3y3(﹣1)3=﹣C103x7y3,含x3y7的项为C107x10﹣7y7(﹣1)7=﹣C107x3y7.由C103=C107=120知,x7y3与x3y7的系数之和为﹣240.故答案为﹣240.14.(5分)(2009•全国卷Ⅰ)设等差数列{a n}的前n项和为S n,若S9=81,则a2+a5+a8=27.【分析】由s9解得a5即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是2715.(5分)(2009•全国卷Ⅰ)直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π16.(5分)(2009•全国卷Ⅰ)若,则函数y=tan2xtan3x的最大值为﹣8.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.三、解答题(共6小题,满分70分)17.(10分)(2009•全国卷Ⅰ)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC化成边的关系,再根据a2﹣c2=2b即可得到答案.【解答】解:法一:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC由正弦定理得,故b=4ccosA②由①,②解得b=4.18.(12分)(2009•全国卷Ⅰ)如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角S﹣AM﹣B的大小.【分析】(Ⅰ)法一:要证明M是侧棱SC的中点,作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE即可得x的值,进而得到M为侧棱SC的中点;法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,并求出S点的坐标、C点的坐标和M点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D为坐标原点,分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B的大小.【解答】证明:(Ⅰ)作MN∥SD交CD于N,作NE⊥AB交AB于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB中,∵∠MBE=60°∴.在RT△MNE中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M为侧棱SC的中点M.(Ⅰ)证法二:分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1即M(0,1,1)所以M是侧棱SC的中点.(I)证法三:设,则又故,即,解得λ=1,所以M是侧棱SC的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B的大小.19.(12分)(2009•全国卷Ⅰ)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局.(I)求甲获得这次比赛胜利的概率;(Ⅱ)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【分析】(1)由题意知前2局中,甲、乙各胜1局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i表示事件:第i局甲获胜,(i=3、4、5)B i表示第j局乙获胜,j=3、4(1)记B表示事件:甲获得这次比赛的胜利,∵前2局中,甲、乙各胜1局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.20.(12分)(2009•全国卷Ⅰ)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n项和S n.【分析】(1)由已知得=+,即b n=b n+,由此能够推导出所求的通+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣=﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.21.(12分)(2009•全国卷Ⅰ)如图,已知抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.【分析】(1)先联立抛物线与圆的方程消去y,得到x的二次方程,根据抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是此方程有两个不相等的正根,可求出r的范围.(2)先设出四点A,B,C,D的坐标再由(1)中的x二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点P的坐标.