浙教版八年级数学上期末检测题有答案 (优质精编)

合集下载

(精练)浙教版八年级上册数学期末测试卷及含答案学生专用

(精练)浙教版八年级上册数学期末测试卷及含答案学生专用

浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、等腰三角形底边长为6,周长为16,则三角形的面积为()A.30B.25C.24D.122、如图,已知BD平分∠ABC,则不一定能使△ABD≌△CBD的条件是()A.∠A=∠CB.∠ADB=∠CDBC.AB=CBD.AD=CD3、点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)4、如图,△ABC中,∠C=90°,∠A=30°.分别以顶点A、B为圆心,大于AB 为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.下列结论中,错误的是()A.直线AB是线段MN的垂直平分线B.CD= ADC.BD平分∠ABC D.S△APD =S△BCD5、如图,在一笔直的海岸线上有两个测点,,从处测得船在北偏东的方向,从处得船在北偏东的方向,则船离海岸线的距离北的长为()A. B. C. D.6、在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位,再向下平移3个单位得到点A1;点A1关于y轴与A2对称,则A2的坐标为()A.(2,﹣1)B.(1,2)C.(﹣1,2)D.(﹣2,1)7、若,则下列不等式成立的是( )A. B. C. D.8、如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23B.24C.25D.无答案9、在△ABC中,AB=3,AC=5,第三边BC的取值范围是()A.10<BC<1B.4<BC<12C.3<BC<8D.2<BC<810、如图,在Rt 中,,为中线,延长至点E,使,连结,F为中点,连结.若,,则的长为()A.2B.2.5C.3D.411、下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A. B. C.D.12、已知y与x成正比例,z与y成反比例,则z与x之间的关系为()A.成正比例B.成反比例C.既成正比例又成反比例D.既不成正比例也不成反比例13、如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9 cmB.8 cmC.7cmD.6cm14、在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有()A.6个B.5个C.4个D.3个15、已知关于,的方程组,其中,给出下列结论:①是方程组的解;②当时,,的值互为相反数;③当时,方程组的解也是方程的解;④若,则.其中正确的是( )A.①②B.②③C.②③④D.①③④二、填空题(共10题,共计30分)16、如图,已知AB=A1B1, A1C=A1A2, A2D=A2A3, A3E=A3A4,…,以此类推,若∠B=36°,则∠A4=________.17、关于x的不等式组的解集为1<x<3,则a的值为________ .18、如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为________.19、如图,在△ABC中,AB的中垂线交BC于D,AC的中垂线交BC于E,若∠BAC=126°,则∠EAD=________°20、在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为________.21、若a>b,则﹣3a ________﹣3b.22、如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是________.23、在中,,点D在边上,且,则的度数为________24、如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为________.25、若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k ﹣1)x+k的图象不经过第________象限.三、解答题(共5题,共计25分)26、解不等式组:27、一个零件的形状如图,按规定∠A= 90°,∠B、∠C 分别是 32°和21°.某检验工人量得∠BDC= 148°,就断定这个零件不合格,试用三角形的有关知识说明零件不合格的理由.28、已知:已知函数y = y1 +y2, y1与x成正比例,y2与x成反比例,且当x= 1时,y =-1;当x = 3时,y = 5.求y关于x的函数关系式.29、如图,已知△ABC中,∠ACB=90°,AC=CB,点D在BC边上,过点C作AD的垂线与过B点垂直BC的直线交于点E.求证:CD=BE.30、如图,AB//CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.请说明直线AD//BC的理由.参考答案一、单选题(共15题,共计45分)1、D2、D4、A5、B6、C7、B8、C9、D10、B11、C12、B13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

浙教版八年级上学期期末考试数学试题(有答案)浙教版 -精编

浙教版八年级上学期期末考试数学试题(有答案)浙教版 -精编

A2017年第一学期八年级数学期末试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,下列各点在第一象限的是( ▲ ) A.(1,2) B.(1,-2) C.(-1,-2) D.(-1,2)2.下列语句是命题的是( ▲ )A.延长线段ABB.过点A 作直线a 的垂线C.对顶角相等D.x 与y 相等吗? 3.下列不等式对任何实数x 都成立的是( ▲ ) A.x+1>0 B.x 2+1>0 C.x 2+1<0 D.∣x ∣+1<04.若一个三角形三边a,b,c 满足(a+b)2=c 2+2ab,则这个三角形是( ▲ ) A. 等边三角形 B.钝角三角形 C.等腰直角三角形 D. 直角三角形5.平面直角坐标系内有点A(-2,3), B(4,3), 则A,B 相距( ▲ )A.4个单位长度B.5个单位长度C.6个单位长度D.10个单位长度 6.下列条件中不能判定三角形全等的是( ▲ )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D. 三个角对应相等 7.不等式-2x+6>0的正整数解有( ▲ ) A.无数个 B.0个 C.1个 D.2个8.如图,△ABC 中,AB=AC.将△ABC 沿AC 方向平移到△DEF 位置,点D在AC 上,连结BF.若AD=4,BF=8,∠ABF=90°,则AB 的长是( ▲ ) A.5 B.6 C.7 D.89.平面直角坐标系中,将直线l 向右平移1个单位长度得到的直线解析式是y=2x+2,则原的直线解析式是( ▲ )A.y=3x+2B. y=2x+4C. y=2x+1D. y=2x+3 10.如图,△ABC 中,∠A=67.5°,BC=4,BE ⊥CA 于E,CF ⊥AB于F,D 是BC 的中点.以F 为原点,FD 所在直线为x 轴构造平面BACB CAD直角坐标系,则点E 的横坐标是(▲ )D.12二、填空题(每小题3分,共24分)11.函数y=中,自变量x 的取值范围是___▲_____12.如图,△ABC 中,AB=AC,∠B=70°,则∠A=___▲___13.点A(2,3)关于x 轴的对称点是___▲___14.若4,5,x 是一个三角形的三边,则x 的值可能是___▲___ (填写一个即可)15.如图,△ABC 中,∠C=90°,点D 是BC 上一点,连结AD. 若CD=3, ∠B=40°,∠CAD=25°,则点D 到AB 的距离为___▲___16.若不等式组4{x x m <<的解集是x<4,则m 的取值范围是___▲___17.如图,直线y=-2x+2与x 轴交于A 点,与y 轴交于B 点. 过点B 作直线BP 与x 轴交于P 点,若△ABP 的面积是3, 则P 点的坐标是___▲___18.如图,△ABC 中, ∠A=15°,AB 是定长.点D,E 分别在AB,AC 上运动, 连结BE,ED.若BE+ED 的最小值是2, 则AB 的长是___▲___BCAD三、解答题(共46分)19. (8分) 解下列不等式(组),并把解集在数轴上表示出.(1) 5122x x -≤ (2) 122(2)0{x x -+<-≤20. (8分) 平面直角坐标系中, △ABC 的三个顶点坐标分别为A(3,4), B(2,0), C(-1,2).(1)在图中画出△ABC;(2)将△ABC 向下平移4个单位得到△DEF(点A,B,C 分别对应点D,E,F),在图中画出△DEF, 并求EF 的长.21. (6分) 如图,已知在△ABC 与△ADC 中, AB=AD(1)若∠B=∠D=90°,求证 △ABC ≌△ADC; (2)若∠B=∠D ≠90°,求证BC=DC.CB22. (6分)随着人民生活水平的提高,越越多的家庭采取分户式采暖,降低采暖用气价格的呼声强烈.某市物价局对市区居民管道天然气阶梯价格制度的规定作出了调整,调整后的付款金额y(单位元)与年用气量(单位m 3)之间的函数关系如图所示21 (1)宸宸家年用气量是270m 3,求付款金额.(2)皓皓家去年的付款金额是1300元,求去年的用气量.23. (8分)自2009年起,每年的11月11日是Tmall 一年一度全场大促销的日子.某服饰店对某商品推出促销活动双十一当天,买两件等值的商品可在每件原价减50元的基础上,再打八折;如果单买,则按原价购买.(1)妮妮看中两件原价都是300元的此类商品, 则在双十一当天,购买这两件商品总共需要多少钱?(2)熊熊购买了两件等值的此类商品后, 发现比两件一起按原价六折购买便宜. 若这两件等值商品的价格都是大于196的整数, 则原价可能是多少元?24. (10分)△ABC 和△ADE 都是等腰直角三角形, ∠BAC=∠DAE=90°.(1)如图1,点D,E 在AB,AC 上,则BD,CE 满足怎样的数量关系和位置关系?(直接写出答案)BB图1(2)如图2,点D 在△ABC 内部, 点E 在△ABC 外部,连结BD, CE, 则BD,CE 满足怎样的数量关系和位置关系?请说明理由.图2(3)如图3,点D,E 都在△ABC 外部,连结BD, CE,CD, EB,BD, 与CE 相交于H 点.①若求四边形BCDE 的面积;②若AB=3,AD=2,设CD 2=x,EB 2=y,求y 与x之间的函数关系式.图32017年第一学期八年级数学期末试卷参考答案一. 选择题(每小题3分,共30分)二.填空题(每小题3分,共24分)11. x ≥1 12. 40° 13. (2,-3) 14. (x 满足1<x<9即可) 15. 3 16. m ≥4 17. (4,0),(-2,0) 18. 4三.解答题(共46分)19(1) 5x-1≤4x -----------------1分x ≤1 -----------------1分 x ≤1 -----------------1分 -----------------1分(2) 由第一个不等式得 x>-1 -----------------1分由第二个不等式得 x ≤2 -----------------1分 不等式组的解集是 -1<x ≤2 -----------------1分 -----------------1分20.-----------------3分-----------------3分分 21(1) ∵AB=AD∠B=∠D=90°AC=AC -----------------1分 ∴△ABC ≌△ADC(HL) -----------------1分(2) 连结BD. -----------------1分 ∵AB=AD∴∠ADB=∠ABD -----------------1分 ∵∠ABC=∠ADC∴∠CBD=∠CDB -----------------1分 ∴BC=DC -----------------1分22(1) 当0300x ≤≤时y=3x -----------------2分当x=270时,y=810 -----------------1分CB(2) 当9002100y ≤≤时y=4x-300 -----------------2分当y=1300时,x=400 -----------------1分23(1) 2(300-50)×0.8=400 -----------------3分(2) 设原价为x 元. -----------------1分1960.8(2100)1.2{x x x>-< -----------------2分196<x<200 -----------------1分答原价可能是197,198,199元. -----------------1分24(1) BD=CE -----------------1分BD ⊥CE -----------------1分(2) ∵△ABC 和△ADE 都是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=90°∵∠BAD=∠BAC-∠DAC, ∠CAE=∠DAE-∠DAC∴∠BAD=∠-----------------1分∴△ABD ≌△ACE∴BD=CE -----------------1分延长BD,分别交AC,CE 于F,G. BD=CE -----------------1分∵△ABD ≌△ACE ∴∠ABD=∠ACE ∵∠AFB=∠GFC∴∠CGF=∠BAF=90°, BD ⊥CE ----------------1分(3) ∵△ABC 和△ADE 都是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠DAE=90°∵∠BAD=∠BAC+∠DAC, ∠CAE=∠DAE+∠DAC,∴∠BAD=∠CAE∴△ABD ≌△ACE∴BD=CE ∠ABD=∠ACE ∵∠1=∠2∴∠BHC=∠BAC=90° ∴S 四边形BCDE =S △BCE +S △DCE=1122CE BH CE DH ⨯+⨯= 12CE BD ⨯=192 -----------------2分 ∵∠BHC=90°∴CD 2+EB 2=CH 2+HD 2+EH 2+HB 2=CH 2+HB 2+EH 2+HD 2=BC 2+DE 2 =(2+(2=26∴y=26-x -----------------2分 -。

最新浙教版八年级上册数学期末试检测卷(附解析)

最新浙教版八年级上册数学期末试检测卷(附解析)

最新浙教版八年级上册数学期末试检测卷(附解析)最新浙教版八年级上册数学期末试卷(附解析)一、选择题(共30分,每小题3分)1.(3分)点P(1,3)向下平移2个单位后的坐标是()A.(1,2)B.(1,1)C.(1,5)D.(1,0)2.(3分)不等式x-1>0的解在数轴上表示为()A.(1,∞) B.(-∞,1) C.(1,∞) D.(-∞,1)3.(3分)以a,b,c为边的三角形是直角三角形的是()A.a=2,b=3,c=4 B.a=4,b=5,c=6 C.a=2,b=2,c=2√2 D.a=3,b=4,c=54.(3分)对于命题“若a^2=b^2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3 B.a=-3,b=-3 C.a=3,b=-3 D.a=-3,b=35.(3分)若x+aay,则()A.x0 B.x>y,ay,a>06.(3分)已知y=kx+k的图象与y=x的图象平行,则y=kx的大致图象为()A. B. C. D.7.(3分)如图,若△ABC的周长为20,则AB的长可能为()A.8 B.10 C.12 D.148.(3分)如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.8 C.6 D.49.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44 B.43 C.42 D.4110.(3分)关于函数y=(k-3)x+k,给出下列结论:①此函数是一次函数。

②无论k取什么值,函数图象必经过点(-1,3)。

③若图象经过二、三、四象限,则k的取值范围是k<3。

④若函数图象与x轴的交点始终在正半轴可得k<3.其中正确的是()A.①② B.②③ C.③④ D.①③二、填空题(共24分,每小题4分)11.(4分)若函数y=2x+b(b为常数)的图象经过点A (-1,-2),则b=-4.12.(4分)若不等式组的解集是-1<x<2,则a=-1.13.(4分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为72°。

2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)

2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)

