待定系数法求二次函数解析式习题
中考培优专题用待定系数法求二次函数解析式(含答案)
中考培优专题用待定系数法求二次函数解析式(含答案)一、单选题(共有3道小题)1.函数20y ax a =≠,()的图象经过点(a ,8),则a 的值为( )A.±2B.-2C.2D.32.二次函数()21,0y ax bx a =+-≠的图象经过点(1,1),则1a b ++ 的值是( )A.-3B.-1C.2D.33.若抛物线2=++y x ax b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1=x ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)二、填空题(共有11道小题)4.已知二次函数2y ax =. 若当1x =-时,2y =,那么a =______ 5.已知二次函数m x x y ++=2的图象过点(1,3),则m 的值为 6.二次函数2ax y =的图象过(2,1),则二次函数的表达式为____________. 7.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐标是(1,0)、(-4,0),则该抛物线的关系式是 .8.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为 .9.若抛物线c bx ax y ++=2的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .10.已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是(-2,0)、(3,0),则该抛物线的关系式是 .11.将抛物线221y x x =+-向上平移,使它经过点A(0,3),则所得新抛物线的表达式为 12.如图,已知抛物线2y x bx c =-++的对称轴为直线1x =,且与x 轴的一个交点为(3,0),那么它对应的函数解析式为13.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可) 14.已知抛物线()k m x a y +-=21与()k m x a y ++=22关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线7642++-=x x y 的“和谐抛物线” .三、解答题(共有9道小题)15.某二次函数图象如图,试计算其表达式。
人教版数学九年级上册:22.1.4 第2课时 用待定系数法求二次函数的解析式 (含答案)
第2课时 用待定系数法求二次函数的解析式1.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( )A .y =2x 2+x +2B .y =x 2+3x +2C .y =x 2-2x +3D .y =x 2-3x +22.已知二次函数y =ax 2+bx +c 的图象如图22-1-27所示,那么这个函数的解析式为( )图22-1-27A .y =13x 2+23x +1B .y =13x 2+23x -1C .y =13x 2-23x -1D .y =13x 2-23x +13.已知A (0,3),B (2,3)是抛物线y =-x 2+bx +c 上两点,则该抛物线的顶点坐标是________. 4.已知在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点A (3,0),B (2,-3),C (0,-3).(1)求抛物线的解析式;(2)设D 是抛物线上一点,且点D 的横坐标为-2,求△AOD 的面积.5.已知某二次函数的图象如图22-1-28所示,则这个二次函数的解析式为( )图22-1-28A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-86.已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是____________.(只需写一个)7.已知一个二次函数的图象经过点(4,-3),并且当x =3时,函数有最大值4,求该二次函数的解析式.8.某抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为( )A .y =12(x -2)2+1B .y =12(x +2)2-1C .y =12(x +2)2+1D .y =-12(x +2)2+19.若y =ax 2+bx +c ,则由表格中信息可知y 与x 之间的函数解析式是( )A.y =x 2-4x +3 B .y =x 2-3x +4 C .y =x 2-3x +3D .y =x 2-4x +810.某二次函数的图象如图22-1-29所示,则其解析式为________________.图22-1-2911.如果抛物线y =(k +1)x 2+x -k 2+2与y 轴的交点坐标为(0,1),那么k 的值是__________. 12.已知二次函数y =ax 2+bx +c 的图象经过原点及点(-2,-2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的解析式为________________________. 13.已知抛物线y =-12x 2+bx +c 经过点(1,0),(0,32).(1)求该抛物线的函数解析式;(2)将抛物线y =-12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后抛物线的函数解析式.14.[2019·永州] 如图22-1-30,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x =-1.(1)求此抛物线的函数解析式;(2)若P 是抛物线上点A 与点B 之间的动点(不包括点A 与点B),求△PAB 面积的最大值,并求出此时点P 的坐标.图22-1-3015.如图22-1-31,二次函数y=ax2+bx+c的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长的最大值.图22-1-3116.抛物线C:y=ax2+bx经过A(-4,0),B(-1,3)两点,求抛物线C的函数解析式.17.已知抛物线经过A(-5,0),B(0,5)两点,且其对称轴为直线x=-2,求此抛物线的函数解析式.答案1.D [解析] 设函数的解析式为y =ax 2+bx +c ,则⎩⎪⎨⎪⎧a +b +c =0,4a +2b +c =0,c =2,解得⎩⎪⎨⎪⎧a =1,b =-3,c =2.∴该函数的解析式为y =x 2-3x +2.2.C [解析] 根据图象可知抛物线经过点(-1,0),(3,0),(0,-1),设这个二次函数的解析式是y =ax 2+bx +c.根据题意,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-1,解得⎩⎪⎨⎪⎧a =13,b =-23,c =-1. 所以这个二次函数的解析式是y =13x 2-23x -1.故选C .3.(1,4)4.解:(1)把A(3,0),B(2,-3),C(0,-3)代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.则抛物线的解析式为y =x 2-2x -3.(2)把x =-2代入抛物线的解析式,得y =5,即D(-2,5). ∵A(3,0),即OA =3,∴S △AOD =12×3×5=152.5.D [解析] 因为抛物线的顶点坐标是(1,-8), 所以设抛物线的函数解析式是y =a(x -1)2-8. 因为点(3,0)在这个二次函数的图象上, 所以0=a(3-1)2-8,解得a =2.所以这个二次函数的解析式为y =2(x -1)2-8.6.答案不唯一,如y =2x 2-1 [解析] ∵二次函数图象的顶点坐标为(0,-1),∴设该二次函数的解析式为y =ax 2-1.又∵二次函数的图象开口向上,∴a >0.∴这个二次函数的解析式可以是y =2x 2-1(答案不唯一).7.解:∵当x =3时,函数有最大值4, ∴函数图象的顶点坐标为(3,4). 故设此函数的解析式是y =a(x -3)2+4.再把(4,-3)代入函数解析式,得a×(4-3)2+4=-3,解得a =-7. 故二次函数的解析式是y =-7(x -3)2+4, 即y =-7x 2+42x -59.8.C [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x +2)2+1.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y=12(x +2)2+1. 9.A [解析] ∵当x =1时,ax 2=1,∴a =1. 将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧1-b +c =8,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3. ∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A .10.y =-x 2+2x +3 [解析] 由图象可知,抛物线的对称轴是直线x =1,与y 轴交于点(0,3),与x 轴交于点(-1,0),设其解析式为y =ax 2+bx +c ,则⎩⎪⎨⎪⎧-b2a=1,c =3,a -b +c =0,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.故二次函数的解析式为y =-x 2+2x +3.11.1 [解析] ∵抛物线y =(k +1)x 2+x -k 2+2与y 轴的交点坐标为(0,1), ∴-k 2+2=1.解得k =±1. 又∵k +1≠0,∴k =1.故答案为1. 12.y =12x 2+2x 或y =-16x 2+23x[解析] ∵二次函数图象与x 轴的另一个交点到原点的距离为4, ∴这个交点坐标为(-4,0)或(4,0), ①若这个交点坐标为(-4,0),则⎩⎪⎨⎪⎧c =0,4a -2b +c =-2,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =12,b =2,c =0,∴该二次函数的解析式为y =12x 2+2x ;②若这个交点坐标为(4,0), 则⎩⎪⎨⎪⎧c =0,4a -2b +c =-2,16a +4b +c =0,解得⎩⎪⎨⎪⎧a =-16,b =23,c =0,∴该二次函数的解析式为y =-16x 2+23x.故这个二次函数的解析式为y =12x 2+2x 或y =-16x 2+23x.13.解:(1)把(1,0),(0,32)代入抛物线的解析式得⎩⎨⎧-12+b +c =0,c =32,解得⎩⎪⎨⎪⎧b =-1,c =32.则抛物线的函数解析式为y =-12x 2-x +32.(2)y =-12x 2-x +32=-12(x +1)2+2,可将抛物线向右平移1个单位长度,再向下平移2个单位长度,其顶点恰好落在原点(平移方法不唯一),平移后抛物线的函数解析式为y =-12x 2.14.解:(1)∵抛物线的对称轴是直线x =-1且经过点A(-3,0), ∴抛物线还经过点(1,0).设抛物线的函数解析式为y =a(x -1)(x +3). 把B(0,3)代入,得3=-3a.解得a =-1.∴抛物线的函数解析式为y =-(x -1)(x +3)=-x 2-2x +3. (2)设直线AB 的函数解析式为y =kx +b. ∵A(-3,0),B(0,3),∴⎩⎪⎨⎪⎧-3k +b =0,b =3,解得{k =1,b =3. ∴直线AB 的函数解析式为y =x +3.过点P 作PQ ⊥x 轴于点Q ,交直线AB 于点M. 设P(x ,-x 2-2x +3),则M(x ,x +3), ∴PM =-x 2-2x +3-(x +3)=-x 2-3x.∴S △PAB =12(-x 2-3x)×3=-32(x +32)2+278.∴当x =-32时,S △PAB 有最大值,为278,此时y P =-(-32)2-2×(-32)+3=154,∴△PAB 面积的最大值为278,此时点P 的坐标为(-32,154).15.解:(1)∵抛物线的顶点C 的坐标为(1,4), ∴设二次函数的顶点式为y =a(x -1)2+4. 把B(3,0)代入,得0=a(3-1)2+4. 解得a =-1.∴二次函数的解析式为y =-(x -1)2+4=-x 2+2x +3. 令x =0,则y =3,∴点D 的坐标为(0,3).设直线BD 的解析式为y =mx +n ,把B(3,0),D(0,3)代入,得⎩⎪⎨⎪⎧0=3m +n ,3=n ,解得⎩⎪⎨⎪⎧m =-1,n =3.∴直线BD 的解析式为y =-x +3.(2)设点P 的横坐标为x ,则点P 的坐标为(x ,-x +3),点M 的坐标为(x ,-x 2+2x +3). ∵点P 在第一象限,∴线段PM 的长为y M -y P =-x 2+2x +3-(-x +3)=-x 2+3x =-(x -32)2+94.∴当x =32时,线段PM 的长有最大值,最大值是94.16.解:(1)将A(-4,0),B(-1,3)代入y =ax 2+bx中,得⎩⎪⎨⎪⎧16a -4b =0,a -b =3,解得⎩⎪⎨⎪⎧a =-1,b =-4,∴抛物线C 的函数解析式为y =-x 2-4x. 17.解:设抛物线的函数解析式为y =a(x +2)2+k. 代入A ,B 两点的坐标,得⎩⎪⎨⎪⎧(-5+2)2a +k =0,4a +k =5,解得⎩⎪⎨⎪⎧a =-1,k =9. 所以此抛物线的函数解析式为y =-(x +2)2+9,即y =-x 2-4x +5.。