【解答】解:(Ⅰ)将抛物线E:y2=x代入圆M:(x﹣4)2+y2=r2(r>0)的方程,消去y2,整理得x2﹣7x+16﹣r2=0(1)抛物线E:y2=x与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D四个点的充要条件是:方程(1)有两个不相等的正根∴即.解这个方程组得,.(II)设四个交点的坐标分别为、、、.则直线AC、BD的方程分别为y﹣=•(x﹣x1),y+=(x﹣x1),解得点P的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P的坐标为.22.(12分)(2009•全国卷Ⅰ)设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【分析】(1)根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c满足的约束条件为(4分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10分)所以.。
2009年辽宁高考数学理科卷带详解
2009 年全国统一考试(辽宁卷)理科数学一、选择题(每小题 5 分,共 60 分) .1.已知集合 M x3x , 5 , N x5x 5 则M N( ),A.x 5 x5B.x3x5C. x 5 x , 5D. x 3 x , 5【测量目标】集合的基本运算 .【考查方式】给出两个集合运用集合间的交集运算求解交集表示的范围.【难易程度】容易【参考答案】 B【试题解析】直接利用交集性质求解,或者画出数轴求解 .2.已知复数z 12i,那么1=() zA. 5 2 5 iB. 5 2 5 iC. 1 2i D.1 2i55555555【测量目标】复数的基本运算、共轭复数.【考查方式】给出复数的共轭复数的分数形式求其值.【难易程度】容易【参考答案】 D【试题解析】111(11 2i2i)12i12i .z2i2i)(1122553.平面向量a与b的夹角为60, a(2,0), b 1 则a2b()A.3B. 2 3C. 4D. 12【测量目标】平面向量的数量积运算.【考查方式】给出平面向量之间的夹角及一个向量的坐标表示求模.【难易程度】容易【参考答案】 Ba2, a 2a24a b4b244 2 1 cos60412 ,【试题解析】由已知2b∴a 2b 2 3.4. 已知圆 C 与直线x y0 及 x y 40都相切,圆心在直线x y 0 上,则圆 C 的方程为() A. ( x 1)2( y 1)22 B. ( x1)2( y 1)22C. (x 1)2( y 1)22D. ( x1)2( y1)22【测量目标】直线与圆的位置关系,圆的方程.【考查方式】已知圆与一条已知直线之间的位置关系和圆心所在的直线方程求圆的一般方程【难易程度】容易【参考答案】B.【试题解析】圆心在x y 0 上,排除C、D,再结合图象,或者验证 A 、B 中圆心到两直线的距离等于半径 2即可 .5.从 5 名男医生、 4 名女医生中选 3 名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ) A.70 种 B. 80 种 C. 100 种 D.140 种【测量目标】排列组合 .【考查方式】给出实际问题运用排列组合的性质运算求解答案.【难易程度】容易【参考答案】 A【试题解析】直接法:一男两女,有C15C42= 5×6= 30 种 ,两男一女 ,有C52C14= 10×4=40种 ,共计70 种.间接法:任意选取C93=84种,其中都是男医生有 C53=10种 ,都是女医生有C14= 4 种,于是符合条件的有 84- 10- 4= 70 种 .6.设等比数列a n的前 n 项和为 S n,若S63,则S9=() S3S6A. 278D.3 B. C.33【测量目标】等比数列的前n 项和,等比数列的性质.【考查方式】给出等比数列的前n 项和的比的形式求解其值.【难易程度】容易【参考答案】B【试题解析】设公比为q,则 S6(1 q3 )S31q33q3 2 .S3S3S9 1 q3q6 1 2 4 7于是1 q312.S367.曲线yx(1,1) 处的切线方程为()在点x 2A. y x2B. y3x2C.y2x3D. y2x 1【测量目标】函数的导数,切线方程.【考查方式】给出一个曲线的解析式求其在某个定点的切线方程.【难易程度】中等【参考答案】 Dx 2 x22 ,当 x1时切线斜率为 k2 .【试题解析】 y2)2( x 2)( x8.已知函数 f ( x) A cos(xπ 2 ( )) 的图象如图所示, f ( ),则 f 0)( =23第 8 题图2 2 1 1A.B.C.D.w.w.w.k3322【测量目标】函数 yAsin( x) 的图像与性质 .【考查方式】给出函数 yA sin( x) 的图像,运用其性质求解未知数 .