浙江省2017年中考数学真题分类解析:专题5-图形的变换(Word版,含答案)
2017年中考数学试题分项版解析汇编:专题04图形的变换(原卷版)
专题4:图形的变换一、选择题1.(2017北京第5题)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C. D.2.(2017天津第3题)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()3.(2017福建第5题)下列关于图形对称性的命题,正确的是()A.圆既是轴对称性图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形4.(2017福建第10题)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A B′′和点P′,则点P′所在的单位正方形区域是()A .1区B .2区C .3区D .4区5. (2017广东广州第2题)如图2,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90°后,得到图形为 ( )6. (2017广东广州第8题)如图4,,E F 分别是ABCD ▱的边,AD BC 上的点,06,60EF DEF =∠=,将四边形EFCD 沿EF 翻折,得到EFC D ′′,ED ′交BC 于点G ,则GEF ∆的周长为 ( )A .6B . 12C . 18D .247. (2017湖南长沙第4题)在下列图形中,既是轴对称图形,又是中心对称图形的是( )8. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215− D .随H 点位置的变化而变化9. (2017山东青岛第2题)下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).10. (2017山东青岛第5题)如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A .)2,4(−B .)4,2(−C . )2,4(−D .)4,2(−11. (2017四川泸州第5题)已知点(,1)A a 与点(4,)B b −关于原点对称,则a b +的值为( )A .5B .5−C .3D .3−12. (2017山东日照第2题)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A .B .C .D .13. (2017辽宁沈阳第6题)在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是()2,8−,则点B 的坐标是( )A . ()2,8−−B . ()2,8C . ()2,8−D . ()8,2二、填空题1.(2017北京第15题)如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .2.(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=°,AB AC =,1BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .3.(2017湖南长沙第16题)如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .4.(2017山东滨州第15题)在平面直角坐标系中,点C 、D 的坐标分别为C (2,3)、D (1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为_______.5.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.A B C DH Q GFE6.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是.7.(2017江苏苏州第18题)如图,在矩形CD ΑΒ中,将C ∠ΑΒ绕点Α按逆时针方向旋转一定角度后,C Β的对应边C ′′Β交CD 边于点G .连接′ΒΒ、CC ′,若D 7Α=,CG 4=,G ′′ΑΒ=Β,则CC ′=′ΒΒ (结果保留根号).8.(2017浙江舟山第7题)如图,在平面直角坐标系xOy 中,已知点)1,1(),0,2(B A .若平移点A 到点C ,使以点O ,A ,C ,B 为顶点的四边形是菱形,则正确的平移方法是( )A .向左平移1个单位,在向下平移1个单位B .向左平移)122(−1个单位,在向上平移1个单位C . 向右平移2个单位,在向上平移1个单位D .向右平移1个单位,在向上平移1个单位9.(2017浙江舟山第9题)一张矩形纸片ABCD ,已知2,3==AD AB ,小明按下图步骤折叠纸片,则线段DG 长为( )A .2B .22C .1D .210.(2017浙江舟山第16题)一副含030和045的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,cm EF BC 12==(如图1),点G 为边)(EF BC 的中点,边FD 与AB 相交于点H ,现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从00到060的变化过程中,观察点H 的位置变化,点H 相应移动的路径长为 (结果保留根号).三、解答题1.(2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).2.(2017河南第22题)如图1,在Rt ABC ∆中,90A ∠=°,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.3.(2017山东临沂第25题)数学课上,张老师出示了问题:如图1,AC 、BD 是四边形ABCD 的对角线,若ACB ACD ∠=∠=60ABD ADB ∠=∠=°,则线段BC ,CD ,AC 三者之间有何等量关系? 经过思考,小明展示了一种正确的思路:如图2,延长CB 到E ,使BE CD =,连接AE ,证得ABE ADC ≌V V ,从而容易证明ACE V 是等边三角形,故AC CE =,所以AC BC CD =+.小亮展示了另一种正确的思路:如图3,将ABC V 绕着点A 逆时针旋转60°,使AB 与AD 重合,从而容易证明ACF V 是等比三角形,故AC CF =,所以AC BC CD =+.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=°”改为“ACB ACD ∠=∠=45ABD ADB ∠=∠=°”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“ACB ACD ∠=∠=60ABD ADB ∠=∠=°”改为“ACB ACD ∠=∠=ABD ADB α∠=∠=”,其它条件不变,那么线段BC ,CD ,AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.4.(2017浙江金华第19题)如图,在平面直角坐标系中,ABC ∆各顶点的坐标分别为()()()2,2,4,1,4,4A B C −−−−−−.(1)作出ABC ∆关于原点O 成中心对称的111A B C ∆.(2)作出点A 关于x 轴的对称点'A .若把点'A 向右平移a 个单位长度后落在111A B C ∆的内部(不包括顶点和边界)求a 的取值范围.5.(2017浙江金华第23题)如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD ▱纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCD AEFG S S =▱矩形 ______.(2)ABCD ▱纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥== .小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.。
中考数学几何图形的变换历年真题解析
中考数学几何图形的变换历年真题解析几何图形的变换是中考数学中的重要内容,涉及平移、旋转、翻转等多种变换方式。
通过对历年真题的解析,我们可以更好地理解和掌握这些变换的方法和应用。
下面将对数学中考几何图形的变换部分进行详细解析。
一、平移变换平移变换是指将一个图形在平面上沿着一定方向移动一定的距离,保持图形形状和大小不变。
在中考中,常常要求计算平移后的图形坐标或者确定平移向量的特征等。
例题1:已知点A(3,4),将点A沿向量(2,-3)平移,记平移后的点为B。
求点B的坐标。
解析:根据平移的定义和向量的性质,我们知道平移后点的坐标等于原来点的坐标加上平移向量的坐标。
所以,点B的坐标为(3+2, 4-3),即B(5,1)。
例题2:如图,平行四边形ABCD经过平移变换得到新的平行四边形A'B'C'D',其中AB=3cm,CB=4cm,平移向量为v,求平移向量v的坐标。
解析:首先,我们可以利用平行四边形的性质推导出平移向量v的坐标与平行四边形的对应边的向量相等。
由于AB在变换前和变换后分别与A'B'、B'C'平行,所以v的坐标等于AB的坐标,即v=(3, 0)。
二、旋转变换旋转变换是指将一个图形绕着一定的旋转中心按一定的角度旋转。
在中考中,常常要求计算旋转后的图形坐标或者确定旋转角度的特征等。
例题3:如图,A、B、C三点在平面内,点A经过逆时针旋转90°得到点B,点B经过逆时针旋转90°得到点C,求点C的坐标。
解析:根据旋转的性质,我们可以得出旋转90°后,点的坐标分别等于原来点的y坐标、-x坐标。
所以,点C的坐标为(-2, 3)。
例题4:如图,正方形ABCD绕顶点A顺时针旋转90°得到新图形,求旋转后点C的坐标。
解析:根据旋转的性质,我们可以将旋转90°看作将原点逆时针旋转90°。
因此,旋转后点C的坐标为(-1, 1)。
2017年浙江金华中考数学试卷(解析版)