用待定系数法求函数解析式
• 二次函数的图象经过(0,0)(-1,-1), (1,9) 求这个函数的解析式
• 例题2:已知二次函数的图像的顶点坐标为 (1,-3),且与y轴交于(0,1)。试确 定此函数的解析式。
解:由题意可设抛物线的解析式为: y=a(x-1) 3
2
函数图像与y轴交于点(0, 1 ) 1=(0-1) 3 a 4
y x
y
y x
y
x x
y=a(x-h)²
y=ax²
y=a(x-h)² +k
y=ax² +c
例题1:已知二次函数图像经过点A(0,-1) B(1,0),C(-1,2),求这个函数的解 析式。
解:设二次函数的解析式为 y=ax 2 bx c 函数图像经过点A(0,-1),B(1,0),C(-1,2) -1=c 0=a+b+c 2=a-b+c a 2 b 1 c 1 函数解析式为: y 2x2 x 1
课堂小结
确定二次函数解析式的一般方法是待定系数法, 在选择二次函数的关系式设成什么形式时,可以根据 题目的条件灵活选择,以简单为原则,一般地二次函 数的解析式可以设为如下三种形式: (1)一般式(三点式) y=ax 2 bx c 当题目给出不特殊的三个点的坐标时,可用此式。
2
(2)顶点式 y a( x h) k 当题目给出两点且其中有一个为顶点时,可用此式。
2
y 4( x 1) 3
2
即:y 4 x 8x 1
2
例题3:已知二次函数的图像点A(1,0) , 1 3 B(3,0),C( ,- ),求这个函数的解析 2 2 式。
解:设抛物线的解析式为: y a ( x 1)( x 3) 1 3 抛物线经过点( ,- ) 2 2 3 1 1 - a ( 1)( 3) 2 2 2 6 a 5 6 y ( x 1)( x 3) 5 6 2 24 18 即:y x x 5 5 5
待定系数法求二次函数解析式
待定系数法求二次函数解析式一、用待定系数法求二次函数的解析式用三种方法:1.已知抛物线过三点,设一般式为y=ax2+bx+c.2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k.3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(其中x1、x2是抛物线与x轴交点的横坐标)例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.二、应用迁移 巩固提高1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。
2.二次函数,=-2时=-6, =2时=10, =3时=24,求此函数的解析式。
3.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。
4.已知抛物线的顶点坐标为(4,-1),与轴交于点(0,3),求这条抛物线的解析式5.二次函数的对称轴为=3,最小值为-2,且过(0,1),求此函数的解析式。
6.抛物线的对称轴是=2,且过(4,-4)、(-1,2),求此抛物线的解析式。
7.已知二次函数的图象与轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式8.抛物线的顶点为(-1,-8),它与轴的两个交点间的距离为4,求此抛物线的解析式。
9. 二次函数,当x<6时随的增大而减小,>6时随的增大而增大,其最小值为-12,其图象与轴的交点的横坐标是8,求此函数的解析式。
10、已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,求这个二次函数的解析式。
11、 已知二次函数y1= ax2+bx+c和一次函数y2=mx+n的图象交于两点A(-2,-5)和B(1,4),且二次函数图象与y轴的交点在直线y=2x+3上,求这两个函数的解析式。
根据待定系数法求二次函数的解析式练习题
根据待定系数法求二次函数的解析式练习题题目1:已知二次函数 $y=ax^2+bx+c$ 通过点 $M(1,3)$,且具有唯一根,求解析式。
解析:由已知条件可得方程 $3=a+b+c$。
同时,二次函数通过点 $M(1,3)$,代入点的坐标得到方程$3=a+b+c$。
由此,我们可以得到一个等式 $a+b+c=3$。
因为二次函数具有唯一根,所以其判别式 $D=b^2-4ac=0$。
代入未知数得到方程 $b^2-4ac=0$。
将以上两个等式带入二次函数的解析式 $y=ax^2+bx+c$ 中,得到方程组:$$\begin{cases}a+b+c=3 \\b^2-4ac=0\end{cases}$$解方程组,可以得到解析式。
题目2:已知二次函数 $y=ax^2+bx+c$ 通过点 $M(-1,2)$ 和点 $N(2,-1)$,求解析式。
解析:由已知条件可得方程组:$$\begin{cases}2=a-b+c \\-1=4a+2b+c\end{cases}$$解方程组,可以得到解析式。
题目3:已知二次函数 $y=ax^2+bx+c$ 满足以下条件:1. 顶点在点 $A(1,1)$ 上;2. 过点 $B(-2,10)$ 和点 $C(3,7)$。
求解析式。
解析:由已知条件可得方程组:$$\begin{cases}1=a+b+c \\10=4a-2b+c \\7=9a+3b+c\end{cases}$$解方程组,可以得到解析式。
以上是根据待定系数法求解二次函数解析式的练习题,通过解方程组可以得到具体的解析式。
【经典必考】待定系数法求二次函数表达式30题含详细答案
…………○……………○…………线……学校:_______________…………○……………○…………线……待定系数法求二次函数表达式30题含详细答案1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.2.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.试卷第2页,总11页○…………装……○…………订………线…………○……※※请※※不※※要※※※※订※※线※※内※※答○…………装……○…………订………线…………○……4.如图,抛物线y =x 2 +bx +c 与x 轴交于A (﹣1,0),B (3,0)两点. (1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △P AB =8,并求出此时P 点的坐标.5.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.6.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC = (1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形…外…………○…………装…………○…………线………学校:___________姓名:____________…内…………○…………装…………○…………线………ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.7.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.8.如图,已知抛物线y=2x +mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.试卷第4页,总11页○…………外………装…………○…………订……………○……※※要※※在※※装※※订※※线※※内※※答○…………内………装…………○…………订……………○……9.如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B 两点,抛物线上另有一点C 在x 轴下方,且使△OCA ∽△OBC (1)求线段OC 的长度;(2)设直线BC 与y 轴交于点M ,点C 是BM 的中点时,求直线BM 和抛物线的解析式;(3)在(2)的条件下,直线BC 下方抛物线上是否存在一点P ,使得四边形ABPC 面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.10.抛物线y=﹣x 2+bx +c 与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C . (1)求该抛物线的解析式;(2)在抛物线上求一点P ,使S △PAB =S △ABC ,写出P 点的坐标;(3)在抛物线的对称轴上是否存在点Q ,使得△QBC 的周长最小?若存在,求出点Q 的坐标,若不存在,请说明理由.11.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A 、B 两…………○…………………线…………学校:_________…………○…………………线…………点,B 点的坐标为(3,0),与y 轴交于点C (0,-3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP'C .是否存在点P ,使四边形POP'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.12.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.13.如图,已知抛物线y=13x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (-9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点试卷第6页,总11页…………装…………○…………线…………○…※※请※※不※※要※※在※※装※※订…………装…………○…………线…………○…的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.14.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M . (1)求该抛物线所表示的二次函数的表达式; (2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形?(3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.15.抛物线y=﹣x 2+bx+c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当△BDC 的面积最大时,求点P 的坐标;(3)如图2,抛物线顶点为E ,EF ⊥x 轴于F 点,M (m ,0)是x 轴上一动点,N 是线段EF 上一点,若∠MNC=90°,请指出实数m 的变化范围,并说明理由.……○…………外……装…………○…线…………○……____姓名:___________班……○…………内……装…………○…线…………○……16.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标.17.在平面直角坐标系中,二次函数y=ax 2+53x+c 的图象经过点C (0,2)和点D (4,﹣2).点E 是直线y=﹣13x+2与二次函数图象在第一象限内的交点. (1)求二次函数的解析式及点E 的坐标.