山东省枣庄市2018年中考数学试题

合集下载

2018年山东省枣庄市中考数学试卷及答案(Word解析版)

2018年山东省枣庄市中考数学试卷及答案(Word解析版)

CLARK-EDU小康老师--2018年枣庄中考数学试题解读第Ⅰ卷 (选择题共36分>一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列计算,正确的是A. B. C.D.答案:A解读:因为30=1,3-1=,=3,所以,B、C、D 都错,选A。

2.如图,AB//CD,∠CDE=,则∠A的度数为第2题图A. B.C. D.答案:D解读:∠CDA=180°-140°=40°,由两直线平行,内错角相等,得:∠A=∠CDA=40°,选D。

qBwdU1zpf13.估计的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间答案:B解读:因为,即2<<3,所以,3<+1<4,选B。

4.化简的结果是A.+1B.C. D.答案:D解读:原式=,故选D。

5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元答案:A解读:设进价为x元,则,解得:x=240,故选A>6.如图,中,AB=AC=10,BC=8,AD平分交于点,点为的中点,连接,则的周长为A.20B.18C.14D.13 答案:C解读:因为AB =AC ,AD 平分∠BAC ,所以,D 为BC 中点,又E 为AC 中点,所以,DE =AB =5,DC =4,EC =5,故所求周长为5+5+4=14。

MjHD70JqeV 7.若关于的一元二次方程有两个不相等的实数根,则的取值范围是 A. B.C.D.答案:B解读:△=4-4m >0,解得:m <1,选B 。

8.对于非零实数,规定,若,则的值为A. B. C. D.答案:A第6解读:依题意,有:,解得:x=9.图<1)是一个长为2 a ,宽为2b<a >b )的长方形,用剪刀沿图中虚线<对称方形,然后按图<2间空的部分的面积是A. abB.C. D. a2-b2答案:C解读:大正方形面积为:<,矩形面积为:4ab ,所以,中间空的部分的面积为:,选C 。

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1. −12的倒数是()A.−12B.−2 C.12D.2【答案】此题暂无答案【考点】倒数【解析】此题暂无解析【解答】此题暂无解答【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2. 下列计算,正确的是()A.a3÷a−1=a2B.a5+a5=a10C.(−a2)3=−a6D.a⋅2a2=2a4【答案】此题暂无答案【考点】合较溴类项幂的乘表与型的乘方同底射空的除法单项使性单项式负整明指养幂【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3. 已知直线m // n,将一块含30∘角的直角三角板ABC按如图方式放置(∠ABC=30∘),其中A,B两点分别落在直线m,n上,若∠1=20∘,则∠2的度数为()A.30∘B.20∘C.45∘D.50∘【答案】此题暂无答案【考点】平行体的省质【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4. 实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|ac|=acB.|a|>|b|C.b<dD.c+d>0【答案】此题暂无答案【考点】在数轴来表示兴数【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评5. 如图,直线l是一次函数y=kx+b的图象,若点A(3, m)在直线l上,则m的值是( )A.3 2B.−5C.7D.52【答案】此题暂无答案一次常数图按上点入适标特点待定正数键求一程植数解析式【解析】此题暂无解析【解答】此题暂无解答【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6. 如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+4bB.3a+2bC.6a+2bD.6a+4b【答案】此题暂无答案【考点】列使数种【解析】此题暂无解析【解答】此题暂无解答【点评】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长-边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解,关键是得到这块矩形较长的边长与两个正方形边长的关系.7. 在平面直角坐标系中,将点A(−1, −2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )A.(2, 2)B.(−3, −2)C.(2, −2)D.(−2, 2)【答案】此题暂无答案【考点】关于较洗、y装对氢的点的坐标坐标与图体变某-平移【解析】此题暂无解析【解答】此题暂无解答此题主要考查了坐标与图形变化-平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8. 如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30∘,则CD 的长为()A.2√5B.√15C.8D.2√15【答案】此题暂无答案【考点】含因梯否角样直角三角形勾体定展垂都着理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评9. 如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3, 0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A.ac>0B.b2<4acC.a−b+c=0D.2a−b=0【答案】此题暂无答案【考点】二次射数空象与话数流关系【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象标为(0, c);当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x 轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点.10. 如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P 的个数是()A.3个B.2个C.5个D.4个【答案】此题暂无答案【考点】等腰于角三旋形【解析】此题暂无解析【解答】此题暂无解答【点评】正确的找出符合条件的点P是解题的关键.11. 如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.1 4B.√24C.13D.√23【答案】此题暂无答案【考点】相验极角家的锰质与判定解直于三角姆矩来兴性质【解析】此题暂无解析【解答】此题暂无解答【点评】的性质,证明三角形相似是解决问题的关键.12. 如图,在Rt △ABC 中,∠ACB =90∘,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC =3,AB =5,则CE 的长为( )A.43B.32C.85D.53 【答案】此题暂无答案【考点】角平较线的停质【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF =∠CFE .二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13. 若二元一次方程组{x +y =33x −5y =4的解为{x =a y =b ,则a −b =________. 【答案】此题暂无答案【考点】二元一都接程组的解【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a −b 的值,本题属于基础题型.14. 如图,某商店营业大厅自动扶梯AB 的倾斜角为31∘,AB 长12米,则大厅两层之间的高度为________米.(结果精确到0.1米,参考数据:sin 31∘≈0.515,cos 31∘≈0.857,tan 31∘≈0.601)【答案】此题暂无答案【考点】解直角来角形兴应竖-坡务坡角问题【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15. 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=√14[a2b2−(a2+b2−c22)2].现已知△ABC的三边长分别为1,2,√5,则△ABC的面积为________.【答案】此题暂无答案【考点】二次水较的应用【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16. 如图,在正方形ABCD中,AD=2√3,把边BC绕点B逆时针旋转30∘得到线段BP,结接AP并延长交CD于点E,连结PC,则三角形PCE的面积为________.【答案】此题暂无答案【考点】正方来的性稳旋因末性质【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评17. 如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC 的面积是________.【答案】此题暂无答案【考点】函表的透象动点问都问解决方法【解析】此题暂无解析【解答】此题暂无解答【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.三、解答题(本题共9小题,共86分。

山东省枣庄市2018年中考数学试题(word版,无答案)

山东省枣庄市2018年中考数学试题(word版,无答案)

2018年山东省枣庄市2018年中考数学试题一、选择题:1.21-的倒数是( ) A .2- B .21- C .2 D .21 2.下列计算中,正确的是( )A .1055a a a =+B .213a a a =÷-C .4222a a a =⋅D .632)(a a -=- 3.已知直线n m //,将一块含030角的直角三角板ABC 按如图方式放置(030=∠ABC ),其中B A ,两点分别落在直线n m ,上,若0201=∠,则2∠的度数为( )A .020B .030C .045D .0504.实数d c b a ,,,在数轴上的位置如图所示,下列关系式不正确的是( )A. ||||b a >B. ac ac =||C. d b <D. 0>+d c5.如图,直线l 是一次函数b kx y +=的图象,如果点),3(m A 在直线l 上,则m 的值为( )A .5-B .23C .25D .7 6.如图,将边长为a 3的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为b 2的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .b a 23+B .b a 43+C .b a 26+D .b a 46+7.在平面直角坐标系中,将点)2,1(--A 向右平移3个单位长度得到点B ,则点B 关于x 轴对称点'B 的坐标为( )A .)2,3(--B .)2,2(C .)2,2(-D .)2,2(-8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,6,2==BP AP ,030=∠APC ,则CD 的长为( )A .15B .52C .152D .89.如图是二次函数c bx ax y ++=2图象的一部分,且过点)0,3(A ,二次函数图象的对称轴是直线1=x ,下列结论正确的是( )A .ac b 42< B .0>ac C .02=-b a D .0=+-c b a10.如图是由8个全等的小矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PB PA ,,那么使ABP ∆为等腰三角形的点P 的个数是( )A . 2个B . 3个C .4个D .5个11.如图,在矩形ABCD 中,点E 是边BC 的中点,BD AE ⊥,垂足为F ,则B D E ∠t a n 的值为( )A .42B .41C .31 D .32 12.如图,在ABC Rt ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F .若5,3==AB AC ,则CE 的长为( )A .23B .34C .35D .58 二、填空题13.若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==by a x ,则=-b a .14.如图,某商店营业大厅自动扶梯AB 的倾斜角为031,AB 的长为12米,则大厅两层之间的高度为 米.(结果保留两个有效数字)【参考数据:601.031sin ,857.031cos ,515.031sin 000===】15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为c b a ,,,则该三角形的面积为)]2([4122222c b a b a S -+-= 已知ABC ∆的三边长分别为1,2,5,则ABC ∆的面积为 .16.如图,在正方形ABCD 中,32=AD ,把边BC 绕点B 逆时针旋转030得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为 .17.如图1,点P 从ABC ∆的顶点B 出发,沿A C B →→匀速运动到点A .图2是点P 运动时,线段BP 长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 .18.将从1开始的连续自然数按如下规律排列:则2018在第 行.三、解答题19.计算:2202)211(2760sin |23|-+---+-.20.如图,在44⨯的方格纸中,ABC ∆的三个顶点都在格点上.(1)在图1中,画出一个与ABC ∆成中心对称的格点三角形;(2)在图2中,画出一个与ABC ∆成轴对称且与ABC ∆有公共边的格点三角形;(3)在图3中,画出ABC ∆绕点C 按顺时针方向旋转090后的三角形.21.如图,一次函数b kx y +=(b k ,为常数,0≠k )的图象与x 轴、y 轴分别交于B A ,两点,且与反比例函数xn y =(n 为常数,且0≠n )的图象在第二象限交于点C ,⊥CD x 轴,垂足为D ,若1232===OD OA OB .(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求CDE ∆的面积;(3)直接写出不等式xn b kx ≤+的解集.22.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):根据以上信息,解答下列问题:(1)写出d c b a ,,,的值,并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.23.如图,在Rt ACB ∆中,090=∠C ,cm BC cm AC 4,3==,以BC 为直径作⊙O 交AB于点D .(1)求线段AD 的长度;(2)点F 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边上的点E 处,过点E 作CD EG //交AF 于点G ,连接DG .(1)求证:四边形EFDG 是菱形;(2)探究线段AF GF EG ,,之间的数量关系,并说明理由;(3)若52,6==BG AG ,求BE 的长.25.如图,已知二次函数)0(232≠++=a c x ax y 的图象与y 轴交于点)4,0(A ,与x 轴交于点C B ,,点C 坐标为)0,8(,连接AC AB ,.(1)请直接写出二次函数c x ax y ++=232的表达式; (2)判断ABC ∆的形状,并说明理由;(3)若点N 在x 轴上运动,当以点C N A ,,为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点C B ,重合),过点N 作AC NM //,交AB 于点M ,当AMN ∆面积最大时,求此时点N 的坐标.。

(真题)2018年枣庄市中考数学试卷(有答案)

(真题)2018年枣庄市中考数学试卷(有答案)

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B 关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a >0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac <0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B 两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S=S△CDA+S△EDA=△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF ∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S=S△ABN﹣S△BMN△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),=S△ABN﹣S△BMN∵S△AMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.。

山东枣庄市2018年中考数学试题(含解析).doc

山东枣庄市2018年中考数学试题(含解析).doc

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m 的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP 先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD ⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)=S△CDA+S△EDA=∴S△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC 就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD ⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG ∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH 的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB 于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相=S△ABN﹣S△BMN似对应边成比例求得MD=(n+2),然后根据S△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),=S△ABN﹣S△BMN∵S△AMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0)。

2018枣庄数学中考真题(解析版)

2018枣庄数学中考真题(解析版)

2018枣庄数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.的倒数是()A.﹣2 B.﹣C.2 D.2.下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a63.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.76.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.89.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=010.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个11.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题(共6小题)13.若二元一次方程组的解为,则a﹣b=.14.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.16.如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为﹣.17.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.18.将从1开始的连续自然数按以下规律排列:…则2018在第行.三、解答题(共7小题)19.计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣220.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.22.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.23.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.如图,将矩形ABCD沿AF折叠,使点D落在BC边上的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.25.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2018枣庄数学中考真题(解析版)参考答案一、单选题(共12小题)1.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【知识点】倒数2.【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【知识点】同底数幂的除法、合并同类项、负整数指数幂、幂的乘方与积的乘方、单项式乘单项式3.【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【知识点】平行线的性质4.【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【知识点】实数与数轴5.【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【知识点】一次函数图象上点的坐标特征6.【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【知识点】列代数式7.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【知识点】坐标与图形变化-平移、关于x轴、y轴对称的点的坐标8.【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【知识点】含30度角的直角三角形、垂径定理、勾股定理9.【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【知识点】二次函数图象与系数的关系10.【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【知识点】等腰直角三角形11.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【知识点】解直角三角形、矩形的性质12.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【知识点】角平分线的性质、勾股定理二、填空题(共6小题)13.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【知识点】二元一次方程组的解14.【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【知识点】解直角三角形的应用-坡度坡角问题15.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【知识点】二次根式的应用16.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【知识点】正方形的性质、旋转的性质17.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【知识点】动点问题的函数图象18.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【知识点】规律型:数字的变化类三、解答题(共7小题)19.【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【知识点】实数的运算、特殊角的三角函数值、负整数指数幂20.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【知识点】作图-旋转变换、作图-轴对称变换21.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【知识点】反比例函数与一次函数的交点问题22.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【知识点】列表法与树状图法、用样本估计总体、频数(率)分布表、频数(率)分布直方图23.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【知识点】切线的判定、圆周角定理、相似三角形的判定与性质24.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【知识点】四边形综合题25.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN=S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S△AMN=AM•MN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【知识点】二次函数综合题。