2017年浙江省金华市中考数学试卷满分:120分 版本:浙教版 第I 卷(选择题,共30分)一、选择题(每小题3分,共10小题,合计30分)1. (2017浙江金华,1,3分)下列各组数中,把两数相乘,积为1的是 A .2和-2B .-2和21C .3和33D .3和-3答案:C ,解析:(1)根据“有理数乘法的运算法则”,2×(-2) =-4;(2)根据“有理数乘法的运算法则”, -2×21=-1;(3)根据“二次根式乘法的运算法则”,3×33=1;(4)根据“二次根式乘法的运算法则”,3×(-3)=-3.2. (2017浙江金华,2,3分)一个几何体的三视图如图所示,这个几何体是 A .球B .圆柱C .圆锥D .立方体俯视图答案:B ,解析:因为该几何体的主视图与左视图都是矩形,所以该几何体是柱体;又因为该几何体的俯视图是圆,所以该几何体是圆柱.3.(2017浙江金华,3,3分)下列各组数中,不可能成为一个三角形三边长的是A .2,3,4B .5,7,7C .5,6,12D .6,8,10答案:C ,解析:判断三条线段a ,b ,c 能否组成三角形的常用方法:当两条较短线段之和大于最长线段时,则能组成三角形.∵2+3>4,5+7>7,5+6<12,6+8>10,∴5,6,12不可能成为一个三角形三边长. 4. (2017浙江金华,4,3分)在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tan A 的值是A .43B .34 C .53 D .54 答案:A ,解析:在Rt △ABC 中,根据勾股定理,得AC =22BC AB -=2235-=4,再根据余切函数的定义,得tan A =AC BC =43. 5. (2017浙江金华,5,3分)在下列的计算中,正确的是A .m 3+m 2=m 5B .m 5÷m 2=m 3C .(2m )3=6m 3D .(m +1)2=m 2+1答案:B ,解析:(1)根据“同类项定义”, m 3+m 2不能计算;(2)根据“同底数幂的除法”, m 5÷m 2=m 5-2=m 3;(3)根据“积的乘方”, (2m )3=23·m 3=8m 3;(4)根据“完全平方公式”, (m +1)2=m 2+2m +1. 6. (2017浙江金华,6,3分)对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是2 答案:B ,解析:二次函数y =-(x -1)2+2的对称轴是直线x =1. ∵-1<0,∴抛物线开口向下,有最大值,最大值是2.7. (2017浙江金华,7,3分)如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形特片,则弓形弦AB的长为 A .10cmB .16cmC .24cmD .26cm答案:C ,解析:如图,在Rt △OCB 中,OC =5cm ,OB =13cm ,根据勾股定理,得BC =22OC OB -=22513-=12cm.∵OC ⊥AB ,∴AB =2BC =24cm .8. (2017浙江金华,8,3分)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学得前两名的概率是 A .21B .31 C .41 D .61 答案:D ,解析:画树形图如下:甲 乙 丙 丁乙 丙 丁 甲 丙 丁甲 乙 丁甲 乙 丙由图可知,所有等可能出现的情况共有12种,其中甲、乙同学得前两名的情况有2种,所有甲、乙同学得前两名的概率是122=61. 9. (2017浙江金华,9,3分)若关于x 的一元一次不等式组⎩⎨⎧<->-m x x x ,)2(312的解是x <5,则m 的取值范围是A .m ≥5B .m >5C .m ≤5D .m <5答案:A ,解析:解不等式2x -1>3(x -2),得x <5,又x <m ,且不等式组的解是x <5,根据解不等式组口诀“同小取小”,所以m 的取值范围是m ≥5.10. (2017浙江金华,10,3分)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在A ,B 两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到180°的扇形),图中的阴影部分是A 处监控探头观测到的区域.要是整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是 A .E 处B .F 处C .G 处D .H 处答案:D ,解析:根据监控探头观测区域的条件,B 监控探头为如图黑色区域,剩余的区域只有在H 处安装监控探头,如图红色区域,这样整个艺术走廊都能被监控到.第Ⅱ卷(非选择题,共90分)二、填空题(本大题有6个题,每小题4分,共24分) 11. (2017浙江金华,11,4分)分解因式:x 2-4= .答案:(x +2)(x -2),解析:直接用平方差公式“a 2-b 2=(a +b )(a -b )”分解因式,x 2-4=(x +2)(x -2).12. (2017浙江金华,12,4分)若32=b a ,则bba += . 答案:35,解析:解法1:利用比例的基本性质“两内项积等于两外项积”求解,∵32=b a ,∴3a =2b ,∴a =32b .∴b b a +=b b b +32=bb35=35;解法2:设参数法求解,设a =2k ,则b =3k ,∴b b a +=k k k 332+=k k 35=35;解法3:逆用同分母分式加减法则求解,b b a +=b b b a +=b a +1=32+1=35. 13. (2017浙江金华,13,4分)2017年5月28日全国部分宜居城市最高气温的数据如下:宜居城市 大连 青岛 威海 金华 昆明 三亚 最高气温(℃)252835302632则以上最高气温的中位数为 ℃.答案:29,解析:把6个数字按照从小到大排列为25,26,28,30,32,35,则中位数为23028+=29℃. 14. (2017浙江金华,14,4分)如图,已知l 1∥l 2,直线l 与l 1,l 2相交于C ,D 两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= °.答案:20°,解析:如下图,∵∠1=130°,∴∠3=180°-∠1=180°-130°=50°. ∵l 1∥l 2,∴∠BDC =∠3=50°.∵∠BDC =∠BDA +∠2,∠BDA =30°,∴∠2=∠BDC -∠BDA =50°-30°=20°.15.(2017浙江金华,15,4分)如图,已知点A (2,3)和点B (0,2),点A 在反比例函数y =xk的图象上.作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .答案:(―1,―6),解析:如图,过点A 作AH ⊥AB 交x 轴于点H ,过点D 分别作DE ⊥AB ,DF ⊥AH ,垂足分别为E ,H .设AB 的解析式为y =kx +b ,把点A (2,3)和点B (0,2)分别代入,得⎩⎨⎧==+.2,32b b k 解得⎪⎩⎪⎨⎧==.2,21b k ∴y=21x +2.令y =0,则21x +2=0,得x =-4.∴G (-4,0). ∴OG =4,OB =2.∵点A (2,3),OG =4,可得AG =35. ∵∠BGO =∠BGA ,∠GOB =∠GAH =90°, ∴△BOG ∽△HAG ,∴AGOGAH OB =,即5342=AH ,∴AH =253. 由△AGH 的面积,可得21×3GH =21AG ·AH ,即3GH =35×253,得GH =215.∴OH =GH -OG =27. ∵AH ⊥AB ,∠GAC =45°,∴AD 平分∠GAH . ∵DE ⊥AB ,DF ⊥AH ,∴DE =DF =AF . 由△AGH 的面积,可得21DE ·AG +21DF ·AH =21AG ·AH , 即21(35+253) DF =21×35×253,∴DF =5.∴AF =5,FH =253-5=25.∴DH =22)25()5(+=25.∴OD =OH -DH =27-25=1.∴D (1,0).设直线AD 的解析式为y =mx +n ,把点A (2,3),D (1,0)代入,得⎩⎨⎧=+=+.0,32n m n m 解得⎩⎨⎧-==.3,3n m∴y =3x -3. 把点A (2,3)代入y =x k ,得y =x6. 由⎪⎩⎪⎨⎧-==33,6x y x y 得⎩⎨⎧-=-=6,1y x 或⎩⎨⎧==.3,2y x ∴点C 的坐标为(―1,―6). 16. (2017浙江金华,16,4分)在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m.拴住小狗的10m长的绳子一端固定在B 点出,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2). (1)如图1,若BC =4m ,则S = m 2.(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边BC 的长为 m .图1 图2答案:(1)88π;(2)25,解析:(1)当BC =4时,S =360102702π⨯+3606902π⨯+3604902π⨯=88π;(2)设BC =x m ,则S =360102702π⨯+360)10(302x -⨯π+360902x π=36030π[900+(10-x )2+3x 2]=12π(4x 2-20x +1000)=3π(x 2-5x +250)= 3π(x -25)2+4325π. ∴当x =25时,S 取得最小值.三、解答题(本题有8小题,共66分)17.(2017浙江金华,17,6分)计算:2cos60°+(-1)2017+3--(2-1)0.思路分析:分别根据特殊角的三角函数值、乘方的意义、绝对值的性质及零指数幂计算出各数,再根据实数混合运算的运算法则计算即可.解:原式=2×21-1+3-1=2.18.(2017浙江金华,18,6分)解分式方程:1112-=+x x . 思路分析:先找出最简公分母,方程左右两边乘以最简公分母,化为整式方程,再解整式方程,最后一定注意检验.解:方程两边同乘(x +1)(-1),得2(x -1)=x +1. 解得x =3.检验:当x =3时,(x +1)(-1)≠0. 所以,原分式方程的解为x =3.19.(2017浙江金华,19,6分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (-2,-2),B (-4,-1),C (-4,-4).(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1.(2)作出点A 关于x 轴的对称点A '.若把点A '向右平移a 个单位长度后落在△A 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.思路分析:(1)根据关于原点对应点的坐标特征,对应点的横纵坐标互为相反数,得到A ,B ,C 关于原点的对应点A 1,B 1,C 1,连接对应线段得到所作图形;(2)根据点关于x 轴对称点的特征,横坐标不变,纵坐标变为相反数,即可确定点A ',点A '向右平移4各单位长度与点A 1重合,向右平移6个单位长度,在边B 1C 1上,再根据要求“不包括顶点和边界”,可确定a 的取值范围.解:(1)如图,△A 1B 1C 1就是所求作的图形. (2)A '如图所示. a 的取值范围是4<a <6.20.(2017浙江金华,20,8分)某校为了了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级.统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如下图表.请按正确数据解答下列各题:(1)填写统计表.(2)根据调整后数据,补全条形统计图.(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.图1 图2思路分析:(1)先把优秀漏统计4人加上,良好漏统计6人加上,及格与不及格人数不变,然后再计算合计人数;(2)根据调整后的优秀与良好人数,补全条形统计图;(3)计算出抽取的学生中体能测试的优秀率即可得解.