(2)如图①,若点M 是二次函数图象上的点,且在直线CE 的上方,连接MC ,OE ,ME .求四边形COEM 面积的最大值及此时点M 的坐标.(3)如图②,经过A 、B 、C 三点的圆交y 轴于点F ,求点F 的坐标.18.如图,抛物线y=ax 2+bx+2交x 轴于点A(-3,0)和点B(1,0),交y 轴于点C (1)求这个抛物线的函数表达式.(2)点D 的坐标为(-1,0),点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)点M 为抛物线对称轴上的点,问:在抛物线上是否存在点N ,使△MNO 为等腰直角三角形,且∠MNO 为直角?若存在,请直接写出点N 的坐标;若不存在,请说明理由.试卷第8页,总11页………○………………订…………○※※请※※不※※※内※※答※※题※※………○………………订…………○19.若二次函数y=ax 2+bx+c 的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.20.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5) (1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积.21.如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积. 22.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上的点A (﹣1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b 的x 的取值范围.23.在平面直角坐标系中,点()0,0O ,点1,0A .已知抛物线22y x mx m =+-(m 是常数),顶点为P .(Ⅰ)当抛物线经过点A 时,求顶点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ) 无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式.○…………装…………○…………○…………学校:___________姓名:___________班:___________○…………装…………○…………○…………24.如图,抛物线y=ax 2+bx(a <0)过点E(10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.25.在平面直角坐标系中,将二次函数()20y axa =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值. 26.如图,抛物线顶点P (1,4),与y 轴交于点C (0,3),与x 轴交于点A ,B . (1)求抛物线的解析式.(2)Q 是抛物线上除点P 外一点,△BCQ 与△BCP 的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,试卷第10页,总11页…装…………○…………………线…………不※※要※※在※※装※※订※※线※※…装…………○…………………线…………E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.27.已知抛物线y =ax 2+bx +c 经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.28.已知k 是常数,抛物线y =x 2+(k 2+k -6)x +3k 的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值:(2)若点P 在抛物线y =x 2+(k 2+k -6)x +3k 上,且P 到y 轴的距离是2,求点P 的坐标. 29.如图,已知抛物线2y x bx c =-++与x 轴交于A 、B 两点,4AB =,交y 轴于点C ,对称轴是直线1x =.…外…………○…………线…………○……学校:_____…内…………○…………线…………○…… (1)求抛物线的解析式及点C 的坐标;(2)连接BC ,E 是线段OC 上一点,E 关于直线1x =的对称点F 正好落在BC 上,求点F 的坐标; (3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N ,交线段BC 于点Q .设运动时间为()0t t >秒. ①若AOC ∆与BMN ∆相似,请直接写出t 的值; ②BOQ ∆能否为等腰三角形?若能,求出t 的值;若不能,请说明理由. 30.在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x 与抛物线交于A 、B 两点,直线l 为y=﹣1. (1)求抛物线的解析式; (2)在l 上是否存在一点P ,使PA+PB 取得最小值?若存在,求出点P 的坐标;若不存在,请说明理由. (3)知F (x 0,y 0)为平面内一定点,M (m ,n )为抛物线上一动点,且点M 到直线l 的距离与点M 到点F 的距离总是相等,求定点F 的坐标.参考答案1.(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,)2-. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+, 得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =, ③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1t =2t =.综上所述P 的坐标为()1,2--或()1,4-或⎛- ⎝⎭或⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题. 2.(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M 的坐标为(0,3);(3)符合条件的点P 的坐标为(73,209)或(103,﹣139), 【解析】分析:(1)设交点式y=a (x+1)(x-3),展开得到-2a=2,然后求出a 即可得到抛物线解析式;再确定C (0,3),然后利用待定系数法求直线AC 的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM 的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M 的坐标为(0,3);(3)存在.过点C 作AC 的垂线交抛物线于另一点P ,如图2,∵直线AC 的解析式为y=3x+3,∴直线PC 的解析式可设为y=﹣13x+b , 把C (0,3)代入得b=3,∴直线PC 的解析式为y=﹣13x+3, 解方程组223133y x x y x ⎧-++⎪⎨-+⎪⎩==,解得03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩,则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y=﹣x+b ,把A (﹣1,0)代入得13+b=0,解得b=﹣13, ∴直线PC 的解析式为y=﹣13x ﹣13, 解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.3.(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m,1,2.【解析】分析:(1)根据待定系数法,可得函数解析式;(2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m 的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==, 这个二次函数的表达式是y=x 2-4x+3;(2)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得300k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3,过点P 作PE ∥y 轴,交直线BC于点E(t,-t+3),PE=-t+3-(t2-4t+3)=-t2+3t,∴S△BCP=S△BPE+S CPE=12(-t2+3t)×3=-32(t-32)2+278,∵-32<0,∴当t=32时,S△BCP最大=278.(3)M(m,-m+3),N(m,m2-4m+3)MN=m2-3m,|m-3|,当MN=BM时,①m2(m-3),解得②m2(m-3),解得当BN=MN时,∠NBM=∠BMN=45°,m2-4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,-(m2-4m+3)=-m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m,1,2.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏.4.(1)y=x2﹣2x﹣3;(2)抛物线的对称轴x=1,顶点坐标(1,﹣4);(3)(1+4)或(1-4)或(1,﹣4).【分析】(1)由于抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,那么可以得到方程x 2+bx+c=0的两根为x=﹣1或x=3,然后利用根与系数即可确定b 、c 的值.(2)根据S △PAB =8,求得P 的纵坐标,把纵坐标代入抛物线的解析式即可求得P 点的坐标.【详解】解:(1)∵抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,∴方程x 2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b ,﹣1×3=c , ∴b=﹣2,c=﹣3,∴二次函数解析式是y=x 2﹣2x ﹣3.(2)∵y=﹣x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P 的纵坐标为|y P |,∵S △PAB =8, ∴12AB•|y P |=8, ∵AB=3+1=4,∴|y P |=4,∴y P =±4,把y P =4代入解析式得,4=x 2﹣2x ﹣3,解得,x=1±, 把y P =﹣4代入解析式得,﹣4=x 2﹣2x ﹣3,解得,x=1,∴点P 在该抛物线上滑动到(4)或(1﹣,4)或(1,﹣4)时,满足S △PAB =8.【点睛】考点:1.待定系数法求二次函数解析式;2.二次函数的性质;3.二次函数图象上点的坐标特征.5.(1)21452=-+-y x x ;(2)()2,1M -,25y x =-;(3)点P 、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、(4,5)或(2,1)、(4,1).【分析】(1)函数表达式为:y=a (x-4)2+3,将点B 坐标代入上式,即可求解;(2)A (4,3)、B (0,-5),则点M (2,-1),设直线AB 的表达式为:y=kx-5,将点A 坐标代入上式,即可求解;(3)分当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)设函数表达式为:()243y a x =-+,将点B 坐标代入上式并解得:12a =-, 故抛物线的表达式为:21452=-+-y x x ; (2)()4,3A 、()0,5B -,则点()2,1M -,设直线AB 的表达式为:5y kx =-,将点A 坐标代入上式得:345k =-,解得:2k =,故直线AB 的表达式为:25y x =-;(3)设点()4,Q s 、点21,452P m m m ⎛⎫-+- ⎪⎝⎭, ①当AM 是平行四边形的一条边时,当点Q 在A 的下方时,点A 向左平移2个单位、向下平移4个单位得到M ,同样点P (m ,-12m 2+4m-5)向左平移2个单位、向下平移4个单位得到Q (4,s ), 即:m-2=4,-12m 2+4m-5-4=s , 解得:m=6,s=-3,故点当点Q 在点A 上方时,AQ=MP=2,同理可得点Q 的坐标为(4,5),②当AM 是平行四边形的对角线时,由中点定理得:4+2=m+4,3-1=-12m 2+4m-5+s ,解得:m=2,s=1,故点P 、Q 的坐标分别为(2,1)、(4,1);综上,P 、Q 的坐标分别为(6,1)、(4,-3)或(2,1)、(4,5)或(2,1)、(4,1).