【难易程度】中等【参考答案】 B【试题解析】由图象可得最小正周期为2π f (2π 2π π 7π 于是 f (0) ) ,注意到与关于对称333212所以2ππ 2f ()f ( ).3231 9.已知偶函数 f ( x) 在区间0, ) 单调增加,则满足 f (2 x 1) f () 的 x 取值范围是3( )1 2B.1 21 2 D.1 2w.w.w.k.s.5.u.c.o.mA. ( ,),3 C. ( ,)2 ,3 33 2 33【测量目标】利用函数的单调性求参数范围.【考查方式】已知函数在某个区间的单调性求未知参数的取值范围.【难易程度】中等【参考答案】 A【试题解析】由于f ( x) 是偶函数 ,故 f ( x) f ( x ) ∴得 f ( 2x 1) f (1 ) ,再根据 f ( x) 的单11 2 3调性得 2x解得13x.3310.某店一个月的收入和支出总共记录了N 个数据 a 1 , a 2 , ...a N ,其中收入记为正数,支出记为负数 .该店用下边的程序框图计算月总收入 S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )第10 题图A. A0,V S TB. A0,V S TC. A0,V S T w.w.w.k.s.5.u.c.o.mD. A0,V S T【测量目标】循环结构的程序框图.【考查方式】已知某个循环结构的程序框图,给出输出结果逆推出原程序框图中的残缺部分.【难易程度】容易【参考答案】 C【试题解析】月总收入为S,因此A0 时归入S,判断框内填 A0 支出T为负数,因此月盈利V S T .11.正六棱锥 P-ABCDEF 中, G 为 PB 的中点,则三棱锥 D-GAC 与三棱锥P-GAC体积之比为 ()A. 1:1B. 1: 2C. 2 :1D. 3: 2【测量目标】锥的体积 .【考查方式】求解已知几何体中部分几何体的体积之比.【难易程度】中等【参考答案】 C【试题解析】由于G 是 PB 的中点 ,故 P-GAC 的体积等于 B-GAC 的体积 .在底面正六边形ABCDEF 中BH AB tan 303AB 而BD3AB 故DH=2BH3于是22VD GACVB GACVP GAC第 11 题图12.若x1满足2x2x 5 ,x2满足 2x2log 2 ( x 1) 5 , x1 x2()5B.37D.4A. C.22【测量目标】对数函数、指数函数的性质.【考查方式】给出满足对数函数、指数函数的未知数,运用对数函数、指数函数的性质求解未知数之和 .【难易程度】中等【参考答案】 C【试题解析】由题意2x2x5①2x2log 2 ( x1)5②(步骤 1)所以 2x52x , x log(52x) 即 2x2log2(52x ) (步骤2)11211令 2x172t ,代入上式得 72t2log 2 (2t 2)22log 2 (t1)52t2log 2 (t1) 与②式比较得 t x2于是 2 x17 2x2(步骤3)x17x2,故选 C.(步骤 4)213.某企业有 3 个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1: 2:1,用分层抽样方法(每个分厂的产品为一层)从 3 个分厂生产的电子产品中共取100 件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h, 1032h,则抽取的100 件产品的使用寿命的平均值为_________h.【测量目标】分层抽样 .【考查方式】给出实际问题运用分层抽样的方法求解答案.【难易程度】容易【参考答案】 1013【试题解析】x 98011020210321.4101314.等差数列a n的前 n 项和为 S n,且 6S55S35, 则 a4.【测量目标】数列的通项公式a n与前 n 项和 S n的关系.【考查方式】已知数列的通项与其前n 项和之间的关系求解数列的未知项.【难易程度】中等【参考答案】131n(n【试题解析】∵ S n na11)d ∴S55a110d , S3 3a13d .2∴ 6S55S330a160d (15a115d ) 15a145d 15(a13d )15a4.∵ 6S5 5S3 5, 故a41 . 315.设某几何体的三视图如下(尺寸的长度单位为m ).则该几何体的体积为m 3. w.w.w.k.s.5.u.c.o.m第15 题图【测量目标】三视图,求几何体的体积【考查方式】给出几何体的三视图,求其体积.【难易程度】容易【参考答案】4【试题解析】这是一个三棱锥,高为 2,底面三角形一边为4,这边上的高为3,体积等于 1 ×2×4×3=4.616.已知F是双曲线x2y21 的左焦点, A(1,4), P 是双曲线右支上的动点,则PF PA 的412最小值为.【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线的标准方程,运用其简单的几何性质求两条线段模的最值.