解:(1)填表如图3所示.(2)补充的条形统计图如图4所示.图3 图4 (3)抽取的学生中体能测试的优秀率为12÷50=24%.所以该校体能测试等级为“优秀”的人数为1500×24%=360(人).21.(2017浙江金华,21,8分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点上正方1m 的P 处发出一球,羽毛球飞行的高度y (m)与水平距离x (m)之间满足函数表达式y =a (x -4)2+h .已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当a =-241时,①求h 的值.②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到点O 的水平距离为7m ,离地面的高度为512m 的Q 处时,乙扣球成功,求a 的值.思路分析:(1)①把(0,1),a =-241代入y =a (x -4)2+h 即可求得h 的值;②把x =5代入y =a (x -4)2+h 可求得网球的高度,与1.55m 比较大小,作出正确的判断;(2)由题意,把点(0,1),(7,512)代入y =a (x -4)2+h 即可求得a 的值.解:(1)①把(0,1),a =-241代入y =a (x -4)2+h ,得1=-241×16+h ,解得h =35. ②把x =5代入y =-241(x -4)2+35,得y =-241(5-4)2+35=1.625.∵1.625>1.55,∴此球能过网.(2)把点(0,1),(7,512)代入y =a (x -4)2+h ,得⎪⎩⎪⎨⎧=+=+.5129,116h a h a 解得⎪⎪⎩⎪⎪⎨⎧=-=.521,51h a∴a =-51. 22.(2017浙江金华,22,10分)如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD于点D .E 是AB 延长线上的一点,CE 交⊙O 于点F ,连接OC ,AC .(1)求证:AC 平分∠DAO . (2)若∠DAO =105°,∠E =30°. ①求∠OCE 的度数.②若⊙O 的半径为22,求线段EF 的长.思路分析:(1)由切线的性质可得OC ⊥CD ,进而得OC ∥AD ,根据平行线的性质和等腰三角形的性质可证得∠DAC =∠OAC ,问题得证;(2)①根据平行线的性质和三角形内角和定理可求得∠OCE 的度数;②过点O 作OG ⊥CE ,根据垂径定理FG =CG ,解Rt △OGC 和Rt △OGE 可求得EF 的长.解:(1)∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD . ∴∠DAC =∠ACO .∵OA =OC ,∴∠OAC =∠ACO . ∴∠DAC =∠OAC . ∴AC 平分∠DAO .(2)①∵OC ∥AD ,∴∠EOC =∠DAO =105°. ∴∠OCE =180°-∠EOC -∠E =180°―105°―30°=45°. ②如图,过点O 作OG ⊥CE ,可得FG =CG .在Rt △OGC 中,OC =22,∠OCE =45°,∴OG =CG =OC sin45°=22×22=2. ∴FG =CG =2.在Rt △OGE 中,OG =2,∠E =30°,∴EG =E OGtan =332=23. ∴EF =EG -FG =23-2.23. (2017浙江金华,23,10分)如图1,将△ABC 纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰△BED 和等腰△DHC 的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图1(1)将□ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;S 矩形AEFG :S □ABCD =______.(2) □ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长. (3)如图4,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.图2 图3 图4思路分析:(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S矩形AEFG:S □ABCD 的值;(2)由矩形的性质和勾股定理可求得FH 的长,再由折叠的轴对称性质可知HD =HN ,FC =FN ,因此只要证得△AEH ≌△CGF ,可得FC =AH ,进而求得AD 的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD ,BC 的长.解:(1)AE ,GF ;1:2.由折叠的轴对称性质,得AD =2AG . ∵S 矩形AEFG =AE ·AG ,S □ABCD =AE ·AD ,∴S 矩形AEFG :S □ABCD = AE ·AG :AE ·AD = AE ·AG :AE·2AG =1:2. (2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°.∴FH =22EH EF +=22125+=13.由折叠的轴对称性质可知,HD =HN ,FC =FN ,∠AHE =21∠AHF ,∠CFG =21∠CFH . ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠A =∠C . ∴∠AHF =∠CFH ,∴∠AHE =∠CFG . ∵EH =FG , ∴△AEH ≌△CGF . ∴FC =AH .∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有一下两种基本折法,如图1,图2.图5 图6 按图5的折法的解法.由折叠的轴对称性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG . ∵四边形EBGH 是叠合正方形,∴HG =BG =4. ∴CG =3.∴FG =CG =3.∴BF =BG -FG =1,BC =BG +CG =4+3=7. ∴AD =1,BC =7. 按图6的折法的解法. 设AD =x .由折叠的轴对称性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH . 由DN =HN ,HG =CG ,则GN =21CD =5. ∵四边形EBGH 是叠合正方形,∴EF =FG =GN =5. ∴MF =BF =3. ∴FC =FH =x +3.∵∠B =∠EFG =∠CGF =90°,∴∠BEF +∠BFE =∠BFE +∠CFG =90°,∴∠BEF =∠CFG . ∴△GFC ∽△BEF .∴EF FC BE FG =,即5345+=x ,解得x =413. ∴AD =413,BC =BF +FC =3+413+3=437.24. (2017浙江金华,24,12分)如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0),动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA —AB —BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,25(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值. (3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图2思路分析:(1)用待定系数法可直接即可;(2)由题意知,OP =t ,PC =14-t ,PC 边上的高线为23x +23,可得S 与t 二次函数表达式,用配方法或公式法求得S 的最大值;(3)本小题应注意t 的取值范围,分4种情况分类讨论,得到有关t 的有关方程,求得相应的t 值.解:(1)设AB 所在直线的函数表达式为y =kx +b ,把A (3,33),B (9,53)代入y =kx +b ,得⎪⎩⎪⎨⎧=+=+.359,333b k b k 解得⎪⎩⎪⎨⎧==.32,33b k∴AB 所在直线的函数表达式为y =33x +23. (2)由题意知,OP =t ,PC =14-t ,PC 边上的高线为23t +23, ∴S =21(14-t )(23t +23)=-43t 2+235t +143(2≤t ≤6) .当t =5时,S 有最大值为4381. (3)①当0<t ≤2时,线段PQ 的中垂线经过点C (如图3),可得方程()222142314233t t t -=⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛. 解得t 1=47,t 2=0(舍去),此时t =47. ②当2<t ≤6时,线段PQ 的中垂线经过点A (如图4),可得方程 ()()[]222)23333-=-+t t (.解得t 1=2573+,t 2=2573-(舍去),此时t =2573+. ③当6<t ≤10时,10线段PQ 的中垂线经过点C (如图5),可得方程14-t =25-25t ,解得t =322.图3 图4 图520线段PQ 的中垂线经过点B (如图6),可得方程 ()()222)625935⎥⎦⎤⎢⎣⎡-=-+t t (.解得t 1=722038+,t 2=722038-(舍去),此时t =722038+. 综合上述,t 的值为47,2573+,322,722038+.图6。
2017年浙江中考数学真题分类汇编 平面几何基础(解析版)
2017年浙江中考真题分类汇编(数学):平面几何基础一、单选题(共5题;共10分)1、(2017•宁波)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A、B两点分别落在直线m、n上.若∠1=20°,则∠2的度数为()A、20°B、30°C、45°D、50°2、(2017·台州)如图,点P使∠AOB平分线上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A、1B、2C、D、43、(2017·衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线。