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.6.(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小值为1;(3)12(4,5),(8,45)P P --【分析】(1)OB=OC ,则点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,即可求解;(2)CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解;(3)S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE ,即可求解. 【详解】(1)∵OB=OC ,∴点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,故-3a=3,解得:a=-1,故抛物线的表达式为:y=-x 2+2x+3…①;对称轴为:直线1x =(2)ACDE 的周长=AC+DE+CD+AE ,其中、DE=1是常数,故CD+AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD=C′D ,取点A′(-1,1),则A′D=AE ,故:CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE 的周长的最小值(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE , 则BE :AE ,=3:5或5:3,则AE=52或32, 即:点E 的坐标为(32,0)或(12,0), 将点E 、C 的坐标代入一次函数表达式:y=kx+3,解得:k=-6或-2,故直线CP 的表达式为:y=-2x+3或y=-6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.7.(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为4或2或2;②点M 的坐标为(136,﹣176)或(236,﹣76). 【解析】 分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以,接着根据平行四边形的性质得到,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2),AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM=2AB=2×, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴×=4, 设P (m ,﹣m 2+6m ﹣5),则D (m ,m ﹣5),当P 点在直线BC 上方时,PD=﹣m 2+6m ﹣5﹣(m ﹣5)=﹣m 2+5m=4,解得m 1=1,m 2=4,当P 点在直线BC 下方时,PD=m ﹣5﹣(﹣m 2+6m ﹣5)=m 2﹣5m=4,解得m 1,m 2综上所述,P 点的横坐标为4; ②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M 的坐标为(136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.8.(1)m=2,顶点为(1,4);(2)(1,2).【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3,解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.9.(1);(2)y=3x ,抛物线解析式为y=3x 2﹣3;(3)点P 存在,坐标为(94,﹣8). 【分析】 (1)令y=0,求出x 的值,确定出A 与B 坐标,根据已知相似三角形得比例,求出OC 的长即可;(2)根据C 为BM 的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC ,确定出C 的坐标,利用待定系数法确定出直线BC 解析式,把C 坐标代入抛物线求出a 的值,确定出二次函数解析式即可;(3)过P 作x 轴的垂线,交BM 于点Q ,设出P 与Q 的横坐标为x ,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ ,四边形ACPB 面积最大即为三角形BCP 面积最大,三角形BCP 面积等于PQ 与B 和C 横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P 的坐标即可.【详解】解:(1)由题可知当y=0时,a (x ﹣1)(x ﹣3)=0,解得:x 1=1,x 2=3,即A (1,0),B (3,0),∴OA=1,OB=3∵△OCA ∽△OBC ,∴OC :OB=OA :OC ,∴OC 2=OA•OB=3,则(2)∵C 是BM 的中点,即OC 为斜边BM 的中线,∴OC=BC ,∴点C 的横坐标为32,又C 在x 轴下方,∴C (32设直线BM的解析式为y=kx+b,把点B(3,0),C(323032k bk b+=⎧⎪⎨+=⎪⎩,解得:b=∴x又∵点C(3 2解得:a=3,∴抛物线解析式为x2(3)点P存在,设点P坐标为(xx2,过点P作PQ⊥x轴交直线BM于点Q,则Q(x∴2)=x2x﹣当△BCP面积最大时,四边形ABPC的面积最大,S △BCP =12PQ (3﹣x )+12PQ (x ﹣32)=34PQ=2 当x=﹣9=24b a 时,S △BCP 有最大值,四边形ABPC 的面积最大,此时点P 的坐标为(94,﹣). 【点睛】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形的判定与性质,以及坐标与图形性质,熟练掌握各自的性质是解本题的关键.10.(1)y=﹣x 2﹣2x +3;(2)所求P 点的坐标为(﹣2,3)或(﹣1,﹣3)或(﹣1,﹣3);(3)点Q 的坐标是(﹣1,2).【分析】(1)将A (-3,0),B (1,0)两点代入y=-x 2+bx+c ,利用待定系数法求解即可求得答案; (2)首先求得点C 的坐标为(0,3),然后根据同底等高的两个三角形面积相等,可得P点的纵坐标为±3,将y=±3分别代入抛物线的解析式,求出x 的值,即可求得P 点的坐标; (3)根据两点之间线段最短可得Q 点是AC 与对称轴的交点.利用待定系数法求出直线AC 的解析式,将抛物线的对称轴方程x=-1代入求出y 的值,即可得到点Q 的坐标.【详解】(1)∵抛物线y=﹣x 2+bx+c 与x 轴交于A (﹣3,0),B (1,0)两点,∴930{10b c b c -++=-++=,解得23b c =-⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2﹣2x+3;(2)∵y=﹣x 2﹣2x+3,∴x=0时,y=3,∴点C 的坐标为(0,3).设在抛物线上存在一点P (x ,y ),使S △PAB =S △ABC ,则|y|=3,即y=±3. 如果y=3,那么﹣x 2﹣2x+3=3,解得x=0或﹣2,x=0时与C 点重合,舍去,所以点P (﹣2,3);如果y=﹣3,那么﹣x 2﹣2x+3=﹣3,解得x=﹣,所以点P (﹣,﹣3);综上所述,所求P 点的坐标为(﹣2,3)或(﹣,﹣3)或(﹣1,﹣3); (3)连结AC 与抛物线的对称轴交于点Q ,此时△QBC 的周长最小.设直线AC 的解析式为:y=mx+n ,∵A (﹣3,0),C (0,3),∴30{3m n n -+==,解得:13m n ==⎧⎨⎩, ∴直线AC 的解析式为:y=x+3.∵y=﹣x 2﹣2x+3的对称轴是直线x=﹣1,∴当x=﹣1时,y=﹣1+3=2,∴点Q 的坐标是(﹣1,2).【点睛】此题考查了抛物线与x 轴的交点,待定系数法求函数的解析式,二次函数的性质,三角形的面积以及轴对称-最短路线问题.正确求出函数的解析式是解此题的关键.11.(1)223y x x =--;(2)存在这样的点,此时P ,32-);(3)P 点的坐标为(32,−154),四边形ABPC 的面积的最大值为758. 【分析】 (1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;.(2)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;. (3)由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.【详解】。
补充求二次函数解析式(2课时)
(1)过点A(1,3)求c
(2)顶点在X轴上求c (1)点在抛物线上,将A(1,3)代入解析式 求得 c=6 (2)顶点在X轴上解析式特点 (完全平方式) (或根据顶点的纵坐标为0)求得:c=4
2,若抛物线 y=ax2+2x&函数的最大值是 -3,求 a,c 分析:实质知道顶点坐标(2,-3)且 为最高点抛物线开口向下
2 2 1 2a a2 2 解得 4ac - 2 c -5 -3 4a a0
解:
3.图象与X轴交于(2,0)(3,0)且函数最小值是-3 分析:函数最小值:-3即顶点纵坐标 但隐藏着抛物线开口向上这个条件 可设一般式来解.但比较繁 可设交点式来解 求得的解析式为:y=12x2-60x+72
解法2:(顶点式) ∵ 抛物线与x轴相交两点(-1,0)和(3,0) , ∴ 1=(-1+3)/2 ∴ 点(1,4)为抛物线的顶点 由题意设二次函数解析式为:y=a(x+h)2+k
y=a(x-1)2+4 ∵抛物线过点(-1, 0) ∴ 0=a(-1-1)2+4 得 a= -1
∴ 函数的解析式为: y= -1(x-1)2+4 = -x2+2x+3
抛物线与x轴交点坐标 (x1,0),( x2,0)
(1,0)(3,0) (2,0)(-1,0) (-4,0)(-6,0) (x1,0),( x2,0)
交点式
交点式 y=a(x-x1)(x-x2)
若抛物线与x轴的两个交点的横坐标分 别为x1、x2,那么对称轴方程为: x=(x1+x2)/2
小结(1)二次函数解析式的三种表示形式 (1)一般式
抛物线与x轴交点坐标 (x1,0),( x2,0)
用待定系数法求二次函数表达式的三种形式
例题1 已知抛物线过点(1,0)(3,-2)(5,0), 求该抛物线所对应函数的表达式。
例题2 抛物线对称轴为直线x=-1,最高点的纵坐标为4, 且与x 轴两交点之间的距离是6,求次二次函x1 数的解 析式。
巩固练习
• 1.已知抛物线与x轴的两交点为(-1,0)和(3, 0),且过点(2,-3).求抛物线的解析式.
待定系数法求二次函数表达式常见 的三种形式 :
一般式 • 1.
:y=ax²+bx+c (a,b,c为常数,且a≠0)
• 2.顶点式:y=a(x+h)²+k
(a 0)顶点坐标( h, k)
• 3.交点式: y a(x x1)(x x2 )
一、一般式 y ax2 bx c(a )
已知二次函数 y ax2 bx c 图象过某三
14.已知二次函数y=x²+2(n+3)x+16的顶点在坐标 轴上,求该二次函数表达式。
15.已知抛物线y=ax²+bx+c的顶点坐标为P(2,-1), 图象与x轴交于A,B两点。若△PAB的x1 面积为6, 求该抛物线所对应函数的解析式。
•谢谢
14
பைடு நூலகம்
• 3.二次函数y=ax²+bx+c,x=6时,y=0;x=4时, y有最大值为8,求此函数的解析式。
• 4.若二次函数y=ax²+bx+c(a≠0)的最大值是 2,图象经过点(-2,4)且顶点在直线y=-2x上, 试求ab+c的值
三、交点式 y a(x x1)(x x2 )
已知二次函数图象与x轴两交点坐标分别为 (x1,0),(x2,0) 通常选用交点式,再根据其他即可解出a值,从而求
二次函数专题(一)-待定系数求解析式