2022-2023年浙教版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°2.若点P的坐标是(1,-2),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为( )A.30° B.20° C.10° D.40°4.如图,AB=AC,BD=1,BD⊥AD,则数轴上点C所表示的数为( )A.5+1 B.-5-1 C.-5+1 D.5-15.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( ) A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.不等式4x -1>2x +1的解集在数轴上表示为( )7.将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是( )A .x >4B .x >-4C .x >2D .x >-28.在等腰三角形中,有一个角是70°,则它的一条腰上的高与底边的夹角是( )A .35°B .40°或30°C .35°或20°D .70°9.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象的是( )10.如图,在平面直角坐标系中有一点A (1,0),点A 第一次向左跳动至A 1(-1,1),第二次向右跳动至A 2(2,1),第三次向左跳动至A 3(-2,2),第四次向右跳动至A 4(3,2),…,依照此规律跳下去,点A 第100次跳动至A 100,则A 100的坐标为( )A .(50,49)B .(51,50)C .(-50,49)D .(100,99) 二、填空题(每题3分,共24分)11.把命题“等腰直角三角形是轴对称图形”的逆命题改写成“如果……那么……”的形式是_______________________________________________________. 12.一次函数y =2x -6的图象与x 轴的交点坐标为________.13.在平面直角坐标系中,已知点O (0,0),A (1,3),将线段OA 向右平移3个单位,得到线段O 1A 1,则点O 1的坐标是________,A 1的坐标是________. 14.如图是一副三角板拼成的图案,则∠CEB =________°.15.如果不等式(m +1)x <m +1的解集是x >1,那么m 的取值范围是________. 16.在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,那么(m +n )2 019=________.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是________.18.如图,在直角坐标系中,一次函数y =34x +6的图象与两坐标轴分别交于A ,B 两点,OC ⊥AB ,垂足为点C ,在直线AB 上有一点P ,y 轴的正半轴上有一点Q ,使得以O ,P ,Q 为顶点的三角形与△OCP 全等,请写出所有符合条件的点Q 的坐标:__________________.三、解答题(19题6分,20,21题每题8分,22,23题每题10分,24,25题每题12分,共66分)19.解下列不等式(组),并把解集在数轴上表示出来.(1)4x -13-x >1; (2)⎩⎪⎨⎪⎧1+x >-2,2x -13≤1.20.已知一次函数y=ax+c与y=kx+b的图象如图,且点B的坐标为(-1,0),请你确定这两个一次函数的表达式.21.如图,在Rt△ABC中,∠C=90°.(1)请在线段BC上找一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,请求出CD的长度.22.如图,在△ABC中,D在AB上,E在AC的延长线上,连结DE交BC于P,BD=CE,DP =EP.求证:AB=AC.23.在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格中建立平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)求出△A′B′C′的面积.24.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图①所示,樱桃价格z(元/千克)与上市时间x(单位:天)的函数关系如图②所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数表达式;(3)试比较第10天与第12天的销售金额哪天多.25.如图①,在△ABC中,CD⊥AB于D,且BD∶AD∶CD=2∶3∶4.(1)试说明△ABC是等腰三角形.(2)已知S△ABC=40 cm2,如图②,动点M从点B出发以每秒1 cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒).①若△DMN的边与BC平行,求t的值.②若点E是AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.答案一、1.解:∵∠A =50°,∠B =80°, ∴∠ACD =∠A +∠B =50°+80°=110°, 故选:C .2.D 点拨:由题意知,点P 的横坐标为正,纵坐标为负,这样的点在第四象限内. 3.C 点拨:∵AB ∥CD ,∴∠EFC =∠ABE =60°.∵∠EFC =∠D +∠E ,∴∠E =∠EFC -∠D=60°-50°=10°,故选C.4.D 点拨:∵在直角三角形ABD 中,∠ADB =90°,∴AB =AD 2+BD 2=22+12=5,∴点C 到原点的距离为5-1,∴点C 表示的数是5-1.故选D. 5.C 6.C7.B 点拨:将一次函数y =12x 的图象向上平移2个单位后,所得图象对应的函数的表达式为y =12x +2,令y >0,即12x +2>0,解得x >-4.8.C 点拨:70°的角可能是顶角,也可能是底角.分两种情况讨论:如图①,当顶角∠A=70°时,底角∠ABC =∠C =12(180°-∠A )=55°,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =35°.如图②,当底角∠ABC =∠C =70°时,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =20°.9.C10.B 点拨:观察发现,第2次跳动至点A 2(2,1),第4次跳动至点A 4(3,2),第6次跳动至点A 6(4,3),第8次跳动至点A 8(5,4)……第2n 次跳动至点A 2n (n +1,n ),∴第100次跳动至点A 100(51,50).故选B .二、11.如果一个三角形是轴对称图形,那么这个三角形是等腰直角三角形12.(3,0) 点拨:令y =0,得2x -6=0,解得x =3,所以一次函数y =2x -6的图象与x轴的交点坐标为(3,0).13.(3,0);(4,3) 点拨:将线段OA 向右平移3个单位,线段上任意一点的横坐标增加3,纵坐标不变,所以O 1的坐标是(3,0),A 1的坐标是(4,3). 14.10515.m <-1 点拨:∵不等式(m +1)x <m +1的解集是x >1,∴m +1<0,∴m <-1. 16.-1 17.4718.⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485点拨:∵OC ⊥AB ,∴△OCP 是以OP 为斜边的直角三角形.要使△OCP 与△OPQ 全等,则△OPQ 也是直角三角形,且OP 是斜边,∠OQP =90°,即PQ ⊥y 轴.设P ⎝ ⎛⎭⎪⎫a ,34a +6,则Q ⎝ ⎛⎭⎪⎫0,34a +6.由直线y =34x +6,可得A (-8,0),B (0,6),∴OA =8,OB =6,∴AB=10,∴OC =OA ·OB AB =245.①当OC =OQ 时,∵OP =OP ,∴Rt △OCP ≌Rt △OQP (HL).∵OQ =OC =245,∴Q ⎝ ⎛⎭⎪⎫0,245.②当OC =PQ 时,∵OP =OP , ∴Rt △OCP ≌Rt △PQO (HL), ∴245=|a |,∴a =245或a =-245, ∴34a +6=485或125,∴Q 的坐标为⎝⎛⎭⎪⎫0,485或⎝ ⎛⎭⎪⎫0,125.综上所述,所有符合条件的点Q 的坐标为⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485 .三、19.解:(1)去分母,得4x -1-3x >3,移项、合并同类项,得x >4, 它的解集在数轴上表示如图.(2)由1+x >-2,得x >-3, 由2x -13≤1,得x ≤2.∴原不等式组的解集为-3<x ≤2. 它的解集在数轴上表示如图.20.解:由题图可知交点A 的坐标为(1,3),因为函数y =kx +b 的图象过点A (1,3)和点B (-1,0),所以⎩⎪⎨⎪⎧k +b =3,-k +b =0,解得⎩⎪⎨⎪⎧k =32,b =32.又因为函数y =ax +c 的图象过点(1,3)和(0,-2),所以⎩⎪⎨⎪⎧a +c =3,c =-2,解得⎩⎪⎨⎪⎧a =5,c =-2.所以这两个一次函数的表达式分别为y =5x -2,y =32x +32.点拨:解此问题先通过图形确定两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的表达式的关键..是确定a ,c ,k ,b 的值. 21.解:(1)如图,点D 即为所求.(2)如图,过点D 作DE ⊥AB 于E , 设DC =x ,则BD =8-x .∵在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴由勾股定理得AB =AC 2+BC 2=10.∵点D 到边AC 、AB 的距离相等,∴AD 是∠BAC 的平分线. 又∵∠C =90°,DE ⊥AB ,∴DE =DC =x .在Rt △ACD 和Rt △AED 中,⎩⎪⎨⎪⎧AD =AD ,DC =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AE =AC =6,∴BE =4. 在Rt △DEB 中,∠DEB =90°, ∴DE 2+BE 2=BD 2, 即x 2+42=(8-x )2, 解得x =3.∴CD 的长度为3.22.证明:如图,过点D 作DF ∥AC 交BC 于点F .∵DF ∥AC ,∴∠1=∠E ,∠5=∠2. 在△DPF 和△EPC 中, ⎩⎪⎨⎪⎧∠1=∠E ,DP =EP ,∠3=∠4,∴△DPF ≌△EPC (ASA), ∴DF =EC .又∵BD =EC ,∴BD =DF , ∴∠B =∠5.又∵∠5=∠2,∴∠B =∠2, ∴AB =AC .23.解:(1)建立平面直角坐标系如图.(2)△A ′B ′C ′如图.B ′(2,1). (3)S △A ′B ′C ′=12×2×(2+2)=4.24.解:(1)日销售量的最大值为120千克.(2)当0≤x ≤12时,设日销售量y 与上市时间x 的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上, ∴k =10.∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 的函数表达式为y =k 1x +b . ∵点(12,120),(20,0)在y =k 1x +b 的图象上,∴⎩⎪⎨⎪⎧12k 1+b =120,20k 1+b =0, 解得⎩⎪⎨⎪⎧k 1=-15.b =300.∴函数表达式为y =-15x +300.综上:y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)∵第10天和第12天在第5天和第15天之间,∴当5<x ≤15时,设樱桃价格z 与上市时间x 的函数表达式为z =k 2x +b 1. ∵点(5,32),(15,12)在z =k 2x +b 1的图象上,∴⎩⎪⎨⎪⎧5k 2+b 1=32,15k 2+b 1=12, 解得⎩⎪⎨⎪⎧k 2=-2,b 1=42.∴函数表达式为z =-2x +42. 当x =10时,y =10×10=100,z =-2×10+42=22.销售金额为100×22=2 200(元). 当x =12时,y =120,z =-2×12+42=18.销售金额为120×18=2 160(元).∵2 200>2 160,∴第10天的销售金额多. 25.解:(1)设BD =2x cm ,AD =3x cm ,CD =4x cm ,则AB =5x cm ,AC =AD 2+CD 2=5x cm ,∴AB =AC ,∴△ABC 是等腰三角形.(2)∵S △ABC =12×5x ×4x =40,x >0,∴x =2,∴BD =4 cm ,AD =6 cm ,CD =8 cm ,AC =10 cm. ①当MN ∥BC 时,AM =AN , 即10-t =t , ∴t =5;当DN ∥BC 时,AD =AN ,∴t =6.∴若△DMN 的边与BC 平行,t 的值为5或6. ②∵E 为Rt △ADC 斜边上的中点,∴DE =5 cm.当点M 在BD 上,即0≤t <4时,△MDE 为钝角三角形,但DM ≠DE . 当t =4时,点M 运动到点D ,不能构成三角形.当点M 在DA 上,即4<t ≤10时,△MDE 为等腰三角形,有3种可能. 若MD =DE ,则BM =9 cm , 此时t =9.若ED =EM ,则点M 运动到点A , 此时t =10.若MD =ME =(t -4)cm , 过点E 作EF ⊥AB 于点F , ∵ED =EA ,∴DF =AF =12AD =3 cm ,在Rt △AEF 中,易得EF =4 cm. ∵BM =t cm ,BF =7 cm , ∴FM =(t -7)cm.在Rt △EFM 中,由勾股定理,得(t -4)2-(t -7)2=42, ∴t =496.综上所述,符合要求的t 的值为9或10或496.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(二)1.在以下四个标志中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°3.若a>b,则下列式子中正确的是()A.a+3>b+3B.﹣a>﹣bC.D.﹣3a+2>﹣3b+24.下列四组线段中,能组成三角形的是()A.1,2,3B.2,2,4C.2,4,5D.1,3,55.对假命题“若a2<b2,则a<b”举反例,可以是()A.a=﹣1,b=2B.a=﹣1,b=﹣1C.a=﹣2,b=﹣1D.a=0,b=﹣1 6.如图,已知BE=CF,AC∥DF,添加下列条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.∠B=∠DEC C.AC=DF D.∠A=∠D 7.如图,直线y=kx+b(k≠0)经过点A(0,3),且与直线y=x交于点B(1,1),则不等式kx+b>x的解为()A.x>0B.x>1C.x<1D.x<28.将一根16cm长的细铁丝折成一个等腰三角形(弯折处长度忽略不计),设腰长为xcm,底边长为ycm,则下列选项中能正确描述y与x函数关系的是()A.B.C.D.9.如图,在边长为2的等边△ABC中,点D,P分别为BC,AC的中点,点Q是AD上一动点,则△PQC的周长的最小值为()A.3B.+1C.D.10.如图,已知直线l:y=x,过点A0(1,0)作x轴的垂线交直线l于点B0,过点B0作直线l的垂线交x轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交x轴于点A2,…,按此作法继续下数,记△A0B0A1的面积为S1,△A1B1A2的面积为S2,…,△A n﹣1B n﹣1A n的面积为S n,那么S4的值为()A.3×83B.C.3D.11.若点P(a﹣1,2)在第一象限,则a的取值范围是.12.若点(﹣1,y1)和点(2,y2)是直线y=3x+1上的两个点,则y1y2(填“>”、“<”或“=”).13.如图,在△ABC中,BD是一条角平分线,CE是AB边上的高线,BD,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=.14.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=9,DE=7.5,则CD的长为.15.如图,将边长为8cm的正方形ABCD沿EF折叠(E,F分别是AD,BC边上的点),使点B恰好落在CD的中点B'处,则BF的长为.16.如图,在长方形ABCD中,AB=4cm,AD=6cm,E为AB的中点.点P从点D出发,以2cm/s的速度沿D→C→B→A路线运动,运动至点A停止,运动时间为t(s).若△DEP 为等腰三角形,则t的值为.17.解一元一次不等式组.18.如图,在平面直角坐标系中,△ABC如图所示.(1)在图中,以y轴为对称轴,作△ABC的轴对称图形△A'B'C'.(2)求△ABC的面积.19.如图,在△ABC中,AB=AC,点D是△ABC内一点,且DB=DC,过点D作DE⊥AB 于点E,DF⊥AC于点F,求证:DE=DF.20.通过测量获得成年女性的脚长与身高的各组数据如下表:脚长x(cm)2222.52323.52424.5身高y(cm)150155161165169175(1)判断成年女性的身高y与脚长x是否满足或近似地满足一次函数关系.如果是,求出y关于x函数表达式.(2)若某人身高为167cm,则其脚长约为多少?21.[旧知重温]课本第64页作业题第2题:如图1,AD平分△ABC的外角∠EAC,AD∥BC,求证:△ABC是等腰三角形.证明:∵AD∥BC,∴∠DAC=∠C,∠EAD=∠B.∵AD平分∠EAC,∴∠DAC=∠EAD,∴∠B=∠C,∴AB=AC,即△ABC为等腰三角形.[拓展知新]如图2,AD平分△ABC的外角∠EAC,AF平分∠BAC交BC于点F,连结DF 交AC于点H,已知DF∥AB,求证:H为DF中点.22.周老师参加了某次半程马拉松比赛(赛程21km).若周老师从甲地出发出发,匀速前进,15分钟后,工作人员以18km/h的速度沿同一路线骑车运送一批运动饮料到距离起点9km的补给站,到达后留在原地.周老师在补给站补充能量后进行了提速并保持匀速,直至到达终点.如图是周老师和工作人员经过的路程y(km)与周老师出发时间x(h)之间的函数关系,根据图象信息回答下列问题:(1)周老师出发多久后,工作人员追上了他?(2)周老师提速后的速度是多少?(3)周老师出发多久后,在工作人员前方2km处?23.如图1,直线l:y=﹣x+6分别与x,y轴交于A,B两点,作∠ABO的角平分线交x 轴于点P.(1)写出A,B的坐标.(2)求OP的长.(3)如图2,点C为线段BP上一点,过点C作CD∥AB交x轴于点D,且CD=OB.求证:P为OD中点.参考答案1.解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.2.解:∵∠A=50°,∠B=80°,∴∠ACD=∠A+∠B=50°+80°=110°,故选:C.3.解:A、不等式a>b的两边同时加上3,不等号的方向不变,即a+3>b+3,原变形正确,故本选项符合题意.B、不等式a>b的两边同时乘﹣1,不等号的方向改变,即﹣a<﹣b,原变形错误,故本选项不符合题意.C、不等式a>b的两边同时除以5,不等号的方向不变,即>,原变形错误,故本选项不符合题意.D、不等式a>b的两边同时乘﹣3,再加上2,不等号的方向改变,即﹣3a+2<﹣3b+2,原变形错误,故本选项不符合题意.故选:A.4.解:A.∵1+2=3,∴不能组成三角形,故本选项不符合题意;B.∵2+2=4,∴不能组成三角形,故本选项不符合题意;C.∵2+4>5,∴能组成三角形,故本选项符合题意;D.∵1+3<5,∴不能组成三角形,故本选项不符合题意;故选:C.5.解:用来证明命题“若a2<b2,则a<b是假命题的反例可以是:a=0,b=﹣1,因为02<(﹣1)2,但是0>﹣1,所以D符合题意;故选:D.6.解:B:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠A=∠D,∵∠B=∠DEC,∴△ABC≌△DEF(AAS),∴不符合题意;C:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵AC=DF,∴△ABC≌△DEF(SAS),∴不符合题意;D::∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵∠A=∠D,∴△ABC≌△DEF(AAS),∴不符合题意;A:无法判定△ABC≌△DEF,∴符合题意;故选:A.7.解:如图所示:不等式kx+b>x的解为:x<1.故选:C.8.解:由已知y=16﹣2x,由三角形三边关系得:,解得:4<x<8,故选:D.9.解:如图,连接BP,与AD交于点Q,连接CQ,∵△ABC是等边三角形,AD⊥BC,∴QC=QB,∴QP+QC=QP+QB=BP,此时QP+QC最小,△PQC的周长QP+QC+PC最小,∵△ABC是一个边长为2的正三角形,点P是边AC的中点,∴∠BPC=90°,CP=1cm,∴BP==,∴△PQC的周长的最小值为+1.故选:B.10.