则对应作法错误的是()A、①B、②C、③D、④4、(2017·衢州)如图,AB∥CD,∠A=70°,∠C=40°,则∠E等于()A、30°B、40°C、60°D、70°5、(2017·台州)如图,已知△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A、AE=ECB、AE=BEC、∠EBC=∠BACD、∠EBC=∠ABE二、填空题(共2题;共2分)6、(2017·台州)如图,已知直线a∥b,∠1=70°,则∠2=________7、(2017·金华)如图,已知l1//l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=________°.答案解析部分一、单选题1、【答案】D【考点】平行线的性质【解析】【解答】解:∵m∥n.∴∠2=∠1+∠ABC.又∵∠1=20°,∠ABC=30°∴∠2=50°.故答案为D.【分析】根据平行线的性质即可得出内错角相等,由题目条件即可得出答案.2、【答案】B【考点】角平分线的性质【解析】【解答】解:过P作PE⊥OA于点E,∵OC是∠AOB的平分线,PD⊥OB,∴PE=PD,∵PD=2,∴PE=2,即点P到OA的距离是2cm.故答案为B.【分析】过P作PE⊥OA于点E,根据角平分线上的点到角两边的距离相等即可得到PE=PD.从而得出答案.3、【答案】C【考点】作图—基本作图【解析】【解答】解:作一条线段垂直平分线的方法:1.分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线,得到两个交点(两交点交于线段的两侧).2.连接这两个交点即可.故选C【分析】根据角的平分线,线段的在垂直平分线,过直线外一点P作已知直线的垂线按照这些作图要求去做图即可得出正确答案。
浙江省2017年中考数学真题分类汇编 图形的对称、平移与旋转
浙江省2017年中考数学真题分类汇编图形的对称、平移与旋转一、单选题1、(2017•湖州)在平面直角坐标系中,点关于原点的对称点的坐标是()A、B、C、D、2、(2017•湖州)在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A、B、C 、D 、3、(2017•绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A、B、C、D、4、(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A、y=x2+8x+14B、y=x2-8x+14C、y=x2+4x+3D、y=x2-4x+35、(2017·嘉兴)一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A、B、C、D、6、(2017·嘉兴)如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A、向左平移1个单位,再向下平移1个单位B、向左平移个单位,再向上平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移1个单位,再向上平移1个单位7、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位8、(2017·台州)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A、B、2C、D、49、(2017·衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE 交AD于点F,则DF的长等于()A、B、C、D、二、填空题10、(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为________.11、(2017•舟山)一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)12、(2017•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为________.13、(2017•宁波)已知△ABC的三个顶点为A ,B ,C ,将△ABC向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为________.14、(2017·衢州)如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。
2017年浙江省绍兴市中考数学试卷(含答案解析版)
2017年浙江省绍兴市中考数学试卷(含答案解析版)2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣5的相反数是()A.B.5 C.﹣ D.﹣52.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7° B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,共80分)17.(8分)(1)计算:(2﹣π)0+|4﹣3|﹣.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•绍兴)﹣5的相反数是()A.B.5 C.﹣ D.﹣5【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•绍兴)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:150000000000=1.5×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2017•绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简答组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.【考点】X4:概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是.故选B.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=.5.(4分)(2017•绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W2:加权平均数.【分析】利用平均数和方差的意义进行判断.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.(4分)(2017•绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【考点】KU:勾股定理的应用.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.7.(4分)(2017•绍兴)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.【考点】E6:函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选:D.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.8.(4分)(2017•绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7° B.21°C.23°D.24°【考点】LB:矩形的性质;JA:平行线的性质.【分析】由矩形的性质得出∠D=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,在Rt△ACD中,由互余两角关系得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,在Rt△ACD中,3x+21°=90°,解得:x=23°;故选:C.【点评】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.9.(4分)(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3【考点】H6:二次函数图象与几何变换.【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;∵抛物线经过A点时,函数表达式为y=x2,∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,故选A.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.10.(4分)(2017•绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.【考点】R9:利用旋转设计图案.【分析】根据轴对称和旋转的性质即可得到结论.【解答】解:先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是B,故选B.【点评】本题考查了轴对称和旋转的性质,正确的识别图形是解题的关键.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)(2017•绍兴)分解因式:x2y﹣y= y(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【专题】44 :因式分解.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(5分)(2017•绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90°.【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠A=45°,∴∠DOE=2∠A=90°.故答案为:90°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(5分)(2017•绍兴)如图,Rt△ABC的两个锐角顶点A,B在函数y=(x >0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为(4,1).【考点】G6:反比例函数图象上点的坐标特征.【分析】根据点A的坐标可以求得反比例函数的解析式和点B的横坐标,进而求得点B的坐标,本题得以解决.【解答】解:∵点A(2,2)在函数y=(x>0)的图象上,∴2=,得k=4,∵在Rt△ABC中,AC∥x轴,AC=2,∴点B的横坐标是4,∴y==1,∴点B的坐标为(4,1),故答案为:(4,1).【点评】本题考查反比例函数图象上点的坐标特征,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.14.(5分)(2017•绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为4600 m.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LD:矩形的判定与性质.【专题】1 :常规题型.【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:4600【点评】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF,DE=GE.15.(5分)(2017•绍兴)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为2.