二次函数专题(一):待定系数求解析式一.选择题(共3小题)1.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=2(x+1)2+8 B.y=18(x+1)2﹣8C.y=(x﹣1)2+8 D.y=2(x﹣1)2﹣82.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2 B.y=(x﹣2)2+2C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣23.已知抛物线过点A(2,0),B(﹣1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为()A.y=x2﹣x﹣2 B.y=﹣x2+x+2C.y=x2﹣x﹣2或y=﹣x2+x+2 D.y=﹣x2﹣x﹣2或y=x2+x+2二.填空题(共3小题)4.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.5.已知二次函数的图象经过原点及点(﹣2,﹣2),且图象与x轴的另一个交点到原点的距离为4,那么该二次函数的解析式为.6.如图,在坐标平面上,抛物线与y轴的交点是(0,5),且经过两个长、宽分别为4和2的相同的长方形的顶点,则这条抛物线对应的函数关系式是.三.解答题(共4小题)7.下表给出了代数式﹣x2+bx+c与x的一些对应值:(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.8.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;=1,求点B的坐标.(3)若抛物线上有一点B,且S△OAB9.已知二次函数的图象经过点A(0,﹣3),且顶点P的坐标为(1,﹣4),(1)求这个函数的关系式;(2)在平面直角坐标系中,画出它的图象.10.如图:抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD,(1)求抛物线的解析式;(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,写出自变量x的取值范围,并求当x取多少时,S的值最大,最大是多少?二次函数专题(一):待定系数求解析式参考答案与试题解析一.选择题(共3小题)1.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=2(x+1)2+8 B.y=18(x+1)2﹣8 C.y=(x﹣1)2+8 D.y=2(x﹣1)2﹣8【分析】顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.【解答】解:由图知道,抛物线的顶点坐标是(1,﹣8)故二次函数的解析式为y=2(x﹣1)2﹣8故选D.【点评】本题考查由顶点坐标式看出抛物线的顶点坐标,y=a(x﹣h)2+k的顶点坐标是(h,k).2.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为A(﹣2,﹣2),且过点B(0,2),则y与x的函数关系式为()A.y=x2+2 B.y=(x﹣2)2+2 C.y=(x﹣2)2﹣2 D.y=(x+2)2﹣2【分析】已知二次函数的顶点坐标,设顶点式比较简单.【解答】解:设这个二次函数的关系式为y=a(x+2)2﹣2,将(0,2)代入得2=a(0+2)2﹣2解得:a=1故这个二次函数的关系式是y=(x+2)2﹣2,故选D.【点评】本题考查了用待定系数法求函数解析式的方法,设解析式时注意选择顶点式还是选择一般式.3.已知抛物线过点A(2,0),B(﹣1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为()A.y=x2﹣x﹣2 B.y=﹣x2+x+2C.y=x2﹣x﹣2或y=﹣x2+x+2 D.y=﹣x2﹣x﹣2或y=x2+x+2【分析】首先由OC=2,可知C点的坐标是(0,2)或(0,﹣2),然后分别把A、B、C三点的坐标代入函数的解析式,用待定系数法求出.注意本题有两种情况.【解答】解:抛物线与y轴交于点C,且OC=2,则C点的坐标是(0,2)或(0,﹣2),当C点坐标是(0,2)时,图象经过三点,可以设函数解析式是:y=ax2+bx+c,把(2,0),(﹣1,0),(0,2)分别代入解析式,得到:,解得:,则函数解析式是:y=﹣x2+x+2;同理可以求得当C是(0,﹣2)时解析式是:y=x2﹣x﹣2.故这条抛物线的解析式为:y=﹣x2+x+2或y=x2﹣x﹣2.故选C.【点评】求函数解析式的方法就是待定系数法,转化为解方程组的问题,这是求解析式常用的方法.二.填空题(共3小题)4.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为±6.【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2﹣bx+9的顶点在x轴上,所以顶点的纵坐标为零,列方程求解.【解答】解:∵抛物线y=x2﹣bx+9的顶点在x轴上,∴顶点的纵坐标为零,即y===0,解得b=±6.【点评】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.5.已知二次函数的图象经过原点及点(﹣2,﹣2),且图象与x轴的另一个交点到原点的距离为4,那么该二次函数的解析式为y=x2+2x或y=﹣x2+x.【分析】根据与x轴的另一交点到原点的距离为4,分这个交点坐标为(﹣4,0)、(4,0)两种情况,利用待定系数法求函数解析式解答即可.【解答】解:∵图象与x轴的另一个交点到原点的距离为4,∴这个交点坐标为(﹣4,0)、(4,0),设二次函数解析式为y=ax2+bx+c,①当这个交点坐标为(﹣4,0)时,,解得,所以二次函数解析式为y=x2+2x,②当这个交点坐标为(4,0)时,,解得,所以二次函数解析式为y=﹣x2+x,综上所述,二次函数解析式为y=x2+2x或y=﹣x2+x.故答案为:y=x2+2x或y=﹣x2+x.【点评】本题考查了待定系数法求二次函数解析式,注意另一个交点要分两种情况讨论求解,避免漏解而导致出错.6.如图,在坐标平面上,抛物线与y轴的交点是(0,5),且经过两个长、宽分别为4和2的相同的长方形的顶点,则这条抛物线对应的函数关系式是y=﹣x2﹣x+5.【分析】根据图象可得抛物线经过的三个点的坐标,然后利用待定系数法列式求解即可.【解答】解:根据题意得,抛物线经过点(0,5),(﹣4,2),(2,4),设抛物线的解析式为y=ax2+bx+c,则,解得,∴抛物线的解析式为y=﹣x2﹣x+5.故答案为:y=﹣x2﹣x+5.【点评】本题考查了待定系数法求抛物线解析式,待定系数法求函数解析式是常用的方法之一,根据图形找出图象经过的三个点的坐标是解题的关键.三.解答题(共4小题)7.下表给出了代数式﹣x2+bx+c与x的一些对应值:(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.【分析】(1)把(﹣2,0)、(1,2)分别代入﹣x2+bx+c中得到关于b、c的方程组,然后解方程组即可得到b、c的值;然后计算x=﹣1时的代数式的值即可得到n的值;(2)利用表中数据求解.【解答】解:(1)根据表格数据可得,解得,∴﹣x2+bx+c=﹣x2﹣2x+5,当x=﹣1时,﹣x2﹣2x+5=6,即n=6;(2)根据表中数据得当0≤x≤2时,y的最大值是5.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.8.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S=1,求点B的坐标.△OAB【分析】(1)利用交点式求抛物线解析式;(2)把(1)中解析式配成顶点式即可得到抛物线顶点坐标及对称轴;(3)设B(t,t2﹣2t),根据三角形面积公式得到×2×|t2﹣2t|=1,则t2﹣2t=1或t2﹣2t=﹣1,然后分别解两个方程求出t,从而可得到B点坐标.【解答】解:(1)抛物线解析式为y=x(x﹣2),即y=x2﹣2x;(2)因为y=x2﹣2x=(x﹣1)2﹣1,所以抛物线的顶点坐标为(1,﹣1),对称轴为直线x=1;(3)设B(t,t2﹣2t),因为S=1,△OAB所以×2×|t2﹣2t|=1,所以t2﹣2t=1或t2﹣2t=﹣1,解方程t2﹣2t=1得t1=1+,t2=1﹣,则B点坐标为(1+,1)或(1﹣,1);解方程t2﹣2t=﹣1得t1=t2=1,则B点坐标为(1,﹣1),所以B点坐标为(1+,1)或(1﹣,1)或(1,﹣1).【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.9.已知二次函数的图象经过点A(0,﹣3),且顶点P的坐标为(1,﹣4),(1)求这个函数的关系式;(2)在平面直角坐标系中,画出它的图象.【分析】(1)此题知道顶点坐标,适合用二次函数的顶点式y=a(x﹣h)2+k来解答.(2)求出与坐标轴的交点坐标,结合已知的顶点坐标,描点、连线.【解答】解:(1)已知二次函数的顶点P(1,﹣4)可设解析式为y=a(x﹣1)2﹣4把A(0,﹣3)代入上式,得﹣3=a﹣4,即a=1∴解析式为y=(x﹣1)2﹣4化为一般式为y=x2﹣2x﹣3(2)当y=0时,原式化为:x2﹣2x﹣3=0即(x+1)(x﹣3)=0,解得x1=﹣1,x2=3∴与x轴交点坐标为:(﹣1,0),(3,0)当x=0时,y=﹣3.因此与y轴交点坐标为:(0,﹣3).如右图:【点评】解答此题要熟悉①二次函数的解析式:(1)一般式y=ax2+bx+c,(a,b,c为常数且a≠0)(2)顶点式y=a(x﹣h)2+k,(h,k)为顶点坐标,(3)交点式y=a(x﹣x1)(x﹣x2).②描点法作图.10.如图:抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD,(1)求抛物线的解析式;(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,写出自变量x的取值范围,并求当x取多少时,S的值最大,最大是多少?【分析】(1)由OC与OD的长,求出MD的长,确定出M坐标,设y=a(x﹣2)2+6,把C坐标代入求出a的值,即可确定出抛物线解析式;(2)由抛物线解析式设出P坐标,过点P做x轴的垂线,交x轴于点E,利用表示出的点P的坐标确定出线段PE、DE的长,用梯形OCPE的面积减去直角三角形OCD的面积和直角三角形PDE的面积,进而得出S与x的函数解析式,利用二次函数性质求出S最大值时x的值即可.【解答】解:(1)∵OC=4,OD=2,∴DM=6,∴点M(2,6),设y=a(x﹣2)2+6,代入(0,4)得:a=﹣,∴该抛物线解析式为y=﹣(x﹣2)2+6;(2)设点P(x,﹣(x﹣2)2+6),即(x,﹣x2+2x+4),x>0,过点P作x轴的垂线,交x轴于点E,则PE=﹣x2+2x+4,DE=x﹣2,S=x(﹣x2+2x+4+4)﹣×2×4﹣(x﹣2)(﹣x2+2x+4),即S=﹣x2+4x=﹣(x﹣4)2+8,∴当x=4时,S有最大值为8.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握待定系数法是解本题的关键.。
待定系数法解二次函数习题
1.已知抛物线的顶点坐标是(-2,-1),且它经过点(2,-9),求抛物线的解析式。
2.已知抛物线c
+
=2经过点(0,-1)、(2,1)(-1,-5)三点,
ax
y+
bx
求抛物线的解析式。
3、已知二次函数y=ax2+bx+c的图象经过(0,0),(1,9)两点,并且当自变量x=﹣1时,函数值y=﹣1,求这个二次函数的解析式.
4、已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).
求抛物线的解析式和顶点坐标.
4、已知x=1+2m,y=1﹣m.若点(x,y)恰为抛物线y=ax2﹣ax+1的顶点,求y关于x的函数表达式
5、把抛物线y=ax2+bx+c的图象先向右平移3个单位长度,再向下平移2个单位长度,求所得图象的解析式
6、抛物线y=ax2+bx+c(a≠0),对称轴为直线x=2,且经过点P(3,0),则a+b+c的值为多少?
7、在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式?
8、已知抛物线的图象经过点(﹣1,0),点(3,0); 求抛物线函数解析式、顶点坐标.
9、已知二次函数,若此二次函数图像的对称轴为,求它的解析式;
10、已知函数y=mx 2-6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,求m 的值.
25y x kx k =-+-1x =。
待定系数法求函数解析式
1. 已知二次函数 y x2 2mx m2 1.