解:∵A0B0⊥x轴交直线l于点B0,A0(1,0),直线l:y=x,∴B0(1,),OA0=1,∴A0B0=,∴∠OB0A0=30°,∠B0OA0=60°,∵A1B0⊥l,∴∠OB0A1=90°,∴∠A0B0A1=60°,∴A0A1=×=3,∴S1=•A0B0•A0A1=××3=,OA1=1+3=4,∴A1(4,0),∵A1B1⊥x轴交直线l于点B1,A1(4,0),直线l:y=x,∴B1(4,4),∴A1B1=4,∴∠OB1A1=30°,∠B1OA1=60°,∵A2B1⊥l,∴∠OB1A2=90°,∴∠A1B1A2=60°,∴A1A2=×4=12,∴S2=•A1B1•A1A2=×4×12=24,OA2=4+12=16,同理可得,S3=×16×48=384,S4=×163,故选:B.11.解:∵点P(a﹣1,2)在第一象限,∴a﹣1>0,∴a>1,故答案为:a>1.12.解:∵y=3x+1,k=3>0,∴y随x的增大而增大,∵点(﹣1,y1)和N(2,y2)是直线y=3x+1上的两个点,﹣1<2,∴y1<y2,故答案为:<.13.解:∵CE是AB边上的高线,∴∠CEB=90°,∵∠EFB=60°,∴∠EBF=30°,∵∠EBD+∠A=∠BDC=70°∴∠A=∠BDC﹣∠EBD=70°﹣30°=40°,故答案为:40°.14.解:∵CD⊥AB于D,E是AC的中点,∴DE=AE=EC,∵AD=9,DE=7.5,∴AC=15,∴在Rt△ADC中AD2+DC2=AC2,即DC2=AC2﹣AD2=225﹣81=144,故DC=12.故答案为:12.15.解:∵点B'是CD中点,∴B'C=DB'=4cm,∵将边长为8cm的正方形ABCD沿EF折叠,∴BF=B'F,∵F'B2=CF2+B'C2,∴BF2=(8﹣BF)2+16,∴BF=5,故答案为:5cm.16.解:①若ED=EP,点P与C重合,∵AB=4cm,∴CD=DP=4cm,∴t==2;②如图,若EP=DP,设PC=xcm,则BP=(6﹣x)(cm),∵EB2+BP2=EP2,CP2+CD2=PD2,∴22+(6﹣x)2=x2+42,解得x=2,∴DC+PC=4+2=6(cm).∴t==3;③如图,若ED=DP,∵AD=6cm,AE=2cm,∴DE===2(cm),∴DP=2(cm),∴PC==2(cm),∴DC+PC=(4+2)(cm),∴t==2+.综合以上可得t的值为2或3或2+.故答案为:2或3或2+.17.解:,由①得,x>1,由②得,x<5,∴原不等式组的解集是1<x<5.18.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积=2×3﹣1×2﹣1×3﹣×1×2=6﹣1﹣﹣1=.19.证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF.20.解:(1)身高y与脚长x满足或近似地满足一次函数关系,通过描点发现y与x的关系对应图象成一条直线,近似满足一次函数关系,设y与x的关系为:y=kx+b,将(22,150),(22.5,155)代入,得:,解得:,∴一次函数关系式为:y=10x﹣70,将其它点代入,发现都成立;(2)当y=167时,代入函数关系式,10x﹣70=167,解得:x=23.7,即脚长为23.7厘米.21.证明:∵AF平分∠BAC,∴∠BAF=∠CAF,∵AB∥DF,∴∠BAF=∠AFH,∴∠CAF=∠AFH,∴HA=HF,同理HA=HD,∴HD=HF,即H为DF中点.22.解:(1)直线EF:y=18(x﹣0.25)=18x﹣4.5,由题意:点A坐标为(1,9),∴OA:y=9x,方程组,解得:,∴周老师出发0.5小时后,工作人员追上了他;(2)提速后,速度为==10(km/h),答:周老师提速后的速度是10km/h;(3)①工作人员出发前:(h);②工作人员出发后,为追上周老师:设周老师出发x小时,在工作人员前方2km,则9x﹣(18x﹣4.5)=2,解得:x=;③工作人员达到补给站后:10(x﹣1)=2,解得:x=,答:周老师出发或或后,在工作人员前方2km处.23.(1)解:在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=8,令x=0,则y=6,∴A点的坐标为(8,0),B点的坐标为(0,6);(2)解:如图1,过P作PQ⊥AB于Q,∵BP平分∠ABO,∠BOP=90°,∴PQ=PO,∵PB=PB,∴Rt△PBO≌Rt△PBQ(HL),∴BQ=OB=6,∵AB==10,∴AQ=4,设OP=x,则PQ=PO=x,∵AP2=PQ2+AQ2,∴(8﹣x)2=x2+42,∴x=3,∴OP=3;(3)证明:过D作DE∥OB交BP的延长线于E,则∠OBP=∠DEP,∵AB∥CD,∴∠PCD=∠PBA,∵∠PBA=∠OBP,∴∠PCD=∠OBP,∴∠PCD=∠DEP,∴CD=ED,∵CD=OB,∴DE=DB,在△OPB与△DPE中,,∴△OPB≌△DPE(AAS),∴OP=DP,∴P为OD中点.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(三)一、选择题(80分)1.(2019·模拟·江苏苏州市吴中区)如图,内接于圆O,∠OAC=25∘,则∠ABC的度数为( )A.B.115∘C.D.125∘2.(2020·同步练习·天津天津市)如图,点A表示的实数是( )A.√3B.C.−√3D.−√53.(2019·期中·浙江温州市鹿城区)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图()所示).图()由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若,则S1+S2+S3的值是( )A.B.38C.48D.804.(2019·期末·云南昆明市官渡区)如图,在中,,∠BAC=45∘,BD⊥AC,垂足为D点,平分∠BAC,交于点F交于点E,点为AB的中点,连接DG,交AE于点,下列结论错误的是( )A.B.HE=BE C.AF=2CE D.DH=DF 5.(2019·期中·天津天津市和平区)如图,四边形ABCD,,,点E在边AB上,且AD=AE,BE=BC,则的值为A.√2B.C.√22D.126.(2018·期中·江苏无锡市锡山区)等腰三角形一个角为,则这个等腰三角形的顶角可能为( )A.B.65∘C.80∘D.或80∘7.(2020·单元测试)如图,在△ABC和中,点在边BD上,边交边BE于点.若AC=BD,AB=ED,BC=BE,则∠ACB等于A.∠EDB B.∠BED C.12∠AFB D.2∠ABF 8.(2019·期中·河北石家庄市新华区)如图,在和△OCD中,,OC=OD,OA>OC,,连接,BD交于点M,连接OM.下列结论:① AC=BD;② ∠AMB=40∘;③ OM平分∠BOC;④ MO平分∠BMC,其中正确的个数为A.4B.C.D.19.(2017·期中·天津天津市和平区)如图,在平面直角坐标系中,为坐标原点,四边形ABCD是矩形,顶点,,C,D的坐标分别为(−1,0),,(5,2),,点E(3,0)在x轴上,点P在CD边上运动,使为等腰三角形,则满足条件的P点有A.3个B.4个C.5个D.个10.(2020·期中·江苏苏州市相城区)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重合的四边形EFGH,EH=12cm,EF=16cm,则边的长是A.12cm B.16cm C.D.24cm 11.(2017·期末·江苏苏州市昆山市)如图,在平面直角坐标系xOy中,直线y=√3x经过第一象限内一点A,且过点A作AB⊥x轴于点B,将△ABO绕点逆时针旋转60∘得到,则点C的坐标为A.(−√3,2)B.(−√3,1)C.(−2,√3)D.(−1,√3) 12.(2020·单元测试·上海上海市)如图,已知在△ABC,中,∠BAC=∠DAE=90∘,,AD=AE,点,,E三点在同一条直线上,连接,.以下四个结论:① BD=CE;② ;③ BD⊥CE;④ ∠BAE+∠DAC=180∘.其中结论正确的个数是( )A.B.C.3D.13.(2019·期中·江苏徐州市新沂市)如图,在△ABC中,∠B=50∘,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边的中点,CD=CF,则( )A.125∘B.C.175∘D.14.(2018·期中·广东深圳市)如果三角形满足有一个角是另一个角的倍,那么我们称这个三角形为完美三角形.下列各组数据中,能作为一个完美三角形三边长的一组是( )A.2,,2B.1,,√2C.2,,2√3D.1,,215.(2019·模拟·浙江温州市苍南县)如图,的半径为2√3,四边形为⊙O的内接矩形,AD=6,M为中点,E为⊙O上的一个动点,连接,作DF⊥DE交射线EA于,连接MF,则MF的最大值为( )A.B.6+√57C.2√3+√61D.16.(2017·期中·天津天津市红桥区)如图,点是△ABC外的一点,PD⊥AB于点,PE⊥AC于点,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70∘,则∠BPC的度数为A.B.30∘C.35∘D.17.(2020·专项)如图,在三角形纸片ABC中,BC=3,AB=6,∠BCA=90∘.在上取一点,以为折痕,使的一部分与BC重合,点A与延长线上的点重合,则DE的长度为( )A.6B.C.2√3D.√318.(2018·期末·江苏苏州市张家港市)如图,矩形ABCD中,AB=2,,对角线的垂直平分线分别交AD,于点E,,连接CE,则△DCE的面积为( )A.5B.C.2D.119.(2020·同步练习·上海上海市)已知三角形的两边长分别为和9cm,则下列长度的四条线段中能作为第三边的是A.13cm B.6cm C.5cm D20.(2019·模拟·天津天津市和平区)如图,四边形中,DC∥AB,BC=1,AB=AC=AD=2,则的长为( )A.B.√14C.√15D.3√2二、填空题(30分)x+4交轴于点A,交轴于21.(2019·期末·广东佛山市禅城区)如图,直线y=43点,点为线段OB上一点,将△ABC沿着直线翻折,点B恰好落在轴上的处,则△ACD的面积为.22.(2019·期中·浙江温州市龙湾区)如图,△ABC中,,∠BAC=120∘,是边上的中线,且BD=BE,则是度.23.(2020·单元测试·上海上海市)如图,在直角坐标系中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,,A n B n C n C n−1的顶点A1,,A3,⋯,均在直线上,顶点C1,C2,C3,,C n在x轴上,若点的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为.24.(2019·单元测试)如图,正方形ABDE,CDFI,EFGH的面积分别为,9,16,,△BDC,△GFI的面积分别为S1,S2,S3,则S1+S2+S3=.25.(2020·专项·上海上海市闵行区)如图,在四边形ABCD中,AD∥BC,要使△ABD≌△CDB,可添加一个条件为.26.(2019·期中·江苏苏州市常熟市)如图,在△ABC中,ED∥BC,∠ABC和的平分线分别交ED于点G,,若BE=6,DC=8,DE=20,则.三、解答题(40分)27.(2021·专项)如图,等腰直角△ABC的斜边AB在轴上且长为,点在轴上方.矩形ODEF中,点D,F分别落在,轴上,边OD长为2,长为,将等腰直角△ABC沿x轴向右平移得等腰直角△AʹBʹCʹ.(1) 当点Bʹ与点D重合时,求直线AʹCʹ的解析式;(2) 连接CʹF,CʹE.当线段和线段之和最短时,求矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积;(3) 当矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积为 2.5时,求直线AʹCʹ与轴交点的坐标.(本问直接写出答案即可)28.(2019·单元测试·黑龙江哈尔滨市香坊区)如图,在△ABC中,∠C=90∘,是∠BAC的平分线,DE⊥AB于点E,点在上,BD=DF.求证:(1) CF=EB;(2) AB=AF+2EB.29.(2019·期末·广东佛山市高明区)如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,,B(−2,1),.(1) 作出关于轴对称的△A1B1C1;(2) 写出△A1B1C1的各顶点的坐标;(3) 求△ABC的面积.30.(2018·期末·江苏苏州市)已知:Rt△ABC中,∠BAC=90∘,,点是BC的中点,点是BC边上的一个动点.(1) 如图①,若点与点重合,连接,则与BC的位置关系是;(2) 如图②,若点P在线段上,过点作BE⊥AP于点E,过点作CF⊥AP于点,则CF,和EF这三条线段之间的数量关系是;(3) 如图③,在(2)的条件下若的延长线交直线于点M,找出图中与相等的线段,并加以证明;(4) 如图④,已知BC=4,AD=2,若点P从点出发沿着BC向点运动,过点B作BE⊥AP于点,过点作CF⊥AP于点F,设线段的长度为,线段的长度为d2,试求出点P在运动的过程中d1+d2的最大值.答案一、选择题1. 【答案】B【解析】∵OA=OC,∠OAC=25∘,,由圆周角定理得,∠ABC=(360∘−130∘)÷2=115∘,故选:B.【知识点】等腰三角形的性质、三角形的内角和、圆周角定理及其推理2. 【答案】D【知识点】勾股定理、在数轴上表示实数3. 【答案】C【解析】因为八个直角三角形全等,四边形,EFGH,MNKT是正方形,所以CG=KG,CF=DG=KF,所以S1=(CG+DG)2=CG2+DG2+2CG⋅DG=GF2+2CG⋅DG,所以S2=GF2=EF2,S3=(KF−NF)2=KF2+NF2−2KF⋅NF,所以.【知识点】勾股定理4. 【答案】A【解析】∵∠BAC=45∘,,∴∠CAB=∠ABD=45∘,,∵AB=AC,平分,BC,∠CAE=∠BAE=22.5∘,AE⊥BC,∴CE=BE=12∴∠C+∠CAE=90∘,且∠C+∠DBC=90∘,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90∘,∴△ADF≌△BDC(AAS),,故选项C不符合题意;∵点为的中点,AD=BD,∠ADB=90∘,,∴AG=BG,DG⊥AB,∠AFD=67.5∘,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意;连接BH,∵AG=BG,DG⊥AB,,∴∠HAB=∠HBA=22.5∘,∴∠EHB=45∘,且,∴∠EHB=∠EBH=45∘,∴HE=BE,故选项B不符合题意.【知识点】等腰三角形的判定、等腰三角形“三线合一”5. 【答案】B【解析】过点A作AF⊥BC于点,∵∠D=∠C=90∘,四边形是矩形,,AF=CD,设AE=x,BE=y,则AB=x+y,∵AD=AE,,∴BF=BC−CF=BC−AD=y−x,∵CD=2,∴AF=CD=2,在Rt△ABF中,根据勾股定理可得22+(y−x)2=(x+y)2,解得xy=1,∴AE⋅BE=1.【知识点】矩形的判定、勾股定理6. 【答案】D【解析】分两种情况:当角为等腰三角形的顶角时,此时等腰三角形的顶角;当50∘角为等腰三角形的底角时,此时等腰三角形的顶角为:180∘−50∘×2=80∘,综上,等腰三角形的顶角为50∘或80∘.【知识点】等腰三角形的性质、三角形的内角和7. 【答案】C【解析】在和△DEB中,{AC=DB,AB=DE,BC=EB,(SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,.【知识点】边边边8. 【答案】B【解析】∵∠AOB=∠COD=40∘,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB,∠AOC=∠BOD, OC=OD,∴△AOC≌△BOD(SAS),,,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40∘,②正确;作OG⊥MC于,OH⊥MB于,如图所示:则∠OGC=∠OHD=90∘,在△OCG和△ODH中,,∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,当∠DOM=∠AOM时,OM才平分∠BOC,假设,∵∠AOC=∠BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,∴∠COM=∠BOM,在△COM和中,{∠COM=∠BOM,OM=OM,∠CMO=∠BMO,,∴OB=OC,,∴OA=OC,与矛盾,∴③错误.正确的个数有3个.【知识点】角边角9. 【答案】A【知识点】等腰三角形的判定10. 【答案】C【解析】如图所示,由折叠过程可知:,∠MEF=∠BEF,∵∠AEH+∠AHE=90∘,∠HEM+∠MEF=90∘,∴∠MEF=∠BEF=∠AHE,同理可得∠EHM=∠DGH=∠GFN,∴∠HEM=∠FGN;在与△GFN中,{∠HME=∠FNG,EM=NG,∠HEM=∠FGN,,∴NF=HM=AH=FC,,在Rt△EFH中,由勾股定理知EH2+EF2=HF2=AD2,.【知识点】折叠问题、对应边相等、角边角、勾股定理11. 【答案】D【解析】作CH⊥x轴于H点,如图,设,∴n=√3m,∴tan∠AOB=ABOB=√3,∴∠AOB=60∘,∵OA=4,∴OB=2,,∵△ABO绕点B逆时针旋转60∘,得到△CBD,,∠ABC=60∘,∴∠CBH=30∘,BC=√3,BH=√3CH=3,在Rt△CBH中,CH=12∴OH=BH−OB=3−2=1,点坐标为(−1,√3).【知识点】坐标平面内图形的旋转变换、正切、正比例函数的图象12. 【答案】D【解析】如图:① ∵∠BAC=∠DAE=90∘,,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(),∴BD=CE①正确;② ∵∠BAC=90∘,AB=AC,∴∠ABC=45∘,∴∠ABD+∠DBC=45∘.∴∠ACE+∠DBC=45∘,②正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90∘,∴∠ABD+∠AFB=90∘,.∵∠DFC=∠AFB,,∴∠FDC=90∘.∴BD⊥CE,∴③正确;④ ∵∠BAC=∠DAE=90∘,∠BAC+∠DAE+∠BAE+∠DAC=360∘,∴∠BAE+∠DAC=180∘,故④正确.所以①②③④都正确,共计4个.【知识点】等腰直角三角形、边角边13. 【答案】C【解析】,为边AC的中点,,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60∘,∵∠B=50∘,∴∠BCD+∠BDC=130∘,和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65∘,∴∠CED=115∘,.【知识点】直角三角形斜边的中线、等边三角形三个角相等,都等于60°14. 【答案】C【解析】A、若三边为,2,2,则此三边构成等边三角形,三个角相等,所以这个三角形不是“完美三角形”,所以A选项不符合题意;B、若三边为1,,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“完美三角形”,所以B选项不符合题意;C、若三边为2,,,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“完美三角形”,所以C选项符合题意;D、若三边为,,,由于12+(√3)2=22,此三边构成一个直角三角形,最小角为30∘,所以这个三角形不是“完美三角形”,所以D选项不符合题意.故选:C.【知识点】30度所对的直角边等于斜边的一半、勾股逆定理15. 【答案】B【解析】如图,连接AC交BD于点,以AD为边向上作等边△ADJ,连接JF,,JD,JM.四边形是矩形,∴∠ADC=90∘,,AC=4√3,∴sin∠ACD=ADAC =4√3=√32,∴∠ACD=60∘,,∵DF⊥DE,,∴∠EFD=30∘,是等边三角形,∴∠AJD=60∘,∴∠AFD=12∠AJD,∴点的运动轨迹是以J为圆心JA为半径的圆,当点F在MJ的延长线上时,FM的值最大,此时,JM=√(4√3)2+32=√57,∴FM的最大值为6+√57.【知识点】勾股定理、圆周角定理及其推理16. 【答案】C【解析】在Rt△BDP和Rt△BFP中,{PD=PF, BP=BP,∴Rt△BDP≌Rt△BFP(HL),,在Rt△CEP和Rt△CFP中,{PE=PF,PC=PC,,∴∠ACP=∠FCP,∵∠ACF是的外角,,两边都除以2,得:12∠ABC+12∠BAC=12∠ACF,即∠PBC+12∠BAC=∠FCP,∵∠PCF是△BCP的外角,,∴∠BPC=12∠BAC=12×70∘=35∘.【知识点】斜边、直角边17. 【答案】C【知识点】勾股定理18. 【答案】B【解析】因为四边形ABCD是矩形,所以,AD=BC=4,因为是AC的垂直平分线,所以AE=CE,设CE=x,则ED=AD−AE=4−x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4−x)2,,解得:x=52即CE的长为5,,2所以△DCE的面积.【知识点】矩形的性质、垂直平分线的性质、勾股定理19. 【答案】B【知识点】三角形的三边关系20. 【答案】C【解析】过点C作的垂线交于点G,作AF⊥BC交BC于点F,作交BA的延长线于点E,,AB=AC=AD=2,,∴CF=12∴AF=√AC2−CF2=√15.2又,,∴CG=√154∴AG=√AC2−CG2=7,,∵DE⊥AB,CG⊥AB,,又∵CD∥AB,∠CGE=90∘,∴四边形是矩形,,∴DE=CG=√154又,∠CGA=∠DEA=90∘,∴△DEA≌△CGA(HL),∴EA=AG,,∴BE=2AG+BG=154。