【考点】N2:作图—基本作图;KF:角平分线的性质.【分析】如图,作DE⊥AC于E.首先证明BD=DE=2,在Rt△ABD中,解直角三角形即可解决问题.【解答】解:如图,作DE⊥AC于E.由题意AD平分∠BAC,∵DB⊥AB,DE⊥AC,∴DB=DE=2,在Rt△ADB中,∵∠B=90°,∠BDA=60°,BD=2,∴AB=BD•tan60°=2,故答案为2【点评】本题考查作图﹣基本作图,角平分线的性质定理、锐角三角函数等知识,解题的关键是熟练掌握角平分线的性质定理,属于中考常考题型.16.(5分)(2017•绍兴)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x 的值是x=0或x=4﹣4或4<x<4.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.【点评】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.三、解答题(本大题共8小题,共80分)17.(8分)(2017•绍兴)(1)计算:(2﹣π)0+|4﹣3|﹣.(2)解不等式:4x+5≤2(x+1)【考点】C6:解一元一次不等式;2C:实数的运算;6E:零指数幂.【分析】(1)原式利用零指数幂法则,绝对值的代数意义,以及二次根式性质计算即可得到结果;(2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【解答】解:(1)原式=1=﹣3;(2)去括号,得4x+5≤2x+2移项合并同类项得,2x≤﹣3解得x.【点评】此题考查了实数的运算和一元一次不等式的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(8分)(2017•绍兴)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?【考点】FH:一次函数的应用.【分析】(1)根据函数图象上点的纵坐标,可得答案;(2)根据待定系数法,可得函数解析式,根据自变量与函数值得对应关系,可得答案.【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费18元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x≥18),∵直线经过点(18,45)(28,75),∴,解得,∴函数的解析式为y=3x﹣9 (x≥18),当y=81时,3x﹣9=81,解得x=30,答:这个月用水量为30立方米.【点评】本题考查了一次函数的应用,利用待定系数法求出函数解析式是解题关键.19.(8分)(2017•绍兴)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据B组的人数和所占的百分比即可求出总人数;利用总人数×18.75%可得D组人数,可补全统计图.(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;D组人数为:160×18.75%=30(人)统计图补全如图:(2)800×=600(人)答:估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数为600人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017•绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】12 :应用题;554:等腰三角形与直角三角形.【分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.【解答】解:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)(2017•绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【考点】HE:二次函数的应用.【分析】(1)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可;(2)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可.【解答】解:(1)∵y=x•=﹣(x﹣25)2+,∴当x=25时,占地面积最大,即饲养室长x为25m时,占地面积y最大;(2)∵y=x•=﹣(x﹣26)2+338,∴当x=26时,占地面积最大,即饲养室长x为26m时,占地面积y最大;∵26﹣25=1≠2,∴小敏的说法不正确.【点评】此题主要考查了由实际问题列二次函数关系式以及二次函数的最值问题和一元二次方程的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.22.(12分)(2017•绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE 是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.【点评】本题考查四边形综合题、正方形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.23.(12分)(2017•绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20 °,β=10 °,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【考点】KY:三角形综合题.【分析】(1)①先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;②利用等腰三角形的性质和三角形的内角和即可得出结论;(2)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)①∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;②设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,。
2017年浙江省杭州市中考数学试卷(含答案解析版)
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1。
5×108B.1.5×109C.0。
15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=( )A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y6.(3分)若x+5>0,则( )A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则( )A.10。
8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16。
88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,() A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= .13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m= .15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1。
浙江省杭州市2017年中考数学试题(图片版,含答案)
人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》江缘学校陈思梅
镇海中学陈志海
【素材积累】
1、冬天是纯洁的。
冬天一来,世界变得雪白一片,白得毫无瑕疵,白雪松软软地铺摘大地上,好似为大地铺上了一层银色的地毯。
松树上压着厚厚的白雪,宛如慈爱的妈妈温柔地抱着自己的孩子。
白雪下的松枝还露出一点绿色,为这白茫茫的世界增添了一点不一样的色彩。
2、张家界的山真美啊!影影绰绰的群山像是一个睡意未醒的仙女,披着蝉翼般的薄纱,脉脉含情,凝眸不语,摘一座碧如翡翠的山上,还点缀着几朵淡紫、金黄、艳红、清兰的小花儿,把这山装扮得婀娜多姿。
这时,这山好似一位恬静羞涩的少女,随手扯过一片白云当纱巾,遮住了她那美丽的脸庞。
【素材积累】
司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
他游历各地,阅读了大量书籍。
不料正在他着手编写《史记》时,遭到了李陵之祸的株连。
但他矢志不渝,忍辱负重,身受腐刑,幽而发愤,经过十余年的艰苦奋斗,终于写成了鸿篇巨著——《史记》。
[推荐学习]2017年中考数学试题分项版解析汇编第05期专题04图形的变换含解析
专题04 图形的变换一、选择题1.(2017年湖北省宜昌市第2题)如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.【答案】A考点:轴对称图形2.(2017年江西省第3题)下列图形中,是轴对称图形的是()A.B.C. D.【答案】C【解析】试题分析:根据轴对称图形的概念可知:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意;故选:C.考点:轴对称图形3. (2017年内蒙古通辽市第4题)下列图形中,是轴对称图形,不是中心对称图形的是()A.B.C.D.【答案】D考点:1、中心对称图形;2、轴对称图形4.(2017年山东省东营市第9题)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若ABC移动的距离是()A B D【答案】D【解析】试题分析:移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1BE=BC﹣故选:D.考点:1、相似三角形的判定和性质,2、平移的性质5.(2017年山东省泰安市第3题)下列图案:其中,中心对称图形是()A.①② B.②③ C. ②④ D.③④【答案】D考点:中心对称图形6. (2017年湖南省郴州市第2题)下列图形既是对称图形又是中心对称图形的是()【答案】B.【解析】试题分析:根据轴对称图形和中心对称图形的概念可得选项A是轴对称图形,不是中心对称图形;选项B既是轴对称图形又是中心对称图形;选项C不是轴对称图形,是中心对称图形;选项D是轴对称图形,不是中心对称图形.故选B.考点:轴对称图形和中心对称图形.7.(2017年四川省内江市第6题)下列图形:平行四边形、矩形、菱形、圆、等腰三角形,这些图形中只是轴对称图形的有()A.1个B.2个C.3个D.4个【答案】A.考点:轴对称图形.8. (2017年四川省成都市第5题)下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B . C.D .