【真题】2018年山东省枣庄市中考数学试卷含答案解析(Word版)

【真题】2018年山东省枣庄市中考数学试卷含答案解析(Word版)

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行1111213141516第2222221115543210987行…则2018在第45行.【分析】通过观察可得第n行最大一个数为n 2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S=S△CDA+S△EDA=△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S=S△ABN﹣S△BMN△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S=S△ABN﹣S△BMN△AMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.。

2018年山东枣庄中考数学试卷(含解析)

2018年山东枣庄中考数学试卷(含解析)

2018年山东省枣庄市初中毕业、升学考试数学(满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018年山东省枣庄市,1,3分) 21-的倒数是( ) A .2- B .21- C .2 D .21【答案】A【解析】根据倒数的概念,乘积是1的两个数,因为21-×(2-)=1,所以21-的倒数是2-.故选A . 【知识点】倒数2.(2018年山东省枣庄市,2,3分)下列计算中,正确的是( ) A .1055a a a =+ B .213a aa =÷-C .4222a a a =⋅ D .632)(a a -=-【答案】D【解析】根据合并同类项的法则得5552a a a +=,故A 错误;根据同底数幂的除法法则得313(1)4a aa a ---÷==,故B 错误;根据单项式乘以单项式的法则可得2322a a a =g ,故C 错误;根据积的乘方可得632)(a a -=-,D正确;故选D .【知识点】合并同类项;同底数幂的除法;单项式乘以单项式;积的乘方3.(2018年山东省枣庄市,3,3分)已知直线n m //,将一块含030角的直角三角板ABC 按如图方式放置(030=∠ABC ),其中B A ,两点分别落在直线n m ,上,若0201=∠,则2∠的度数为( )A .020 B .030 C .045 D .050【答案】D【解析】先根据平行线的性质,两直线平行内错角相等可得∠2=∠ABC+∠1,再将已知的∠1的度数和∠ABC 的度数代入可求得∠2=30°+20°=50°,故选D. 【知识点】平行线的性质4.(2018年山东省枣庄市,4,3分)实数d c b a ,,,在数轴上的位置如图所示,下列关系式不正确的是( )A. ||||b a >B. ac ac =||C. d b <D. 0>+d c【答案】B【解析】由数轴可知实数a 在实数b 的左边离原点较远,所以|a |>|b |故A 正确;a 是负数,c 是正数,所以ac负数,ac ac=-,故B 错误;b 是负数,d 是正数,所以b <d ,故C 正确;c 是正数,d 是正数,所以c+d>0,故D 正确;故选D .【知识点】数轴;绝对值;不等式;5.(2018年山东省枣庄市,5,3分) 如图,直线l 是一次函数b kx y +=的图象,如果点),3(m A 在直线l 上,则m 的值为( )A .5-B .23C .25D .7 【答案】C【解析】由图像可得直线l 与x 轴的两个交点的坐标为(0,1)(-2,0),代入到b kx y +=求得直线 l 的解析式为112y x =+,再把点),3(m A 代入到直线l 的解析式中,求得m 的值为25.故选C.【知识点】点的坐标;待定系数法求一次函数的表达式;6.(2018年山东省枣庄市,6,3分)如图,将边长为a 3的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为b 2的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .b a 23+B .b a 43+C .b a 26+D .b a 46+【答案】A【解析】如下图,将绿色的矩形移至原图形的左上方,拼成如图所示的矩形,此时矩形的长为3a +2b ,宽为3a -2b ,故选A .第6题图2b 3a3a2b2b【知识点】整式的加减;拼图;7.(2018年山东省枣庄市,6,3分)在平面直角坐标系中,将点)2,1(--A 向右平移3个单位长度得到点B ,则点B 关于x 轴对称点'B 的坐标为( )A .)2,3(--B .)2,2(C .)2,2(-D .)2,2(- 【答案】B【解析】在平面直角坐标系中,将点)2,1(--A 向右平移3个单位长度得到点B 的坐标为)2,2(-,关于x 轴对称点应为横坐标不变,纵坐标互为相反数,所以'B 的坐标为)2,2(,故选 B. 【知识点】利用图形变化确定点的坐标8.(2018年山东省枣庄市,8,3分)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,6,2==BP AP ,030=∠APC ,则CD 的长为( )A .15B .52C .152D .8【答案】C【思路分析】过O 作OE ⊥CD 于E ,连接OD ,在Rt △OEP 中,由∠OPE=30°,OP=2计算OE 的长;在Rt △OCE 中,由OC 和OE 的长利用勾股定理计算CE 的长;最后得出CD=2CE 即可. 【解题过程】过O 点作OE ⊥CD 于E ,P OA BDCE∵6,2==BP AP ,∴AB=8, ∴OA=OB=4, ∴OP=2,∵030=∠APC ∴OE=12OP=1.在Rt △OCE 中,CE=2215OC OE += ∵OE ⊥CD ,O 是圆心, ∴CD=2CE=215.故选C.【知识点】 垂径定理;勾股定理9.(2018年山东省枣庄市,9,3分) 如图是二次函数c bx ax y ++=2图像的一部分,且过点)0,3(A ,二次函数图像的对称轴是直线1=x ,下列结论正确的是( )A .ac b 42< B .0>ac C .02=-b a D .0=+-c b a【答案】D【思路分析】首先由图像得出a , c 的符号以及与x 轴的交点,再由对称轴得到a ,b 的关系,最后根据二次函数图像的对称性得到点A 关于对称轴对称的点的坐标得a -b +c 的关系.【解题过程】解:由图像的开口向上可知a >0,与x 轴交于负半轴可知c <0,∴ac <0,A 错误;图像与x 轴有两个交点可知240b ac ->,即24b ac >,B 错误;由对称轴是直线1=x 得12b a -=,∴b=-2a ,2a-b=2a-(-2a)=-4a <0, ∴C 错误;由二次函数图像的对称性可得二次函数图像与x 轴的另一个交点的坐标 为(-1,0),∴0=+-c b a ,D 正确.故选D. 【知识点】二次函数的图像与性质10.(2018年山东省枣庄市,10,3分)如图是由8个全等的小矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PB PA ,,那么使ABP ∆为等腰三角形的点P 的个数是( )第10题图BAA.2个B.3个C.4个D.5个【答案】B【思路分析】首先由正方形的对边相等找到小矩形的长与宽的数量关系,其次利用网格作图中作垂线的方法找出符合题意的点,并注意分类思想的渗透.【解题过程】如下图,设每个小矩形的长与宽分别为x、y,则有2x=x+2y,从而x=2y.因为线段AB是1×2的矩形对角线,所以根据网格作垂线可知,过点B与AB垂直且相等的线段有BP1和BP2,过点A与AB垂直且相等的线段有BP3,且P1、P2,P3都在顶点上,因此满足题意的点P共有3个,故选择B.P2P3P1AB【知识点】网格作图;等腰直角三角形11.(2018年山东省枣庄市,11,3分)如图,在矩形ABCD中,点E是边BC的中点,BDAE⊥,垂足为F,则BDE∠tan的值为()A.42B.41C.31D.32【答案】A【思路分析】设EF=a,由平行和点E是边BC的中点得到AF与EF的关系以及BF、DF的关系,利用△BEF 与△ABF相似,得到BF、EF、AF的关系,表示出BF,从而表示出DF,求得BDE∠tan的值.【解题过程】设EF=a,在矩形ABCD中,A D∥BC,∴△BEF∽△DAF,∴EF BF BEAF DF AD==,又∵点E是边BC 的中点,∴12EF BF BEAF DF AD===,∴AF=2EF=2a,又∵BDAE⊥,∴△BEF∽△ABF,∴EF BFBF AF=,∴2a BFBF a=,∴BF=2a,∴DF=22a,BDE∠tan=2422EF aDF a==,故选A.【知识点】矩形;相似三角形;锐角三角函数12.(2018年山东省枣庄市,12,3分)如图,在ABCRt∆中,090=∠ACB,ABCD⊥,垂足为D,AF平分CAB∠,交CD于点E,交CB于点F.若5,3==ABAC,则CE的长为()A .23 B .34 C .35D .58 【答案】A【思路分析】在ABC Rt ∆中, AB CD ⊥, AF 平分CAB ∠,可知CE=CF ,过F 作FH 垂直于AB ,FH=CF ,在R t △FBH 中设CF=x ,利用勾股定理列方程求出CF 的长,从而得到CE 的长.【解题过程】解:在ABC Rt ∆中, AB CD ⊥,∴∠ACD =∠B ,∵AF 平分CAB ∠,∴∠CAF =∠BAF ,∴∠CEF=∠CFE ,CE=CF ,如图,过点F 作F G ⊥AB ,∵AF 平分CAB ∠,∴CF=FG ,AG=AC=3,BG=2,设CF=FG=x , ∵5,3==AB AC ,∴BC=4,则BF=4-x ,在R t △FBG 中,2222(4)x x +=-,解得23=x ,即CE=CF=23,故选A. EC ABDFG【知识点】勾股定理;角平分线的性质;等腰三角形二、填空题:本大题共6小题,每小题4分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 13.(2018年山东省枣庄市,13,4分)若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==by ax ,则=-b a .【答案】74【解析】方法一:解方程组得19858x y ⎧=⎪⎪⎨⎪=⎪⎩,即195,88a b ==,74a b -=,故填74。

2018年山东省枣庄市中考数学试卷(解析版)

2018年山东省枣庄市中考数学试卷(解析版)

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20° B.30° C.45° D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l 上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A. B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b= .【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为 1 .【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A 运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行1111213141516第5行25242322212191817…则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O 相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN=S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.。

2018-山东枣庄中考数学试题(解析版)

2018-山东枣庄中考数学试题(解析版)

2018年枣庄市学业水平考试数学注意事项:1.本试题分第I工卷和第Ⅱ卷两部分.第I卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟2.答卷时,考生务必将第工卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空自处写上姓名和准考证号.考试结束,将试卷和答题卡一并交回。

第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分。

1.−12的倒数是()A.-2B. −12C.2D.12【考点】倒数.【分析】根据倒数的定义,直接解答即可.【解答】解:−12的倒数是-2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算,正确的是A.a5+a5=a10B. a3÷a−1=a2C.a∙2a2=2a4D.(−a2)3=−a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据幂的乘方与积的乘方及合并同类项法则进行计算.【解答】解:A、a5+a5=2a5,故本选项错误;B、a3÷a−1=a4,故本选项错误;C、a∙2a2=2a3,故本选项错误;D、(−a2)3=−a6,故本选项正确.故选:D【点评】本题考查了幂的乘方与积的乘方及合并同类项,要熟悉计算法则.3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20° B.30° C.45° D.50°【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4. 实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0【考点】实数与数轴.数形结合.【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则a+d >0,故选项正确.故选:B .【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .-5B .32C .52 D.7 【考点】一次函数图象上点的坐标.【分析】待定系数法求出直线解析式,再将点A 代入求解可得.【解答】解:将(-2,0)、(0,1)代入,得:{−2k +b =0b =1 解得:{k =12b =1∴y=12x+1,将点A (3,m )代入,得:12+1=m ,即m=52故选:C .【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A. 3a+2bB. 3a+4b C .6a+2b D .6a +4b 【考点】列代数式.【分析】观察图形可知,这块矩形较长的边长=边长为3a 的正方形的边长-边长2b 的小正方形的边长+边长2b 的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a-2b+2b×2=3a-2b+4b =3a+2b .故这块矩形较长的边长为3a+2b .故选:A .【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.在平面直角坐标系中,将点A (-1,-2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(-3,-2)B .(2,2)C .(-2,2)D .(2,-2)【考点】关于x 轴、y 轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B 点坐标,然后再根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A (-1,-2)向右平移3个单位长度得到的B 的坐标为(-1+3,-2),即(2,-2),则点B 关于x 轴的对称点B′的坐标是(2,2),故选:B .【点评】此题主要考查了坐标与图形变化-平移,以及关于x 轴对称点的坐标,关键是掌握点的坐标变化规律.8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A.√15B.2√5C.2√15D.8【考点】垂径定理;含30度角的直角三角形;勾股定理.【分析】作OH ⊥CD 于H ,连结OC ,如图,根据垂径定理由OH ⊥CD 得到HC=HD ,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH=12OP=1,然后在Rt △OHC 中利用勾股定理计算出CH=√15,所以CD=2CH=2√5【解答】解:作OH ⊥CD 于H ,连结OC ,如图,∵OH ⊥CD ,∴HC=HD ,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA-AP=2,在Rt △OPH 中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1,在Rt △OHC 中,∵OC=4,OH=1,∴CH=√OC 2−OH 2=√5∴CD=2CH=2√5故选:C .【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质9.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),次函数图象的对称轴是直线x=1.下列结论,正确的是()A .b2<4ac B.ac>0 C.2a-b=0 D.a-b+c=0【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点有b2-4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称性是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(-1,0),所以a-b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2-4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴−b2a=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(-1,0),∴a-b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=−b2a ;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.10.如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【考点】等腰直角三角形,等腰直角三角形的判定与性质【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点P 的个数是3, 故选:B .【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P 是解题的关键.11.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .√24B .14C .13D .√23【考点】矩形的性质;解直角三角形;矩形12.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .若AC=3,AB=5,则CE 的长为( )A .32B .43C .53D .85 【考点】勾股定理;角平分线的性质.勾股定理【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE ,即可得出EC=FC ,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG ⊥AB 于点G ,∵∠ACB=90°,CD ⊥AB ,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF 平分∠CAB ,∴∠CAF=∠FAD ,∴∠CFA=∠AED=∠CEF ,∴CE=CF ,∵AF 平分∠CAB ,∠ACF=∠AGF=90°,∴FC=FG ,∵∠B=∠B ,∠FGB=∠ACB=90°,∴△BFG ∽△BAC ,∴BFAB =FGAC ,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴4−FC5=FG 3, ∵FC=FG ,∴4−FC5=FC 3, 解得:FC=32,即CE 的长为32故选:A .【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE .第Ⅱ卷(非选择题题共84分)二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.若二元一次方程组{x +y =33x −5y =4的解为{x =a y =b,则a-b=________ 【考点】二元一次方程组的解;二元一次方程与一次函数的关系【分析】将两式相加即可求出a-b 的值.【解答】解:∵x+y=3,3x-5y=4,∴两式相加可得:(x+y)+(3x-5y)=3+4,∴4x-4y=7,∴x-y=7 4,∵x=a,y=b,∴a-b=x-y=7 4【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.14.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的高度为_________米.(结果保留两个有效数字)【参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.601】【考点】解直角三角形的应用-坡度坡角问题.解直角三角形的应用:坡度【分析】过B作地平面的垂线段BC,垂足为C,构造直角三角形,利用正弦函数的定义,即可求出BC的长.【解答】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.【点评】本题考查了解直角三角形的应用-坡度坡角问题,把坡面与水平面的夹角α叫做坡角.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.如图,在正方形ABCD中,AD=2√3,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为________.【考点】旋转的性质;正方形的性质.图形的旋转【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2√3,解直角三角形得到CE=2√3-2,PE=4-2√3,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2√3,∵AD=2√3,∴AE=4,DE=2,∴CE=2√3-2,PE=4-2√3,过P作PF⊥CD于F,∴PF=√32PE=2√3-3,∴三角形PCE的面积=12CE•PF=12×(2√3-2)×(2√3-3)=9-5√3,故答案为:9-5√3.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____________【考点】动点问题的函数图象.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:12×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC 的长度,本题属于中等题型.三、解答题:本大題共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步聚19.(本题满分8分)计算:|√3−2|+sin600−√27−(−112)2+2−2【点评】本题考查了绝对值,特殊角的三角函数值,负指数幂,需要认真计算。