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试题含答案

浙教版数学八年级上册期末考试试卷一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12 2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0 7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣39.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:.12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.参考答案一、选择题(共10小题,每题3分,共30分).1.下列长度的三条线段能组成三角形的是()A.1,2.5,3.5B.4,6,10C.20,11,8D.5,8,12【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:A、1+2.5=3.5,不能够组成三角形;B、4+6=10,不能组成三角形;C、11+8<20,不能组成三角形;D、5+8>12,能组成三角形.故选:D.2.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是()A.A(4,30°)B.B(1,90°)C.D(4,240°)D.E(3,60°)【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.4.在△ABC纸片上有一点P,且PA=PB,则P点一定()A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高线上D.在边AB的中线上【分析】根据线段垂直平分线的判定定理解答.解:∵PA=PB,∴P点在在边AB的垂直平分线上,故选:B.5.若a>b,则下列不等式变形正确的是()A.3a<3b B.ac2>bc2C.a﹣c>b﹣c D.﹣ac<﹣bc 【分析】根据不等式的性质逐一进行判断即可.不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.解:A.因为a>b,所以3a>3b,故本选项不合题意;B.不妨设c=0,则ac2=bc2,故本选项不合题意;C.因为a>b,所以a﹣c>b﹣c,故本选项符合题意;D.不妨设c=0,则﹣ac=﹣bc,故本选项不合题意;故选:C.6.对假命题“若a>b,则a2>b2”举一个反例,符合要求的反例是()A.a=﹣1,b=﹣2B.a=2,b=一1C.a=2,b=1D.a=﹣1,b=0【分析】根据有理数的大小比较法则、有理数的乘方法则计算,判断即可.解:当a=﹣1,b=﹣2时,a>b,而a2<b2,∴“若a>b,则a2>b2”是假命题,故选:A.7.下列函数中,自变量x的取值范围为x<1的是()A.B.C.D.【分析】根据函数自变量的取值得到x<1的取值的选项即可.解:A、自变量的取值为x≠1,不符合题意;B、自变量的取值为x≠0,不符合题意;C、自变量的取值为x≤1,不符合题意;D、自变量的取值为x<1,符合题意.故选:D.8.直线y1=k1x+b与直线y2=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b≤k2x的解集为()A.x>﹣3B.x<﹣3C.x≤﹣3D.x≥﹣3【分析】结合函数图象,写出直线y2=k2x在直线y1=k1x+b上方所对应的自变量的范围即可.解:∵直线y1=k1x+b与直线y2=k2x的交点的横坐标为﹣3,∴当x≤﹣3时,y2≥y1,∴关于x的不等式k1x+b≤k2x的解集为x≤﹣3.故选:C.9.小明和爸爸从家里出发,沿同一路线到学校.小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店购买水果花费了5分钟,这时发现小明已经跑到前面,爸爸骑车速度增加60米/分钟,结果与小明同时到达学校.小明和爸爸两人离开家的路程s(米)与爸爸出发时间t(分钟)之间的函数图象如图所示.则下列说法错误的是()A.a=15B.小明的速度是150米/分钟C.爸爸从家到商店的速度为200米/分钟D.爸爸出发7分钟追上小明【分析】由图象可得a的值;根据小明的路程和时间可得速度;设爸爸从家到商店的速度是x米/分钟,列一元一次方程可求解;根据追及问题中相距路程÷速度差=时间可得答案.解:线段BC是爸爸买水果的时间5分钟,a=10+5=15,故A不符合题意;由图象可得小明的速度是3300÷(20+2)=150(米/分钟),故B不符合题意;设爸爸从家到商店的速度是x米/分钟,则从商店到学校的速度是(x+60)米/分钟,依题意得,10x+(20﹣15)(x+60)=3300,解得x=200,所以爸爸从家到商店的速度是200米/分钟,故C不符合题意;爸爸追上小明得时间是150×2÷(200﹣150)=6(分钟),故D符合题意.故选:D.10.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.【分析】根据题意求出点B1,B2,B3的坐标,然后找出B点坐标的变化规律,把B n的坐标用含n的式子表示出来,取n=9,即可求出B9的横坐标.解:∵△OA1B1是等边三角形,OA1=1,∴B1的横坐标为,OA1=OB1,设B1(,y),则,解答y=或y=(舍),∴B1(,),∴OB1所在的直线的解析式为y=x,∵OA1=1,∠OA1C=30°,△OA1B1是等边三角形,∴∠B1A1C=90°,∵∠O1BA1=∠B1B2A2=60°,∴B1A1∥B2A2,∴∠B1A1C=∠B2A2A1=90°,∴∠B1A2A1=30°,∴B1A2=2A1B1=2,∴B2的横坐标为,∴y=x=,∴B2(,),同理:B3(,),B4(,),总结规律:B1的横坐标为,B2的横坐标为+1=,B3的横坐标为+1+2=,B4的横坐标为+1+2+4=,...,∴点B9的横坐标是1+2+4+8+16+32+64=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.写出一个正比例函数,使其图象经过第二、四象限:y=﹣x(答案不唯一).【分析】先设出此正比例函数的解析式,再根据正比例函数的图象经过二、四象限确定出k的符号,再写出符合条件的正比例函数即可.解:设此正比例函数的解析式为y=kx(k≠0),∵此正比例函数的图象经过二、四象限,∴k<0,∴符合条件的正比例函数解析式可以为:y=﹣x(答案不唯一).故答案为:y=﹣x(答案不唯一).12.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7).【分析】根据平移时,点的坐标变化规律“左减右加”进行计算即可.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=5cm.【分析】根据CF∥AB就可以得出∠A=∠DCF,∠AED=∠F,证明△ADE≌△CDF (AAS),由全等三角形的性质得出AE=CF,则可得出答案.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.有一种感冒止咳药品的说明书上写着:“每日用量90~120mg(包括90mg和120mg),分2~3次服用”.若一次服用这种药品的剂量为amg,则a的取值的范围为30≤a≤60.【分析】一次服用剂量a=,故可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式即可.解:由题意,当每日用量90mg,分3次服用时,一次服用的剂量最小为=30mg;当每日用量120mg,分2次服用时,一次服用的剂量最大为=60mg;故一次服用这种药品的剂量范围是30mg~60mg.故答案为:30≤a≤60.15.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =42°或24°.【分析】由折叠的性质得出AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,由直角三角形斜边上的中线性质得出CD=AB=AD=BD,由等腰三角形的性质得出∠ACD=∠A,∠DCB=∠B,中分三种情况讨论即可.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°.16.已知直线y=x+2与函数y=图象交于A,B两点(点A在点B的左边).(1)点A的坐标是(﹣,);(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=6时,|OA'﹣OB'|取最大值.【分析】(1)因为点A在点B左边,联立方程y=x+2与y=﹣x﹣1求解.(2)O,A',B'共线时满足题意,用含m代数式分别表示A',B'坐标,然后代入正比例函数解析式求出m即可.解:(1)联立方程,解得,∴A(﹣,),故答案为:(﹣,).(2)联立方程,解得,∴点B坐标为(,),将A,B向右平移m个单位得A'(﹣+m,),B'(+m,),∴OA'=,OB'=,∵三角形中两边之差小于第三边,∴O,A,B三点共线时,|OA'﹣OB'|取最大值,最大值为AB长度,设O,A,B所在直线正比例函数为y=kx,将A',B'坐标代入可得:,解得m=6.故答案为:6.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x﹣2≤x,得:x≤1,解不等式<,得:x>﹣7,∴不等式组的解集为﹣7<x≤1.18.如图,在平面直角坐标系xOy中,△ABO的三个顶点坐标分别为A(0,﹣3),B(2,0),O(0,0).(1)将△OAB关于x轴作轴对称变换,在图1中画出对称后的图形,并涂黑.(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】(1)直接利用轴对称图形的性质得出对应点位置得出答案;(2)直接利用平移的性质得出对应点位置,进而得出答案.解:(1)如图1所示:△CBO即为所求;(2)如图2所示:△A′B′O′即为所求.19.已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.20.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.为了“不忘历史,学习英雄”,学校开展“红色丰碑”演讲比赛;王老师负责为获奖同学购买奖品,现甲、乙两个商店正在做促销活动,分别给出了不同的优惠方案:甲商店优惠方案:购买奖品金额超过300元后,超出300元的部分按8折收费;乙商店优惠方案:购买奖品金额超过500元后,超出500元的部分按a折收费;如果王老师到乙商店购买奖品,当奖品金额是600元时,实际需支付570元.(1)填空:a=7.(2)如果王老师到甲商店购买奖品金额x元,求实际支付y元与奖品金额x元之间的函数表达式.(3)如果王老师购买奖品的金额超过800元,那么到哪个商店进行采购更合算?【分析】(1)由“当金额是600元时,实际只需支付了570”可得方程300+(600﹣300)×=570,再解即可;与奖品金额x元之间的函数表达式;(2)根据甲商店优惠方案即可求出y甲与奖品金额x元之间的函数表达式,再结合(2)的结论列方程和(3)根据题意求出y乙不等式解答即可.解:(1)由题意,得500+(600﹣500)×=570,解得x=7,故答案为:7;(2)由题意,得y=;甲=0.7x+150(x>500),(3)由题意,得y乙0.8x+60=0.7x+150,解得x=900,0.8x+60>0.7x+150,解得x>900,0.8x+60<0.7x+150,解得x<900,当800<x<900时,到甲商店更合算;当x=900时,两家商店任选一个;当x>900时,到乙商店更合算.22.我们发现,“用不同的方式表示同一图形的面积”可以解决计算线段的有关问题,这种方法称为面积法.(1)如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是斜边AB边上的高线.用“面积法”求CD的长.(2)如图2,在等腰三角形ABC中,AB=AC=13,BC=10,P为底边BC上的任意一=S△ABP+S△ACP,点,过点P作PM⊥AB,PN⊥AC,垂足分别为M,N,连接AP,利用S△ABC 求PM+PN的值.(3)如图3,有一直角三角形纸片ABC,∠ACB=90°,AC=4,BC=6.点D在斜边AB上,连接CD,将△ADC沿CD折叠,点A的对应点A′落在BC边上,求折叠后纸片重叠部分的面积.【分析】(1)利用勾股定理求出AB,再利用面积法求出CD即可.(2)如图2中,过点A作AH⊥BC于H.利用勾股定理求出AH,再利用面积法求出PM+PN即可.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.利用角平分线的性质定理证明PM =PN,再利用面积法求出PM,可得结论.解:(1)如图1中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,=•AC•BC=•AB•CD,∴S△ABC∴CD==.(2)如图2中,过点A作AH⊥BC于H.∵AB=AC=13,BC=10,∴BH=CH=5,∴AH===12,=•BC•AH=•AB•PM+•AC•PN,∵S△ABC∴×13×PM+×13×PN=×10×12,∴PM+PN=.(3)如图,过点D作DM⊥AC于M,DN⊥EC于N.∵∠ACD=∠ECD,DM⊥AC,DN⊥CE,∴DM=DN,+s△BCD=S△ACB,∵S△ACD∴×4×DM+×6×DN=×4×6,∴DM=DN=,=•CA′•DN=×4×=.∴S△A′CD23.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x =﹣3时,可以消去k,求出y=1,则定点A的坐标为(﹣3,1).(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长.【分析】(1)x=﹣3时,y的值与k无关,都为1,即得定点A(﹣3,1),(2)由A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),得AB=3,BC=4,BD=3,CD=5,直线l将△BCD的周长分成7:17两部分,则两部分的长分别为:12×=,12×=,①若AB+BN=,得N(0,),将N(0,)代入y=kx+3k+1,即解得k=﹣,②若AC+CM=,可得M(﹣2,),把M(﹣2,)代入y=kx+3k+1,解得:k=;(3)由求得E(﹣3,1),故E与A重合,而点F是EQ的中点,得x F=﹣,根据y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),故PQ=3,可知点P从(0,5)沿y轴正方向运动到(0,10),则Q从(0,2)运动到(0,7),F从(﹣,)运动到(﹣,4),即可得F运动的路程为.解:(1)∵x=﹣3时,y的值与k无关,都为1,∴定点A(﹣3,1),故答案为:(﹣3,1);(2)∵A(﹣3,1),B(0,1),C(﹣4,1),D(0,4),∴AB=3,BC=4,BD=3,∵∠CDB=90°,∴CD===5,∴△BCD的周长为BD+CD+BC=12,∵直线l将△BCD的周长分成7:17两部分,∴两部分的长分别为:12×=,12×=,①若AB+BN=,如图:∴3+BN=,∴BN=,∴N(0,),将N(0,)代入y=kx+3k+1得:=3k+1,解得k=﹣,②若AC+CM=,如图:∴1+CM=,∴CM=,∴CM=CD,∴M为CD中点,∴M(﹣2,),把M(﹣2,)代入y=kx+3k+1得:=﹣2k+3k+1,解得:k=,综上所述,k的值为﹣或;(3)由得,∴E(﹣3,1),∴E与A重合,∵点F是EQ的中点,∴x F=﹣,而由y=kx+3k+1、y=(k﹣1)x+3k﹣2可得P(0,3k+1)、Q(0,3k﹣2),∴PQ=3,∵点P从(0,5)沿y轴正方向运动到(0,10),∴Q从(0,2)运动到(0,7),∴F从(﹣,)运动到(﹣,4),∴F运动的路程为:4﹣=.24.在平面直角坐标系中,点A的坐标为(4,0),直线l是经过点(0,)且平行于x 轴的直线,点B在直线l上,连接AB,设点B的横坐标为m(m>0).(1)如图1,当m=9时,以AB为直角边作等腰直角三角形ABC,使∠BAC=90°,求直线BC的函数表达式.(2)在图2中以AB为直角边作等腰直角三角形ABD,使∠ABD=90°,连接OD,求△AOD的面积(用含m的代数式表示).(3)在图3中以AB为边作等腰直角三角形ABP,当点P落在直线y=x+上时,求m的值.【分析】(1)作CN⊥轴于N,BM⊥轴于M,易证Rt△NCA Rt△MAB,可求得点C的坐标为(,5),再利用待定系数法即可求解;(2)过B作直线EF⊥轴于F,过D作DE⊥EF交直线EF于E,易证Rt△FAB≌Rt△EBD,可求得点D的坐标为(m﹣,m﹣)或(m+,﹣m),再利用三角形面积公式即可求解;(3)题中只给定了AB为直角边,所以分∠ABP=90°或∠BAP=90°两种情况讨论,即可求解.解:(1)作CN⊥轴于N,BM⊥轴于M,∵∠BAC=90°,∴∠NAC+∠NCA=∠NAC+∠MAB=90°,∴∠NCA=∠MAB,∵CA=AB,∴Rt△NCA Rt△MAB,∴NC=MA,NA=MB,∵点B的横坐标为,∴点B的坐标为(9,),∴NC=MA=MO﹣OA=9﹣4=5,NA=MB=,ON=OA﹣NA=,∴点C的坐标为(,5),设直线BC的解析式为y=kx+b,将(9,),(,5)代入,得:,解得:,∴直线BC的解析式为y=﹣x+;(2)过B作直线EF⊥轴于F,过D1作D1E⊥EF交直线EF于E,过D2作D2E⊥EF交直线EF于M,同理可证Rt△FAB≌Rt△EBD1≌Rt△MBD2,∴AF=BE=MB,FB=D1E=D2M,∵点B的横坐标为m,∴AF=BE=MB=m﹣4,FB=D1E=D2M=,点D1的坐标为(m﹣,m﹣4+),即D1的坐标为(m﹣,m﹣),点D2的坐标为(m+,﹣m+4),即D2的坐标为(m+,﹣m),=,∵S△OAD1D点位于直线AB左侧时,当0<m<1.5时,S=×4×(﹣m)=3﹣2m;当m≥1.5时,S=×4×(m﹣)=2m﹣3;D点位于直线AB右侧时,当0<m<6.5时,S=×4×(﹣m)=13﹣2m;当m≥6.5时,S=×4×(m﹣)=2m﹣13;(3)①当∠ABP=90°时,由(2)可知D与P重合,∴点P的坐标为(m﹣,m﹣),当点P落在直线y=上时,m﹣=,解得:m=,②当∠BAP=90°时,同理可证明Rt△HAP≌Rt△GBA,∵点B的坐标为(m,),∴PH=AG=m﹣4,AH=BG=,∴点P的坐标为(4﹣,m﹣4),即(,m﹣4),当点P落在直线y=上时,m﹣4=,解得:m=,综上,m的值为或.。

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级(上)期末数学试卷(含答案)

浙教版八年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列四个图形中,不是轴对称图形的是()A.B.C.D.2.(3分)已知三角形的两边长分别为8和4,则第三边长可能是()A.3B.4C.8D.123.(3分)如果a>b,下列各式中不正确的是()A.a﹣4>b﹣4B.﹣2a<﹣2b C.﹣5+a<﹣5+b D.﹣<﹣4.(3分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC ≌△A′B′C′一定成立的是()A.AC=A′C′B.BC=B′C′C.∠B=∠B′D.∠C=∠C′5.(3分)在平面直角坐标系中,点P(﹣3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)把函数y=x的图象向上平移2个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A.(﹣2,2)B.(2,3)C.(2,4)D.(2,5)7.(3分)如图,△ABC中,DE垂直平分AC,垂足为D,AD=3,△ABE的周长为13,那么△ABC的周长为()A.10B.13C.16D.198.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β9.(3分)关于x的不等式组的解集为x<3,那么a的取值范围为()A.a>3B.a≥3C.a<3D.a≤310.(3分)如图,在等腰△OAB中,∠OAB=90°,点A在x轴正半轴上,点B在第一象限,以AB为斜边向右侧作等腰Rt△ABC,则直线OC的函数表达式为()A.B.C.D.二、填空题(每题3分,满分24分)11.(3分)x的与x的2倍的和是非正数,用不等式表示为.12.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:.13.(3分)已知P(﹣3,4),则P点到x轴的距离为.14.(3分)若一次函数y=(2k+1)x﹣k﹣1的图象不经过第三象限,则k的取值范围是.15.(3分)等腰三角形的一边长为2,周长为5,那么它的腰长为.16.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+1图象上的两点,当x1>x2时,y1y2(填“>”“=”或“<”)17.(3分)如图,在平面直角坐标系中,直线y=x+8分别与x轴、y轴相交于A、B,线段AB的垂直平分线交y轴于点C,垂足为D,则点C的坐标为.18.(3分)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是.三、解答题:(共46分)19.(7分)解下列不等式(组)(1)3x﹣1≥2x+4(2)20.(7分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分(要求:尺规作图,保留作图,痕迹,不写作法).21.(7分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA 是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?22.(8分)如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数y=﹣x的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式﹣x>kx+b的解集.24.(9分)如图1,已知直线l的同侧有两个点A、B,在直线l上找一点P,使P点到A、B两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点就是所要找的点,通过这种方法可以求解很多问题.(1)如图2,在平面直角坐标系内,点A的坐标为(1,1),点B的坐标为(4,3),动点P在x轴上,求P A+PB 的最小值;(2)如图3,在锐角三角形ABC中,AB=6,∠BAC=60°,∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为.(3)如图4,∠AOB=30°,OC=5,OD=12,点E,F分别是射线OA,OB上的动点,则CF+EF+DE的最小值为.参考答案与试题解析一、选择题:(每小题3分,共30分)1.【解答】解:观察图形可知A、B、C都是轴对称图形;D、不是轴对称图形.故选:D.2.【解答】解:设第三边的长为x,∵三角形两边的长分别是4和8,∴8﹣4<x<8+4,即4<x<12.故选:C.3.【解答】解:∵a>b,∴a﹣4>b﹣4,故A正确,﹣2a<﹣2b,故B正确,a﹣5>b﹣5,故C错误,﹣<﹣,故D正确,故选:C.4.【解答】解:A、∠A=∠A′,AB=A′B′AC=A′C′,根据SAS能推出△ABC≌△A′B′C′,故A选项错误;B、具备∠A=∠A′,AB=A′B′,BC=B′C′,不能判断△ABC≌△A′B′C′,故B选项正确;C、根据ASA能推出△ABC≌△A′B′C′,故C选项错误;D、根据AAS能推出△ABC≌△A′B′C′,故D选项错误.故选:B.5.【解答】解:∵m2+1>0,∴点P(﹣3,m2+1)在第二象限,∴点P(﹣3,m2+1)关于原点的对称点在第四象限,故选:D.6.【解答】解:由“上加下减”的原则可知,将直线y=x向上平移2个单位所得直线的解析式为:y=x+2,当x=﹣2时,y=﹣2+2=0;x=2时,y=2+2=4,所以在平移后的直线上的是(2,4),故选:C.7.【解答】解:∵DE垂直平分AC,∴EA=EC,AC=2AD=6,△ABE的周长=AE+BE+AB=CE+BE+AB=BC+AB=13,∴△ABC的周长=AC+BC+AB=19,故选:D.8.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.9.【解答】解:解①得x<3,而不等式组的解集为x<3,所以a≥3.故选:B.10.【解答】解:如图,作CK⊥AB于K.∵CA=CB,∠ACB=90°,CK⊥AB,∴CK=AK=BK,设AK=CK=BK=m,∵AO=AB,∠OAB=90°,∴OA=AB=2m,∴C(3m,m),设直线OC的解析式为y=kx,则有m=3mk,解得k=,∴直线OC的解析式为y=x,故选:B.二、填空题(每题3分,满分24分)11.【解答】解:由题意得:x+2x≤0,故答案为:x+2x≤0.12.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.13.【解答】解:P(﹣3,4),则P点到x轴的距离为:4.故答案为:4.14.【解答】解:∵一次函数y=(2k+1)x﹣k﹣1的图象不经过第三象限,∴一次函数y=(2k+1)x﹣k﹣1的图象经过第一、二、四象限或经过第二、四象限.当一次函数y=(2k+1)x﹣k﹣1的图象经过第一、二、四象限时,,解得:k<﹣1;当一次函数y=(2k+1)x﹣k﹣1的图象经过第二、四象限时,,解得:k=﹣1.综上所述:k的取值范围为k≤﹣1.故答案为:k≤﹣1.15.【解答】解:若等腰三角形的腰长为2,则底边长为:5﹣2﹣2=1,∵2+1>2,能组成三角形,此时它的腰长为2;若等腰三角形的底边长为2,则腰长为:=1.5,∵1.5+1.5>2,能组成三角形,此时它的腰长为1.5.∴它的腰长为1.5或2.故答案为:1.5或2.16.【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,∴该一次函数y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.17.【解答】解:直线y=x+8中,令y=0,则x+8=0,解得x=﹣6;令x=0,则y=8,∴A(0,8),B(﹣6,0),∴OA=8,OB=6,∴AB==10,∵CD是AB的垂直平分线,∴AD==5,∵∠ADC=∠AOB=90°∠A=∠A,∴△ADC∽△AOB,∴=,即=,∴AC=,∴OC=8﹣=,∴C(0,),故答案为(0,).18.【解答】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△APO和△COD中,,∴△APO≌△COD(AAS),即AP=CO,∵CO=AC﹣AO=6,∴AP=6.故答案为6.三、解答题:(共46分)19.【解答】解:(1)3x﹣1≥2x+4移项,得3x﹣2x≥4+1,合并同类项,得x≥5;(2),解①得x<3,解②得x≥.则不等式组的解集是x<3.20.【解答】解:如图,作线段BC的中垂线,交BC于点D,则直线AD即为所求.21.【解答】解:(1)当x≥30时,设函数关系式为y=kx+b,则,解得.所以y=3x﹣30;(2)4月份上网20小时,应付上网费60元;(3)由75=3x﹣30解得x=35,所以5月份上网35个小时.22.【解答】解:过点D分别作AE,AF的垂线,交AE于M,交AF于N 则∠CMD=∠BND=90°,∵AD是∠EAF的平分线,∴DM=DN,∵∠ACD+∠ABD=180°,∠ACD+∠MCD=180°,∴∠MCD=∠NBD,在△CDM和△BDN中,∠CMD=∠BFD=90°,∠MCD=∠NBD,DM=DN,∴△CDM≌△BDN,∴CD=DB.23.【解答】解:(1)∵正比例函数y=﹣x的图象经过点B(a,2).∴2=﹣a,解得,a=﹣3,∴B(﹣3,2),∵一次函数y=kx+b的图象经过点A(﹣2,4),B(﹣3,2),∴,解得,,∴一次函数y=kx+b的解析式为y=2x+8;(2)∵一次函数y=2x+8的图象与x轴交于点C,∴C(﹣4,0),∵正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,∴平移后的函数的解析式为y=﹣x﹣m,∴0=﹣×(﹣4)﹣m,解得,m=;(3)∵B(﹣3,2),∴根据图象可知﹣x>kx+b的解集为:x<﹣3.24.【解答】解:(1)如图2:作点A关于x轴的对称点A'(1,﹣1),连A'B交x轴于点P,∴P A+PB的最小值就是A'B的长,∵A'(1,﹣1),点B的坐标为(4,3),∴A'B==5,∴P A+PB的最小值为5;(2)∵AD平分∠BAC,∴∠CAD=∠BAD,∴直线AB与直线AC关于直线AD对称,如图3,作点N关于直线AD的对称点N',连接MN',∴MN=MN',∴BM+MN=BM+MN',∴当点B,点M,点N'三点共线,且BM垂直AC时,BM+MN的值最小,∴此时,BN'⊥AC,∠CAB=60°,∴∠ABM=30°,∴AN'=AB=3,BN'=AN'=3,∴BM+MN的最小值为3,故答案为3;(3)如图4,过作点C关于OB的对称点C',作点D关于OA的对称点D',连接C'D'交OA于点E,交OB于点F,∴CF+EF+DE=C'F+EF+D'F,由两点之间,线段最短,可得CF+EF+DE的最小值为C'D',连接CC'交OB于点G,连接DD'交OA于点N,过点D'作D'P⊥OB于P,作D'H⊥CC'于点H,∵∠AOB=30°,OC=5,OD=12,CC'⊥OB,DD'⊥OA,∴CG==C'G,OG=CG=,DN=6=D'N,∠ODN=60°,∴DD'=12,且D'P⊥OB,∠ODN=60°,∴PD=6=OP,D'P=PD=6,∴C'D'==13,故答案为:13.。