【答案】D【解析】 试题分析:根据轴对称图形和中心对称图形的概念,可知:A 既不是轴对称图形,也不是中心对称图形,故不正确;B 不是轴对称图形,但是中心对称图形,故不正确;C 是轴对称图形,但不是中心对称图形,故不正确;D 即是轴对称图形,也是中心对称图形,故正确.故选:D.考点:轴对称图形和中心对称图形识别9. (2017年四川省成都市第8题)如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9 B. 2:5 C. 2:3 D【答案】A考点:位似变换的性质10. (2017年贵州省六盘水市第2题)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )A.BB.JC. 4D. 0【答案】D.试题分析:选项A是轴对称图形,不是中心对称图形,故此选项错误;选项B不是轴对称图形,不是中心对称图形,故此选项错误;选项C不是轴对称图形,不是中心对称图形,故此选项错误;选项D是轴对称图形,又是中心对称图形,故此选项正确.故选D.考点:中心对称图形;轴对称图形.11.(2017年山东省日照市第2题)剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【答案】A.试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D 既是中心对称图形,也是轴对称图形,故本选项错误.故选A . 考点:中心对称图形;轴对称图形.12.(2017年湖南省长沙市第4题)在下列图形中,既是轴对称图形,又是中心对称图形的是( )【答案】C考点:1、中心对称图形,2、轴对称图形13.(2017年湖南省长沙市第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则m n 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a ,设CM=x,DE=y,则DM=2a-x,EM=2a-y,∵∠EMG=90°,∴∠DME+∠CMG=90°.∵∠DME+∠DEM=90°,∴∠DEM=∠CMG,考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理二、填空题1.(2017年贵州省黔东南州第11题)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为.【答案】(1,﹣1)【解析】试题分析:根据坐标平移规律,可知:A的横坐标+3,纵坐标﹣2,即可求出平移后A的坐标为(1,﹣1)故答案为:(1,﹣1)考点:坐标与图形变化﹣平移2.(2017年湖北省荆州市第15题)将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于轴的对称点落在平移后...的直线上,则的值为__________.【答案】4【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b﹣3,再把点A(﹣1,2)关于y轴的对称点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.考点:一次函数图象与几何变换3.(2017年湖北省荆州市第18题)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在轴的负半轴、轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=kx(x<0)的图象交AB于点N,的图象交AB于点N, S矩形OABC=32,tan∠DOE=12,,则BN的长为______________.【答案】3考点:1、坐标与图形变化﹣旋转;2、反比例函数系数k的几何意义;3、解直角三角形4. (2017年内蒙古通辽市第16题)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位后所得到直线'l的函数关系式为 .【答案】9271010 y x=-∴将直线l向右平移3个单位后所得直线l′的函数关系式为9271010y x=-;故答案为:9271010y x=-.考点:一次函数图象与几何变换5.(2017年山东省东营市第15题)如图,已知菱形ABCD 的周长为16,面积为E 为AB 的中点,若P 为对角线BD 上一动点,则EP+AP 的最小值为 .【答案】考点:1、轴对称﹣最短问题,2、菱形的性质6. (2017年山东省泰安市第24题)如图, 30BCA ∠=,M 为AC 上一点, 2AM =,点P 是AB 上的一动点, PQ AC ⊥,垂足为点Q ,则PM PQ +的最小值为 .考点:轴对称﹣最短路线问题7. (2017年山东省潍坊市第18题)如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在D 上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在C B '上,记为D ',折痕为CG ,2=''D B ,BC BE 31=.则矩形纸片ABCD 的面积为 .【答案】15考点:1、翻折变换(折叠问题);2、矩形的性质8.(2017年四川省内江市第16题)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=6,则CE= .【答案】76.【解析】考点:相似三角形的判定与性质;正方形的性质;综合题.9.(2017年辽宁省沈阳市第16题)如图,在矩形ABCD中,53AB BC==,,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是 ..考点:四边形与旋转的综合题.10. (2017年湖北省黄冈市第14题)已知:如图,在AOB ∆中,090,3,4AOB AO cm BO cm ∠===,将AOB ∆绕顶点O ,按顺时针方向旋转到11A OB ∆处,此时线段1OB 与AB 的交点D 恰好为AB 的中点,则线段1B D = cm .【答案】考点:1、直角三角形,2、勾股定理,3、旋转11.(2017年湖南省长沙市第16题)如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .【答案】(1,2)【解析】 试题分析:根据位似变换的性质及位似比12,可知A ′的坐标为(1,2). 故答案为:(1,2)考点:位似变换三、解答题1.(2017年湖北省十堰市第24题)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,∠BAO=90°,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1)如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2)将图1中的等腰Rt△ABO绕O点顺时针旋转α(0°<α<45°),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(45°<α<90°),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式.【答案】(1). ①AC=OE, ②线段CA、CO、CD满足的等量关系式是AC2+CO2=CD²;(2).(1)中的结论②不成立,理由见解析;(3)线段CA、CO、CD满足的等量关系式OC﹣.试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为:AC2+CO2=CD2;(3)如图3,结论:OC﹣,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣,故答案为:OC﹣.考点:几何变换的综合题∆中,点D、E分别在AC、2.(2017年山东省潍坊市第24题)(本题满分12分)边长为6的等边ABCDE//, 3BC边上, ABEC.2=(l )如图1,将D E C ∆沿射线EC 方向平移,得到C E D '''∆,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的角平分线交于点N .当C C '多大时,四边形D MCN '为菱形?并说明理由.(2)如图2,将DEC ∆绕点C 旋转α(︒<<︒3600α),得到C E D ''∆,连接D A '、E B ',边E D ''的中点为P .①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由.②连接AP ,当AP 最大时,求D A '的值.(结果保留根号)【答案】(1)当MCND'是菱形(2)①AD'=BE'②【解析】试题解析:(1)当MCND'是菱形.理由:由平移的性质得,CD ∥C'D',DE ∥D'E',∵△ABC 是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°﹣∠ACB=120°,∵CN 是∠ACC'的角平分线,∴∠D'E'C'=12∠ACC'=60°=∠B , ∴∠D'E'C'=∠NCC',∴D'E'∥CN ,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵∵四边形MCND'是菱形, ∴CN=CM ,∴CC'=12在Rt △APD'中,由勾股定理得,考点:四边形综合题3. 如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC ,即可得到结论;(2)当6<t <10时,由旋转的性质得到BE=AD ,于是得到C △DBE =BE+DB+DE=AB+DE=4+DE ,根据等边三角形的性质得到DE=CD ,由垂线段最短得到当CD ⊥AB 时,△BDE 的周长最小,于是得到结论;(3)存在,①当点D 与点B 重合时,D ,B ,E 不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;考点:旋转与三角形的综合题.。
【真题】2017年杭州市中考数学试卷含答案解析