(1)当二次函数的图像经过坐标原点 O(0,0)时,求二次函数的解析式; (2)如图,当 m=2 时,该抛物线与 y 轴交于点 C,顶点为 D,求 C,D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点 P,使得 PC+PD 最短?若 P 点存在,求出 P 点的坐标; 若 P 点不存在,请说明理由。
4.如图,抛物线 y 1 x2 2 x 2 与 x 轴交于 A,B 两点,与 y 轴交于 C 点。 22
(1)求 A,B,C 三点的坐标;(2)证明△ABC 为直角三角形;(3)在抛物线上除 C 点外,是否存 在另外一个点 P,使△ABP 是直角三角形?若存在,请求出点 P 的坐标,若不存在,请说明理由。
B,坐标。(3)求四边形 ACMB 的面积。
6. 如图,在坐标系 xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物
线 y 1 x2 bx 2 过 C 点,求抛物线的解析式。 2
5.如图所示,在平面直角坐标系 xOy 中,顶点为 M 的抛物线 y ax2 bx(a>0) 经过点 A 和 x 轴正
半轴上的点 B,AO=OB=2,∠AOB=120°,求这条抛物线的解析式。
3. 如图,已知抛物线 y ax2 bx c 过点 A(-1,0),且经过直线 y x 3 与坐标轴的两个交点
2. 如图,二次函数 y x2 bx c 的图象与 x 轴交于 A,B 两点,且 A 点坐标为(-3,0),经过 B
点的直线交抛物线于点 D(-2,-3)。 (1)求抛物线的解析式和直线 BD 的解析式; (2)过 x 轴上点 E(a,0)(E 点在 B 点的右侧)作直线 EF∥BD,交抛物线于点 F,是否存在实数 a 使四边形 BDFE 是平行四边形?如果存在,求出满足条件的 a 的值;如果不存在,请说明理由。
二次函数待定系数法求函数解析式
二次函数待定系数法求函数解析式精心整理专题训练:求二次函数的解析式一、已知三点求解析式1.经过三点(-1,-22),(1,-8),(2,8)的二次函数为抛物线,其开口方向向上,对称轴为x=1,顶点坐标为(1,-14)。
解析式为y = 2x^2 - 4x - 16.2.经过三点(0,0),(-1,-1),(1,9)的二次函数为抛物线,解析式为y = 4x^2 - 4x。
3.经过三点(-1,-6),(1,-2),(2,3)的二次函数为抛物线,其开口方向向上,对称轴为x=0,顶点坐标为(0,-1)。
解析式为y = x^2 - x - 5.4.经过三点(1,a),(2,b),(3,4)的二次函数为抛物线,解析式为y = -3x^2 + 18x - 15.5.经过两点(-1,10),(2,7)且3a+2b=16的二次函数为抛物线,解析式为y = -x^2 + 4x +6.6.经过两点(a,b)和(12,b)且顶点纵坐标为3的二次函数为抛物线,解析式为y = -1/36(x-a)^2 + b + 3.7.经过两点(-3,c)和(0,3)的二次函数为抛物线,其顶点为M(-3,c+1),对称轴为x=-3,解析式为y = -x^2 + 6x + c。
8.经过三点A(-1,0),B(0,-1),C(1,2)的二次函数为抛物线,解析式为y = x^2 - x - 1.9.经过三点(-1,-2),(0,-1),(1,0)的二次函数为抛物线,解析式为y = x^2 - x - 2.10.抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3,解析式为y = -1/2x^2 + 3.11.经过点A(-1,4),(1,4)的二次函数为抛物线,解析式为y = x^2 - 4.12.经过三点(1,0),(-1,0),(0,-3)的二次函数为抛物线,其顶点为(0,-3)且对称轴为y=-3,解析式为y = -x^2 - 3.13.经过三点(-1,3),(3,-1),(4,3)的二次函数为抛物线,其开口方向向下,对称轴为x=3,顶点坐标为(3,2)。
九年级上-待定系数法求二次函数的解析式
待定系数法求二次函数的解析式知识集结知识元利用一般式求二次函数的解析式知识讲解已知三个点求二次函数的解析式,一般选择一般式,基本的作法是:(1)设出二次函数的一般式;(2)将三个点的值分别代入到解析式中,得到一个三元一次方程组;(3)解方程组得出三个字母的值,即可得到为此函数的解析式.例题精讲利用一般式求二次函数的解析式例1.'二次函数y=ax2+bx+c的变量x与变量y的部分对应值如下表:求此二次函数的解析式.'例2.'y=ax2+b与y=x+2交于A、B两点,A点横坐标为﹣1,B点横坐标为2,求二次函数解析式.'例3.'已知:抛物线y=ax2+bx+c经过A(﹣1,8)、B(3,0)、C(0,3)三点(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.'利用顶点式求二次函数的解析式知识讲解当已知条件中出现二次函数的顶点或者顶点的横、纵坐标之一等顶点相关的内容时,会考虑用顶点式来求解二次函数的解析式.例题精讲利用顶点式求二次函数的解析式例1.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3C.y=﹣(2x+1)2+3 D.y=﹣(2x﹣1)2+3例2.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3C.y=(x﹣2)2+2 D.y=(x﹣2)2+4例3.将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=.例4.'已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.'利用两点式(也叫交点式、双根式)求二次函数的解析式知识讲解当已知的点中出现与x轴的交点时,常会考虑设成两点式求二次函数的解析式,此类问题已知点的坐标的形式比较多,除了可以直接已知与x轴的两个交点坐标外,还可以已知其中一个与x轴的交点的坐标及对称轴等其他形式.例题精讲利用两点式(也叫交点式、双根式)求二次函数的解析式例1.若抛物线经过(0,1)、(-1,0)、(1,0)三点,则此抛物线的解析式为()A.B.C.D.例2.抛物线与轴的两个交点为(-1,0),(3,0),其形状与抛物线相同,则的函数关系式为()B.C.D.A.例3.过(﹣1,0),(3,0),(1,2)三点的抛物线的顶点坐标是()A.(1,2)B.(1,)C.(﹣1,5)D.(2,)例4.'已知抛物线y=ax2+bx+c经过点(﹣5,0)、(﹣1,0)、(1,12),求这个抛物线的表达式及其顶点坐标.'顶点在原点的二次函数解析式的求法知识讲解2(a≠0)的形式,其中一次项系数和顶点在原点的二次函数的解析式的结构一定是形如y=ax常数项都为0,所以顶点在原点是一个非常强大的已知条件,接下来再找到一个等量关系即可.例题精讲顶点在原点的二次函数解析式的求法例1.若二次函数函数的图象是顶点在原点,则的值为()A.-2 B.2C.±2 D.4例2.'抛物线的顶点在原点,且经过点(﹣2,8),求该抛物线的解析式.'例3.'一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且经过点M(﹣2,4),(1)求出这个抛物线的函数表达式,并画出函数图象;(2)写出抛物线上点M关于y轴对称的点N的坐标,并求出△MON的面积.'顶点在 y 轴上的二次函数的解析式的求法知识讲解顶点在y轴上的抛物线的解析式的形式是b=0,即一次项系数为0.例题精讲顶点在 y 轴上的二次函数的解析式的求法与抛物线顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是().A.B.C.D.例2.已知一抛物线的顶点在y轴上,且过二点(1,2)、(2,5),则此抛物线的解析式为.例3.对称轴是y轴且过点A(1,3)、点B(﹣2,﹣6)的抛物线的解析式为.顶点在 x 轴上的二次函数的解析式的求法知识讲解顶点在x轴上的二次函数可以有多种表述方法:(1)与x轴只有唯一的交点;(2)判别式等于0;(3)图象不在x轴上方(或下方);(4)对应的一元二次方程有两个相等的实根等.例题精讲顶点在 x 轴上的二次函数的解析式的求法已知抛物线的顶点在轴上,则等于()A.4B.8C.-4D.16例2.若函数的图象顶点在轴上,则的值为()A.B.-1C.D.或例3.'如图,已知二次函数y=ax2+bx+c的图象顶点在x轴上,且OA=1,与一次函数y=﹣x﹣1的图象交于y轴上一点B和另一交点C.(1)求抛物线的解析式;(2)点D为线段BC上一点,过点D作DE⊥x轴,垂足为E,交抛物线于点F,请求出线段DF的最大值.'过原点的二次函数的解析式的求法知识讲解2(a≠0)的形式,其中一次项系数和顶点在原点的二次函数的解析式的结构一定是形如y=ax常数项都为0,所以顶点在原点是一个非常强大的已知条件,接下来再找到一个等量关系即可.例题精讲过原点的二次函数的解析式的求法例1.如图所示的抛物线是二次函数的图象,那么的值是()D.±2A.2B.-2C.例2.'二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).求此二次函数的解析式.'例3.'已知抛物线经过原点,点(1,﹣4)和(﹣1,2),求抛物线解析式.'例4.'如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求抛物线的解析式;(2)设抛物线的顶点为B,求△OAB的面积S.'与长度相关的解析式的求法知识讲解在利用线段的长度或者线段之间的等量关系求二次函数解析式时,可以先通过已知条件求出所需的点的坐标,再将点的坐标代入到设出的二次函数的解析式中求出字母的值即可.例题精讲与长度相关的解析式的求法例1.'已知二次函数y=ax2+bx+c的图象经过点A(1,﹣6),对称轴是直线x=3,与x轴交于A、B 两点,且AB=8.求函数解析式.'例2.'如图,已知Rt△ABC的斜边AB在x轴上,斜边上的高CO在y轴的正半轴上,且OA=1,OC=2,求经过A、B、C三点的二次函数解析式.'例3.'在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C (如图),点C的坐标为(0,﹣3),且BO=CO.(1)求出B点坐标和这个二次函数的解析式;(2)若顶点为D,求四边形ABDC的面积.'与面积相关的解析式的求法知识讲解在利用几何图形的面积求二次函数解析式时,可以先通过已知条件求出所需的点的坐标,再将点的坐标代入到设出的二次函数的解析式中求出字母的值即可.例题精讲与面积相关的解析式的求法例1.'已知二次函数y=ax2+2ax﹣4(a≠0)的图象与x轴交于点A,B(A点在B点的左侧),与y 轴交于点C,△ABC的面积为12,求此二次函数的解析式.'例2.'在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+kx+4与y轴交于A,与x轴的负半轴交于B,且△ABO的面积是8.(1)求点B的坐标和此二次函数的解析式;(2)当y≤4时,直接写出x的取值范围.'例3.'已知抛物线y=ax2﹣2x+c的对称轴为直线x=﹣1,顶点为A,与y轴正半轴交点为B,且△ABO的面积为1.(1)求抛物线的表达式;(2)若点P在x轴上,且PA=PB,求点P的坐标.'利用几何综合性质求函数解析式知识讲解利用几何性质求函数解析式是求解析式中的较难问题,其难点在于对几何性质的探究,并通过几何性质找到所需的点或列出所需的等式.例题精讲利用几何综合性质求函数解析式例1.'如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.'例2.'如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣),菱形ABCD的对角线交于坐标原点O.