【难易程度】中等【参考答案】 9【试题解析】注意到P 点在双曲线的两只之间,且双曲线右焦点为 F (4,0) ,于是由双曲线性质PF PF2a 4 而 PA PF ⋯ AF5两式相加得 PF PA ⋯9,当且仅当A, P, F三点共线时等号成立.17.(本小题满分 12 分)如图, A,B,C,D 都在同一个与水平面垂直的平面内,,B D 为两岛上的两座灯塔的塔顶 .测量船于水面 A 处测得 B 点和 D 点的仰角分别为75 , 30,于水面 C 处测得 B 点和 D 点的仰角均为60 , AC 0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B, D 的距离(计算结果精确到0.01km,2 1.414,6 2.44)第 17 题图【测量目标】正弦定理的实际应用.【考查方式】运用正弦定理在实际问题中构建三角形求解实际问题 .【难易程度】中等【试题解析】在△ABC 中, DAC30 ,ADC 60 DAC 30 . (步骤1 )所以CD AC 0.1 又 BCD180 60 6060 ,(步骤 2)故 CB 是 △ CAD 底边 AD 的中 垂 线 , 所 以 BDBA , ( 步 骤 3 ) 在 △ ABC 中 ,A BA C即s i n B C A s i n A B CAC sin 603 263 26AB20(步骤 4)因此, BD0.33km .故 B ,D 的距离sin1520约为 0.33km. (步骤 5)18.(本小题满分 12 分)如图,已知两个正方行ABCD 和 DCEF 不在同一平面内, M ,N 分别为 AB , DF 的中点 .( 1)若平面 ABCD ⊥平面 DCEF ,求直线 MN 与平面 DCEF 所成角的正值弦;( 2)用反证法证明:直线 ME 与 BN 是两条异面直线 .w.w.w.k.s.5.u.c.o.m第 18 题图【测量目标】面面垂直,异面直线之间的关系.【考查方式】给出立体几何体,由已知知识点求解面面垂直与异面直线之间的关系 .【难易程度】较难【试题解析】( 1)解法一:取 CD 的中点 G ,连接 MG , NG.设正方形 ABCD , DCEF 的边长为 2,则 MG ⊥CD , MG =2, NG2 (步骤 1)因为平面 ABCD ⊥平面 DCED ,所以 MG ⊥平面 DCEF ,可得∠ MNG 是 MN 与平面 DCEF 所成的角 . (步骤 2)因为 MN 6 ,所以 sin MNG6为 MN 与平面 DCEF 所成角的正弦值.(步骤 3)3解法二:设正方形 ABCD ,DCEF 的边长为2,以 D 为坐标原点,分别以射线DC ,DF , DA 为 x, y, z轴正半轴建立空间直角坐标系如图. (步骤 1)则 M( 1,0,2) ,N(0,1,0),可得MN( 1,1,2) (步骤2)MN DA6又 DA (0,2,2) 为平面DCEF的法向量,可得 cos(MN , DA )·MN DA3所以 MN 与平面 DCEF 所成角的正弦值为cos MN , DA 6(步骤 3)3第18 题 (1)图(2)假设直线 ME 与 BN 共面,则 AB 平面 MBEN ,且平面 MBEN 与平面 DCEF 交于 EN由已知,两正方形不共面,故AB平面DCEF .又AB//CD ,所以 AB //平面 DCEF .而 EN 为平面 MBEN 与平面 DCEF 的交线,所以 AB //EN.又 AB//CD//EF ,所以 EN//EF,这与 EN EF=E 矛盾,故假设不成立.所以 ME 与 BN 不共面,它们是异面直线 .19.(本小题满分 12 分)某人向一目射击1.该目标分为 3 个不4 次,每次击中目标的概率为3同的部分,第一、二、三部分面积之比为1: 3: 6 .击中目标时,击中任何一部分的概率与其面积成正比 .( 1)设 X 表示目标被击中的次数,求X 的分布列;( 2)若目标被击中 2 次, A 表示事件“第一部分至少被击中 1 次或第二部分被击中 2 次”,求P( A)【测量目标】数学期望,分布列.【考查方式】运用数学期望的相关知识求解实际问题.【难易程度】中等【试题解析】( 1)依题意 X 的分列为X 0 1 2 3 4P16 32 24 8 18181818181( 2)设A 1 表示事件 “第一次击中目标时,击中第i 部分 ”, i1,2 .B 1 表示事件 “第二次击中目标时,击中第i 部分 ”,i1,2依题意知 P ( A 1) =P(B 1)=0.1 , P (A 2) =P(B 2)=0.3,(步骤 1)A A 1B 1 A 1 B 1 A 1B 1A 2B 2 ,(步骤 2)所求的概率为 P( A)P( A B ) P( A B ) P (A B ) P( A B )1 11 11 122= P( A 1 B 1 )P( A 1) P( B 1) P (A 1 )P(B 1 ) P( A 2 ) P( B 2 )= 0.1 0.9 0.9 0.1 0.1 0.1 0.3 0.3 0.28 . (步骤 3)20.