2017年浙江省杭州市中考数学试卷参考答案与试题解析选择题一.1.-22=()A.-2B.-4C.2D.4【分析】根据矗的乘方的运算法则求解.【解答】解:-22=-4,故选B.【点评】本题考查了幕的乘方,解答本题的关键是掌握幕的乘方的运算法则.2.太阳与地球的平均距离大约是150000000千米,数据150000000用科学记数法表示为()A. 1.5X108B. 1.5X109C.0.15X109D.15X107【分析】科学记数法的表示形式为aX10n的形式,其中1W a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值VI时,n 是负数.【解答】解:将150000000用科学记数法表示为:1.5X108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为aX10n 的形式,其中lW|a|V10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在AABC中,点D,E分别在边AB,AC上,DE//BC,若BD=2AD,则()B CA.业二B. c.业二 D.匹匚AB2EC2EC2BC2【分析】根据题意得出△A DE-AABC,进而利用已知得出对应边的比值.【解答】VDE//BC,A AADE^AABC,VBD=2AD,.AD_DE_AE_1AB BC AC P贝禅=1,妁EC2.LA,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.|1+归+|1-归=()A.1B.75C.2D.2扼【分析】根据绝对值的性质,可得答案.【解答】解:原式i+/5W^t=2V5,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.设x,y,c是实数,()A、若x=y,贝!J x+c=y-c B.若x=y,贝!J xc=ycC.若乂=),贝I]x=^D.若看矣」则2x=3yc c2c3c【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.6.若x+5>0,则()A.x+l<0B.x-1<OC.普<-lD.-2x<125【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:...x+5>0,Ax>-5,A、根据x+l<0得出xV-1,故本选项不符合题意;B、根据x-1<0得出x<l,故本选项不符合题意;C、根据普<-1得出xV5,故本选项符合题意;□D、根据-2x<12得出x>-6,故本选项不符合题意;故选C.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1- x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次X(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1 ±x)2=b.8.如图,在RtAABC中,ZABC=90°,AB=2,BC=1.把AABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作li,12,侧面积分别记作Si,S2,则()B CA.11:板=1:2,Si:S2=l:2B.1]:12=1:4,S1:S2=l:2C.li:h=l:2,Si:$2=1:4D.li:12=1:4,Si:,2=1:4【分析】根据圆的周长分别计算11,12,再由扇形的面积公式计算S],S2,求比值即可.【解答】解:•.•11=2兀XBC=2兀,h=2兀X AB=4兀,「.li:12=1:2,S1=*X2兀X据=届1,S2=-|-X4兀X寸亏=2、切:,/.Si:S2=l:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2兀r,侧面积=*lr求解是解题的关键.9.设直线x=l是函数y=ax2+bx+c(a,b,c是实数,且aVO)的图象的对称轴,()A.若m>l,贝!J(m-1)a+b>0B.若m>1,贝U(m-1)a+b<0C.若m<l,贝!J(m-1)a+b>0D.若m<l,贝!J(m-1)a+b<0【分析】根据对称轴,可得b=-2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得(m-1)a+b=ma-a-2a=(m-3)a当m<l时,(m-3)a>0,故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=-2a是解题关键.10,如图,在AABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tanZACB=y,则()A.x- y2=3B.2x-y2=9C.3x- y2=15D.4x-y2=21【分析】过A作AQ±BC于Q,过E作EM±BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在RtADEM中,根据勾股定理求出即可.【解答】解:过A作AQ1BC于Q,过E作EM±BC于M,连接DE,VBE的垂直平分线交BC于D,BD=x,.♦.BD=DE=x,VAB=AC,BC=12,tanZACB=y,EM_AQ_BQ=CQ=6,MC CQ7VAQ1BC, EM±BC,.♦.AQ〃EM,•.•E为AC中点,.•.CM=QM=|CQ=3,.♦.EM=3y,/.DM=12-3-x=9-x,在RtAEDM中,由勾股定理得:x2=(3y)2+(9-x)2,即2x-y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.填空题二.11.数据2,2,3,4,5的中位数是3.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.如图,AT切OO于点A,AB是。
2017年浙江省绍兴市中考数学试卷(解析版)
2017年浙江省绍兴市中考数学试卷(解析版)题号一二三得分注意事项:1.本试卷共XX页,三个大题,满分50分,考试时间为100分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共15分)评卷人得分1.-5的相反数是( )(5分)A.B. 5C.D. -52.研究表明,可燃冰是一种可替代石油的新型清洁能源。
在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为( )(5分)A. 15×1010B. 0.15×1012C. 1.5×1011D. 1.5×10123.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )(5分)A. y=x2+8x+14B. y=x2-8x+14C. y=x2+4x+3D. y=x2-4x+3二、填空题(共15分)评卷人得分4.(5分)5.(5分)6.(5分)三、解答题(共20分)评卷人得分资料7.求教学楼的高BD(5分) 8.求∠BCD的度数.(5分)资料9.是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.(5分)10.如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=________°,β=________°.②求α,β之间的关系式.________(5分)******答案及解析******一、单选题(共15分)1.答案:B2.答案:C3.答案:A二、填空题(共15分)4.答案:90°5.答案:(4,1)6.答案:4600三、解答题(共20分)7.答案:由已知得CE=AB=30(m),在Rt△CBE中,BE=CE×tan20°≈30×0.36=10.80(m),在Rt△CDE中,DE=CE×tan18°≈30×0.32=9.60(m),∴教学楼的高BD=BE+DE=10.80+9.60≈20.4(m).答:教学楼的高为20.4m.8.答案:9.答案:10.答案:20;10;α=2β。
2017年浙江省杭州市中考数学试卷(含解析)
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= .13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m= .15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB 交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b(m﹣1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)数据2,2,3,4,5的中位数是 3 .【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)若•|m|=,则m= 3或﹣1 .【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于78 .【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x≤;当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x<1,综上所述:m<n,求x0的取值范围0<x<1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB 交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2017年中考数学试题分项版解析汇编-专题04图形的变换(第01期原卷版)
专题04 图形的变换一、选择题1.(2017山东德州市第11题)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b(a >b),M 在边BC 上,且BM=b ,连AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF 。
给出以下五种结论:①∠MAD=∠AND ;②CP=2-b b a;③ΔABM ≌ΔNGF ;④S 四边形AMFN =a 2+b 2;⑤A ,M ,P ,D 四点共线 其中正确的个数是( )A .2B .3C .4D .52.(2017重庆A 卷第2题)下列图形中是轴对称图形的是( )3.(2017甘肃庆阳第1题)下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .4.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠=,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠= ,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .15.(2017贵州安顺第7题)如图,矩形纸片ABCD 中,AD=4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO=5cm ,则AB 的长为( )A .6cmB .7cmC .8cmD .9cm6.(2017江苏无锡第4题)下列图形中,是中心对称图形的是( )A .B .C .D .7.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .758.(2017江苏盐城第3题)下列图形中,是轴对称图形的是( )9. (2017江苏盐城第6题)如图,将函数y=12(x-2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12 (x −2)2−2 B .y =12 (x −2)2+7 C .y =12 (x −2)2−5 D .y =12(x −2)2+4 10.