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)(2018•枣庄)的倒数是()A.﹣2 B.﹣C.2 D.2.(3分)(2018•枣庄)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4 D.(﹣a2)3=﹣a63.(3分)(2018•枣庄)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45° D.50°4.(3分)(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>05.(3分)(2018•枣庄)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l 上,则m的值是()A.﹣5 B.C.D.76.(3分)(2018•枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)(2018•枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.(3分)(2018•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.89.(3分)(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=010.(3分)(2018•枣庄)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个11.(3分)(2018•枣庄)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.(3分)(2018•枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)(2018•枣庄)若二元一次方程组的解为,则a﹣b=.14.(4分)(2018•枣庄)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】15.(4分)(2018•枣庄)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.16.(4分)(2018•枣庄)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.17.(4分)(2018•枣庄)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.18.(4分)(2018•枣庄)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行116第5行252423222120191817…则2018在第行.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)(2018•枣庄)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣220.(8分)(2018•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.(8分)(2018•枣庄)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.22.(8分)(2018•枣庄)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.23.(8分)(2018•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.(10分)(2018•枣庄)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.25.(10分)(2018•枣庄)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2018年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)(2018•枣庄)的倒数是()A.﹣2 B.﹣C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2018•枣庄)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4 D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)(2018•枣庄)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45° D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)(2018•枣庄)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l 上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)(2018•枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)(2018•枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)(2018•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a >0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)(2018•枣庄)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)(2018•枣庄)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)(2018•枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)(2018•枣庄)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)(2018•枣庄)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)(2018•枣庄)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)(2018•枣庄)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)(2018•枣庄)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)(2018•枣庄)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行116第5行252423222120191817…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)(2018•枣庄)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)(2018•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)(2018•枣庄)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE =S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)(2018•枣庄)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)(2018•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD ∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)(2018•枣庄)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF ∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=. ∴BE=AD ﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF 2=FO •AF 是解题答问题(2)的关键,依据相似三角形的性质求得GH 的长是解答问题(3)的关键.25.(10分)(2018•枣庄)如图1,已知二次函数y=ax 2+x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形.(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2。

2018枣庄中考数学试题及答案

2018枣庄中考数学试题及答案

2018枣庄中考数学试题及答案2018年枣庄中考数学试题及答案一、选择题1. 下列计算错误的是:A. 72 ÷ 9 × 4 = 8 × 4 = 32B. 49 ÷ 7 – 6 = 7 – 6 = 1C. 3 × 4 – 9 = 7 × 3 – 9 = 21 – 9 = 12D. 18 ÷ (2 + 1) = 18 ÷ 3 = 62. 小红去书店买了一本书,原价是80元,现在打75折。

那么她现在应该支付的金额为:A. 5元B. 15元C. 60元D. 75元3. 有一道数学题,规律如下:1 + 1 = 22 + 2 = 43 + 3 = 6则10 + 10 = ?A. 20B. 100C. 10D. 30二、填空题4. 小明去超市买了3袋苹果,每袋苹果有20个,他一共买了___个苹果。

5. 一根绳子长12米,剩下的部分比已经使用的部分长2米。

那么已经使用的部分有____米。

6. 甲、乙、丙三个人一起完成一项工作,他们的工作效率之比是2∶4∶6。

如果他们共用时10个小时,那么其中效率最高的人花费了____小时。

三、解答题7. 请计算 1 + 2 + 3 + ... + 100 = ____________。

8. 使用两个相同的数字0和1,可以组成多少个5位数?其中必须包含1,且可以重复使用。

9. 在NXYZ中,N、X、Y、Z代表四个不同的数字(均为0~9之间的整数)。

已知X+Y = Z,且N+Y = X,则N的值是多少?四、解答题10. 已知正方形ABCD的边长为5cm,点E为边BC的中点,连接AE并延长,交边CD于点F。

请问△AEF的面积是多少平方厘米?答案及解析:一、选择题1. 答案:A。

计算过程:72 ÷ 9 × 4 = 8 × 4 = 322. 答案:C。

计算过程:80 × 0.75 = 603. 答案:A。

山东省枣庄市中考数学试卷版 解析版

山东省枣庄市中考数学试卷版 解析版

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,。

山东枣庄市2018年中考数学试题(含解析)-精编

山东枣庄市2018年中考数学试题(含解析)-精编

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l 上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)=S△CDA+S△EDA=∴S△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据=S△ABN﹣S△BMN三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),=S△ABN﹣S△BMN∵S△AMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0)。