(1)求C、D两点的坐标;(2)求菱形ABCD的面积;(3)求经过A、B、D三点的抛物线解析式,并写出其对称轴方程与顶点坐标.'例3.'已知抛物线y=a(x﹣h)2﹣2(a,h,是常数,a≠0),x轴交于点A,B,与y轴交于点C,点M为抛物线顶点.(Ⅰ)若点A(﹣1,0),B(5,0),求抛物线的解析式;(Ⅱ)若点A(﹣1,0),且△ABM是直角三角形,求抛物线的解析式;(Ⅲ)若抛物线与直线y1=x﹣6相交于M、D两点①用含a的式子表示点D的坐标;②当CD∥x轴时,求抛物线的解析式.'当堂练习单选题练习1.顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是()A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2练习2.若抛物线经过(0,1)、(-1,0)、(1,0)三点,则此抛物线的解析式为()A.B.C.D.练习3.与抛物线顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是().A.B.C.D.练习4.如图所示的抛物线是二次函数的图象,那么的值是()D.±2A.2B.-2C.练习5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3C.y=(x﹣2)2+2 D.y=(x﹣2)2+4练习1.已知一抛物线的顶点在原点,对称轴为y轴,且经过点(3,﹣3),则该抛物线的函数解析式为.练习2.对称轴是y轴且过点A(1,3)、点B(﹣2,﹣6)的抛物线的解析式为.练习3.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.练习4.将y=2x2﹣12x﹣12变为y=a(x﹣m)2+n的形式,则m•n=.解答题练习1.'如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.'练习2.'一个函数的图象是以原点为顶点,y轴为对称轴的抛物线,且经过点M(﹣2,4),(1)求出这个抛物线的函数表达式,并画出函数图象;(2)写出抛物线上点M关于y轴对称的点N的坐标,并求出△MON的面积.'练习3.'如图,抛物线y=﹣x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求抛物线的解析式;(2)设抛物线的顶点为B,求△OAB的面积S.'练习4.'如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.(1)求该二次函数的表达式;(2)如果点P在x轴上,且△ABP是等腰三角形,请直接写出点P的坐标.'练习5.'已知,抛物线的顶点为P(3,﹣2),且在x轴上截得的线段AB=4.求抛物线的解析式.'练习6.'如图,一个二次函数的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0),点C在y轴的正半轴上,且AB=OC.求这个二次函数的解析式.'练习7.'直线l过点A(4,0)和B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=,求二次函数关系式.'练习8.'如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x轴的负半轴交于点B,且△AOB的面积为6.求该二次函数的表达式.'练习9.'如图,已知点A的坐标为(﹣2,2),点B的坐标为(﹣1,﹣),菱形ABCD的对角线交于坐标原点O.(1)求C、D两点的坐标;(2)求菱形ABCD的面积;(3)求经过A、B、D三点的抛物线解析式,并写出其对称轴方程与顶点坐标.'练习10.'y=ax2+b与y=x+2交于A、B两点,A点横坐标为﹣1,B点横坐标为2,求二次函数解析式.'练习11.'已知:抛物线y=ax2+bx+c经过A(﹣1,8)、B(3,0)、C(0,3)三点(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.'。
待定系数法求二次函数的解析式练习题
待定系数法求二次函数解析式
1.已知二次函数的图象过-1,-9、1,-3和3,-5三点,求此二次函数的解析式;
2.二次函数y= ax 2+bx+c,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式;
3.已知抛物线的顶点-1,-2且图象经过1,10,求此抛物线解析式;
4.已知抛物线c bx ax y ++=2顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式
5.二次函数y= ax2+bx+c的对称轴为x=3,最小值为-2,,且过0,1,求此函数的解析式;
6.抛物线的对称轴是x=2,且过4,-4、-1,2,求此抛物线的解析式;
7.已知二次函数的图象与x轴的交点为-5,0,2,0,且图象经过3,-4,求解析式
数的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的解析8.把二次函式;
253212++=x x y。
中考培优专题用待定系数法求二次函数解析式(含答案)
中考培优专题用待定系数法求二次函数解析式(含答案)一、单选题(共有3道小题)1.函数20y ax a =≠,()的图象经过点(a ,8),则a 的值为( )A.±2B.-2C.2D.32.二次函数()21,0y ax bx a =+-≠的图象经过点(1,1),则1a b ++ 的值是() A.-3 B.-1 C.2 D.3 3.若抛物线2=++y x ax b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1=x ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .(-3,-6) B .(-3,0) C .(-3,-5) D .(-3,-1)二、填空题(共有11道小题)4.已知二次函数2y ax =. 若当1x =-时,2y =,那么a =______5.已知二次函数m x x y ++=2的图象过点(1,3),则m 的值为6.二次函数2ax y =的图象过(2,1),则二次函数的表达式为____________.7.已知一条抛物线的形状与22x y =相同,但开口方向相反,且与x 轴的交点坐标是(1,0)、(-4,0),则该抛物线的关系式是 .8.若二次函数的图象开口向下,且经过(2,﹣3)点.符合条件的一个二次函数的解析式为 .9.若抛物线c bx ax y ++=2的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为 .10.已知一条抛物线的开口大小、方向与2x y =均相同,且与x 轴的交点坐标是(-2,0)、(3,0),则该抛物线的关系式是 .11.将抛物线221y x x =+-向上平移,使它经过点A(0,3),则所得新抛物线的表达式为12.如图,已知抛物线2y x bx c =-++的对称轴为直线1x =,且与x 轴的一个交点为(3,0),那么它对应的函数解析式为13.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为 .(写出一个即可)14.已知抛物线()k m x a y +-=21与()k m x a y ++=22关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线7642++-=x x y 的“和谐抛物线” .三、解答题(共有9道小题)15.某二次函数图象如图,试计算其表达式。
《用待定系数法求二次函数的解析式》同步练习(含答案)
用待定系数法求二次函数的解析式同步练习题基础题知识点1利用“三点式”求二次函数解析式1.已知二次函数y=-12x2+bx+c的图象经过A(2,0),B(0,-6)两点,则这个二次函数的解析式为______________________.2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2y -27 -13 -3 3 5 3则此二次函数的解析式为____________________.3.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1时,y=0.求这个二次函数的解析式.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标.知识点2 利用“顶点式”求二次函数解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-86.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式.知识点3 利用“交点式”求二次函数解析式 7.如图所示,抛物线的函数表达式是( )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +48.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),则该二次函数的解析式为_______________.9.已知二次函数经过点A(2,4),B(-1,0),且在x 轴上截得的线段长为2,求该函数的解析式.中档题10.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .y =x 2-x -2B .y =-12x 2-12x +2C .y =-12x 2-12x +1D .y =-x 2+x +211.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-412.二次函数的图象如图所示,则其解析式为________________.13.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为________________.14.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为___________________________________.15.如图,已知抛物线的顶点为A(1,4),抛物线与y 轴交于点B(0,3),与x 轴交于C ,D 两点.点P 是x 轴上的一个动点.(1)求此抛物线的解析式;(2)当PA +PB 的值最小时,求点P 的坐标.16.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.综合题17.设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.参考答案基础题1.y =-12x 2+4x -6 2.y =-2x 2-12x -133.由题意,得⎩⎪⎨⎪⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =1.∴二次函数的解析式为y =2x 2-3x +1.4.(1)∵抛物线y =x 2+bx +c与x 轴交于A(-1,0),B(3,0)两点,∴⎩⎪⎨⎪⎧1-b +c =0,9+3b +c =0.解得⎩⎪⎨⎪⎧b =-2,c =-3.∴二次函数解析式是y =x 2-2x -3.(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴为x =1,顶点坐标为(1,-4). 5.D6.依题意,设y =a(x -h)2+k.将顶点坐标(4,-1)和与y 轴交点(0,3)代入,得3=a(0-4)2-1.解得a =14.∴这条抛物线的解析式为y =14(x -4)2-1.7.D 8.y =x 2-x -29.∵B(-1,0)且在x 轴上截得的线段长为2,∴与x 轴的另一个交点坐标为(1,0)或(-3,0).