(本小题满分 12 分)已知,椭圆C 过点 A (1,3) ,两个焦点为 ( 1,0),(1,0) .2( 1) 求椭圆 C 的方程; w.w.w.k.s.5.u.c.o.m( 2) E,F 是椭圆 C 上的两个动点, 如果直线 AE 的斜率与 AF 的斜率互为相反数, 证明直线EF 的斜率为定值,并求出这个定值.【测量目标】椭圆的标准方程,直线与椭圆的位置关系 .【考查方式】已知椭圆的几个参数求解椭圆的标准方程,判断直线与椭圆的位置关系 .【难易程度】较难【试题解析】 (1)由题意,c=1,可设椭圆方程为191(,步骤 1)解得 b23 ,b231 b2 4b 24(舍去)所以椭圆方程为x2y241. (步骤 2)3(2) 设直线 AE 方程为: yk (x 1)3,代入x2y2241得3(3 4k 2 ) x24k (3 2k )x4(3k )2120 (步骤 3)2设 E(x E , y E ) , F (x F , y F ) ,因为点 A(1,3) 在椭圆上,所以24( 3 k) 2123 x F2, y E kx E 4k 2k (步骤 4) 又直线 AF 的斜率与 AE 的斜率3 24(3k )2123 互为相反数,在上式中以k 代 k ,可得 x F2y Ekx E3 4k2k2(步骤 5)所以直线EF 的斜率 k EFy F y E k (x Fx E ) 2k 1x FxE x Fx E2即直线 EF 的斜率为定值,其值为1 (步骤 6).221.(本小题满分 12 分)已知函数 f (x)1 x2 ax ( a1)ln x,a1 .2( 1)讨论函数 f ( x) 的单调性; w.w.w.k.s.5.u.c.o.m( 2)证明:若 a 5 ,则对任意 x 1 , x 2(0, ) , x 1 x 2 ,有f ( x 1 )f ( x 2 ) 1.x 1x 2【测量目标】函数的单调性 .【考查方式】已知函数解析式求解函数的单调性,已知参数范围求解区间内函数的单调性.【难易程度】较难【试题解析】 (1) f ( x) 的定义域为 (0,) . f ( x) x aa 1 x 2ax a1xx(x 1)( x 1 a)(步骤1)x( i )若 a 11 即 a2 ,则 f (x)(x1)2) 单调增加 . (步骤 2)x故 f ( x) 在 (0,(ii)若 a 1 1 , , a, x (a 1,1) 时, f ( x) 0 ; (步骤 3 )而 a 1 故 12 则当当 x(0, a 1)及 x (1, ) 时, f ( x)故 f ( x) 在 ( a 1,1)单调减少,在 (0, a 1),(1, ) 单调增加 . (步骤 4)(iii) 若 a 11 ,即 a2 ,同理可得 f ( x) 在 (1,a 1) 单调减少, 在 (0,1),( a 1,) 单调增加 . (步骤 5)(2) 考虑函数 g( x)f ( x) x1 x2 ax (a 1)ln xx (步骤 6)2则 g ( x)x (a1)a1⋯2 xga 1(a1) 1 ( a 1 1)2(步骤 7)xx由 于 1 a 5 , 故 g (x)0 , 即 g( x) 在 (4, +∞)单 调 增 加 , 从 而 当 x 1 x 2 0 时 有g(x1 )g (x2 ) 0 ,(步骤8 )即f ( x1) f ( x2 )x1x20 ,故f (x1 ) f (x2 )x11 ,当x20 x1x2f ( x1 ) f ( x2 ) f ( x2 ) f ( x1)1.(步骤9)时,有x2x2x1x122.(本小题满分 10 分)已知△ABC中, AB=AC, D 是△ABC外接圆劣弧AC上的点(不与点 A,C 重合),延长 BD 至 E.(1)求证: AD 的延长线平分CDE ;(2) 若BAC= 30,△ABC中 BC边上的高为2+ 3 ,求△ABC 外接圆的面积.w.w.w.k.s.5.u.c.o.m第 22 题图【测量目标】直线与圆的位置关系,圆的简单几何性质.【考查方式】给出圆与直线的位置关系,运用其简单几何性质求解角与线的关系【难易程度】中等【试题解析】(1)如图,设 F 为 AD 延长线上一点∵A, B, C,D 四点共圆,∴∠(步骤 1)又AB=AC∴∠ ABC=∠ ACB,且∠ ADB =∠ACB ,∴∠ ADB=∠ CDF ,.CDF= ∠ ABC (步骤 2)对顶角∠ EDF =∠ ADB, 故∠ EDF =∠ CDF ,即 AD 的延长线平分∠CDE . (步骤 3)第22 题图(2)设 O 为外接圆圆心,连接 AO 交 BC 于 H ,则 AH⊥BC.连接 OC, OA 由题意∠ OAC=∠OCA=15 , ∠ACB= 75 ,∴∠ OCH = 60 .(步骤 4)设圆半径为 r,则 r+33 ,a 得 r=2, 外接圆的面积为4 π.(步骤 5)r=2+223.(本小题满分 10分)选修4- 4 :坐标系与参数方程在直角坐标系xOy 中,以O为极点,x 正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为cos(π) =1,M,N分别为C与x 3轴, y 轴的交点 .