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷

2018 年山东省枣庄市中考数学试卷一、选择题:本大题共12 小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来 .每题选对得 3 分,选错、不选或选出的答案超出一个均计零分1.(3 分)的倒数是()A.﹣ 2 B.﹣C. 2D.2.(3 分)以下计算,正确的选项是()5+a5 10.3÷a﹣1 2.24.(﹣2) 3 ﹣6A. a =a B a=a C a?2a =2a D a=a3.(3 分)已知直线m∥n,将一块含 30°角的直角三角板ABC 按如图方式搁置(∠ABC=30°),此中 A,B 两点分别落在直线 m,n 上,若∠ 1=20°,则∠ 2 的度数为()A.20°B.30°C.45°D.50°4.(3 分)实数 a,b,c,d 在数轴上的地点以下图,以下关系式不正确的选项是()A. | a| >| b|B. | ac| =ac C. b< d D. c+d> 05.(3 分)如图,直线 l 是一次函数 y=kx+b 的图象,若点 A(3,m)在直线 l 上,则 m 的值是()A.﹣ 5 B.C.D.76.(3 分)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长 2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A. 3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3 分)在平面直角坐标系中,将点A(﹣ 1,﹣2)向右平移 3 个单位长度获得点B,则点 B 对于 x 轴的对称点 B′的坐标为()A.(﹣ 3,﹣ 2)B.( 2, 2) C.(﹣ 2,2)D.( 2,﹣ 2)8.(3 分)如图, AB 是⊙ O 的直径,弦 CD交 AB 于点 P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2 C.2D. 89.(3 分)如图是二次函数y=ax2+bx+c 图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,以下结论正确的选项是()A. b2<4ac B.ac>0C.2a﹣b=0 D.a﹣b+c=010.( 3 分)如图是由8 个全等的矩形构成的大正方形,线段AB 的端点都在小矩形的极点上,假如点P 是某个小矩形的极点,连结PA、PB,那么使△ ABP为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个11.( 3 分)如图,在矩形ABCD中,点 E 是边 BC的中点, AE⊥BD,垂足为 F,则 tan ∠BDE的值是()A.B.C.D.12.( 3 分)如图,在Rt△ ABC中,∠ ACB=90°,CD⊥AB,垂足为 D,AF 均分∠ CAB,交 CD于点 E,交 CB于点 F.若 AC=3,AB=5,则 CE的长为()A.B.C.D.二、填空题:本大题共 6 小题,满分 24 分,只填写最后结果,每题填对得 4 分13.( 4 分)若二元一次方程组的解为,则a﹣b=.14.( 4 分)如图,某商铺营业大厅自动扶梯AB 的倾斜角为 31°,AB 的长为 12 米,则大厅两层之间的高度为米.(结果保存两个有效数字)【参照数据; sin31 °=0.515,cos31 °=0.857,tan31 °=0.601】15.( 4 分)我国南宋有名数学家秦九韶在他的著作《数书九章》一书中,给出了有名的秦九韶公式,也叫三斜求积公式,即假如一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ ABC的三边长分别为1, 2,,则△ ABC的面积为.16.( 4 分)如图,在正方形 ABCD中,AD=2,把边BC绕点B逆时针旋转30°获得线段 BP,接 AP 并延交 CD于点 E,接 PC,三角形 PCE的面.17.( 4 分)如 1,点 P 从△ ABC的点 B 出,沿 B→ C→A匀速运到点 A, 2 是点 P 运,段 BP 的度 y 随 x 化的关系象,此中 M 曲部分的最低点,△ ABC的面是.18.( 4 分)将从 1 开始的自然数按以下律摆列:第 1 行1第 2 行234第 3 行98765第 4 行10111213141516第5行 252423222120191817⋯2018 在第行.三、解答:本大共 7 小,分 60 分.解答,要写出必需的文字明、明程或演算步.(分)算:|2|+ sin60° (1)2+2﹣219 820.( 8分)如,在 4×4 的方格中,△ ABC的三个点都在格点上.(1)在 1中,画出一个与△ ABC成中心称的格点三角形;(2)在 2中,画出一个与△ ABC成称且与△ ABC有公共的格点三角形;(3)在 3 中,画出△ABC着点C按方向旋90°后的三角形.21.( 8 分)如图,一次函数 y=kx+b(k、b 为常数, k≠0)的图象与 x 轴、 y 轴分别交于 A、B 两点,且与反比率函数 y= (n 为常数,且 n≠0)的图象在第二象限交于点 C.CD⊥x轴,垂足为 D,若 OB=2OA=3OD=12.(1)求一次函数与反比率函数的分析式;(2)记两函数图象的另一个交点为 E,求△ CDE的面积;(3)直接写出不等式 kx+b≤的解集.22.( 8 分)当今“微信运动”被愈来愈多的人关注和喜欢,某兴趣小组随机检查了我市50名教师某日“微信运动”中的步数状况进行统计整理,绘制了以下的统计图表(不完好):步数频数频次0≤ x< 40008a4000≤x< 8000150.38000≤x<1200012b12000≤ x< 16000c0.216000≤ x< 2000030.0620000≤ x< 24000d0.04请依据以上信息,解答以下问题:(1)写出 a, b, c, d 的值并补全频数散布直方图;(2)本市约有 37800 名教师,用检查的样本数据预计日行走步数超出12000 步(包括12000 步)的教师有多少名?(3)若在 50 名被检查的教师中,选用日行走步数超出16000 步(包括 16000 步的两名教师与大家分享心得,求被选用的两名教师恰巧都在20000 步(包括 20000 步)以上的概率.23.( 8 分)如图,在Rt△ACB 中,∠ C=90°,AC=3cm, BC=4cm,以 BC 为直径作⊙ O交 AB于点 D.(1)求线段 AD 的长度;(2)点 E 是线段 AC上的一点,试问:当点 E 在什么地点时,直线 ED与⊙ O 相切?请说明原因.24.( 10 分)如图,将矩形ABCD沿 AF 折叠,使点 D 落在 BC边的点 E 处,过点 E 作EG∥CD交 AF于点 G,连结 DG.(1)求证:四边形EFDG是菱形;(2)研究线段 EG、GF、AF 之间的数目关系,并说明原因;(3)若 AG=6, EG=2,求BE的长.25.( 10 分)如图 1,已知二次函数y=ax2+x+c(a≠0)的图象与 y 轴交于点 A( 0,4),与 x 轴交于点 B、 C,点 C 坐标为( 8,0),连结 AB、AC.(1)请直接写出二次函数 y=ax2+ x+c 的表达式;(2)判断△ ABC的形状,并说明原因;(3)若点 N 在 x 轴上运动,当以点A、N、C 为极点的三角形是等腰三角形时,请写出此时点 N 的坐标;(4)如图 2,若点 N 在线段 BC上运动(不与点B、 C 重合),过点 N 作 NM∥AC,交AB 于点 M ,当△ AMN 面积最大时,求此时点N 的坐标.2018 年山东省枣庄市中考数学试卷一、选择题:本大题共12 小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来 .每题选对得 3 分,选错、不选或选出的答案超出一个均计零分1.(3 分)的倒数是()A.﹣ 2 B.﹣C. 2D.【解答】解:的倒数是﹣2.应选: A.2.(3 分)以下计算,正确的选项是()A. a5+a5=a10B. a3÷a﹣1=a2C.a?2a2=2a4D.(﹣ a2)3=﹣a6【解答】解: a5+a5=2a5,A 错误;a3÷a﹣1 =a3﹣(﹣1)=a4,B 错误;a?2a2=2a3,C 错误;(﹣ a2)3=﹣a6,D 正确,应选: D.3.(3 分)已知直线m∥n,将一块含30°角的直角三角板ABC 按如图方式搁置(∠ABC=30°),此中 A,B 两点分别落在直线m,n 上,若∠ 1=20°,则∠ 2 的度数为()A.20°B.30°C.45°D.50°【解答】解:∵直线 m∥n,∴∠ 2=∠ ABC+∠1=30°+20°=50°,应选: D.4.(3 分)实数 a,b,c,d 在数轴上的地点以下图,以下关系式不正确的选项是()A. | a| >| b|B. | ac| =ac C. b< d D. c+d> 0【解答】解:从 a、b、c、 d 在数轴上的地点可知: a<b<0,d>c> 1;A、 | a| >| b| ,应选项正确;B、 a、c 异号,则 | ac| =﹣ac,应选项错误;C、 b< d,应选项正确;D、 d> c>1,则 a+d>0,应选项正确.应选: B.5.(3 分)如图,直线 l 是一次函数 y=kx+b 的图象,若点 A(3,m)在直线 l 上,则 m的值是()A.﹣ 5 B.C.D.7【解答】解:将(﹣ 2,0)、( 0, 1)代入,得:解得:,∴y= x+1,将点 A( 3,m )代入,得:+1=m,即 m= ,应选: C.6.(3 分)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长 2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A. 3a+2b B.3a+4b C.6a+2b D.6a+4b【解答】解:依题意有3a﹣2b+2b× 2=3a﹣ 2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.应选: A.7.(3 分)在平面直角坐标系中,将点A(﹣ 1,﹣2)向右平移 3 个单位长度获得点B,则点 B 对于 x 轴的对称点 B′的坐标为()A.(﹣ 3,﹣ 2)B.( 2, 2) C.(﹣ 2,2)D.( 2,﹣ 2)【解答】解:点 A(﹣ 1,﹣ 2)向右平移 3 个单位长度获得的B 的坐标为(﹣ 1+3,﹣2),即( 2,﹣ 2),则点 B 对于 x 轴的对称点 B′的坐标是( 2, 2),应选: B.8.(3 分)如图, AB 是⊙ O 的直径,弦 CD交 AB 于点 P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2 C.2D. 8【解答】解:作 OH⊥CD于 H,连结 OC,如图,∵OH⊥ CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在 Rt△ OPH中,∵∠OPH=30°,∴∠ POH=60°,∴OH= OP=1,在 Rt△ OHC中,∵ OC=4,OH=1,∴CH==,∴CD=2CH=2.应选: C.9.(3 分)如图是二次函数y=ax2+bx+c 图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,以下结论正确的选项是()A. b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【解答】解:∵抛物线与 x 轴有两个交点,∴b2﹣4ac>0,即 b2>4ac,因此 A 选项错误;∴a> 0,∵抛物线与 y 轴的交点在 x 轴下方,∴c< 0,∴a c<0,因此 B 选项错误;∵二次函数图象的对称轴是直线 x=1,∴﹣ =1,∴2a+b=0,因此 C 选项错误;∵抛物线过点 A( 3, 0),二次函数图象的对称轴是x=1,∴抛物线与 x 轴的另一个交点为(﹣ 1,0),∴a﹣ b+c=0,因此 D 选项正确;应选: D.10.( 3 分)如图是由8 个全等的矩形构成的大正方形,线段AB 的端点都在小矩形的极点上,假如点P 是某个小矩形的极点,连结PA、PB,那么使△ ABP为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【解答】解:以下图,使△ ABP为等腰直角三角形的点 P 的个数是 3,应选: B.11.( 3 分)如图,在矩形ABCD中,点 E 是边 BC的中点, AE⊥BD,垂足为 F,则 tan ∠BDE的值是()A.B.C.D.