设该函数解析式为y =a(x -x 1)(x -x 2),把A(2,4),B(-1,0),(1,0)代入得a(2+1)(2-1)=4,解得a =43.所以y =43(x+1)(x -1).同理,把A(2,4),B(-1,0),(-3,0)代入,可以求得y =415(x +1)(x +3).∴函数的解析式为y =43(x +1)(x -1)或y =415(x +1)(x +3).中档题10.D 11.D 12.y =-x 2+2x +3 13.y =x 2-2x -3 14.y =18x 2-14x +2或y =-18x 2+34x +215.(1)∵抛物线顶点坐标为(1,4),∴设y =a(x -1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a=-1.∴抛物线的解析式为y =-(x -1)2+4,即y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P.设AE 解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3.∴y AE =7x -3.∵当y =0时,x=37,∴点P 的坐标为(37,0). 16.(1)∵A(1,0),B(3,0),∴设抛物线解析式为y =a(x -1)(x -3).∵抛物线过(0,-3),∴-3=a(-1)×(-3).解得a =-1.∴y =-(x -1)(x -3)=-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1).(2)答案不唯一,如:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上. 综合题17.(1)当k =0时,y =-(x -1)(x +3),所画函数图象图略.(2)①三个图象都过点(1,0)和点(-1,4);②图象总交x轴于点(1,0);③k取0和2时的函数图象关于点(0,2)中心对称;④函数y=(x-1)[(k-1)x+(x-3)]的图象都经过点(1,0)和点(-1,4);等等.(其他正确结论也行)(3)将函数y2=(x-1)2的图象向左平移4个单位,再向下平移2个单位,得到函数y3=(x+3)2-2,∴当x =-3时,函数y3取最小值,等于-2.。
【初中数学】人教版九年级上册第2课时 用待定系数法求二次函数的解析式(练习题)
人教版九年级上册第2课时用待定系数法求二次函数的解析式(380)1.一条抛物线与x轴交于点A(1,0),B(3,0),并经过点C(0,−3),求这条抛物线的解析式.解:因为抛物线与x轴交于点A(1,0),B(3,0),所以可设这条抛物线的解析式为.因为点C(0,−3)在这条抛物线上,所以把C(0,−3)代入解析式,解得,所以该抛物线的解析式为,化为一般式为.2.已知抛物线y1=x2+4x+1向上平移m(m>0)个单位长度得到的新抛物线过点(1,8),求m的值,并将平移后的抛物线解析式写成y2=a(x−ℎ)2+k的形式.解:根据平移特点,抛物线y1=x2+4x+1的图象向上平移m个单位长度得到的新抛物线的解析式为y2=.∵点(1,8)在该函数的图象上,∴,解得m=,则平移后的抛物线解析式为y2=(写成y2=a(x−ℎ)2+k的形式).3.一条抛物线的顶点坐标是(−1,4),并经过点A(0,5),求这条抛物线的解析式.解:根据这条抛物线的顶点坐标是(−1,4),设这条抛物线的解析式为.因为点A(0,5)在这条抛物线上,所以把点A的坐标(0,5)代入解析式,解得,所以该抛物线的解析式为.4.已知二次函数在x=1时有最大值−6,且图象经过点(2,−8),求此二次函数的解析式.解:由已知条件可得抛物线的顶点坐标为,可设解析式为,代入点(2,−8),得a=.则该二次函数的解析式为,化成一般式为.5.已知二次函数y=ax2+bx+c的图象经过点A(−1,−1),B(0,2),C(1,3),求这个二次函数的解析式.解:因为点A,B,C都在抛物线y=ax2+bx+c上,所以将各点坐标代入解析式,得方程组,解得,所以该二次函数的解析式为.6.若抛物线y=x2+bx+c经过点A(−1,0),B(3,0),则该抛物线所对应的函数解析式为()A.y=x2−2x−3B.y=x2−2x+3C.y=x2+2x+3D.y=x2+2x−37.已知二次函数y=ax2+bx+c中的x,y满足下表:求这个二次函数的解析式.参考答案1.【答案】:y =a(x −1)(x −3);a =−1;y =−(x −1)(x −3);y =−x 2+4x −32.【答案】:x 2+4x +1+m ;8=1+4×1+1+m ;2;(x +2)2−13.【答案】:y =a(x +1)2+4;a =1;y =(x +1)2+44.【答案】:(1,−6);y =a(x −1)2−6;−2 ;y =−2(x −1)2−6;y =−2x 2+4x −85.【答案】:{a −b +c =−1,c =2,a +b +c =3.;{a =−1,b =2,c =2.;y =−x 2+2x +26.【答案】:A7.【答案】:解:把点(0,−5)代入y =ax 2+bx +c ,得c =−5. 再把点(−1,0),(1,−8)分别代入y =ax 2+bx −5中, 得{a −b −5=0,a +b −5=8解得{a =1b =−4∴这个二次函数的关系式为:y =x 2−4x −5.【解析】:从表格中可知,c =−5,再选取2组解利用待定系数法求二次函数的解析式.。
专题用待定系数法求二次函数的解析式
专题用待定系数法求二次函数的解析式Company number【1089WT-1898YT-1W8CB-9UUT-92108】专题1-用待定系数法求二次函数的解析式二次函数的解析式常见的三种表达形式:一般式:y=ax2+bx+c (a≠0)顶点式:y=a(x-h)2+k (a≠0,(h,k)是抛物线的顶点坐标)交点式:y= a(x-x1) (x-x2) (a≠0,x1、x2是抛物线与x轴交点的横坐标)例1.如果二次函数y=ax2+bx+c的图象的顶点坐标为(-2,4),且经过原点,求二次函数解析式.变式一:如果二次函数y=ax2+bx+c的图象经过原点,当x=-2时,函数的最大值为 4,求二次函数解析式.变式二:如果二次函数y=ax2+bx+c的图象经过原点,对称轴是直线x=-2,最高点的纵坐标为4,求二次函数解析式.例2.如果二次函数y=ax2+bx+c的图象过(-3,0)、(1,0)、(0,-3),求二次函数解析式.变式一:如果二次函数y=ax2+bx+c的图象与x轴交点的横坐标是-3、1,与y轴交点的纵坐标是-3,求二次函数解析式.变式二:如果二次函数y=ax2+bx+c的图象过(-3,0)、(0,-3),且对称轴是x=-1,求二次函数解析式.变式三:如果二次函数y=ax2+bx+c的图象过(-4,5)、(0,-3),且对称轴是x=-1,求二次函数解析式.变式四:如果二次函数y=ax2+bx+c的图象过(-4,5)、(2,5)、(1,0),求二次函数解析式.二次函数专题练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。
2.二次函数y= ax 2+bx+c ,x=-2时y=-6,x=2时y=10,x=3时y=24,求此函数的解析式。
3.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。
4.二次函数y= ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。
用待定系数法求二次函数解析式(最后稿)
-8
8
6 探究二:如图所示,抛物线过点A(0,3)、B(2,1),求此函数的解析式
解:设 解:设
y y ax k3 ax
22
y
4
∵过点B(2,1)、C(0,3) ∵过点B(2,1) 2 22 a k 1 a 2 3 1 0 k 3
-15 -10 -5
x
C(-1,-1.5)
-2
-4
提高练习:
如图:求抛物线的解析式.
y
-1
O
3
x
(1,-4)
解:设抛物线的解析式为 y ax ∵ 过(-1,0)、(3,0)、(1,4)
2
bx c,
a b c 0 9a 3b c 0 a b c 4
y
-1
O
3
x
解得
a 1 b 2 c 3
(1,-4)
所以,抛物线的解析式为 y x2 2x 3
用待定系数法求函数解析式的主要步骤:
1.准确设出函数解析式;【设】
2.找点代入解析式,列方程(组);【代】 3.解方程(组),得出待定系数的值;【解】 4. 确定函数解析式.【定】
我学会了:
;
பைடு நூலகம்
我知道了:
;
∵过点B(4,1)、C(-1,-1.5)
a(4 2) 2 k 1 : a(1 2) 2 k 1.5 -10 -5
2
B(4,1)
5
y 0.5( x 2) 3
2
-6
4a k 1 即 9a k 1.5 a 0.5 解得: k 3
用待定系数法求二次函数的解析式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a-b+c=10 a+b+c=4 c=5 a=2, b=-3, c=5 y=2x2-3x+5
因此:所求二次函数是:
小结:已知图象上三点或三对的对应值,通常选择一般式
变式:
已知一个二次函数的图象经过(-1,8), (1,2),(0,3)三点。求这个函数的 解析式
解: 设所求的二次函数为
a0 y=ax2+bx+c,
二次函数解析式有哪几种表达式? • 一般式:y=ax2+bx+c • 顶点式:y=a(x-h)2+k • 交点式:y=a(x-x1)(x-x2)
一、 一般式的待定系数法
已知一个二次函数的图象过点(-1,10)、 (1,4)、(0,5)三点,求这个函数的解析式?
解: a0 设所求的二次函数为 y=ax2+bx+c, 由条件得: 解方程得:
变式: 已知抛物线y=-2x2+8x-9的顶点为A点,若二次 函数y=ax2+bx+c的图像经过A点,且与x轴交 于B(0,0)、C(3,0)两点,试求这个 二次函数的解析式。
解: 设所求的二次函数为 y=a(x-0)(x-3),a 0 由条件得: 点A在抛物线上,且其坐标可求得 为, A( 2,-1 ) 所以:2a(2-3)=-1 得: a= 1 故,所求的抛物线解析式为 y= 2 x(x-3)
a-b+c=8 a+b+c=2 由条件得: c=3 解方程得: a=2, b=-3, c=3
因此:所求二次函数是: y=2x2-3x+3
已知抛物线的顶点为(-1,-3),与y轴 交点为(0,-5)求抛物线的解析式?
解: 设所求的二次函数为 由条件得: 点( 0,-5 )在抛物线上 y=a(x+1)2-3,a≠0 y
o
x
a-3=-5,
得a=-2
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5 小结:已知图象的顶点坐标,对称轴和最值。通常选择顶点式
变式: 已知一个二次函数的图像的顶点是A(-1,4)且 经过点(1,2)求其解析式。
解: 设所求的二次函数为 y=a(x+1)2+4,
a0
a+3=4,
得a=1
故所求的抛物线解析式为 y=(x-2)2+3 即:y=x2-4x+7
已知抛物线与X轴交于A(-1,0),B(1,0) 并经过点M(0,1),求抛物线的解析式?
a0 解:设所求的二次函数为y=a(x+1)(x-1),
由条件得: 点M( 0,1 )在抛物线上 所以:a(0+1)(0-1)=1 得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1) 即:y=-x2+1 o y x
1 2
结束寄语
探索是数学的生命线 各位同学继续努力
初中数学资源网
由条件得: 点( 1, 2 )在抛物线上
4a+4=2,
得a=-1
故所求的抛物线解析式为 y=-(x+1)2+4 即:y=-x2-2x+3
变式2: 已知抛物线的顶点为( 2,3), 且过点 (1,4),求这个函数的解析式。
解: 设所求的二次函数为 由条件得:
y=a(x-2)2+3, a 0
点( 1, 4)在抛物线上