( 1)写出 C 的直角坐标方程,并求M,N 的极坐标; w.w.w.k.s.5.u.c.o.m ( 2)设 MN 的中点为 P,求直线 OP 的极坐标方程 .【测量目标】坐标系与参数方程.【考查方式】建立坐标系求解参数方程.【难易程度】中等【试题解析】( 1)由cos(π13)1得 ( cos sin ) 1(步骤1)322从而 C 的直角坐标方程为 1 x3y 1即x3y 2 (步骤2)220 时,2,M (2,0)π=,N (,)3所以时, 2 3所以23π (步骤)2332( 2) M 点的直角坐标为(2,0) N 点的直角坐标为(0,23) (步骤4)3所以 P 点的直角坐标为(1,323π) ,则 P 点的极坐标为(,)336所以直线OP 的极坐标方程为π,(,) (步骤5)624.(本小题满分 10 分)设函数f ( x)| x1| | x a | .(1)若a1, 解不等式 f ( x) ⋯3;(2)如果x R , f ( x)⋯2 ,求a的取值范围 .w.w.w.k.s.5.u.c.o.m【测量目标】不等式 .【考查方式】给出函数解析式求解不等式.【难易程度】中等【试题解析】(1)当a 1 时, f ( x)x1x1.由 f ( x)⋯3得x 1 x 1 ⋯3 (步骤1)1 当x , 1 时,不等式化为 1 x1x ⋯3即2x ⋯ 3(步骤 2)○2 当x 1 时,联立不等式组x1解得其解集为3 ,,综上得 f ( x) ⋯3 的解集+○ f ( x) ⋯32为33,,.(步骤 3)22(2)若a1, f ( x) 2 x 1 ,不满足题设条件.2x a1, x ,a,1 若a 1 , f ( x)1a, a x1, f ( x)的最小值为 1 a (步骤4)○2x(a1), x ⋯12x a1, x , 1,2若a1, f (x)1a,1x a, f (x) 的最小值为 a1(步骤5)○2x(a1), x ⋯ a所以x R,f(x)⋯ 2的充要条件是 a 1⋯2,从而a的取值范围为(- ,13,).(步骤6)。
2009--2011年辽宁省高考理科数学试题汇编
2009年-----2011年辽宁省高考数学(理)试题分类汇编必修一第一章 集合(2011理)2.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N M C I =∅,则=N M ( )A .MB .NC .ID .∅【答案】A(2010理)(1)已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},(u C B ∩A={9},则A=( )(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 【答案】B(2009理)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=( )(A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5} 【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B必修一第二、三章 函数、基本初等函数(2011理)9.设函数⎩⎨⎧>-≤=-1,log 11,2)(2x 1x x x x f ,则满足f(x)≤2的x 的取值范围是( )A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]【答案】D(2009理)(9)已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x-1)<f(31)的x 取值范围是( ) (A )(31,32) (B) [31,32) (C)(21,32) (D) [21,32) 【解析】由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x -1|)<f(31),再根据f(x)的单调性 得|2x -1|<31 解得31<x <32 【答案】A(2009理)(12)若1x 满足2x+x2=5, 2x 满足2x+2)1(log 2-x =5, 1x +2x =( )(A )25 (B)3 (C) 27(D)4 【解析】由题意21x +1x2=5 ① 22x +2)1(log 22-x =5 ②所以1x2=5-21x , 1x =)25(log 12x - 即21212log (52)x x =-令21x =7-2t,代入上式得7-2t =2log 2(2t -2)=2+2log 2(t -1)∴5-2t =2log 2(t -1)与②式比较得t =2x 于是21x =7-22x 【答案】C必修二第一章 立体几何 选修2-1第三章 空间向量与立体几何(2011理)8.