【解答】解:∵四边形 ABCD是矩形,∴AD=BC, AD∥ BC,∵点 E 是边 BC的中点,∴BE= BC= AD,∴△ BEF∽△ DAF,∴=,∴EF= AF,∴EF= AE,∵点 E 是边 BC的中点,∴由矩形的对称性得: AE=DE,∴EF= DE,设 EF=x,则 DE=3x,∴DF==2x,∴tan∠BDE= ==;应选: A.12.( 3 分)如图,在Rt△ ABC中,∠ ACB=90°,CD⊥AB,垂足为 D,AF 均分∠ CAB,交 CD于点 E,交 CB于点 F.若 AC=3,AB=5,则 CE的长为()A.B.C.D.【解答】解:过点 F 作 FG⊥ AB 于点 G,∵∠ ACB=90°,CD⊥AB,∴∠ CDA=90°,∴∠ CAF+∠CFA=90°,∠ FAD+∠AED=90°,∵AF均分∠ CAB,∴∠ CAF=∠FAD,∴∠ CFA=∠AED=∠CEF,∴CE=CF,∵AF均分∠ CAB,∠ ACF=∠AGF=90°,∴FC=FG,∵∠ B=∠B,∠ FGB=∠ACB=90°,∴△ BFG∽△ BAC,∴= ,∵AC=3,AB=5,∠ ACB=90°,∴BC=4,∴=,∵FC=FG,∴= ,解得: FC= ,即 CE的长为.应选: A.二、填空题:本大题共 6 小题,满分 24 分,只填写最后结果,每题填对得 4 分13.( 4 分)若二元一次方程组的解为,则 a﹣b=.【解答】解:将代入方程组,得:,①+②,得: 4a﹣4b=7,则 a﹣b=,故答案为:.14.( 4 分)如图,某商铺营业大厅自动扶梯 AB 的倾斜角为 31°,AB 的长为 12 米,则大厅两层之间的高度为 6.18 米.(结果保存两个有效数字)【参照数据;sin31 °=0.515,cos31 °=0.857,tan31 °=0.601】【解答】解:在 Rt△ABC中,∵∠ ACB=90°,∴BC=AB?sin∠ BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为 6.18 米.故答案为: 6.18.15.( 4 分)我国南宋有名数学家秦九韶在他的著作《数书九章》一书中,给出了有名的秦九韶公式,也叫三斜求积公式,即假如一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ ABC的三边长分别为1, 2,,则△ ABC的面积为1.【解答】解:∵ S=,∴△ ABC的三边长分别为1,2,,则△ ABC的面积为:S==1,故答案为: 1.16.( 4 分)如图,在正方形 ABCD中,AD=2,把边BC绕点B逆时针旋转30°获得线段 BP,连结 AP 并延伸交 CD于点 E,连结 PC,则三角形 PCE的面积为9﹣5.【解答】解:∵四边形 ABCD是正方形,∴∠ ABC=90°,∵把边 BC绕点 B 逆时针旋转 30°获得线段 BP,∴PB=BC=AB,∠ PBC=30°,∴∠ ABP=60°,∴△ ABP是等边三角形,∴∠ BAP=60°,AP=AB=2 ,∵AD=2 ,∴AE=4,DE=2,∴CE=2 ﹣2,PE=4﹣2,过 P作 PF⊥CD于 F,∴PF= PE=2 ﹣3,∴三角形 PCE的面积 =CE?PF= ×( 2 ﹣2)×( 2﹣3)=9﹣5,故答案为: 9﹣5 .17.( 4 分)如图 1,点 P 从△ ABC的极点 B 出发,沿 B→ C→A匀速运动到点 A,图 2 是点 P 运动时,线段 BP 的长度 y 随时间 x 变化的关系图象,此中 M 为曲线部分的最低点,则△ ABC的面积是 12 .【解答】解:依据图象可知点 P 在 BC上运动时,此时 BP不停增大,由图象可知:点 P 从 B 向 C 运动时, BP的最大值为 5,即 BC=5,因为 M 是曲线部分的最低点,∴此时 BP最小,即 BP⊥AC, BP=4,∴由勾股定理可知: PC=3,因为象的曲部分是称形,∴PA=3,∴AC=6,∴△ ABC的面:× 4× 6=12故答案: 1218.( 4 分)将从 1 开始的自然数按以下律摆列:第 1 行1第 2 行234第 3 行98765第 4 行10111213141516第 5 行25 2423222120191817⋯2018 在第 45 行.22【解答】解:∵ 44 =1936,45 =2025,故答案: 45.三、解答:本大共 7 小,分 60 分.解答,要写出必需的文字明、明程或演算步.(分)算:|2|+ sin60°(1)2+2﹣219 8【解答】解:原式 =2+3+=.20.( 8 分)如,在 4×4 的方格中,△ ABC的三个点都在格点上.(1)在 1 中,画出一个与△ ABC成中心称的格点三角形;(2)在 2 中,画出一个与△ ABC成称且与△ ABC有公共的格点三角形;(3)在3中,画出△ABC着点 C 按方向旋90°后的三角形.【解答】解:(1)以下图,△DCE为所求作(2)以下图,△ACD为所求作(3)以下图△ECD为所求作21.( 8 分)如图,一次函数 y=kx+b(k、b 为常数, k≠0)的图象与 x 轴、 y 轴分别交于 A、B 两点,且与反比率函数 y= (n 为常数,且 n≠0)的图象在第二象限交于点 C.CD⊥x 轴,垂足为 D,若 OB=2OA=3OD=12.(1)求一次函数与反比率函数的分析式;(2)记两函数图象的另一个交点为E,求△ CDE的面积;(3)直接写出不等式kx+b≤的解集.【解答】解:(1)由已知, OA=6, OB=12,OD=4∵CD⊥ x 轴∴OB∥ CD∴△ ABO∽△ ACD∴∴∴CD=20∴点 C 坐标为(﹣ 4,20)∴n=xy=﹣80∴反比率函数分析式为:y=﹣把点 A( 6,0),B(0,12)代入 y=kx+b 得:解得:∴一次函数分析式为: y=﹣2x+12(2)当﹣=﹣2x+12 时,解得x1=10, x2=﹣ 4当 x=10 时, y=﹣8∴点 E 坐标为( 10,﹣ 8)∴S△CDE=S△CDA+S△EDA=(3)不等式 kx+b≤,从函数图象上看,表示一次函数图象不低于反比率函数图象∴由图象得, x≥10,或﹣ 4≤x<022.( 8 分)当今“微信运动”被愈来愈多的人关注和喜欢,某兴趣小组随机检查了我市50名教师某日“微信运动”中的步数状况进行统计整理,绘制了以下的统计图表(不完好):步数频数频次0≤ x< 40008a4000≤x< 8000150.38000≤x<1200012b12000≤ x< 16000c0.216000≤ x< 2000030.0620000≤ x< 24000d0.04请依据以上信息,解答以下问题:(1)写出 a, b, c, d 的值并补全频数散布直方图;(2)本市约有 37800 名教师,用检查的样本数据预计日行走步数超出12000 步(包括12000 步)的教师有多少名?(3)若在 50 名被检查的教师中,选用日行走步数超出16000 步(包括 16000 步的两名教师与大家分享心得,求被选用的两名教师恰巧都在20000 步(包括 20000 步)以上的概率.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数散布直方图以下:(2) 37800×( 0.2+0.06+0.04) =11340,答:预计日行走步数超出12000 步(包括 12000 步)的教师有 11340 名;(3)设 16000≤x<20000 的 3 名教师分别为 A、B、 C,20000≤x<24000 的 2 名教师分别为 X、Y,画树状图以下:由树状图可知,被选用的两名教师恰巧都在20000 步(包括 20000 步)以上的概率为=.23.( 8 分)如图,在Rt△ACB 中,∠ C=90°,AC=3cm, BC=4cm,以 BC 为直径作⊙ O 交 AB于点 D.(1)求线段 AD 的长度;(2)点 E 是线段 AC上的一点,试问:当点 E 在什么地点时,直线 ED与⊙ O 相切?请说明原因.【解答】解:(1)在 Rt△ACB中,∵ AC=3cm,BC=4cm,∠ ACB=90°,∴ AB=5cm;连结 CD,∵ BC为直径,∴∠ ADC=∠BDC=90°;∵∠ A=∠A,∠ ADC=∠ACB,∴R t△ADC∽Rt△ACB;∴,∴;(2)当点 E 是 AC的中点时, ED与⊙ O 相切;证明:连结 OD,∵DE 是 Rt△ ADC的中线;∴ED=EC,∴∠ EDC=∠ECD;∵OC=OD,∴∠ ODC=∠OCD;∴∠ EDO=∠EDC+∠ ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥ OD,∴ED与⊙O 相切.24.( 10 分)如图,将矩形 ABCD沿 AF 折叠,使点 D 落在 BC边的点 E 处,过点 E 作EG∥CD交 AF于点 G,连结 DG.(1)求证:四边形EFDG是菱形;(2)研究线段 EG、GF、AF 之间的数目关系,并说明原因;(3)若 AG=6, EG=2,求BE的长.【解答】解:(1)证明:∵ GE∥DF,∴∠ EGF=∠DFG.∵由翻折的性质可知: GD=GE, DF=EF,∠ DGF=∠EGF,∴∠ DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形 EFDG为菱形.2(2) EG =GF?AF.原因:如图 1 所示:连结 DE,交 AF于点 O.∵四边形 EFDG为菱形,∴GF⊥ DE,OG=OF= GF.∵∠ DOF=∠ADF=90°,∠ OFD=∠DFA,∴△ DOF∽△ ADF.∴,即 DF2 =FO?AF.∵FO= GF, DF=EG,2∴EG =GF?AF.(3)如图 2 所示:过点 G 作 GH⊥DC,垂足为 H.2∵EG = GF?AF,AG=6,EG=2,2∴20=FG( FG+6),整理得: FG+6FG﹣40=0.解得: FG=4, FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4 .∵GH⊥ DC, AD⊥DC,∴GH∥ AD.∴△ FGH∽△ FAD.∴,即=.∴GH=.∴BE=AD﹣ GH=4﹣=.25.( 10 分)如图 1,已知二次函数y=ax2+x+c(a≠0)的图象与 y 轴交于点 A( 0,4),与 x 轴交于点 B、 C,点 C 坐标为( 8,0),连结 AB、AC.(1)请直接写出二次函数 y=ax2+ x+c 的表达式;(2)判断△ ABC的形状,并说明原因;(3)若点 N 在 x 轴上运动,当以点A、N、C 为极点的三角形是等腰三角形时,请写出此时点 N 的坐标;(4)如图 2,若点 N 在线段 BC上运动(不与点B、 C 重合),过点 N 作 NM∥AC,交AB 于点 M ,当△ AMN 面积最大时,求此时点N 的坐标.【解答】解:(1)∵二次函数 y=ax2+ x+c 的图象与 y 轴交于点 A( 0,4),与 x 轴交于点 B、C,点 C 坐标为( 8,0),∴,解得.2∴抛物线表达式: y=﹣x + x+4;令 y=0,则﹣ x2+ x+4=0,解得 x1=8,x2=﹣2,∴点 B 的坐标为(﹣ 2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在 Rt△ AOC中 AC2=AO2+CO2=42 +82=80,又∵ BC=OB+OC=2+8=10,2222∴在△ ABC中 AB +AC =20+80=10 =BC∴△ ABC是直角三角形.(3)∵ A(0,4),C(8,0),∴AC==4,①以 A 为圆心,以 AC长为半径作圆,交 x 轴于 N,此时 N 的坐标为(﹣ 8,0),②以 C 为圆心,以 AC长为半径作圆,交 x 轴于 N,此时 N 的坐标为( 8﹣ 4,0)或(8+4 ,0)③作 AC的垂直均分线,交x 轴于 N,此时 N 的坐标为( 3, 0),综上,若点 N 在 x 轴上运动,当以点 A、N、C 为极点的三角形是等腰三角形时,点 N 的坐标分别为(﹣ 8,0)、(8﹣4 ,0)、(3,0)、(8+4 ,0).(4)如图,设点 N 的坐标为( n,0),则 BN=n+2,过 M 点作 MD⊥x 轴于点 D,∴MD∥OA,∴△ BMD∽△ BAO,∴= ,∵MN∥AC∴= ,∴= ,∵OA=4,BC=10, BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣ S△BMN=BN?OA﹣ BN?MD=( n+2)× 4﹣×(n+2)2=﹣(n﹣3)2+5,当 n=3 时,△ AMN 面积最大是 5,∴N 点坐标为( 3, 0).∴当△ AMN 面积最大时, N 点坐标为( 3,0).。