浙教版八年级上册数学期末测试卷及含答案(名师推荐)

浙教版八年级上册数学期末测试卷及含答案(名师推荐)

浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、太原市第 37 中学校 A 同学在新冠疫情期间,妈妈每天为其测量体温,为了较直观地了解这位同学这个月的日期和每天体温的变化趋势,可选择的比较好的方法是()A.表格法B.图象法C.关系式法D.以上三种方法均可2、如图,,,三点在同一直线上,,都是等边三角形,连接,,:下列结论中正确的是()①△ACD≌△BCE;②△CPQ是等边三角形;③平分;④△BPO≌△EDO.A.①②B.①②③C.①②④D.①②③④3、直线不经过第三象限,则抛物线可以是()A. B. C.D.4、关于有理数减法,下列说法正确的是()A.两个有理数相减,差一定小于被减数B.两个负数的差一定小于C.两个负数相减,等于它们的绝对值相减D.两个有理数的差是正数,则被减数一定大于减数5、已知一个等腰三角形的两边长分别为5cm、7cm,则该三角形的周长是()A. B. C.17cm或19cm D.6、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,AG=3DG,其中不正确的结论的个数为()A.1B.2C.3D.47、等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cmB.12 cmC.9 cm或12 cmD.14 cm8、国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是( )A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士9、如图,等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=60°,则图中有几对全等的等腰三角形()A.5对B.6对C.7对D.8对10、以下四个标志中,是轴对称图形的是( )A. B. C. D.11、如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,则EF的长为()A.2cmB.3cmC.4cmD.5cm12、如图所示,在△ABC中,AB=12,BC=10,点O为AC的中点,则BO的取值范围是( )A.1<BO<11B.2<BO<22C.10<BO<12D.5<BO<613、等腰三角形的一个角是80°,则它的顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°14、如图,在2×2正方形网格中,以格点为顶点的△ABC,则sin∠CAB=()A. B. C. D.15、不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(共10题,共计30分)16、如图,在ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD'E 处,AD'与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED'的大小为________ .17、关于x的不等式组的解集中每一个值均不在的范围内,则a的取值范围是________.18、等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为________。

浙教版八年级上学期期末考试数学试卷含解答

浙教版八年级上学期期末考试数学试卷含解答

浙教版八年级上学期期末考试数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各点中在第四象限的是()A. B. C. D.2.若三角形的两边长为2和3,则第三边长可以是()A. 1B. 3C. 5D. 73.不等式x≥-1的解在数轴上表示为()A.B.C.D.4.下列命题中是假命题的是()A. 同位角相等,两直线平行B. 等腰三角形底边上的高线和中线相互重合C. 等腰三角形的两个底角相等D. 周长相等的两个三角形全等5.如图,已知OD=OE,那么添加下列条件后,仍无法判定△OBD≌△OCE的是()A.B.C.D.6.直角坐标系中,点P(2,-4)先向右平移4个单位后的坐标是()A. B. C. D.7.不等式组的解集是()A. B. C. D. 无解8.已知点A(k,10)在直线y=kx+1上,且y随x的增大而减小,则k的值为()A. 3B.C.D.9.庆元大道两侧需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S(单位m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A. 200B. 300C. 400D. 50010.如图,在等腰直角△ABC中,腰长AB=4,点D在CA的延长线上,∠BDA=30°,则△ABD的面积是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.点(1,-3)关于y轴的对称点坐标是______.12.函数y=-x+4经过的象限是______.13.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=______.14.用不等式表示“x的2倍与3的和大于10”是______.15.直角三角形两直角边长分别为3和4,则它斜边上的高为______.16.如图,以矩形ABCD的相邻边建立直角坐标系,AB=3,BC=5.点E是边CD上一点,将△ADE沿着AE翻折,点D恰好落在BC边上,记为F.(1)求折痕AE所在直线的函数解析式______;(2)若把翻折后的矩形沿y轴正半轴向上平移m个单位,连结OF,若△OAF是等腰三角形,则m的值是______,三、解答题(本大题共8小题,共52.0分)17.解不等式:3x>2(x-1)+218.如图,在8×8的方格纸中,△ABC是格点三角形,且A(-2,4),C(0,3).(1)在8×8的方格纸中建立平面直角坐标系,并求出B点坐标;(2)求△ABC的面积.19.已知∠O及其两边上点A和B(如图),用直尺和圆规作一点P,使点P到∠O的两边距离相等,且到点A,B的距离也相等.(保留作图痕迹)20.如图,一次函数y=kx+b图象经过(1,6),(-1,2)(1)求k,b的值;(2)若y>0,求x的取值范围.21.已知,如图,Rt△ABC中,∠BAC=90°,AB=AC,点D是BC上任意一点,过B作BE⊥AD于点E,过C作CF⊥AD于点F.求证:BE=CF+EF.22.如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,△APD的面积为10cm2.23.已知:如图,在△ABC中,AD是BC边上的高,∠C=30°,∠ABC=45°,BE是AC边上的中线.(1)求证:AC=2BD;(2)求∠CBE的度数;(3)若点E到边BC的距离为,求BC的长.24.如图,一次函数y=-2x+4与x轴y轴相交于A,B两点,点C在线段AB上,且∠COA=45°.(1)求点A,B的坐标;(2)求△AOC的面积;(3)直线OC上有一动点D,过点D作直线l(不与直线AB重合)与x,y轴分别交于点E,F,当△OEF与△ABO全等时,求直线EF的解析式.答案和解析1.【答案】C【解析】解:A.(-2,-3)在第三象限;B.(-2,3)在第二象限;C.(3,-2)在第四象限;D.(3,2)在第一象限;故选:C.根据第四象限点的坐标特点,在选项中找到横坐标为正,纵坐标为负的点即可.本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,用到的知识点为:点在第四象限内,那么横坐标大于0,纵坐标小于0.2.【答案】B【解析】解:∵三角形的两边长为3和2,∴第三边x的长度范围是3-2<x<3+2,即1<x<5,观察选项,只有选项B符合题意.故选:B.根据三角形三边关系定理求出第三边的范围,即可解答.本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.3.【答案】A【解析】解:不等式x≥-1的解在数轴上表示为,故选:A.根据不等式的解集在数轴上表示方法画出图示即可求得.本题考查了不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.【答案】D【解析】解:A、同位角相等,两直线平行,正确,是真命题;B、等腰三角形底边上的高线和中线互相重合,正确,是真命题;C、等腰三角形的两个底角相等,正确,是真命题;D、周长相等的两个三角形不一定确定,故错误,是假命题,故选:D.利用平行线的判定、等腰三角形的性质及全等三角形的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的判定、等腰三角形的性质及全等三角形的性质,难度不大.5.【答案】D【解析】解:A、添加OB=OC,根据SAS可以判定△OBD≌△OCE.B、添加∠D=∠E,根据ASA可以判定△OBD≌△OCE.C、添加∠DBO=∠ECO,根据SAS可以判定△OBD≌△OCE.D、添加BD=EC,无法判定△OBD≌△OCE.故选:D.根据全等三角形的判定方法即可解决问题.本题考查全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法.6.【答案】C【解析】解:点P(2,-4)先向右平移4个单位后的坐标是(2+4,-4),即(6,-4).故选:C.根据向右平移横坐标加列式计算即可得解.本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.【答案】A【解析】解:,由①得:x<2,由②得:x<3.则不等式组的解集是:x<2.故选:A.首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8.【答案】B【解析】解:把A(k,10)在直线y=kx+1上,10=k2+1=9,解得k=±3.∵y随x的增大而减小,∴k=-3.故选:B.点A(k,10)在直线y=kx+1上,求出k的值.由于y随x的增大而减小,故k<0.本题考查了一次函数的性质,以及性质与一次函数系数之间的联系.9.【答案】B【解析】解:从图象可以知2至5时的函数图象经过(4,1600)(5,2100)设该时段的一次函数解析式为y=kx+b(x≥2),依题意,将点(4,1600)(5,2100)分别代入,可列方程组有,解得:∴一次函数的解析式为:y=500x-400 ∴当x=2时,解得y=600.∴前两小时每小时完成的绿化面积是600÷2=300(m2)故选:B.此题只要能求出2至5小时的一次函数解析式,从而求出当x=2时的纵坐标,除以2即可.此题主要考查求一次函数的解析式与函数的图象的关系.只要能根据两点代入一次函数的解析式y=kx+b中列出方程组分别求出k,b值即可10.【答案】A【解析】解:如图,作BH⊥AC于H.∵BA=BC=4,∠ABC=90°,BH⊥AC,∴AC==4,AH=CH=BH=2,在Rt△BDH中,∵∠BHD=90°,∠D=30°,∴DH=BH=2,∴AD=2-2,∴S△ADB =•AD•BH=-2)•2=4-4,故选:A.如图,作BH⊥AC于H.想办法求出AD.BH即可解决问题.本题考查等腰直角三角形的性质,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.【答案】(-1,-3)【解析】解:点(1,-3)关于y轴的对称点坐标是(-1,-3),故答案为:(-1,-3).根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.12.【答案】第一、二、四象限【解析】解:由题意,得:k=-1<0,b=4>0,所以函数y=-x+4经过第一、二、四象限.故答案为第一、二、四象限.根据k,b的符号判断一次函数y=-x+4的图象所经过的象限.此题考查一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限.掌握k<0,b>0时,直线y=kx+b经过第一、二、四象限是解题的关键.13.【答案】35°【解析】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°-∠ADB=110°,∵AD=CD,∴∠C=(180°-∠ADC)÷2=(180°-110°)÷2=35°,故答案为:35°先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.14.【答案】2x+3>10【解析】解:∵x的2倍为2x,∴x的2倍与3的和大于10可表示为:2x+3>10.故答案为:2x+3>10.由x的2倍与3的和大于10得出关系式为:x的2倍+3>10,把相关数值代入即可.此题主要考查了列一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.15.【答案】【解析】解:设斜边长为c,高为h.由勾股定理可得:c2=32+42,则c=5,直角三角形面积S=×3×4=×c×h可得h=,故答案为:.根据勾股定理求出斜边的长,再根据面积法求出斜边上的高.本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,是解此类题目常用的方法.16.【答案】y=-x+3 3或2或【解析】解:(1)∵四边形ABCD是矩形,∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=90°,由折叠对称性:AF=AD=5,EF=DE,在Rt△ABF中,BF==4,∴CF=1,设EC=x,则EF=3-x,在Rt△ECF中,12+x2=(3-x)2,解得:x=,∴E点坐标为:(5,),∴设AE所在直线解析式为:y=ax+b,则,解得:,∴AE所在直线解析式为:y=-x+3;故答案为:y=-x+3;(2)分三种情况讨论:若AO=AF=BC=5,∴BO=AO-AB=2,∴m=2;若OF=FA,则AB=OB=3,∴m=3,若AO=OF,在Rt△OBF中,AO2=OB2+BF2=m2+16,∴(m+3)2=m2+16,解得:m=,综上所述,若△OAF是等腰三角形,m的值为3或2或.故答案为:3或2或.(1)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线的解析式;(2)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.此题是四边形综合题,主要考查了待定系数法,折叠的性质,勾股定理,等腰三角形的性质,正确的理解题意是解本题的关键.17.【答案】解:3x>2(x-1)+2,3x>2x-2+2,3x-2x>0,x>0.【解析】去括号,移项、合并同类项即可求出解集..此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)平面直角坐标系如图所示,B(-4,1).(2)S△ABC=3×4-×2×3-×2×1-×2×4=4.【解析】(1)根据A,C两点坐标确定平面直角坐标系即可解决问题.(2)利用分割法求三角形的面积即可.本题考查三角形的面积,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:如图所示,点P即为所求.【解析】作线段AB的中垂线和∠AOB的平分线,两者的交点即为所求点P.本题主要考查作图-复杂作图,解题的关键是掌握线段中垂线和角平分线的尺规作图和性质.20.【答案】解:(1)把(1,6),(-1,2)代入y=kx+b中,可得:,解得:k=2,b=4,(2)由(1)可得直线的解析式为:y=2x+4,根据题意可得:2x+4>0,解得:x>-2.【解析】(1)利用待定系数法即可求得函数的解析式,进而得出k,b的值;(2)根据(1)的结果,写出不等式,解不等式即可.主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.21.【答案】证明:∵∠BAC=90°,且BE⊥AD,CF⊥AD,∴∠ABE+∠BAE=∠BAE+∠FAC,∴∠ABE=∠FAC;在△ABE与△CAF中,,∴△ABE≌△CAF(AAS),∴BE=AF,AE=CF,∴EF=BE-CF,即BE=CF+EF.【解析】证明△ABE≌△CAF,得到BE=AF,AE=CF,故EF=BE-CF,即BE=CF+EF.该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是深入观察图形结构特点,准确找出图形中隐含的相等或全等关系.22.【答案】解:(1)根据图象得:点P在BC上运动的时间范围为6≤t≤12;(2)点P在AB上时,△APD的面积S=×6×t=3t;点P在BC时,△APD的面积=×6×6=18;点P在CD上时,PD=6-2(t-12)=30-2t,△APD的面积S=AD•PD=×6×(30-2t)=90-6t;∴当0≤t≤6时,S=3t,△APD的面积为10cm2,即S=10时,3t=10,t=,当12≤t≤15时,90-6t=10,t=,∴当t为s或s时,△APD的面积为10cm2.【解析】(1)根据图象即可得出结果;(2)分别求出点P在AB上时,△APD的面积为S=3t;点P在BC时,△APD的面积为18;点P在CD上时,△APD的面积为90-6t,根据题意得出方程求出t的值即可.本题考查了动点问题的函数图象以及正方形的性质;解题的关键是要分析题意根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.23.【答案】(1)证明:在Rt△ACD中,∠ADC=90°,∠C=30°,∴AC=2AD,在Rt△ABD中,∠ADB=90°,∠ABC=45°,∴AD=BD,∴AC=2BD;(2)解:连接DE,∵∠ADC=90°,BE是AC边上的中线,∴DE=EC=AC,∴DE=DB,∠EDC=∠C=30°,∴∠EBC=∠EDC=15°;(3)作EF⊥BC于F,则EC=2EF=1,∴AC=2,BD=AD=1,由勾股定理得,CD==,∴BC=BD+CD=1+.【解析】(1)根据直角三角形的性质得到AC=2AD,AD=BD,证明结论;(2)连接DE,根据直角三角形的性质得到DE=EC=AC,根据等腰三角形的性质计算即可;(3)作EF⊥BC于F,根据直角三角形的性质求出EC,根据勾股定理计算,得到答案.本题考查的是勾股定理、直角三角形的性质,掌握勾股定理、直角三角形斜边上的中线等于斜边的一半是解题的关键.24.【答案】解:(1)在直线y=-2x+4中,当x=0时y=4,则B(0,4),当y=0时,-2x+4=0,解得x=2,则A(2,0);(2)设C(a,-2a+4),如图1,过点C作CM⊥OA于点M,∵∠COA=45°,∴OM=CM,则a=-2a+4,解得a=,∴CM=OM=,∴S△AOC=OA•CM=×2×=;(3)设直线EF解析式为y=kx+b,如图2,①当△AOB≌△F1OE1时,OB=OE1=4,OA=OF1=2,则E1(4,0),F1(0,2),代入y=kx+b得,解得,此时直线EF解析式为y=-x+2,同理直线EF关于x轴的对称直线y=x-2也符合题意;②当△AOB≌△E2OF2时,OB=OF2=4,OA=OE2=2,则E2(-2,0),F2(0,-4),代入y=kx+b,得:,解得,此时直线EF解析式为y=-2x-4,同理直线EF关于y轴的对称直线y=2x-4和关于x轴的对称直线y=-2x+4也符合要求;③当△AOB≌△F3OE3时,OB=OE3=4,OA=OF3=2,则E1(-4,0),F1(0,-2),代入y=kx+b,得:,解得,此时直线EF解析式为y=-x-2,同理直线EF关于x轴的对称直线y=x+2也符合要求;综上,直线EF的解析式为y=-x+2或y=-2x-4或y=2x-4或-2x+4或y=-x-2或y=x-2或y=x+2.【解析】(1)求出x=0时y的值和y=0时x的值即可得;(2)设C(a,-2a+4),作CM⊥OA,由∠COA=45°知OM=CM,据此可得a=-2a+4,求出a的值后得出CM=OM=,再根据三角形面积公式可得答案;(3)分E、F在x、y轴的正半轴和负半轴的情况,依据△AOB≌△F1OE1、△AOB≌△E2OF2、△AOB≌△F3OE3得出OE、OF的长,从而得出点E和点F的坐标,再利用待定系数法求解可得.本题是一次函数的综合问题,解题的关键是掌握一次函数图象上点的坐标特征、等腰直角三角形的判定与性质、全等三角形的判定与性质及待定系数法求函数解析式等知识点.。

浙教版八年级上册数学期末测试卷及含答案

浙教版八年级上册数学期末测试卷及含答案

浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A. B. C.D.2、一次函数与,在同一平面直角坐标系中的图象是( )A. B. C. D.3、如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1, S2,则S1:S2等于()A.2:1B. :1C.3:2D.2:4、当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是( )A. B. C. D.5、如图,已知△ABC中,AC=3,BC=5,AB=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条6、△ABC中,∠A,∠B,∠C的对边分别记为,,,由下列条件不能判定△ABC为直角三角形的是().A.∠A+∠B=∠CB.∠A∶∠B∶∠C =1∶2∶3C.D. ∶∶=3∶4∶67、已知一个三角形的两边长分别为2、5,则第三边的长可以为()A.2B.3C.5D.78、连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A. B. C. D.9、如图所示把一个边长为1的正方形放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A表示的数是().A. B.1 C. D.210、在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积,当高h为定值时,下列说法正确的是( )A.S,a是变量;,h是常量B.S,a,h是变量;是常量C.a,h是变量;S是常量D.S是变量;,a,h是常量11、如图所示图象(折线ABCDE)描述了轮船在海上沿笔直路线行驶过程中,轮船离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①轮船共行驶了120千米;②轮船在行驶途中停留了0.5小时;③轮船在整个过程中的平均速度为千米/时;④轮船自出发后3小时至4.5小时之间行驶的速度在逐渐减少,其中正确的说法共有()A.1个B.2个C.3个D.4 个12、已知点P在x轴上方,y轴左侧,距x轴2个单位长度,距y轴3个单位长度,则点P的坐标为()A.(3,2)B.(-2,-3)C.(-3,2)D.(3,-2)13、在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA。

浙教版八年级上册数学期末检测卷(含答案)

浙教版八年级上册数学期末检测卷(含答案)