如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( ) A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角【答案】D(2011理)12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3, 30=∠=∠BSC ASC ,则棱锥S —ABC 的体积为( ) A .33 B .32 C .3 D .1【答案】C(2011理)15.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 .【答案】(2011理)18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (I )证明:平面PQC ⊥平面DCQ ; (II )求二面角Q —BP —C 的余弦值. 【答案】18.解:如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz.(I )依题意有Q (1,1,0),C (0,0,1),P (0,2,0).则(1,1,0),(0,0,1),(1,1,0).DQ DC PQ ===-所以0,0.PQ DQ PQ DC ⋅=⋅=即PQ ⊥DQ ,PQ ⊥DC. 故PQ ⊥平面DCQ.又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ. …………6分(II )依题意有B (1,0,1),(1,0,0),(1,2,1).CB BP ==--设(,,)n x y z =是平面PBC 的法向量,则0,0,20.0,n CB x x y z n BP ⎧⋅==⎧⎪⎨⎨-+-=⋅=⎩⎪⎩即 因此可取(0,1,2).n =--设m 是平面PBQ 的法向量,则0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩可取(1,1,1).cos ,5m m n =<>=-所以 故二面角Q —BP —C的余弦值为 ………………12分 (2010理)(12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是( )(A)((B)(1,(D) (0, 【答案】A(2010理)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了 某多面体的三视图,则这个多面体最长的一条棱的长为______.【答案】2010理)(19)(本小题满分12分)已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=21AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.(Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小.【答案】(19)证明设PA=1,以A 为原点,射线AB ,AC ,AP 分别为x,y,z 轴正向建立空间直角坐标系如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年普通高等学校招生全国统一考试(辽宁卷)
数学(理工农医类)
一-选择题(每小题5分,共60分)
(2)已知复数12z i =-,那么
1z
=
(A
5
5
+ (B
5
5
- (C )125
5
i + (D )125
5
i -
(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A
(B) (C) 4 (D)12 (4) 已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C 的方程为
(A )2
2
(1)(1)2x y ++-= (B) 2
2
(1)(1)2x y -++= (C) 2
2
(1)(1)2x y -+-= (D) 2
2
(1)(1)2x y +++=
(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有
(A )70种 (B ) 80种 (C ) 100种 (D )140种 (6)设等比数列{ n a }的前n 项和为n s ,若
63
s s =3 ,则
6
9s s =
(A ) 2 (B ) 73
(C ) 83
(D )3
(7)曲线y=
2
x x -在点(1,-1)处的切线方程为
(A )y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1
(8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2
()2
3
f π=-,则(0)f =
(A )23
-
(B)
23
(C)-
12
(D)
12