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a63.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>05.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.76.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.89.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=010.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.18.(4分)将从1开始的连续自然数按以下规律排列:…则2018在第行.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣220.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2018年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.2米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S=S△CDA+S△EDA=△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S=S△ABN﹣S△BMN△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S=AM•MN△AMN=××=﹣10n2+60n+160=﹣10(n﹣3)2+250=﹣(n﹣3)2+250,当n=3时,△AMN面积最大是250,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.。

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1. −12的倒数是()A.−2B.−12C.2 D.122. 下列计算,正确的是()A.a5+a5=a10B.a3÷a−1=a2C.a⋅2a2=2a4D.(−a2)3=−a63. 已知直线m // n,将一块含30∘角的直角三角板ABC按如图方式放置(∠ABC=30∘),其中A,B两点分别落在直线m,n上,若∠1=20∘,则∠2的度数为()A.20∘B.30∘C.45∘D.50∘4. 实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=acC.b<dD.c+d>05. 如图,直线l是一次函数y=kx+b的图象,若点A(3, m)在直线l上,则m的值是( )A.−5B.32C.52D.76. 如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2bB.3a+4bC.6a+2bD.6a+4b轴的对称点B′的坐标为( )A.(−3, −2)B.(2, 2)C.(−2, 2)D.(2, −2)8. 如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30∘,则CD 的长为()A.√15B.2√5C.2√15D.89. 如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3, 0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A.b2<4acB.ac>0C.2a−b=0D.a−b+c=010. 如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P 的个数是()A.2个B.3个C.4个D.5个11. 如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.√24B.14C.13D.√2312. 如图,在Rt△ABC中,∠ACB=90∘,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.85 二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分若二元一次方程组{x +y =33x −5y =4的解为{x =a y =b ,则a −b =________.如图,某商店营业大厅自动扶梯AB 的倾斜角为31∘,AB 的长为12米,则大厅两层之间的高度为________米.(结果保留两个有效数字)【参考数据;sin31∘=0.515,cos31∘=0.857,tan31∘=0.601】我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S =√14[a 2b 2−(a2+b 2−c 22)2].现已知△ABC 的三边长分别为1,2,√5,则△ABC的面积为________.如图,在正方形ABCD 中,AD =2√3,把边BC 绕点B 逆时针旋转30∘得到线段BP ,结接AP 并延长交CD 于点E ,连结PC ,则三角形PCE 的面积为________.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.将从1开始的连续自然数按以下规律排列:则2018在第________行.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤)2+2−2计算:|√3−2|+sin60∘−√27−(−112如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90∘后的三角形.如图,一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴、y轴分别交于A,B(n为常数,且n≠0)的图象在第二象限交于点C,CD⊥x 两点,且与反比例函数y=nx轴,垂足为点D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤n的解集.x现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.如图,在Rt△ACB中,∠C=90∘,AC=3cm,BC=4cm,以BC为直径作⊙O交AB 于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.如图,将矩形ABCD沿AF折叠,使点D落在BC边上的点E处,过点E作EG // CD交AF于(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2√5,求BE的长.x+c(a≠0)的图象与y轴交于点A(0, 4),与x轴交如图1,已知二次函数y=ax2+32于点B、C,点C坐标为(8, 0),连接AB、AC.x+c的表达式;(1)请直接写出二次函数y=ax2+32(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM // AC,交AB 于点M,当△AMN面积最大时,求此时点N的坐标.参考答案与试题解析2018年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.【答案】A【考点】倒数【解析】根据倒数的定义,直接解答即可.【解答】−1的倒数是−2.22.【答案】D【考点】合并同类项幂的乘方与积的乘方同底数幂的除法单项式乘单项式负整数指数幂【解析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】a5+a5=2a5,A错误;a3÷a−1=a3−(−1)=a4,B错误;a⋅2a2=2a3,C错误;(−a2)3=−a6,D正确,3.【答案】D【考点】平行线的性质【解析】根据平行线的性质即可得到结论.【解答】∵直线m // n,∴∠2=∠ABC+∠1=30∘+20∘=50∘,4.【答案】B在数轴上表示实数【解析】此题主要考查了数轴的知识.【解答】解:从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A .|a|>|b|,故选项正确;B .a 、c 异号,则|ac|=−ac ,故选项错误;C .b <d ,故选项正确;D .d >c >1,则c +d >0,故选项正确.故选B .5.【答案】C【考点】一次函数图象上点的坐标特点待定系数法求一次函数解析式【解析】待定系数法求出直线解析式,再将点A 代入求解可得.【解答】解:将(−2, 0),(0, 1)代入,得:{−2k +b =0b =1, 解得:{k =12b =1, ∴ y =12x +1,将点A(3, m)代入,得:32+1=m ,即m =52.故选C .6.【答案】A【考点】列代数式【解析】本题考查了列代数式.【解答】解:依题意有3a −2b +2b ×2=3a −2b +4b=3a +2b .故这块矩形较长的边长为3a +2b .故选A .7.B【考点】关于x轴、y轴对称的点的坐标坐标与图形变化-平移【解析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(−1, −2)向右平移3个单位长度得到的B的坐标为(−1+3, −2),即(2, −2),则点B关于x轴的对称点B′的坐标是(2, 2).故选B.8.【答案】C【考点】含30度角的直角三角形勾股定理垂径定理【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】二次函数图象与系数的关系【解析】根据抛物线与x轴有两个交点有b2−4ac>0可对A进行判断;由抛物线开口向上得a> 0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(−1, 0),所以a−b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴−b=1,2a∴2a+b=0,∵抛物线过点A(3, 0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(−1, 0),∴a−b+c=0,所以D选项正确.故选D.10.【答案】B【考点】等腰直角三角形【解析】本题考查了等腰直角三角形的判定.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3个,故选B.11.【答案】A【考点】相似三角形的性质与判定解直角三角形矩形的性质【解析】证明△BEF∽△DAF,得出EF=12AF,EF=13AE,由矩形的对称性得:AE=DE,得出EF=13DE,设EF=x,则DE=3x,由勾股定理求出DF=√DE2−EF2=2√2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD // BC,∵点E是边BC的中点,∴BE=12BC=12AD,∴△BEF∼△DAF,∴EFAF =BEAD=12,∴EF=12AF,∴EF=13AE.∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=13DE.设EF=x,则DE=3x,∴tan∠BDE=EFDF =2√2x=√24.故选A.12.【答案】A【考点】角平分线的性质勾股定理【解析】根据三角形的内角和定理得出∠CAF+∠CFA=90∘,∠FAD+∠AED=90∘,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】过点F作FG⊥AB于点G,∵∠ACB=90∘,CD⊥AB,∴∠CDA=90∘,∴∠CAF+∠CFA=90∘,∠FAD+∠AED=90∘,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90∘,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90∘,∴△BFG∽△BAC,∴BFAB =FGAC,∵AC=3,AB=5,∠ACB=90∘,∴BC=4,∴4−FC5=FG3,∵FC=FG,∴4−FC5=FC3,解得:FC=32,即CE的长为32.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分【答案】74【考点】二元一次方程组的解【解析】把x、y的值代入方程组,再将两式相加即可求出a−b的值.【解答】将{x =a y =b 代入方程组{x +y =33x −5y =4 ,得:{a +b =33a −5b =4, ①+②,得:4a −4b =7,则a −b =74,【答案】6.2【考点】解直角三角形的应用-坡度坡角问题【解析】根据题意和锐角三角函数可以求得BC 的长,从而可以解答本题.【解答】在Rt △ABC 中,∵ ∠ACB =90∘,∴ BC =AB ⋅sin∠BAC =12×0.515≈6.2(米),答:大厅两层之间的距离BC 的长约为6.2米.故答案为:6.2.【答案】1【考点】二次根式的应用【解析】根据题目中的面积公式可以求得△ABC 的三边长分别为1,2,√5的面积,从而可以解答本题.【解答】∵ S =√14[a 2b 2−(a2+b 2−c 22)2],∴ △ABC 的三边长分别为1,2,√5,则△ABC 的面积为:S =√14[12×22−(12+22−(√5)22)2]=1,【答案】9−5√3【考点】正方形的性质旋转的性质【解析】此题暂无解析【解答】解:∵ 四边形ABCD 是正方形,∴ ∠ABC =90∘,∵ 把边BC 绕点B 逆时针旋转30∘得到线段BP ,∴ PB =BC =AB ,∠PBC =30∘,∴ ∠ABP =60∘,∴ △ABP 是等边三角形,∴ ∠BAP =60∘,AP =AB =2√3,∵ AD =2√3,∴AE=4,DE=2,∴CE=2√3−2,PE=4−2√3,过P作PF⊥CD于F,∴PF=√32PE=2√3−3,∴三角形PCE的面积=12CE⋅PF=12×(2√3−2)×(2√3−3)=9−5√3.故答案为:9−5√3.【答案】12【考点】函数的图象动点问题的解决方法【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:12×4×6=12.故答案为:12.【答案】45【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】∵442=1936,452=2025,∴2018在第45行.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤【答案】原式=2−√3+√32−3√3−94+14=−7√32.【考点】实数的运算负整数指数幂特殊角的三角函数值【解析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】原式=2−√3+√32−3√3−94+14=−7√32.【答案】如图所示,△DCE为所求作如图所示,△ACD为所求作如图所示△ECD为所求作【考点】作图-位似变换作图-轴对称变换作图-相似变换作图-旋转变换【解析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】如图所示,△DCE 为所求作如图所示,△ACD 为所求作如图所示△ECD 为所求作【答案】解:(1)由已知,OA =6,OB =12,OD =4,∵ CD ⊥x 轴,∴ OB // CD ,∴ △ABO ∼△ACD ,∴ OA AD =OB CD ,即66+4=12CD ,解得CD =20,∴ 点C 坐标为(−4, 20).∴ n =−4×20=−80,∴ 反比例函数解析式为y =−80x .把点A(6, 0),B(0, 12)代入y =kx +b ,得{0=6k +b,b =12,解得{k =−2,b =12,∴ 一次函数解析式为y =−2x +12.(2)当−80x =−2x +12时,解得x 1=10,x 2=−4,当x =10时,y =−8,∴ 点E 坐标为(10, −8),∴ S △CDE =S △CDA +S △EDA=12×20×10+12×8×10=140.(3)不等式kx +b ≤n x ,从函数图象上看,表示一次函数图象不高于反比例函数图象,∴ 由图象得,x ≥10或−4≤x <0.【考点】反比例函数与一次函数的综合待定系数法求一次函数解析式三角形的面积待定系数法求反比例函数解析式【解析】(1)根据三角形相似,可求出点C 坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA =6,OB =12,OD =4,∵ CD ⊥x 轴,∴ OB // CD ,∴ △ABO ∼△ACD ,∴ OA AD =OB CD ,即66+4=12CD ,解得CD =20,∴ 点C 坐标为(−4, 20).∴ n =−4×20=−80,∴ 反比例函数解析式为y =−80x .把点A(6, 0),B(0, 12)代入y =kx +b ,得{0=6k +b,b =12,解得{k =−2,b =12,∴ 一次函数解析式为y =−2x +12.(2)当−80x =−2x +12时,解得x 1=10,x 2=−4,当x =10时,y =−8,∴ 点E 坐标为(10, −8),∴S△CDE=S△CDA+S△EDA=12×20×10+12×8×10=140.(3)不等式kx+b≤nx,从函数图象上看,表示一次函数图象不高于反比例函数图象,∴由图象得,x≥10或−4≤x<0.【答案】a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为2 20=110.【考点】列表法与树状图法频数(率)分布直方图频数(率)分布表用样本估计总体【解析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为2 20=110.【答案】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90∘,∴AB=5cm,连接CD,∵BC为直径,∴∠ADC=∠BDC=90∘,∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴ACAB =ADAC,∴AD=AC2AB =95;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90∘,∴ED⊥OD,∴ED与⊙O相切.【考点】相似三角形的性质与判定圆周角定理切线的判定直角三角形斜边上的中线【解析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90∘,∴AB=5cm,连接CD,∵BC为直径,∴∠ADC=∠BDC=90∘,∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴ACAB =ADAC,∴AD=AC2AB =95;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90∘,∴ED⊥OD,∴ED与⊙O相切.【答案】证明:∵GE // DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.EG2=12GF⋅AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=12GF.∵∠DOF=∠ADF=90∘,∠OFD=∠DFA,∴△DOF∽△ADF.∴DFAF =FODF,即DF2=FO⋅AF.∵FO=12GF,DF=EG,∴EG2=12GF⋅AF.如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=12GF⋅AF,AG=6,EG=2√5,∴20=12FG(FG+6),整理得:FG2+6FG−40=0.解得:FG=4,FG=−10(舍去).∵DF=GE=2√5,AF=10,∴AD=√AF2−DF2=4√5.∵GH⊥DC,AD⊥DC,∴GH // AD.∴△FGH∽△FAD.∴GHAD =FGAF,即45=410.∴GH=8√55.∴BE=AD−GH=4√5−8√55=12√55.【考点】四边形综合题【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO⋅AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD−GH求解即可.【解答】证明:∵GE // DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.EG2=12GF⋅AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=12GF.∵∠DOF=∠ADF=90∘,∠OFD=∠DFA,∴△DOF∽△ADF.∴DFAF =FODF,即DF2=FO⋅AF.∵FO=12GF,DF=EG,∴EG2=12GF⋅AF.如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=12GF⋅AF,AG=6,EG=2√5,∴20=12FG(FG+6),整理得:FG2+6FG−40=0.解得:FG=4,FG=−10(舍去).∵DF=GE=2√5,AF=10,∴AD=√AF2−DF2=4√5.∵GH⊥DC,AD⊥DC,∴GH // AD.∴△FGH∽△FAD.∴GHAD =FGAF,即4√5=410.∴GH=8√55.∴BE=AD−GH=4√5−8√55=12√55.【答案】∵二次函数y=ax2+32x+c的图象与y轴交于点A(0, 4),与x轴交于点B、C,点C坐标为(8, 0),∴{c=464a+12+c=0,解得{a=−14c=4.∴抛物线表达式:y=−14x2+32x+4;△ABC是直角三角形.令y=0,则−14x2+32x+4=0,解得x1=8,x2=−2,∴点B的坐标为(−2, 0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.∵A(0, 4),C(8, 0),∴AC=√42+82=4√5,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(−8, 0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8−4√5, 0)或(8+ 4√5, 0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3, 0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(−8, 0)、(8−4√5, 0)、(3, 0)、(8+4√5, 0).如图,AB=√OA2+OB2=2√5,BC=8−(−2)=10,AC=√OC2+OA2=4√5,∴AB2+AC2=BC2,∴∠BAC=90∘.∴AC⊥AB.∵AC // MN,∴MN⊥AB.设点N的坐标为(n, 0),则BN=n+2,∵MN // AC,△BMN∽△BAC∴BMBA =BNBC,∴MNAC =BNBC,BM=BN⋅BABC =√5(n+2)5,MN=BN⋅ACBC =2√5(n+2)5,AM=AB−BM=2√5−√5(n+2)5=8√5−√5n5∵S△AMN=12AM⋅MN=12×8√5−√5n5×2√5n+4√55=−15(n−3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3, 0).∴当△AMN面积最大时,N点坐标为(3, 0).【考点】二次函数综合题【解析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n, 0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=25(n+2),然后根据S△AMN=S△ABN−S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】∵二次函数y=ax2+32x+c的图象与y轴交于点A(0, 4),与x轴交于点B、C,点C坐标为(8, 0),∴{c=464a+12+c=0,解得{a=−14c=4.∴抛物线表达式:y=−14x2+32x+4;△ABC是直角三角形.令y=0,则−14x2+32x+4=0,解得x1=8,x2=−2,∴点B的坐标为(−2, 0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.∵A(0, 4),C(8, 0),∴AC=√42+82=4√5,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(−8, 0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8−4√5, 0)或(8+ 4√5, 0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3, 0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(−8, 0)、(8−4√5, 0)、(3, 0)、(8+4√5, 0).如图,AB=√OA2+OB2=2√5,BC=8−(−2)=10,AC=√OC2+OA2=4√5,∴AB2+AC2=BC2,∴∠BAC=90∘.∴AC⊥AB.∵AC // MN,∴MN⊥AB.设点N的坐标为(n, 0),则BN=n+2,∵MN // AC,△BMN∽△BAC∴BMBA =BNBC,∴MNAC =BNBC,BM=BN⋅BABC =√5(n+2)5,MN=BN⋅ACBC =2√5(n+2)5,AM=AB−BM=2√5−√5(n+2)5=8√5−√5n5∵S△AMN=12AM⋅MN=12×8√5−√5n5×2√5n+4√55=−15(n−3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3, 0).∴当△AMN面积最大时,N点坐标为(3, 0).。