浙教版八上数学期末检测卷一、单选题1.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3 4 5B.7 8 15C.3 12 20D.5 5 112.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形;B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形3.点A(2, 6)与点B(-4,6)关于直线()对称A.x=0B.y=0C.x=-1D.y=-14.等腰三角形一个角为80°,则底角为( )A.80°B.20°C.50°D.80°或50°5.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,)剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长)是()A.2+B.2+2C.12D.186.不等式<x的解集是()A.x<-2B.x<-1C.x<0D.x>27.一次函数y=ax+b(a>0)与x轴的交点坐标为(m,0),则一元一次不等式ax+b≤0的解集应为()A.x≤mB.x≤-mC.x≥mD.x≥-m8.若点P(a,b)在第四象限内,则a,b的取值范围是()A.a>0,b<0B.a>0,b>0C.a<0,b>0D.a<0,b<09.如图,在Rt△ABC中,∠C=90°,BC=1,AB=2,∠B的度数为()A.30°B.45°C.60°D.75°10.如图,一次函数y=x+3的图象与x轴交于A点,与y轴交于B,与正比例函数y=﹣x的图象交于点C,则△AOC的面积为()A. B. C. D.二、填空题11.如图,△ABC≌△DEF,则EF= ________.12.不等式组的解集为________13.在Rt△ABC中,∠C =90°,∠A=30°,AB=4,则AC=________14.一次函数y=3﹣9x与x轴的交点坐标是________.15.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为________.16.如图,在矩形ABCD中,AB=10cm,BC=4cm,M,N两点分别从A,B两点以2cm/s和1cm/s的速度在矩形ABCD 边上沿逆时针方向运动,其中有一点运动到点D停止,当运动时间为________秒时,△MBN为等腰三角形.三、计算题17.解不等式组,并写出不等式组的整数解.四、解答题18.八年级某班数学实验课安排测量操场上旗杆的高度.小聪同学经过认真思考,研究出了一个可行的测量方案:在某一时刻测得旗杆AB的影长BC和∠ACB的大小,然后在操场上画∠MDN,使得∠MDN=∠ACB,在边DM上截取线段DE=BC,再利用三角形全等的知识求出旗杆的高度,请完成小聪同学的测量方案,并把图形补画完整,说明方案可行的理由.19.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.20.博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少门票价格应是多少元?21.如图,在平面直角坐标系内,一次函数y=kx+b(k≠0)的图象与正比例函数y=﹣2x的图象相交于点A,且与x轴交于点B,求这个一次函数的解析式.22.如图,已知在△ABC中,△ABC的外角∠ABD的平分线与∠ACB的平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.求证:MN=CN﹣BM.答案部分第 1 题:【答案】A第 2 题:【答案】A第 3 题:【答案】C第 4 题:【答案】D第 5 题:【答案】B第 6 题:【答案】A第7 题:【答案】A第8 题:【答案】A第9 题:【答案】C第10 题:【答案】B第11 题:【答案】 5第12 题:【答案】﹣4<x≤2【答案】23第14 题:【答案】(13 ,0)第15 题:【答案】10第16 题:【答案】或(12﹣4 )或第17 题:【答案】解:由①得x<3;由②得x≥﹣1,∴原不等式组的解集为﹣1≤x<3,则不等式组的整数解有﹣1,0,1,2.第18 题:【答案】解:如图所示:过点E作GE⊥DM,垂足为E,此时EG=AB,理由:在△ACB和△GDE中,∴△ACB≌△GDE(ASA),∴AB=EG,即可以得出旗杆高度.【答案】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠=90°,DC=CB,∵E、F为DC、BC中点,∴DE= DC,BF= BC,∴DE=BF,∵在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF= ×4=2,CE=CF= ×4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.第20 题:【答案】解:设每周参观人数与票价之间的一次函数关系式为y=kx+b 把(10,7000)(15,4500)代入y=kx+b中得,解得∴y=﹣500x+12000根据确保每周4万元的门票收入,得xy=40000即x(﹣500x+12000)=40000x2﹣24x+80=0解得x1=20 x2=4把x1=20,x2=4分别代入y=﹣500x+12000中得y1=2000,y2=10000因为控制参观人数,所以取x=20,y=2000答:每周应限定参观人数是2000人,门票价格应是20元/人.第21 题:【答案】解:在函数y=﹣2x中令y=2得:﹣2x=2,解得:x=﹣1,∴点A坐标为(﹣1,2),将点A(﹣1,2)、点B(1,0)代入y=kx+b,得:,解得:,∴一次函数解析式为:y=﹣x+1.第22 题:【答案】证明:∵ON∥BC,∴∠NOB=∠OBD∵BO平分∠ABD,∴∠ABO=∠DBO,∴∠MOB=∠OBM,∴BM=OM∵ON∥BC,∴∠NOC=∠OCD∵CO平分∠ACB,∴∠NCO=∠BCO,∴∠NCO=∠NOC,∴ON=CN∵ON=OM+MN,ON=CN,OM=BM,∴CN=BM+MN,∴MN=CN﹣BM.。

浙教版八年级上册数学期末测试卷(参考答案)

浙教版八年级上册数学期末测试卷(参考答案)

浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( )A. B. C.D.2、定义新运算:a※b= ,则函数y=3※x的图象大致是( )A. B. C. D.3、下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)时间(年)1949 1959 1969 1979 1989 1999人口(亿) 5.42 6.72 8.07 9.75 11.07 12.59从表中获取的信息:①人口随时间的变化而变化,时间是自变量,人口是因变量;②1979﹣1989年10年间人口增长最慢;③1949﹣1979这30年的增长逐渐加大,1979﹣1999这20年的增长先减小后增大;④人口增长速度最大的十年达到约20%,其中正确的有()A.4个B.3个C.2个D.1个4、如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1、P2、P 3、P4四个点中找出符合条件的点P,则这样的点P有()A.1个B.2个C.3个D.4个5、点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)6、在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何?”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB的距离为1尺(1尺=10寸),双门间的缝隙CD 为2寸,那么门的宽度(两扇门的和)AB为( )A.103寸B.102寸C.101寸D.100寸7、在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A. B. C. D.8、已知反比例函数 y= (k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限9、等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.30°或150°C.60°或150°D.60°或120°10、弹簧挂上物体后会伸长(在允许挂物重量范围内),测得一弹簧的长度y (cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法错误的是()x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5A.弹簧不挂重物时的长度为10cmB.x与y都是变量,且x是自变量,y 是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14cm11、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cmB.4cm,6cm,8cm,C.5cm,6cm,12cm, D.2cm,3cm,5cm12、下列四个选项中,不是全等图形的是()A. B. C.D.13、已知三角形的三边分别为2,a,4,那么a的取值范围是()A.1<a<5B.2<a<6C.3<a<7D.4<a<614、点M(3,﹣4)关于y轴的对称点的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)15、如图,在菱形中,,,、分别是边、中点,则周长等于()A. B. C. D.二、填空题(共10题,共计30分)16、若关于x的不等式(1﹣a)x>3可化为x<,则a的取值范围是________17、如图,在△ABC中,∠ACB=∠ABC=40o, BD是∠ABC的角平分线,延长BD 至点E,使得DE=DA,则∠ECA=________.18、如图,在正五边形中,是的中点,连接,,则的度数是________.19、如图,点G在的边的延长线上,点H为中点,点D在上,点E在上,连接交于点F,,,若,,则________.20、如图,点O是▱ABCD的对称中心,AD>AB,E,F是AB边上的点,且EF=AB;G,H分别是BC边上的点,且GH=BC,若S1, S2分别表示△EOF和△GOH的面积,则S1与S2之间的数量关系是________.21、已知△ABC≌△DEF,∠A=40° ,∠F=60° ,则∠B的度数等于________度。

最新浙教版八年级数学上册期末检测试卷含答案

最新浙教版八年级数学上册期末检测试卷含答案

最新浙教版八年级数学上册期末检测试卷含答案一、单选题1.画△ABC的边BC上的高,正确的是()A.B.C.D.2.如图所示,△ABC 中AB 边上的高线是()A.线段DA B.线段CAC.线段CD D.线段BD3.不等式组的解集在数轴上表示为( )A.B.C.D.4.如图,AB=CD,AB∥CD,E,F是BD上两点且BE=DF,则图中全等的三角形有( )A.1对B.2对C.3对D.4对5.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过B 点的直线折叠这个三角形,使点C落在边AB 上的点E 处,折痕为BD,求△ADE 的周长()A.7 cm B.8 cm C.11 cm D.5 cm6.下列各式计算与变形正确的是( )A.B.若,则C.若则D.若,则7.下列函数:①;②;③;④.其中正比例函数有()A.1个B.2个C.3个D.4个8.如图摆放的三个正方形,S表示面积,则S=()A.10B.500C.300D.309.如图,已知∠1=∠2,添加下列某条件,未必能判定△ABC≌△BAD的是()A.∠DAB=∠CBA B.∠C=∠D C.BD=AC D.AD=BC二、填空题10.小亮从家步行到公交站台,等公交车去学校.图中折线表示小亮的行程与所花时间之间的函数关系.下列说法:他离家共用了;他等公交车的时间是;他步行的速度是;公交车的速度是.正确的有________________(只填正确说法的序号).11.如图,平面直角坐标系中,A(1,0)、B(0,2),BA=BC,∠ABC=90°,则点C 的坐标为___________12.如图,在矩形ABCD中,AB=3,AD=4,点E是AD边上一动点,将△ABE沿BE折叠,使点A的对应点A′恰好落在矩形ABCD的对角线上,则AE的长为______.。

浙教版八年级(上)期末数学试卷(含答案解析)

浙教版八年级(上)期末数学试卷(含答案解析)