(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1
()3
f 的x 取值范围是 (A )(
13
,
23
) (B) [
13
,
23
) (C)y=(
12
,
23
) (D) [
12
,
23
)
10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
N a ,其中收入记为
正数,支出记为负数。
该店用右边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的 (A )A>0,V=S-T (B) A<0,V=S-T (C) A>0, V=S+T (D )A<0, V=S+T
(11)正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥D-GAC 与三棱锥P-GAC 体积之比为 (A )1:1 (B) 1:2 (C) 2:1 (D) 3:2
(12)若1x 满足2x+2x =5, 2x 满足2x+22log (x-1)=5, 1x +2x = (A )
52
(B)3 (C)
72
(D)4
(13)某企业有3个分厂生产同一种电子产品,第一.二.三分厂的产量之比为1:2:1,用分层抽样方法(每
个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一.二.三分厂取出的产品的使用寿命的平均值分别为980h ,1020h ,1032h ,则抽取的100件产品的使用寿命的平均值为 h.
(14)等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = (15)设某几何体的三视图如下(尺寸的长度单位为m )。
则该几何体的体积为3
m
(16)以知F是双曲线
22
1
412
x y
-=的左焦点,(1,4),
A P是双曲线右支上的动点PF PA
+的最小值
为。
(17)(本小题满分12分)
如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。
测量船于水面A 处测得B点和D点的仰角分别为0
75,0
30,于水面C处测得B点和D点的仰角均为0
60,AC=0.1km。
试探究图中B,D间距离与另外哪两点距离相等,然后求B,D的距离(计算结果精确到0.01km≈1.414,
≈2.449)
(18)(本小题满分12分)
如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。
(I)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;
(II)用反证法证明:直线ME 与BN 是两条异面直线。
(19)(本小题满分12分)
某人向一目射击4次,每次击中目标的概率为1
3。
该目标分为3个不同的部分,第一、二、三部分面积之
比为1:3:6击中目标时,击中任何一部分的概率与其面积成正比。
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)(20)(本小题满分12分)
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
(1) 求椭圆C 的方程;
(2) E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率
为定值,并求出这个定值。
(21)(本小题满分12分) 已知函数f(x)=
2
1x 2-ax+(a-1)ln x ,a 〈5,则对任意x 1,x 2∈(o ,
),x 1≠x 2,有
2
121)
()(x x x f x f --〉-1。
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。
做答时用2B
铅笔在答题卡上把所选题目的题号涂黑。
(22)(本小题满分10分)选修4-1:几何证明讲
已知 ∆ABC 中,AB=AC, D 是 ∆ABC 外接圆劣弧AC 上的点(不与点A,C 重合),延长BD 至E 。
(1) 求证:AD 的延长线平分∠CDE ;
(2) 若∠BAC=30,ABC 中BC 边上的高为,求ABC 外接圆的面积。
(23)(本小题满分10分)选修4-4 :坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴为极轴建立坐标系,曲线C 的极坐标方程为ρcos ()=1,M,N 分别为C 与x 轴,y 轴的交点。
(1)写出C 的直角坐标方程,并求M,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程。
(24)(本小题满分10分)选修4-5:不等式选讲 设函数f(x)=x-1+x-a 。
(1) 若a=-1,解不等式f(x) ≥ 3,
(2)如果∀x ∈R,f (x ) ≥ 2,求a 的取值范围。