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷

2018年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1. [Math Processing Error]的倒数是()A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]2. 下列计算,正确的是()A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]3. 已知直线[Math Processing Error],将一块含[Math Processing Error]角的直角三角板[Math Processing Error]按如图方式放置[Math Processing Error]=[Math Processing Error],其中[Math Processing Error],[Math Processing Error]两点分别落在直线[Math Processing Error],[Math Processing Error]上,若[Math Processing Error]=[Math Processing Error],则[Math Processing Error]的度数为()A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]4. 实数[Math Processing Error],[Math Processing Error],[Math Processing Error],[Math Processing Error]在数轴上的位置如图所示,下列关系式不正确的是()A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]5. 如图,直线[Math Processing Error]是一次函数[Math Processing Error]的图象,若点[Math Processing Error]在直线[Math Processing Error]上,则[Math Processing Error]的值是( ) A.[Math Processing Error] B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]6. 如图,将边长为[Math Processing Error]的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长[Math Processing Error]的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]7. 在平面直角坐标系中,将点[Math Processing Error]向右平移[Math Processing Error]个单位长度得到点[Math Processing Error],则点[Math Processing Error]关于[Math Processing Error]轴的对称点[Math Processing Error]的坐标为( )A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]8. 如图,[Math Processing Error]是[Math Processing Error]的直径,弦[Math Processing Error]交[Math Processing Error]于点[Math Processing Error],[Math Processing Error],[Math Processing Error],[Math Processing Error],则[Math Processing Error]的长为()A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]9. 如图是二次函数[Math Processing Error]图象的一部分,且过点[Math Processing Error],二次函数图象的对称轴是直线[Math Processing Error],下列结论正确的是( )A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]10. 如图是由[Math Processing Error]个全等的小矩形组成的大正方形,线段[Math Processing Error]的端点都在小矩形的顶点上,如果点[Math Processing Error]是某个小矩形的顶点,连接[Math Processing Error]、[Math Processing Error],那么使[Math Processing Error]为等腰直角三角形的点[Math Processing Error]的个数是()A.[Math Processing Error]个B.[Math Processing Error]个C.[Math Processing Error]个D.[Math Processing Error]个11. 如图,在矩形[Math Processing Error]中,点[Math Processing Error]是边[Math Processing Error]的中点,[Math Processing Error],垂足为[Math Processing Error],则[Math Processing Error]的值是()A.[Math Processing Error]B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]12. 如图,在[Math Processing Error]中,[Math Processing Error]=[Math Processing Error],[Math Processing Error],垂足为[Math Processing Error],[Math Processing Error]平分[Math Processing Error],交[Math Processing Error]于点[Math Processing Error],交[Math Processing Error]于点[Math Processing Error].若[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],则[Math Processing Error]的长为()A.[Math Processing Error] B.[Math Processing Error]C.[Math Processing Error]D.[Math Processing Error]二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13. 若二元一次方程组[Math Processing Error]的解为[Math Processing Error],则[Math Processing Error]=________.14. 如图,某商店营业大厅自动扶梯[Math Processing Error]的倾斜角为[Math Processing Error],[Math Processing Error]长[Math Processing Error]米,则大厅两层之间的高度为________米.(结果精确到[Math Processing Error]米,参考数据:[Math Processing Error],[Math Processing Error],[Math Processing Error])15. 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为[Math Processing Error],[Math Processing Error],[Math Processing Error],则该三角形的面积为[Math Processing Error].现已知[Math Processing Error]的三边长分别为[Math Processing Error],[Math Processing Error],[Math Processing Error],则[Math Processing Error]的面积为________.16. 如图,在正方形[Math Processing Error]中,[Math Processing Error],把边[Math Processing Error]绕点[Math Processing Error]逆时针旋转[Math Processing Error]得到线段[Math Processing Error],结接[Math Processing Error]并延长交[Math Processing Error]于点[Math Processing Error],连结[Math Processing Error],则三角形[Math Processing Error]的面积为________.17. 如图[Math Processing Error],点[Math Processing Error]从[Math Processing Error]的顶点[Math Processing Error]出发,沿[Math Processing Error][Math Processing Error]匀速运动到点[Math Processing Error],图[Math Processing Error]是点[Math Processing Error]运动时,线段[Math Processing Error]的长度[Math Processing Error]随时间[Math Processing Error]变化的关系图象,其中[Math Processing Error]为曲线部分的最低点,则[Math Processing Error]的面积是________.18. 将从[Math Processing Error]开始的连续自然数按以下规律排列:[Math Processing Error]记两函数图象的另一个交点为[Math Processing Error],求[Math Processing Error]的面积;[Math Processing Error]直接写出不等式[Math Processing Error]的解集.22. 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市[Math Processing Error]名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出[Math Processing Error],[Math Processing Error],[Math Processing Error],[Math Processing Error]的值并补全频数分布直方图;(2)本市约有[Math Processing Error]名教师,用调查的样本数据估计日行走步数超过[Math Processing Error]步(包含[Math Processing Error]步)的教师有多少名?(3)若在[Math Processing Error]名被调查的教师中,选取日行走步数超过[Math Processing Error]步(包含[Math Processing Error]步)的两名教师与大家分享心得,求被选取的两名教师恰好都在[Math Processing Error]步(包含[Math Processing Error]步)以上的概率.23. 如图,在[Math Processing Error]中,[Math Processing Error],[Math Processing Error],[Math Processing Error],以[Math Processing Error]为直径作[Math Processing Error]交[Math Processing Error]于点[Math Processing Error].[Math Processing Error]求线段[Math Processing Error]的长度;[Math Processing Error]点[Math Processing Error]是线段[Math Processing Error]上的一点,试问:当点[Math Processing Error]在什么位置时,直线[Math Processing Error]与[Math Processing Error]相切?请说明理由.24. 如图,将矩形[Math Processing Error]沿[Math Processing Error]折叠,使点[Math Processing Error]落在[Math Processing Error]边上的点[Math Processing Error]处,过点[Math Processing Error]作[Math Processing Error]交[Math Processing Error]于点[Math Processing Error],连接[Math Processing Error].(1)求证:四边形[Math Processing Error]是菱形;(2)探究线段[Math Processing Error]、[Math Processing Error]、[Math Processing Error]之间的数量关系,并说明理由;(3)若[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],求[Math Processing Error]的长.25. 如图[Math Processing Error],已知二次函数[Math Processing Error]的图象与[Math Processing Error]轴交于点[Math Processing Error],与[Math Processing Error]轴交于点[Math Processing Error]、[Math Processing Error],点[Math Processing Error]坐标为[Math Processing Error],连接[Math Processing Error]、[Math Processing Error].(1)请直接写出二次函数[Math Processing Error]的表达式;(2)判断[Math Processing Error]的形状,并说明理由;(3)若点[Math Processing Error]在[Math Processing Error]轴上运动,当以点[Math Processing Error]、[Math Processing Error]、[Math Processing Error]为顶点的三角形是等腰三角形时,请写出此时点[Math Processing Error]的坐标;(4)如图[Math Processing Error],若点[Math Processing Error]在线段[Math Processing Error]上运动(不与点[Math Processing Error]、[Math Processing Error]重合),过点[Math Processing Error]作[Math Processing Error],交[Math Processing Error]于点[Math Processing Error],当[Math Processing Error]面积最大时,求此时点[Math Processing Error]的坐标.参考答案与试题解析2018年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.【答案】A【考点】倒数【解析】根据倒数的定义,直接解答即可.【解答】[Math Processing Error]的倒数是[Math Processing Error].2.【答案】D【考点】合并同类项幂的乘方与积的乘方同底数幂的除法单项式乘单项式负整数指数幂【解析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】[Math Processing Error],[Math Processing Error]错误;[Math Processing Error],[Math Processing Error]错误;[Math Processing Error],[Math Processing Error]错误;[Math Processing Error],[Math Processing Error]正确,3.【答案】D【考点】平行线的性质【解析】根据平行线的性质即可得到结论.【解答】∵直线[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error]=[Math Processing Error]=[Math Processing Error],4.【答案】B【考点】在数轴上表示实数【解析】此题主要考查了数轴的知识.【解答】解:从[Math Processing Error]、[Math Processing Error]、[Math Processing Error]、[Math Processing Error]在数轴上的位置可知:[Math Processing Error],[Math Processing Error];[Math Processing Error].[Math Processing Error],故选项正确;[Math Processing Error].[Math Processing Error]、[Math Processing Error]异号,则[Math Processing Error],故选项错误;[Math Processing Error].[Math Processing Error],故选项正确;[Math Processing Error].[Math Processing Error],则[Math Processing Error],故选项正确.故选[Math Processing Error].5.【答案】C【考点】一次函数图象上点的坐标特点待定系数法求一次函数解析式【解析】待定系数法求出直线解析式,再将点[Math Processing Error]代入求解可得.【解答】解:将[Math Processing Error],[Math Processing Error]代入,得:[Math Processing Error],解得:[Math Processing Error],∴ [Math Processing Error],将点[Math Processing Error]代入,得:[Math Processing Error],即[Math Processing Error].故选[Math Processing Error].6.【答案】A【考点】列代数式【解析】本题考查了列代数式.【解答】解:依题意有[Math Processing Error][Math Processing Error][Math Processing Error].故这块矩形较长的边长为[Math Processing Error].故选[Math Processing Error].7.【答案】B【考点】关于x轴、y轴对称的点的坐标坐标与图形变化-平移【解析】首先根据横坐标右移加,左移减可得[Math Processing Error]点坐标,然后再根据关于[Math Processing Error]轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点[Math Processing Error]向右平移[Math Processing Error]个单位长度得到的[Math Processing Error]的坐标为[Math Processing Error],即[Math Processing Error],则点[Math Processing Error]关于[Math Processing Error]轴的对称点[Math Processing Error]的坐标是[Math Processing Error].故选[Math Processing Error].8.【答案】C【考点】含30度角的直角三角形勾股定理垂径定理【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】二次函数图象与系数的关系【解析】根据抛物线与[Math Processing Error]轴有两个交点有[Math Processing Error]可对[Math Processing Error]进行判断;由抛物线开口向上得[Math Processing Error],由抛物线与[Math Processing Error]轴的交点在[Math Processing Error]轴下方得[Math Processing Error],则可对[Math Processing Error]进行判断;根据抛物线的对称轴是[Math Processing Error]对[Math Processing Error]选项进行判断;根据抛物线的对称性得到抛物线与[Math Processing Error]轴的另一个交点为[Math Processing Error],所以[Math Processing Error],则可对[Math Processing Error]选项进行判断.【解答】解:∵抛物线与[Math Processing Error]轴有两个交点,∴ [Math Processing Error],即[Math Processing Error],所以[Math Processing Error]选项错误;∵抛物线开口向上,∴ [Math Processing Error],∵抛物线与[Math Processing Error]轴的交点在[Math Processing Error]轴下方,∴ [Math Processing Error],∴ [Math Processing Error],所以[Math Processing Error]选项错误;∵二次函数图象的对称轴是直线[Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error],所以[Math Processing Error]选项错误;∵抛物线过点[Math Processing Error],二次函数图象的对称轴是[Math Processing Error],∴抛物线与[Math Processing Error]轴的另一个交点为[Math Processing Error],∴ [Math Processing Error],所以[Math Processing Error]选项正确.故选[Math Processing Error]10.【答案】B【考点】等腰直角三角形【解析】本题考查了等腰直角三角形的判定.【解答】解:如图所示,使[Math Processing Error]为等腰直角三角形的点[Math Processing Error]的个数是[Math Processing Error]个,故选[Math Processing Error].11.【答案】A【考点】相似三角形的性质与判定解直角三角形矩形的性质【解析】证明[Math Processing Error],得出[Math Processing Error],[Math Processing Error],由矩形的对称性得:[Math Processing Error],得出[Math Processing Error],设[Math Processing Error],则[Math Processing Error],由勾股定理求出[Math Processing Error],再由三角函数定义即可得出答案.【解答】解:∵四边形[Math Processing Error]是矩形,∴ [Math Processing Error],[Math Processing Error],∵点[Math Processing Error]是边[Math Processing Error]的中点,∴ [Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error].∵点[Math Processing Error]是边[Math Processing Error]的中点,∴由矩形的对称性得:[Math Processing Error],∴ [Math Processing Error].设[Math Processing Error],则[Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error].故选[Math Processing Error].12.【答案】A【考点】角平分线的性质勾股定理【解析】根据三角形的内角和定理得出[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],根据角平分线和对顶角相等得出[Math Processing Error]=[Math Processing Error],即可得出[Math Processing Error]=[Math Processing Error],再利用相似三角形的判定与性质得出答案.【解答】过点[Math Processing Error]作[Math Processing Error]于点[Math Processing Error],∵ [Math Processing Error]=[Math Processing Error],[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∵ [Math Processing Error]平分[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error],∵ [Math Processing Error]平分[Math Processing Error],[Math Processing Error]=[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error],∵ [Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error],∵ [Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error],∴ [Math Processing Error],∵ [Math Processing Error]=[Math Processing Error],∴ [Math Processing Error],解得:[Math Processing Error],即[Math Processing Error]的长为[Math Processing Error].二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.【答案】[Math Processing Error]【考点】二元一次方程组的解【解析】把[Math Processing Error]、[Math Processing Error]的值代入方程组,再将两式相加即可求出[Math Processing Error]的值.【解答】将[Math Processing Error]代入方程组[Math Processing Error],得:[Math Processing Error],①+②,得:[Math Processing Error]=[Math Processing Error],则[Math Processing Error],14.【答案】[Math Processing Error]【考点】解直角三角形的应用-坡度坡角问题【解析】根据题意和锐角三角函数可以求得[Math Processing Error]的长,从而可以解答本题.【解答】解:在[Math Processing Error]中,∵ [Math Processing Error],∴ [Math Processing Error](米).故大厅两层之间的距离[Math Processing Error]的长约为[Math Processing Error]米.故答案为:[Math Processing Error].15.【答案】[Math Processing Error]【考点】二次根式的应用【解析】根据题目中的面积公式可以求得[Math Processing Error]的三边长分别为[Math Processing Error],[Math Processing Error],[Math Processing Error]的面积,从而可以解答本题.【解答】∵ [Math Processing Error],∴ [Math Processing Error]的三边长分别为[Math Processing Error],[Math Processing Error],[Math Processing Error],则[Math Processing Error]的面积为:[Math Processing Error],16.【答案】[Math Processing Error]【考点】正方形的性质旋转的性质【解析】此题暂无解析【解答】解:∵四边形[Math Processing Error]是正方形,∴ [Math Processing Error],∵把边[Math Processing Error]绕点[Math Processing Error]逆时针旋转[Math Processing Error]得到线段[Math Processing Error],∴ [Math Processing Error],[Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error]是等边三角形,∴ [Math Processing Error],[Math Processing Error],∵ [Math Processing Error],∴ [Math Processing Error],[Math Processing Error],∴ [Math Processing Error],[Math Processing Error],过[Math Processing Error]作[Math Processing Error]于[Math Processing Error],∴ [Math Processing Error],∴三角形[Math Processing Error]的面积[Math Processing Error].故答案为:[Math Processing Error].17.【答案】[Math Processing Error]【考点】函数的图象动点问题的解决方法【解析】根据图象可知点[Math Processing Error]在[Math Processing Error]上运动时,此时[Math Processing Error]不断增大,而从[Math Processing Error]向[Math Processing Error]运动时,[Math Processing Error]先变小后变大,从而可求出[Math Processing Error]与[Math Processing Error]的长度.【解答】解:根据图象可知点[Math Processing Error]在[Math Processing Error]上运动时,此时[Math Processing Error]不断增大,由图象可知:点[Math Processing Error]从[Math Processing Error]向[Math Processing Error]运动时,[Math Processing Error]的最大值为[Math Processing Error],即[Math Processing Error][Math Processing Error],由于[Math Processing Error]是曲线部分的最低点,∴此时[Math Processing Error]最小,即[Math Processing Error],[Math Processing Error][Math Processing Error],∴由勾股定理可知:[Math Processing Error][Math Processing Error],由于图象的曲线部分是轴对称图形,∴ [Math Processing Error][Math Processing Error],∴ [Math Processing Error][Math Processing Error],∴ [Math Processing Error]的面积为:[Math Processing Error][Math Processing Error].故答案为:[Math Processing Error].18.【答案】[Math Processing Error] 【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】通过观察可得第[Math Processing Error]行最大一个数为[Math Processing Error],由此估算[Math Processing Error]所在的行数,进一步推算得出答案即可.