浙教版八年级上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.若x>y,则下列式子正确的是()A.y+1>x﹣1 B.>C.1﹣x>1﹣y D.﹣3x>﹣3y 3.下列坐标系表示的点在第四象限的是()A.(0,﹣1)B.(1,1)C.(2,﹣1)D.(﹣1,2)4.如图,在△ABC中,AB=AC,∠A=40°,ED为AB垂直平分线,则∠EBC的度数是()A.50°B.40°C.30°D.70°5.下列命题:①有一条直角边和斜边对应相等的两个直角三角形全等;②周长相等的两个三角形是全等三角形;③全等三角形对应边上的高、中线、对应角的角平分线相等;④两个含60°角的等腰三角形是全等三角形;其中正确的命题有()A.1个B.2个C.3个D.4个6.一次函数y=kx+b(k,b,k≠0)的图象如图所示,当y<0时,自变量x的取值范围是()A.x<﹣2 B.x>﹣2 C.x>2 D.x<27.若正三角形的边长为2cm,则这个正三角形的面积是()cm2.A.6 B.4 C.2D.8.已知直角三角形的两边分别为6和8,则斜边上的中线长为()A.20 B.5 C.4 D.4或59.如图,在平面直角坐标系中,等腰直角三角形ABC的腰长为2,直角顶点A在直线l:y=2x+2上移动,且斜边BC∥x轴,当△ABC在直线l上移动时,BC的中点D满足的函数关系式为()A.y=2x B.y=2x+1 C.y=2x+2﹣D.y=2x﹣10.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=a b.其中正确的是()A.①②B.③④C.①②④D.①③④二、填空题(共6小题,每小题4分,满分24分)11.已知点A(m,3)与点B(2,n)关于y轴对称,则m=,n=.12.“若a>0,b>0,则ab>0”的逆命题是,该逆命题是一个命题(填“真”或“假”)13.已知关于x的一元一次方程4x+m﹣1=3m+1的解是负数,则m的取值范围是.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C 有个.15.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n按如图所示的方式放置,其中点A1、A2、A3、…、﹣1A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为.16.有一块直角三角形绿地,量得两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长两条直角边中的一条,则扩充后等腰三角形绿地的面积为m2.三、解答题(共7小题,满分66分)17.解不等式组,并把它的解集在数轴上表示出来.18.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).19.下面是小刚解的一道题:题目:如图,AB=CD,∠B=∠D,说明:BC=D C.解:在△ABC和△ADC中,∴△ABC≌△ADC,∴BC=DC你认为小刚解法正确吗?若正确,说明理由;若不正确,请将小刚做的错误指出,并给出你认为正确的解法.20.某西瓜产地组织40辆汽车装运A、B、C三种西瓜共200吨到外地销售,按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:西瓜种类A B C每辆汽车运载量(吨)45 6每吨西瓜获利(百元)16 10 12(1)设装运A种西瓜的车数为x,装运B种西瓜的车数为y,求y与x的函数关系式;(2)如果装运每种西瓜的车辆数都不少于12辆,那么车辆的安排方案有几种?哪一种方案获利最多,最多利润是多少?21.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=4x+a的图象与x轴以及y=x+1的图象分别交于点C,B.(1)若点B的横坐标为1,求四边形AOCB的面积;(2)若一次函数y=4x+a的图象与函数y=x+1的图象的交点B始终在第一象限,求a的取值范围.22.学完第2章“特殊的三角形”后,老师布置了一道思考题:如图,点M、N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.(1)判断△ABM与△BCN是否全等,并说明理由.(2)判断∠BQM是否会等于60°,并说明理由.(3)若将题中的点M,N分别移动到BC,CA的延长线上,且BM=CN,是否能得到∠BQM=60°?请说明理由.23.某校部分住校生放学后到学校开水房打水,每人接水2升,他们先同时打开两个放水龙头,后来因故障关闭一个放水龙头,假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量m(升)与接水时间t(分)的函数关系图象如图所示,请结合图象,回答下列问题:(1)请直接写出m与t之间的函数关系式:.(2)前15位同学接水结束共需要几分钟?(3)小敏说“今天我们寝室的8位同学去开水房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.若x>y,则下列式子正确的是()A.y+1>x﹣1 B.> C.1﹣x>1﹣y D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.【解答】解:A.y+1>x﹣1,不一定成立,故此选项错误;B.利用不等式的性质2,不等式两边都除以一个正数,不等号的方向不变,故此选项正确;C.首先利用不等式的性质2,不等式两边乘以一个负数,不等号的方向改变,所以﹣x<﹣y,再利用不等式的性质1,可得1﹣x>1﹣y,故此选项错误;D.利用不等式的性质2,不等式两边乘以一个负数,不等号的方向改变,故此选项错误;故选B.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.下列坐标系表示的点在第四象限的是()A.(0,﹣1)B.(1,1)C.(2,﹣1)D.(﹣1,2)【考点】点的坐标.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:A、(0,﹣1)位于y轴的负半轴上,故A错误;B、(1,1)位于第一象限,故B错误;C、(2,﹣1)位于第四象限,故C正确;D、(﹣1,2)位于第二象限,故D错误;故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如图,在△ABC中,AB=AC,∠A=40°,ED为AB垂直平分线,则∠EBC的度数是()A.50°B.40°C.30°D.70°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形性质和三角形内角和定理求出∠ABC,根据线段垂直平分线性质求出AE=BE,推出∠ABE=∠A,即可求出答案.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=70°,∵AB的垂直平分线DE,∴AE=BE,∴∠ABE=∠A=40°,∴∠EBC=∠ABC﹣∠ABE=70°﹣40°=30°,故选C【点评】本题考查了等腰三角形性质,三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.5.下列命题:①有一条直角边和斜边对应相等的两个直角三角形全等;②周长相等的两个三角形是全等三角形;③全等三角形对应边上的高、中线、对应角的角平分线相等;④两个含60°角的等腰三角形是全等三角形;其中正确的命题有()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】利用全等三角形的判定、全等三角形的性质分别判断后即可确定正确的选项.【解答】解:①有一条直角边和斜边对应相等的两个直角三角形全等,正确;②周长相等的两个三角形是全等三角形,错误;③全等三角形对应边上的高、中线、对应角的角平分线相等,正确;④两个含60°角的等腰三角形是全等三角形,错误,故选B;【点评】本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、全等三角形的性质,属于基础知识,难度不大.6.一次函数y=kx+b(k,b,k≠0)的图象如图所示,当y<0时,自变量x的取值范围是()A.x<﹣2 B.x>﹣2 C.x>2 D.x<2【考点】一次函数与一元一次不等式.【分析】直接根据函数的图象即可得出结论.【解答】解:∵由函数图象可知,当x<﹣2时,一次函数的图象在x轴的下方,∴当y<0时,x<﹣2.故选A.【点评】本题考查的是一次函数与一元一次不等式,能根据题意利用函数图象求不等式的解集是解答此题的关键.7.若正三角形的边长为2cm,则这个正三角形的面积是()cm2.A.6 B.4 C.2D.【考点】等边三角形的性质.【分析】过顶点A作底边的垂线,根据边角关系,利用特殊角的三角函数值,即可求得底边上的高的长度,再由三角形的面积公式即可得出结论.【解答】解:画出等边三角形ABC,使得AB=2,过A作AD⊥BC,垂足为D,如图,∵△ABC为等边三角形,∴∠B=60°,BC=AB=2,∴AD=AB•sin∠B=2×=,三角形ABC面积S△ABC=•BC•AD=×2×=.故选D.【点评】本题考查了等边三角形的性质、特殊角的三角函数值以及三角形的面积公式,解题的关键是:根据边角关系,利用特殊角的三角函数值,可求出底边上的高的长度.8.已知直角三角形的两边分别为6和8,则斜边上的中线长为()A.20 B.5 C.4 D.4或5【考点】勾股定理;直角三角形斜边上的中线.【专题】分类讨论.【分析】先根据勾股定理求得斜边的长,再根据直角三角形斜边上的中线等于斜边的一半求其斜边上的中线,注意题中没有指明已知的两边是直角边还是斜边故应该分情况进行讨论.【解答】解:①当6和8均为直角边时,斜边=10,则斜边上的中线=5;②当6为直角边,8为斜边时,则斜边上的中线=4.故斜边上的中线长为:4或5.故选:D.【点评】此题主要考查了勾股定理、直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半,正确分类讨论求出是解题关键.9.如图,在平面直角坐标系中,等腰直角三角形ABC的腰长为2,直角顶点A在直线l:y=2x+2上移动,且斜边BC∥x轴,当△ABC在直线l上移动时,BC的中点D满足的函数关系式为()A.y=2x B.y=2x+1 C.y=2x+2﹣D.y=2x﹣【考点】一次函数图象上点的坐标特征.【分析】根据题意结合一次函数解析式得出ED的长,进而利用点D所在直线平行于y=2x+2所在直线,进而求出答案.【解答】解:如图所示:连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,∵BC∥x轴,∴AD∥y轴,∵y=2x+2当y=0,x=﹣1;当x=0,y=2,∴=,∴=,∵AB=AC=2,∴AD=,∴ED=,由题意可得点D所在直线平行于y=2x+2所在直线,∴BC的中点D满足的函数关系式为:y=2(x﹣)=2x﹣.故选:D.【点评】此题主要考查了一次函数图象上点的坐标性质以及一次函数的平移等知识,正确得出DE的长是解题关键.10.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=a b.其中正确的是()A.①②B.③④C.①②④ D.①③④【考点】角平分线的性质;平行线的性质;等腰三角形的判定与性质.【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;关键角平分线的性质判断④.【解答】解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵EF∥AB,∴∠FOB=∠ABO,又∠ABO=∠FBO,∴∠FOB=∠FBO,∴FO=FB,同理EO=EA,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F分别是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,∴S△CEF=×CF×OD×CE×OH=ab,④正确.故选:C.【点评】本题考查的是角平分线的性质、平行线的性质、角平分线的定义,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题(共6小题,每小题4分,满分24分)11.已知点A(m,3)与点B(2,n)关于y轴对称,则m=﹣2,n=3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标性质得出横坐标互为相反数,纵坐标相等,即可得出m,n的值,即可得出答案.【解答】解:∵点A(m,3)与点B(2,n)关于y轴对称,∴m=﹣2,n=3.故答案为:﹣2,3.【点评】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握其性质是解题关键.12.“若a>0,b>0,则ab>0”的逆命题是ab>0,则a>0,b>0,该逆命题是一个假命题(填“真”或“假”)【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题,进而利用举反例判断命题正确性即可;【解答】解:“若a>0,b>0,则ab>0”的逆命题是“若ab>0,则a>0,b>0”,是一个假命题,故答案为:ab>0,则a>0,b>0;假.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.已知关于x的一元一次方程4x+m﹣1=3m+1的解是负数,则m的取值范围是m<﹣1.【考点】一元一次方程的解;解一元一次不等式.【分析】首先利用含m的式子表示x,再根据解为负数可得x<0,进而得到﹣2+m<0,再解不等式即可.【解答】解:4x+m﹣1=3m+14x=3m+1﹣m+14x=2m+2x=,∵关于x的一元一次方程4x+m﹣1=3m+1的解是负数,∴解得:m<﹣1,故答案为:m<﹣1.【点评】此题主要考查了解一元一次方程和一元一次不等式,关键是能正确用含m的式子表示x.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C 有6个.【考点】等腰三角形的判定;勾股定理.【专题】网格型.【分析】根据勾股定理计算出AB,然后分类讨论确定C点位置.【解答】解:AB=,以B为顶点,BC=BA,这样的C点有3个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点有1个,所以使△ABC的等腰三角形,这样的格点C的个数有6个.故答案为6.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.也考查了勾股定理.15.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n按如图所示的方式放置,其中点A1、A2、A3、…、﹣1A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为(2n﹣1﹣1,2n﹣1).【考点】一次函数综合题;相似三角形的判定与性质.【专题】压轴题;规律型.【分析】首先求得直线的解析式,分别求得A1,A2,A3…的坐标,可以得到一定的规律,据此即可求解.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵A1B1=1,点B2的坐标为(3,2),∴A1的纵坐标是1,A2的纵坐标是2.在直线y=x+1中,令x=3,则纵坐标是:3+1=4=22;则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=23;据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.故点A n的坐标为(2n﹣1﹣1,2n﹣1).故答案是:(2n﹣1﹣1,2n﹣1).【点评】本题主要考查了待定系数法求函数解析式,正确得到点的坐标的规律是解题的关键.16.有一块直角三角形绿地,量得两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长两条直角边中的一条,则扩充后等腰三角形绿地的面积为10或12或或m2.【考点】勾股定理的应用.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①BC=CD,②AC=CD,③AD=BD,④AB=BD,⑤AD=AB,5种情况进行讨论.【解答】解:①如图1:当BC=CD=3m时;由于AC⊥BD,则AB=AD=5m;此时等腰三角形绿地的面积:×6×4=12(m2);②如图2:当AC=CD=4m时;∵AC⊥CB,∴AB=BD=5m,此时等腰三角形绿地的面积:×8×3=12(m2);③图3:当AD=BD时,设AD=BD=xm;Rt△ACD中,BD=xm,CD=(x﹣3)m;由勾股定理,得AD2=DC2+CA2,即(x﹣3)2+42=x2,解得x=;此时等腰三角形绿地的面积:×BD×AC=××4=(m2).④如图4,延长BC到D使BD等于5m,此时AB=BD=5m,故CD=2m,•BD•AC=×5×4=10(m2).⑤如图5,延长AC到D使AD等于5m,此时AB=AD=5m,故BC=3m,•BC•AD=×5×3=(m2).故答案为:10或12或或.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.三、解答题(共7小题,满分66分)17.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,然后再在数轴上表示即可.【解答】解:,由①得:x≤1,由②得:x>﹣2,不等式组的解集为﹣2<x≤1,在数轴上表示为:.【点评】此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,关键是掌握在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【考点】作图—应用与设计作图;三角形三边关系.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB,且取AB=4;②以点AA为圆心,3为半径画弧;以点BB为圆心,2为半径画弧,两弧交于点C;③连接AC、B C.则△ABC即为满足条件的三角形.【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.【点评】本题考查了三角形的三边关系,作图﹣应用与设计作图.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.19.下面是小刚解的一道题:题目:如图,AB=CD,∠B=∠D,说明:BC=D C.解:在△ABC和△ADC中,∴△ABC≌△ADC,∴BC=DC你认为小刚解法正确吗?若正确,说明理由;若不正确,请将小刚做的错误指出,并给出你认为正确的解法.【考点】全等三角形的判定与性质.【分析】连接BD,利用等边对等角得到相等的角,然后利用等边对等角得到BC=DC即可.【解答】解:小刚解法不正确,连接BD,∵AB=AD,∴∠ABD=∠ADB,又∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,即∠DBC=∠BDC,∴BC=D C.【点评】本题考查了全等三角形的判定定理,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.20.某西瓜产地组织40辆汽车装运A、B、C三种西瓜共200吨到外地销售,按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:西瓜种类A B C每辆汽车运载量(吨)4 5 6每吨西瓜获利(百元)16 10 12(1)设装运A种西瓜的车数为x,装运B种西瓜的车数为y,求y与x的函数关系式;(2)如果装运每种西瓜的车辆数都不少于12辆,那么车辆的安排方案有几种?哪一种方案获利最多,最多利润是多少?【考点】一次函数的应用.【分析】(1)先表示出装运C种西瓜的车数,根据装运A、B、C三种西瓜共200吨列出方程,解方程可得;(2)先把装运A、B、C三种西瓜的车数用x表示出来,根据装运每种西瓜的车辆数都不少于12辆列出不等式组确定x的范围,从而确定方案;根据总利润等于三种西瓜利润和列出函数关系式,结合自变量取值范围可确定最值.【解答】解:(1)由题意,装运A种西瓜的车数为x,装运B种西瓜的车数为y,则装运C种西瓜的车数为(40﹣x ﹣y),则有:4x+5y+6(40﹣x﹣y)=200,整理,得:y=40﹣2x;(2)由(1)知,装运A、B、C三种西瓜的车数分别为x,40﹣2x,x,由题意得40﹣2x≥12,且x≥12,解得:12≤x≤14,∵x为整数,∴x的值是12、13、14,∴安排的方案有3种:①装运A种西瓜12辆,B种西瓜16辆,C种西瓜12辆;②装运A种西瓜13辆,B种西瓜14辆,C种西瓜13辆;③装运A种西瓜14辆,B种西瓜12辆,C种西瓜14辆;设利润为W(百元),则有W=4x×16+5(40﹣2x)×10+6x×12=2000+36x,∵k=36>0,∴W随x的增大而增大,当x=14时,即装运A种西瓜14辆,B种西瓜12辆,C种西瓜14辆时利润最大,最大利润为36×14+2000=2504(百元).【点评】本题主要考查一次函数的实际应用能力,根据题意找到相等关系或不等关系是关键.21.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=4x+a的图象与x轴以及y=x+1的图象分别交于点C,B.(1)若点B的横坐标为1,求四边形AOCB的面积;(2)若一次函数y=4x+a的图象与函数y=x+1的图象的交点B始终在第一象限,求a的取值范围.【考点】两条直线相交或平行问题.=S△AOB+S△COB,进而得出答案;【分析】(1)首先求出直线BC的解析式,进而得出C点坐标,再利用S四边形AOCB(2)首先联立两函数解析式,进而表示得出x=>0,即可得出答案.【解答】解:(1)∵点B的横坐标为1,点B在y=x+1的图象上,∴B(1,2),把B(1,2)代入y=4x+a得:a=﹣2,∴直线BC的解析式为y=4x﹣2,当y=0时,x=,∴C(,0),y=x+1,当x=0时,y=1,∴A(0,1),∴S=S△AOB+S△COB=+=1;四边形AOCB(2)联立两函数解析式为:,解得,要是两函数交点在第一象限,∴x=>0,解得:a<1.【点评】此题主要考查了两直线相交问题,正确得出直线BC的解析式是解题关键.22.学完第2章“特殊的三角形”后,老师布置了一道思考题:如图,点M、N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.(1)判断△ABM与△BCN是否全等,并说明理由.(2)判断∠BQM是否会等于60°,并说明理由.(3)若将题中的点M,N分别移动到BC,CA的延长线上,且BM=CN,是否能得到∠BQM=60°?请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)因为AB=BC,∠ABM=∠BCN=60°,BM=CN,利用SAS可以证明;(2)根据两个三角形全等,对应角相等可得∠CBN=∠BAM,则∠BQM=∠BAM+∠ABQ=∠CBN+∠ABQ=∠ABC=60°;(3)和(1)同样的求法可得△ABM≌△BCN,然后利用三角形外角的性质求∠BQM=60°.【解答】解:(1)全等,理由:∵AB=BC,∠ABM=∠BCN=60°,BM=CN,∴△ABM≌△BCN(SAS);(2)∵△ABM≌△BCN,∴∠CBN=∠BAM,∴∠BQM=∠BAM+∠ABQ=∠CBN+∠ABQ=∠ABC=60°;(3)能得到∠BQM=60°.理由如下:同(1)可证△ABM≌△BCN(SAS),∴∠M=∠N,∵∠QAN=∠CAM,∠BQM=∠N+∠QAN,∠ACB=∠M+∠CAM,∴∠BQM=∠ACB=60°.【点评】此题考查了全等三角形的判定和性质,以及等边三角形的性质,综合利用了三角形外角的性质,难度中等.23.某校部分住校生放学后到学校开水房打水,每人接水2升,他们先同时打开两个放水龙头,后来因故障关闭一个放水龙头,假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量m(升)与接水时间t(分)的函数关系图象如图所示,请结合图象,回答下列问题:(1)请直接写出m与t之间的函数关系式:m=.(2)前15位同学接水结束共需要几分钟?(3)小敏说“今天我们寝室的8位同学去开水房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.【考点】一次函数的应用.【分析】(1)运用待定系数法分别求出0≤t≤2时和t>2时的函数解析式即可;(2)利用(1)中所求解析式,就可以求出前15位同学接完水后余水量,进而代入解析式求出即可;(3)设t分钟时8位同学开始连续接水,3分钟刚好接完,根据接水量为16升建立方程求出其解即可.【解答】解:(1)设0≤t≤2时m与t的函数关系式为m=k1t+b1,t>2时,m与t的函数关系式为m=k2t+b2,由题意,得,,解得,,因此0≤t≤2时m与t的函数关系式为m=﹣8t+96,t>2时,m与t的函数关系式为m=﹣4t+88.即m=;(2)前15位同学接完水后余水量为96﹣15×2=66(升),∴66=﹣4t+88,∴t=5.5.答:前15位同学接水结束共需要5.5分钟;(3)有可能,设t分钟时8位同学开始连续接水,3分钟刚好接完,由题意,得∵0≤t≤2时每分钟的出水量为:(96﹣80)÷2=8升,t>2时每分钟的出水量为:(80﹣72)÷2=4升.8(2﹣t)+4[3﹣(2﹣t)]=8×2,解得:t=1.答:1分钟时8位同学开始连续接水,3分钟刚好接完.【点评】本题考查了待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,解答时求出函数关系是关键.。

浙教版八年级上册数学期末测试卷(附答案)

浙教版八年级上册数学期末测试卷(附答案)

浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若m>n,则下列不等式中成立的是()A.m+a<n+bB.ma<naC.ma 2>na 2D.a-m<a-n2、下列命题是真命题的是()A.两个锐角的和还是锐角;B.全等三角形的对应边相等;C.同旁内角相等,两直线平行;D.等腰三角形既是轴对称图形,又是中心对称图形.3、如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2, 0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)4、如图,已知等边和等边,点在的延长线上,的延长线交于点M,连,若,则()A. B. C. D.5、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA6、已知点A(2,1),过点A作x轴的垂线,垂足为C,则点C的坐标为().A.(1,2)B.(1,0)C.(0,1)D.(2,0)7、下列图形中,是轴对称图形的是()A. B. C. D.8、下列图形中,对称轴条数最多的是()A. B. C. D.9、如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A. B. C. D.10、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.1011、一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12B.9C.13D.12或912、下列图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.正方形D.正五边形13、若,则下列各式正确的是()A. B. C. D.14、如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC的周长为30,BC=12.则MN的长是()A.15B.9C.6D.315、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm二、填空题(共10题,共计30分)16、在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分,则他至少要答对________道题.17、如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=________18、如图,反比例函数(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM 的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=________ .19、如图,点A、B在反比例函数(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.20、如图,△ABC中,∠C=90°,点D是BC上一点,连结AD.若CD=3,∠B=40°,∠CAD=25°,则点D到AB的距离为________21、如图,在平面直角坐标系中,一动点从原点出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点,,,,则点的坐标为________,点的坐标为________,点(是自然数)的坐标为________.22、如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=________.23、已知三角形两边长分别为6,7,要使该三角形为直角三角形,则第三边长为________①5② ③ ④824、用不等式表示:①x与5的差不小于x的2倍:________;②小明的身高h 超过了160cm:________.25、如图,已知和的边BC,DF在同一直线上,∠B=∠F,AB=EF,BD=CF.根据条件,写出图中一个有关角或线段的等量关系________.(只写一个结论即可)三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(Ⅰ)求直线y=kx+b的函数解析式;(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB 的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.28、已知实数m是一个不等于2的常数,解不等式组,并根据m的取值情况写出其解集.29、如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.30、如图,在△ABC 中,∠C=90°,DB⊥BC 于点,分别以点 D 和点为圆心,以大于的长为半径作弧,两弧相交于点 E 和点,作直线 EF,延长 AB 于点,连接 DG,下面是说明∠A=∠D 的说理过程,请把下面的说理过程补充完整:因为DB⊥BC(已知),所以∠DBC=90°( ) .因为∠C=90°(已知),所以∠DBC=∠C(等量代换),所以DB∥AC ( ) ,所以(两直线平行,同位角相等);由作图法可知:直线 EF 是线段 DB 的 ( ) ,所以 GD=GB,线段(上的点到线段两端点的距离相等),所以( ) ,因为∠A=∠1(已知),所以∠A=∠D(等量代换).参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、D6、D7、B8、9、B10、A11、A12、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

浙教版八年级(上)期末数学试卷(含答案解析)

浙教版八年级(上)期末数学试卷(含答案解析)