【解答】∵ [Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]在第[Math Processing Error]行.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.【答案】原式[Math Processing Error][Math Processing Error].【考点】实数的运算负整数指数幂特殊角的三角函数值【解析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】原式[Math Processing Error][Math Processing Error].20.【答案】如图所示,[Math Processing Error]为所求作如图所示,[Math Processing Error]为所求作如图所示[Math Processing Error]为所求作【考点】作图-位似变换作图-轴对称变换作图-相似变换作图-旋转变换【解析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】如图所示,[Math Processing Error]为所求作如图所示,[Math Processing Error]为所求作如图所示[Math Processing Error]为所求作21.【答案】解:[Math Processing Error]由已知,[Math Processing Error],[Math Processing Error],[Math Processing Error],∵ [Math Processing Error]轴,∴ [Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error],即[Math Processing Error],解得[Math Processing Error],∴点[Math Processing Error]坐标为[Math Processing Error].∴ [Math Processing Error],∴反比例函数解析式为[Math Processing Error].把点[Math Processing Error],[Math Processing Error]代入[Math Processing Error],得[Math Processing Error]解得[Math Processing Error]∴一次函数解析式为[Math Processing Error].[Math Processing Error]当[Math Processing Error]时,解得[Math Processing Error],[Math Processing Error],当[Math Processing Error]时,[Math Processing Error],∴点[Math Processing Error]坐标为[Math Processing Error],∴ [Math Processing Error][Math Processing Error].[Math Processing Error]不等式[Math Processing Error],从函数图象上看,表示一次函数图象不高于反比例函数图象,∴由图象得,[Math Processing Error]或[Math Processing Error].【考点】反比例函数与一次函数的综合待定系数法求一次函数解析式三角形的面积待定系数法求反比例函数解析式【解析】[Math Processing Error]根据三角形相似,可求出点[Math Processing Error]坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:[Math Processing Error]由已知,[Math Processing Error],[Math Processing Error],[Math Processing Error],∵ [Math Processing Error]轴,∴ [Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error],即[Math Processing Error],解得[Math Processing Error],∴点[Math Processing Error]坐标为[Math Processing Error].∴ [Math Processing Error],∴反比例函数解析式为[Math Processing Error].把点[Math Processing Error],[Math Processing Error]代入[Math Processing Error],得[Math Processing Error]解得[Math Processing Error]∴一次函数解析式为[Math Processing Error].[Math Processing Error]当[Math Processing Error]时,解得[Math Processing Error],[Math Processing Error],当[Math Processing Error]时,[Math Processing Error],∴点[Math Processing Error]坐标为[Math Processing Error],∴ [Math Processing Error][Math Processing Error].[Math Processing Error]不等式[Math Processing Error],从函数图象上看,表示一次函数图象不高于反比例函数图象,∴由图象得,[Math Processing Error]或[Math Processing Error].22.【答案】[Math Processing Error],[Math Processing Error],[Math Processing Error],[Math Processing Error],补全频数分布直方图如下:[Math Processing Error],答:估计日行走步数超过[Math Processing Error]步(包含[Math Processing Error]步)的教师有[Math Processing Error]名;设[Math Processing Error]的[Math Processing Error]名教师分别为[Math Processing Error]、[Math Processing Error]、[Math Processing Error],[Math Processing Error]的[Math Processing Error]名教师分别为[Math Processing Error]、[Math Processing Error],画树状图如下:由树状图可知,被选取的两名教师恰好都在[Math Processing Error]步(包含[Math Processing Error]步)以上的概率为[Math Processing Error].【考点】列表法与树状图法频数(率)分布直方图频数(率)分布表用样本估计总体【解析】(1)根据频率[Math Processing Error]频数[Math Processing Error]总数可得答案;(2)用样本中超过[Math Processing Error]步(包含[Math Processing Error]步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】[Math Processing Error],[Math Processing Error],[Math Processing Error],[Math Processing Error],补全频数分布直方图如下:[Math Processing Error],答:估计日行走步数超过[Math Processing Error]步(包含[Math Processing Error]步)的教师有[Math Processing Error]名;设[Math Processing Error]的[Math Processing Error]名教师分别为[Math Processing Error]、[Math Processing Error]、[Math Processing Error],[Math Processing Error]的[Math Processing Error]名教师分别为[Math Processing Error]、[Math Processing Error],画树状图如下:由树状图可知,被选取的两名教师恰好都在[Math Processing Error]步(包含[Math Processing Error]步)以上的概率为[Math Processing Error].23.【答案】解:[Math Processing Error]在[Math Processing Error]中,∵ [Math Processing Error],[Math Processing Error],[Math Processing Error],∴ [Math Processing Error],连接[Math Processing Error],∵ [Math Processing Error]为直径,∴ [Math Processing Error],∵ [Math Processing Error],[Math Processing Error],∴ [Math Processing Error];∴ [Math Processing Error],∴ [Math Processing Error];[Math Processing Error]当点[Math Processing Error]是[Math Processing Error]的中点时,[Math Processing Error]与[Math Processing Error]相切;证明:连接[Math Processing Error],∵ [Math Processing Error]是[Math Processing Error]的中线;∴ [Math Processing Error],∴ [Math Processing Error];∵ [Math Processing Error],∴ [Math Processing Error];∴ [Math Processing Error][Math Processing Error][Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error]与[Math Processing Error]相切.【考点】相似三角形的性质与判定圆周角定理切线的判定直角三角形斜边上的中线【解析】(1)由勾股定理易求得[Math Processing Error]的长;可连接[Math Processing Error],由圆周角定理知[Math Processing Error],易知[Math Processing Error],可得关于[Math Processing Error]、[Math Processing Error]、[Math Processing Error]的比例关系式,即可求出[Math Processing Error]的长.(2)当[Math Processing Error]与[Math Processing Error]相切时,由切线长定理知[Math Processing Error],则[Math Processing Error],那么[Math Processing Error]和[Math Processing Error]就是等角的余角,由此可证得[Math Processing Error],即[Math Processing Error]是[Math Processing Error]的中点.在证明时,可连接[Math Processing Error],证[Math Processing Error]即可.【解答】解:[Math Processing Error]在[Math Processing Error]中,∵ [Math Processing Error],[Math Processing Error],[Math Processing Error],∴ [Math Processing Error],连接[Math Processing Error],∵ [Math Processing Error]为直径,∴ [Math Processing Error],∵ [Math Processing Error],[Math Processing Error],∴ [Math Processing Error];∴ [Math Processing Error],∴ [Math Processing Error];[Math Processing Error]当点[Math Processing Error]是[Math Processing Error]的中点时,[Math Processing Error]与[Math Processing Error]相切;证明:连接[Math Processing Error],∵ [Math Processing Error]是[Math Processing Error]的中线;∴ [Math Processing Error],∴ [Math Processing Error];∵ [Math Processing Error],∴ [Math Processing Error];∴ [Math Processing Error][Math Processing Error][Math Processing Error],∴ [Math Processing Error],∴ [Math Processing Error]与[Math Processing Error]相切.24.【答案】证明:∵ [Math Processing Error],∴ [Math Processing Error]=[Math Processing Error].∵由翻折的性质可知:[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error].∴ [Math Processing Error]=[Math Processing Error].∴ [Math Processing Error]=[Math Processing Error]=[Math Processing Error]=[Math Processing Error].∴四边形[Math Processing Error]为菱形.[Math Processing Error].理由:如图[Math Processing Error]所示:连接[Math Processing Error],交[Math Processing Error]于点[Math Processing Error].∵四边形[Math Processing Error]为菱形,∴ [Math Processing Error],[Math Processing Error]=[Math Processing Error].∵ [Math Processing Error]=[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error].∴ [Math Processing Error],即[Math Processing Error]=[Math Processing Error].∵ [Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error].如图[Math Processing Error]所示:过点[Math Processing Error]作[Math Processing Error],垂足为[Math Processing Error].∵ [Math Processing Error],[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error],整理得:[Math Processing Error]=[Math Processing Error].解得:[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error](舍去).∵ [Math Processing Error]=[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error].∵ [Math Processing Error],[Math Processing Error],∴ [Math Processing Error].∴ [Math Processing Error].∴ [Math Processing Error],即[Math Processing Error].∴ [Math Processing Error].∴ [Math Processing Error]=[Math Processing Error]=[Math Processing Error].【考点】四边形综合题【解析】(1)先依据翻折的性质和平行线的性质证明[Math Processing Error]=[Math Processing Error],从而得到[Math Processing Error]=[Math Processing Error],接下来依据翻折的性质可证明[Math Processing Error]=[MathProcessing Error]=[Math Processing Error]=[Math Processing Error];(2)连接[Math Processing Error],交[Math Processing Error]于点[Math Processing Error].由菱形的性质可知[Math Processing Error],[Math Processing Error]=[Math Processing Error],接下来,证明[Math Processing Error],由相似三角形的性质可证明[Math Processing Error]=[Math Processing Error],于是可得到[Math Processing Error]、[Math Processing Error]、[Math Processing Error]的数量关系;(3)过点[Math Processing Error]作[Math Processing Error],垂足为[Math Processing Error].利用(2)的结论可求得[Math Processing Error]=[Math Processing Error],然后再[Math Processing Error]中依据勾股定理可求得[Math Processing Error]的长,然后再证明[Math Processing Error],利用相似三角形的性质可求得[Math Processing Error]的长,最后依据[Math Processing Error]=[Math Processing Error]求解即可.【解答】证明:∵ [Math Processing Error],∴ [Math Processing Error]=[Math Processing Error].∵由翻折的性质可知:[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error]=[Math Processing Error].∴ [Math Processing Error]=[Math Processing Error].∴ [Math Processing Error]=[Math Processing Error]=[Math Processing Error]=[Math Processing Error].∴四边形[Math Processing Error]为菱形.[Math Processing Error].理由:如图[Math Processing Error]所示:连接[Math Processing Error],交[Math Processing Error]于点[Math Processing Error].∵四边形[Math Processing Error]为菱形,∴ [Math Processing Error],[Math Processing Error]=[Math Processing Error].∵ [Math Processing Error]=[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error].∴ [Math Processing Error],即[Math Processing Error]=[Math Processing Error].∵ [Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error].如图[Math Processing Error]所示:过点[Math Processing Error]作[Math Processing Error],垂足为[Math Processing Error].∵ [Math Processing Error],[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error],整理得:[Math Processing Error]=[Math Processing Error].解得:[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error](舍去).∵ [Math Processing Error]=[Math Processing Error]=[Math Processing Error],[Math Processing Error]=[Math Processing Error],∴ [Math Processing Error].∵ [Math Processing Error],[Math Processing Error],∴ [Math Processing Error].∴ [Math Processing Error].∴ [Math Processing Error],即[Math Processing Error].∴ [Math Processing Error].∴ [Math Processing Error]=[Math Processing Error]=[Math Processing Error].25.【答案】∵二次函数[Math Processing Error]的图象与[Math Processing Error]轴交于点[Math Processing Error],与[Math Processing Error]轴交于点[Math Processing Error]、[Math Processing Error],点[Math Processing Error]坐标为[Math Processing Error],∴ [Math Processing Error],解得[Math Processing Error].∴抛物线表达式:[Math Processing Error];[Math Processing Error]是直角三角形.令[Math Processing Error],则[Math Processing Error],解得[Math Processing Error],[Math Processing Error],∴点[Math Processing Error]的坐标为[Math Processing Error],由已知可得,在[Math Processing Error]中[Math Processing Error],在[Math Processing Error]中[Math Processing Error],又∵ [Math Processing Error],∴在[Math Processing Error]中[Math Processing Error]∴ [Math Processing Error]是直角三角形.∵ [Math Processing Error],[Math Processing Error],∴ [Math Processing Error],①以[Math Processing Error]为圆心,以[Math Processing Error]长为半径作圆,交[Math Processing Error]轴于[Math Processing Error],此时[Math Processing Error]的坐标为[Math Processing Error],②以[Math Processing Error]为圆心,以[Math Processing Error]长为半径作圆,交[Math Processing Error]轴于[Math Processing Error],此时[Math Processing Error]的坐标为[Math Processing Error]或[Math Processing Error] ③作[Math Processing Error]的垂直平分线,交[Math Processing Error]轴于[Math Processing Error],此时[Math Processing Error]的坐标为[Math Processing Error],综上,若点[Math Processing Error]在[Math Processing Error]轴上运动,当以点[Math Processing Error]、[Math Processing Error]、[Math Processing Error]为顶点的三角形是等腰三角形时,点[Math Processing Error]的坐标分别为[Math Processing Error]、[Math Processing Error]、[Math Processing Error]、[Math Processing Error].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省枣庄市2018年中考数学试题
2018年山东省枣庄市中考数学试题 一、选择题:
1.2
1-
的倒数是( ) A .2- B .21- C .2 D .21 2.下列计算中,正确的是( )
A .1055a a a =+
B .213a a
a =÷- C .4222a a a =⋅ D .632)(a a -=-
3.已知直线n m //,将一块含030角的直角三角板ABC 按如图方式放置(0
30=∠ABC ),其中B A ,两点分别落在直线n m ,上,若0201=∠,则2∠的度数为( )
A .020
B .030
C .045
D .0
50
4.实数d c b a ,,,在数轴上的位置如图所示,下列关系式不正确的是( )
A. ||||b a >
B. ac ac =||
C. d b <
D. 0>+d c
5.如图,直线l 是一次函数b kx y +=的图象,如果点),3(m A 在直线l 上,则m 的值为( )
A .5-
B .23
C .25
D .7 6.如图,将边长为a 3的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为b 2的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )
A .b a 23+
B .b a 43+
C .b a 26+
D .b a 46+
7.在平面直角坐标系中,将点)2,1(--A 向右平移3个单位长度得到点B ,则点B 关于x 轴对称点'B 的坐标为( )
A .)2,3(--
B .)2,2(
C .)2,2(-
D .)2,2(-
8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,6,2==BP AP ,030=∠APC ,则CD 的长为( )
A .15
B .52
C .152
D .8
9.如图是二次函数c bx ax y ++=2
图象的一部分,且过点)0,3(A ,二次函数图象的对称轴是直线1=x ,下列结论正确的是( )
A .ac b 42<
B .0>ac
C .02=-b a
D .0=+-c b a
10.如图是由8个全等的小矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PB PA ,,那么使ABP ∆为等腰三角形的点P 的个数是( )
A . 2个
B . 3个
C .4个
D .5个
11.如图,在矩形ABCD 中,点E 是边BC 的中点,BD AE ⊥,垂足为F ,则B D E ∠t a
n 的值为( )
A .42
B .41
C .31
D .3
2 12.如图,在ABC Rt ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,AF 平分CAB ∠,交
CD 于点E ,交CB 于点F .若5,3==AB AC ,则CE 的长为( )
A .23
B .34
C .35
D .5
8 二、填空题
13.若二元一次方程组⎩⎨⎧=-=+4
533y x y x 的解为⎩⎨⎧==b y a x ,则=-b a .
14.如图,某商店营业大厅自动扶梯AB 的倾斜角为0
31,AB 的长为12米,则大厅两层之间的高度为 米.(结果保留两个有效数字)
【参考数据:601.031sin ,857.031cos ,515.031sin 000===】
15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为c b a ,,,则该三角形的面积为
)]2
([412
2222c b a b a S -+-= 已知ABC ∆的三边长分别为1,2,5,则ABC ∆的面积为 .
16.如图,在正方形ABCD 中,32=AD ,把边BC 绕点B 逆时针旋转0
30得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为 .
17.如图1,点P 从ABC ∆的顶点B 出发,沿A C B →→匀速运动到点A .图2是点P 运动时,线段BP 长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是 .
18.将从1开始的连续自然数按如下规律排列:
则2018在第 行.
三、解答题
19.计算:2
202)211(2760sin |23|-+---+-.
20.如图,在44⨯的方格纸中,ABC ∆的三个顶点都在格点上.
(1)在图1中,画出一个与ABC ∆成中心对称的格点三角形;
(2)在图2中,画出一个与ABC ∆成轴对称且与ABC ∆有公共边的格点三角形;
(3)在图3中,画出ABC ∆绕点C 按顺时针方向旋转090后的三角形.
21.如图,一次函数b kx y +=(b k ,为常数,0≠k )的图象与x 轴、y 轴分别交于B A ,两点,且与反比例函数x
n y =(n 为常数,且0≠n )的图象在第二象限交于点C ,⊥CD x 轴,垂足为D ,若1232===OD OA OB .
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E ,求CDE ∆的面积;
(3)直接写出不等式x
n b kx ≤+的解集.
22.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
根据以上信息,解答下列问题:
(1)写出d c b a ,,,的值,并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
23.如图,在Rt ACB ∆中,090=∠C ,cm BC cm AC 4,3==,以BC 为直径作⊙O 交AB
于点D .
(1)求线段AD 的长度;
(2)点F 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.
24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边上的点E 处,过点E 作CD EG //交AF 于点G ,连接DG .
(1)求证:四边形EFDG 是菱形;
(2)探究线段AF GF EG ,,之间的数量关系,并说明理由;
(3)若52,6==BG AG ,求BE 的长.
25.如图,已知二次函数)0(2
32≠++=a c x ax y 的图象与y 轴交于点)4,0(A ,与x 轴交于点C B ,,点C 坐标为)0,8(,连接AC AB ,.
(1)请直接写出二次函数c x ax y ++=2
32的表达式; (2)判断ABC ∆的形状,并说明理由;
(3)若点N 在x 轴上运动,当以点C N A ,,为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;
(4)如图2,若点N 在线段BC 上运动(不与点C B ,重合),过点N 作AC NM //,交AB 于点M ,当AMN ∆面积最大时,求此时点N 的坐标.。

相关文档
最新文档