浙教版八年级上学期期末数学试卷一、选择题:(本题共10小题,每小题3分,共30分)1.如图所示图案中,轴对称图形是()A.B.C.D.2.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.C.﹣a>﹣b D.﹣2a<﹣2b3.平面直角坐标系中,在第四象限的点是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E5.下列命题中,真命题是()A.周长相等的锐角三角形都全等; B.周长相等的直角三角形都全等;C.周长相等的钝角三角形都全等; D.周长相等的等腰直角三角形都全等6.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:57.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.8.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+39.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE 的周长为()A.20 B.12 C.14 D.1310.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A. B.C.D.二、填空题:(本题共6小题,每小题3分,共18分)11.把“同位角相等”写成“如果…那么…”的形式为:为.12.点A(﹣3,1)关于x轴对称的点的坐标为.13.函数y=中,自变量x的取值范围是.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为.15.如图,在△ABC中,BC边的垂直平分线交BC于D,交AD于E,若CE平分∠ACB,∠B=40°,则∠A=度.16.小王与小李约定下午3点在学校门口见面,为此,他们在早上8点将自己的手表对准,小王于下午3点到达学校门口,可是小李还没到,原来小李的手表比正确时间每小时慢4分钟.如果小李按他自己的手表在3点到达,则小王还需要等分钟(正确时间).三、解答题:(本大题共52分)17.解下列不等式组,并将解集在数轴上表示出来..18.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.19.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△AB C.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,A、B、C是小正方形的顶点,求∠AB C.21.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.22.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.参考答案与试题解析一、选择题:(本题共10小题,每小题3分,共30分)1.如图所示图案中,轴对称图形是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.C.﹣a>﹣b D.﹣2a<﹣2b【考点】不等式的性质.【分析】根据不等式的性质1,两边都加或减同一个数或减同一个整式,不等号的方向不变;不等式的两边都乘以或除以同一个正数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向改变,可得答案.【解答】解:A、两边都加或减同一个数或减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D正确;故选:D.【点评】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.3.平面直角坐标系中,在第四象限的点是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】点的坐标.【分析】根据第四项限内的点的点横坐标大于零,纵坐标小于零,可得答案.【解答】解:A、(1,2)位于第一象限,故A错误;B、(1,﹣2)位于第四象限,故B正确;C、(﹣1,2)位于第二象限,故C错误;D、(﹣1,﹣2)位于第三象限,故D错误;故选:B.【点评】本题考查了点的坐标,熟记各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【解答】解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选B.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.5.下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等【考点】全等三角形的判定;命题与定理.【专题】证明题.【分析】全等三角形必须是对应角相等,对应边相等,根据全等三角形的判定方法,逐一检验.【解答】解:A、周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题;B、周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题;C、周长相等的钝角三角形对应钝角不一定相等,对应边也不一定相等,假命题;D、由于等腰直角三角形三边之比为1:1:,故周长相等时,等腰直角三角形的对应角相等,对应边相等,故全等,真命题.故选D.【点评】本题考查了全等三角形的判定定理的运用,命题与定理的概念.关键是明确全等三角形的对应边相等,对应角相等.6.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理可判定A、B,由三角形内角和可判定C、D,可得出答案.【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=90°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形,故选D.【点评】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有①勾股定理的逆定理,②有一个角为直角的三角形.7.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【专题】数形结合.【分析】根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.【点评】此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.8.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3【考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【专题】数形结合.【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【解答】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3,故选:D.【点评】此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.9.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE 的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.10.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A. B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据题意可知,开始时的水位不是0,乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,到达一定的高度,乌鸦开始喝水,因而水面下降,下降到的高度一定要高于原来未放石子前的高度,由此即可求出答案.【解答】解:开始时的水位不是0,因而A错误;乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,因而选项D错误;乌鸦衔来一些小石子放入瓶中,水面上升,到达一定的高度,乌鸦开始喝水,因而水面下降,下降到的高度一定要高于原来,未放石子前的高度;故选B.【点评】本题考查动点问题的函数图象问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.二、填空题:(本题共6小题,每小题3分,共18分)11.把“同位角相等”写成“如果…那么…”的形式为:为如果两个角是同位角,那么这两个角相等.【考点】命题与定理.【分析】根据把一个命题写成“如果…那么…”的形式,则如果后面是题设,那么后面是结论,即可得出答案.【解答】解:把“同位角相等”写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等;故答案为:如果两个角是同位角,那么这两个角相等.【点评】此题考查了命题与定理,要掌握命题的结构,能把一个命题写成如果…那么…的形式,如果后面的是题设,那么后面的是结论.12.点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(﹣3,1)关于x轴对称的点的坐标为(﹣3,﹣1).故答案为:(﹣3,﹣1).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.函数y=中,自变量x的取值范围是x≥0且x≠1.【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为x<.【考点】一次函数与一元一次不等式.【分析】把(m,3)代入y=2x即可求得m的值,然后根据函数的图象即可写出不等式的解集.【解答】解:把A(m,3)代入y=2x,得:2m=3,解得:m=;根据图象可得:不等式2x<ax+4的解集是:x<.故答案是:x<.【点评】本题考查了一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.15.如图,在△ABC中,BC边的垂直平分线交BC于D,交AD于E,若CE平分∠ACB,∠B=40°,则∠A=60度.【考点】线段垂直平分线的性质.【分析】由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在△ABC中由三角形内角和定理可求得∠A.【解答】解:∵E在线段BC的垂直平分线上,∴BE=CE,∴∠ECB=∠B=40°,∵CE平分∠ACB,∴∠ACD=2∠ECB=80°,又∵∠A+∠B+∠ACB=180°,∴∠A=180°﹣∠B﹣∠ACB=60°,故答案为:60.【点评】本题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解题的关键.16.小王与小李约定下午3点在学校门口见面,为此,他们在早上8点将自己的手表对准,小王于下午3点到达学校门口,可是小李还没到,原来小李的手表比正确时间每小时慢4分钟.如果小李按他自己的手表在3点到达,则小王还需要等30分钟(正确时间).【考点】分式方程的应用.【分析】首先分析出小王同学的表每分钟比正确时间慢多少,然后算出早八点到下午3点的总分钟数,两数相乘即为小王要等的时间数.【解答】解:由于小王同学的表每小时慢4分钟,则每分钟比正确时间慢分钟.而早八点到下午3点的总分钟数为60×7=420分钟.小王的同学总共慢的分钟数为420×=28分钟,设小王还需等x分钟,根据题意得:x=28,解得:x=30.答:小王还需要等30分钟.故答案为:30.【点评】此题考查一元一次方程的实际运用,找出小王同学的表每分钟慢的时间和经过的总时间,还要等的时间就是两数相乘的积.三、解答题:(本大题共52分)17.解下列不等式组,并将解集在数轴上表示出来..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先分别解每个不等式,然后把解集表示在数轴上,确定公共部分.【解答】解:解不等式①得x≤3;解不等式②得x>﹣2.∴不等式组的解集为﹣2<x≤3.把解集表示在数轴上为:【点评】此题考查了一元一次不等式组的解法,解不等式组既不能“代入”,也不能“加减”,而是要分别解不等式组中的每一个不等式,然后借助数轴找出解集的公共部分,从而得到不等式组的解集,熟练以后对于由两个不等式组成的不等式可按“同大取大,同小取小,大大小小无解,大小小大取中间”的规律间接地确定不等式组的解集.18.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【考点】全等三角形的判定与性质;旋转的性质.【专题】几何综合题.【分析】(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.【点评】本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△AB C.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.【考点】坐标与图形性质;三角形的面积.【分析】(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积;(3)当点p在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为(10.0)或(﹣6,0);当点P在y 轴上时,△ABP的面积=4,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).【解答】解:(1)如图所示:(2)过点C向x、y轴作垂线,垂足为D、E.∴四边形DOEC的面积=3×4=12,△BCD的面积==3,△ACE的面积==4,△AOB的面积==1.∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,所点P的坐标为(10.0)或(﹣6,0);当点P在y轴上时,△ABP的面积==4,即,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).所以点P的坐标为(0,5)或(0,﹣3)或(10.0)或(﹣6,0).【点评】本题主要考查的是点的坐标与图形的性质,明确△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积是解题的关键.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,A、B、C是小正方形的顶点,求∠AB C.【考点】勾股定理.【专题】作图题.【分析】(1)面积为5的正方形的边长为,画出正方形即可;(2)以直角边为1和2构造斜边为,再以2和3为直角边构造斜边为就得到三角形三边长分别为2、、;(3)连接AC,利用勾股定理的逆定理证明△ACB为直角三角形即可得到∠ABC的度数.【解答】解:(1)(2)如图所示:(3)连接AC,由勾股定理得:AC=BC=,AB=,∵AC2+BC2=AB2=10,∴△ABC为等腰直角三角形∴∠ABC=45°.【点评】本题考查了勾股定理的知识,解答本题的关键是根据正方形的性质求出边长,在格点三角形中利用勾股定理.21.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元/件) 2 5利润(万元/件) 1 3(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.【专题】压轴题.【分析】(1)设生产A种产品x件,则生产B种产品有(10﹣x)件,根据计划获利14万元,即两种产品共获利14万元,即可列方程求解;(2)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数;(3)得出利润y与A产品数量x的函数关系式,根据增减性可得,B产品生产越多,获利越大,因而B取最大值时,获利最大,据此即可求解.【解答】解:(1)设生产A种产品x件,则生产B种产品(10﹣x)件,于是有x+3(10﹣x)=14,解得:x=8,则10﹣x=10﹣8=2(件)所以应生产A种产品8件,B种产品2件;(2)设应生产A种产品x件,则生产B种产品有(10﹣x)件,由题意有:,解得:2≤x<8;所以可以采用的方案有:,,,,,,共6种方案;(3)设总利润为y万元,生产A种产品x件,则生产B种产品(10﹣x)件,则利润y=x+3(10﹣x)=﹣2x+30,则y随x的增大而减小,即可得,A产品生产越少,获利越大,所以当时可获得最大利润,其最大利润为2×1+8×3=26万元.【点评】本题考查理解题意的能力,关键从表格种获得成本价和利润,然后根据利润这个等量关系列方程,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.22.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.【考点】等边三角形的判定与性质;等腰三角形的性质.【专题】动点型.【分析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多12cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.【点评】此题主要考查了等边三角形的性质及判定,关键是根据题意设出未知数,理清线段之间的数量关系.。

浙教版八年级上数学期末试卷(含答案)

浙教版八年级上数学期末试卷(含答案)

浙教版八年级上数学期末试卷(含答案)-CAL-FENGHAI.-(YICAI)-Company One1八年级(上)期末数学检测试卷一.、精心选一选(请把正确答案前的大写字母填在相应题后的括号内。

每小题3分,共30分)1.下列各点中,在第三象限的点是 ( )A. ( -2 , -3 )B.(-2 , 3 )C.( 2 ,-3 )D. ( 2 , 3 )2.如图,直线a ∥b ,且a 、b 被直线c 所截。

已知∠1=70°,∠2=48°,则∠3的度数是( ) A. 110° B.118° C.132° D.无法确定3.要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验。

在这个问题中,40是( )A.总体的一个样本B.总体C.个体D.样本容量4. 等腰三角形的腰长是5cm ,则它的底边不可能...是( ) A .10cm B .9cm C . 5cm D .3cm5.由几个大小相同的小正方体组成的立体图形的俯视图如图所示,则这个立体图形可能是下图中的 ( )6.下列条件中使两个直角三角形全等的条件是 ( ) A . 两条直角边对应相等 B . 两锐角对应相等 C . 一条边对应相等 D .一锐角对应相等7.甲、乙两人射靶,射击次数一样,他们命中环数的平均数相等,但方差不同,S 2甲=3.5,S 2乙=2.8,则射击较稳定的是( )A .甲B . 乙C . 甲、乙一样稳定D . 无法确定 8. 如果ab <0,那么下列判断正确的是( )。

A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 9.如图,长方体的长、宽、高分别为8cm ,4cm ,5cm 。

一只蚂蚁沿着长方体的表面从点A 爬到点B 则蚂蚁爬行 的最短路径的长是 cm .( )DC B A 俯视图(第2题18513a bc 2BA -3123 A .12B . 13C .D .10.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水)。

浙教版八年级上册数学期末测试卷及含答案(名校卷)

浙教版八年级上册数学期末测试卷及含答案(名校卷)

浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在中,于点,垂直交于点,连接,若,,则()A.32°B.18°C.16°.D.29°2、若直线l1经过点A(0,﹣6),直线l2经过点(3,2)且l1与l2关于y轴对称,则l1、l2与x轴交点之间的距离为()A.1B.C.3D.3、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.4、在同一坐标系中,二次函数与一次函数的图象可能是()A. B. C. D.5、一等腰三角形的两边长分别为4和8,则这个等腰三角形的周长为()A.16B.20C.18D.16或206、如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则tan∠ECF = ()A. B. C. D.7、如图,利用三个面积分别为5,x,y的正方形拼成一个直角三角形,则y关于x之间的函数图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8、不等式组的解集在数轴上表示为()A. B. C.D.9、已知△ABC中,,则它的三条边之比为()A. B. C. D.10、知等腰三角形的一个底角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.50°或70°11、函数中,自变量x的取值范围是()A.全体实数B.x≠1C.x>1D.x≥112、如图,在△ABC中,∠C=90°,∠B=30°,AC=3.若点P是BC边上任意一点,则AP的长不可能是()A.7B.5.3C.4.8D.3.513、点、都在一次函数的图象上,则、的大小关系是()A. B. C. D.不确定14、如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个15、如图,矩形AEHC是由三个全等矩形拼成的AH与BE,BF,DF,DG,CG分别交于点P,Q,K,M,N,设△BPQ, △DKM, △CNH 的面积依次为S1,S2,S3. 若S1+ S3=20,则S2的值为( )A.8B.12C.10D.二、填空题(共10题,共计30分)16、在以O为坐标原点的直角平面内有一点A(2,4),如果AO与x轴正半轴的夹角为a,那么a的余弦值为________.17、在△ABC中,AB =13,BC=10,AD⊥BC于D,且AD =12,则AC=________。

浙教版数学(八上)期末测试卷卷(含答案)

浙教版数学(八上)期末测试卷卷(含答案)

期末测试卷一、选择题(每小题3分,共30分)1.直线y=x-1不经过( )。

A.第一象限B.第二象限C.第三象限D.第四象限2.下列各题的变形中,正确的是( )。

A.由-x<-5,得x>5B.由-x ≥-5,得x ≥5C.由-x ≤-5,得x ≤5D.由-x>-5,得x>53.下列叙述:①a 是非负数,则a ≥0;②“a 2减去10不大于2”可表示为a 2-10<2;③“x的倒数超过10”可表示为x 1>10;④“a ,b 两数的平方和为正数”可表示为a 2+b 2>0.其中正确的个数是( )。

A.1个B.2个C.3个D.4个4.不等式组⎩⎨⎧>>ax x 3的解是x>a ,则a 的取值范围是( )。

A.a<3B.a=3C.a>3D.a ≥35.点M(-2,3)关于x 轴的对称点的坐标是( )。

A.(2,-3)B.(2,3)C.(3,-2)D.(-2.3)6.不等式3x+1<m 的正整数解是1,2,3,则整数m 的最小值是( )。

A.10B.11C.12D.137.李大爷要围一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24m.要围成的菜园是如图所示的矩形ABCD.设BC 边的长为xm ,AB 边的长为ym ,则y 与x 之间的函数关系式是( )。

A.y=-2x+24(0<x<12)B.y=-21x+12(0<x<24) C.y=2x-24(0<x<12) D.y=21x-12(0x<24) 8.如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a ,则下列说法正确的个数是( )。

①DC ’平分∠BDE ;②BC 长为(2+2)a ;③△BC ’D 是等腰三角形;④△CED 的周长等于BC 的长.A.①②③B.②④C.②③④D.③④9.如图,直线y=-x+m 与y=nx+4n(n ≠0)的交点的横坐标为-2,则关于x 的不等式-x+m>nx+4n>0的整数解为( )。

(基础题)浙教版八年级上册数学期末测试卷及含答案(精练)

(基础题)浙教版八年级上册数学期末测试卷及含答案(精练)

浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在△ABC中,2(∠A + ∠B)=3∠C,则∠C的补角等于()A.36°B.72°C.108°D.144°2、如图,在中,,是角平分线,若,,则点到的距离是()A. B. C. D.3、等腰三角形的两内角度数之比是1:2,则顶角度数为()A.90°B.36°C.108°D.90°或36°4、如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE ≌△CDF,则添加的条件不能为()A.BE=DFB.BF=DEC.AE=CFD.∠1=∠25、在直角坐标系中,点P(-2,3)到原点的距离是()A. B. C. D.26、如图,AB=CD , BC=DA , E、F是AC上的两点,且AE=CF , DE=BF ,那么图中全等三角形共()对A.4对B.3对C.2对D.1对7、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD 的中点,若BC=2,则EF的长度为()A. B.1 C. D.8、正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则=()A. B. C. D.9、如图,在中,,,则的度数为()A. B. C. D.10、已知一次函数,图象与轴、轴交点、点,得出下列说法:①A ,;②、两点的距离为5;③的面积是2;④当时,;其中正确的有()A.1个B.2个C.3个D.4个11、一个寻宝游戏的寻宝通道由正方形ABCD的边组成,如图1所示.为记录寻宝者的行进路线,在AB的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→BB.B→CC.C→DD.D→A12、以下列长度的线段为边不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.6,24,2513、如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=5,在AC上取一E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE 的长度为( )A.1B.C.2D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、如图,已知正方形ABCD的边长为6,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①;②;③;④在以上4个结论中,正确的有()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD= ,且AE:BE =1:3,则AB=________.17、如图,将▱ABCD沿对角线AC折叠,使点B落在点B'处.若∠1=∠2=44°,则∠B的大小为________度.18、如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学上册期末检测题
(时间:100分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.下列“数字”图形中,有且仅有一条对称轴的是( A )
A. B. C. D.
2.将一副直角三角尺按如图的方式叠放在一起,则图中∠α的度数是( C ) A .45° B .60° C .75° D .90°
,第2题图) ,第4题图)
,第7题图)
3.已知点P(a ,2),Q(-1,b)关于x 轴对称,则点(a ,b)位于( C ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
4.如图,△ACB ≌△A ′CB ′,∠BCB ′=30°,则∠ACA′的度数为( B ) A .20° B .30° C .35° D .40°
5.把不等式组⎩⎨⎧2x +1>-1,
x +2≤3的解集表示在数轴上,下列选项正确的是( B )
A.
B.
C.
D.
6.一次函数y =2x +m 2+1的图象不可能经过( D ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
7.如图,点B ,C ,E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( D )
A .△ACE ≌△BCD
B .△BG
C ≌△AFC C .△DCG ≌△ECF
D .△ADB ≌△CEA 8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k<0;②a>0;
③b>0;④当x<3时,y 1<y 2.其中正确的有( C )
A .0个
B .1个
C .2个
D .3个
,第8题图) ,第9题图)
,第10题图)
9.如图,P 为等腰△ABC 内一点,过点P 分别作三条边BC ,CA ,AB 的垂线,垂足分别为D ,E ,F ,已知AB =AC =10,BC =12,且PD∶PE∶PF=1∶3∶3,则AP 的长为( B )
A.43
B.20
3
C .7
D .8 10.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回家时走这段路所用的时间为( D )
A .12分
B .10分
C .16分
D .14分 二、填空题(每小题4分,共24分)
11.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长为__22__.
12.如图,△ABC 和△DEF 全等且BC =EF ,则DF =__5__cm ,∠E =__60__度.
13.将点P(-2,y)先向下平移4个单位,再向左平移2个单位后得到点Q(x ,-1),则x +y =__-1__.
14.如图,AB =AC ,AD =AE ,∠BAC =∠DAE,∠1=25°,∠2=30°,则∠3=__55°__.
,第14题图) ,第15题图)
,第16题图)
15.如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b>0;③关于x 的方程kx +b =0的解为x =2.其中正确的是__①②③__.(填序号)
16.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ……按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是__(1
2
)n -1×75°__.
三、解答题(共66分)
17.(6分)解不等式组⎩⎨⎧5x -2>3(x +1),
12
x -1≤7-3
2x ,
并把不等式组的解在数轴上表示出. 解:5
2<x≤4,在数轴上表示略
18.(8分)如图,在平面直角坐标系内,试写出△ABC 各顶点的坐标,并求出△ABC 的面积.
解:A(6,6),B(0,3),C(3,0),S △ABC =272
19.(8分)如图,∠BAC =∠ABD,AC =BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.
解:OE ⊥AB.在△BAC 和△ABD 中,AC =BD ,∠BAC =∠ABD,AB =BA ,∴△BAC ≌△ABD(SAS),∴∠OBA =∠OAB,∴OA =OB.又∵AE=BE ,∴OE ⊥AB
20.(8分)如图,直线l 与两坐标轴的交点坐标分别是A(-3,0),B(0,4). (1)求直线l 所对应的函数表达式;
(2)以AB 为腰的等腰三角形的另一顶点C 在坐标轴上,直接写出点C 的坐标.
解:(1)y =4
3
x +4
(2)点C 坐标为(3,0)或(-8,0)或(0,9)或(0,-1)或(0,-4)或(2,0)
21.(8分)如图,折叠长方形,使点D 落在BC 边上的点F 处,BC =10 cm ,AB =8 cm.
(1)求FC 的长;(2)求EF 的长.
解:(1)由题意可得AF =AD =10 cm ,在Rt △ABF 中,BF =AF 2-AB 2=6 cm ,∴FC =BC -BF =10-6=4(cm) (2)由题意可得EF =DE ,可设DE 的长为x cm ,则EC =(8-x)cm ,在Rt △EFC 中,由勾股定理得(8-x)2+42=x 2,解得x =5,即EF 的长为5 cm
22.(9分)如图,在△ABC 中,∠BCA =90°,∠BAC=30°,分别以AB ,AC 为边作等边△ABE 和等边△ACD,连结ED 交AB 于点F.求证:(1)BC =1
2
AB ;(2)EF =FD.
解:(1)取AB 的中点M ,连结CM ,∵∠BCA =90°,∴CM =BM =AM.又∵∠BAC=30°,∠BCA =90°,∴∠CBA =60°,∴△BCM 是等边三角形,∴BC =BM =CM =1
2AB
(2)连结EM ,则EM⊥AB.∵△ACD 是等边三角形,∴∠CAD =60°,又∵∠BAC=30°,∴∠DAM =90°,∴∠EMF =∠DAF=90°,可证△BEM≌△BAC(AAS),∴EM =AC ,又∵AC =DA ,∴EM =DA ,∴△EMF ≌△DAF(AAS),∴EF =FD
23.(9分)某电脑公司经销甲种型号电脑,随着科技的进步,电脑价格不断下降,今年3月份的甲种电脑售价比去年同期每台下降1000元.如果卖出相同数量的甲种电脑,去年的销售额为10万元,今年的销售额只有8万元.
(1)今年3月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 的值应是多少?此时,哪种方案对公司更有利?
解:(1)设今年3月份甲种电脑每台售价x 元,则
100000x +1000=80000
x
,解得x =4000.
经检验,x =4000是原方程的根,∴今年3月份甲种电脑每台售价4000元
(2)设购进甲种电脑x 台,则48 000≤3 500x+3 000(15-x)≤50 000,解得6≤x≤10,∴x 的正整数解为6,7,8,9,10,∴共有5种进货方案
(3)设总获利为W 元,则W =(4000-3500)x +(3800-3000-a)(15-x)=(a -300)x +12000-15a.当a =300时,(2)中所有方案获利相同,此时,购买甲种电脑6
台,乙种电脑9台时对公司更有利
24.(10分)如图,在平面直角坐标系中,四边形OABC是长方形,点A,C,D的坐标分别为A(9,0),C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P的运动时间为t(s).
(1)当t=2时,求直线PD的表达式;
(2)当点P在BC上,OP+PD有最小值时,求点P的坐标;
(3)当t为何值时,△ODP是腰长为5的等腰三角形(直接写出t的值)?
解:(1)当t=2时,点P的坐标为(0,2),可求直线PD的表达式为y=-2
5
x+2
(2)作点O关于直线BC的对称点O′,此时O′(0,8),连结O′D交BC于点P,此时OP+PD的值最小.可求直线O′D的表达式为y=-错误!x+8,令y=4,则x=
2.5,∴P(2.5,4)
(3)t=6或t=7或t=12或t=14。

相关文档
最新文档