(2017甘肃兰州第14题)如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,2DE =,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形'''DE F G ,此时点'G 在AC 上,连接'CE ,则''CE CG +=( )111.(2017山东烟台第2题)下列国旗图案是轴对称图形但不是中心对称图形的是( )12.(2017四川宜宾第7题)如图,在矩形ABCD 中BC=8,CD=6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上F 处,则DE 的长是( )A .3B .245C .5D .891613.(2017四川自贡第6题0下列图形中,是轴对称图形,但不是中心对称图形的是( )14.(2017江苏徐州第题0下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .15.(2017浙江嘉兴第7题)若平移点A 到点C ,使以点O ,A ,C ,B 为顶点的四边形是菱形,则正确的平移方法是( )A .向左平移1个单位,再向下平移1个单位B .向左平移1)个单位,再向上平移1个单位C 1个单位D .向右平移1个单位,再向上平移1个单位16.(2017浙江嘉兴第9题)一张矩形纸片ABCD ,已知3AB =,2AD =,小明按所给图步骤折叠纸片,则线段DG 长为( )A B .C .1D .217.(2017山东德州第2题)下列图形中,既是轴对称图形又是中心对称图形的是()二、填空题1.(2017浙江衢州第14题)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.2. (2017浙江衢州第16题)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限。
浙江省绍兴市2017年中考数学试题(精校word版,含答案)
浙江省绍兴市2017年中考数学试题第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 5-的相反数是( )A .15B .5C .15- D .5- 2. 研究表明,可燃烧是一种可代替石油的新型清洁能源,在我国某海域已探明的可燃烧存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为( )A .101510⨯B .120.1510⨯C .111.510⨯D .121.510⨯3. 如图的几何体由五个相同的小正方体搭成,它的主观图是( )A .B .C .D .4. 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,則摸出黑球的概率是( )A .17B .37 C.47 D .575. 下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:)A .甲B .乙 C. 丙 D .丁6. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为( )A .0.7米B .1.5米 C.2.2米 D .2.4米7. 均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时t 变化规律如图所示(图中OABC 为折线),这个容器的形状可以是( )A .B . C. D .8. 在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,,ACF AFC FAE FEA ∠=∠∠=∠.若21ACB ∠=,则ECD ∠的 度数是( )A .7B .21 C.23 D .249.矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为()2,1.一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为2y x =,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为 ( )A .2814y x x =++B .2814y x x =-+C. 243y x x =++ D .243y x x =-+10. 一块竹条编织物,先将其按如图所示绕直线MN 翻转180,再将它按逆时针方向旋转90,所得的竹条编织物是( )A .B . C. D .第Ⅱ卷(共90分)二、填空题(每题5分,满分30分,将答案填在答题纸上)11.分解因式:2x y y -= .12.如图,一块含45角的直角三角板,它的一个锐角顶点A 在O 上,边,AB AC 分别与O 交于点,D E ,则DOE ∠的度数为 .13.如图,R ∆t ABC 的两个锐角顶点,A B 在函数()0k y x x=>的图象上,//AC x 轴,2AC =.若点A 的坐标为()2,2,则点B 的坐标为 .14.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,,,1500GE CD GF BC AD m ⊥⊥=,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为 m .15.以R ∆t ABC 的锐角顶点A 为圆心,适当长为半径作弧,与边,AB AC 各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D .若60ADB ∠=,点D 到AC 的距离为2,则AB 的长为 .16.如图,45AOB ∠=,点,M N 在边OA 上,,4OM x ON x ==+,点P 是边OB 上的点.若使点,,P M N 构成等腰三角形的点P 恰好有三个,则x 的值是 .三、解答题 (本大题共8小题,17—20小题,命题8分,第21题10分,第22,23小题12分,第24题14分,共80分.解答应写出文字说明、证明过程或演算步骤.)17. (1) 计算:()04π+-(2)解不等式:()4521x x +≤+.18. 某市规定了毎月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户毎月应交水费y (元)是用水量x (立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当18x >时,y 关于x 的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?19. 为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.(1)本次接受问卷调查的同学有多少人?补全条形统计图. (2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.如图,学校的实验楼对面是一栋教学楼,小敏在实验楼的窗户C 测得教学楼顶D 的仰角是18︒,教学楼底部B 的俯角是20︒,量得实验楼与教学楼之间的距离是30AB m = .(1)求BCD ∠ 的度数.(2)求教学楼的高BD .21.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为()x m ,占地面积为()2y m . (1)如图1 ,问饲养室为长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.22.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1 ,等腰直角四边形=,90ABCD AB BC ABC ︒∠=, .①若1,AB CD ==AB CD ,对角线BD 的长.②若AC BD ⊥ ,求证:AD CD =. (2)如图2 ,矩形ABCD 中,5,9,AB BC == 点P 是对角线BD 上一点. 且2BP PD = ,过点P 作直线分别交,AD BC 于点,E F ,使四边形ABEF 是等腰直角四边形.求AE 的长.23.已知,,ABC AB AC D ∆=为直线BC 上一点,E 为直线AC 上一点,A D A E = ,设,BAD CDE ββ∠=∠= .(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果60,70,ABC ADE ︒︒∠=∠= 那么=α ,=β . ②求αβ, 之间的关系式.(2)是否存在不同于以上②中的αβ,之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.24.如图1,已知,ABCD AB x 轴,6,AB =点A 的坐标为()1,4,- 点D 的坐标为()3,4-,点B 在第四象限,点P 是ABCD 边上一个动点.(1) 若点P 在边BC 上,PD CD =,求点P 的坐标.(2)若点P 在边,AB AD 上,点P 关于坐标轴对称的点Q ,落在直线1y x =-上,求点P 的坐标.(3) 若点P 在边,AB AD CD ,上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将PGM ∆沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).。
年浙江省中考数学图形变换试题解析学科试卷
年浙江省中考数学图形变换试题解析学科试卷以下是__()为您推荐的____年浙江省中考数学图形的变换试题解析,希望本篇文章对您学习有所帮助。
____年浙江省中考数学图形的变换试题解析一、选择题1.(____浙江湖州3分)下列四个水平放置的几何体中,三视图如图所示的是A.B.C.D.D。
由三视图判断几何体。
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形,所以这个几何体是长方体。
故选D。
2.(____浙江嘉兴、舟山4分)下列图案中,属于轴对称图形的是A.B.C.D.A。
轴对称图形。
根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,B、C、D都不是轴对称图形,只有A是轴对称图形。
故选A。
3.(____浙江丽水、金华3分)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是A.①B.②C.③D.④B。
中心对称图形。
根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,通过观察发现,当涂黑②时,所形成的图形关于点A 中心对称。
故选B。
4.(____浙江丽水、金华3分)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是A.①B.②C.⑤D.⑥A。
生活中的轴对称现象。
如图,根据入射线与水平线的夹角等于反射线与水平线的夹角,可求最后落入①球洞。
故A。
5.(____浙江丽水、金华3分)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,称为三角形数.类似地,图2中的4,8,12,16,称为正方形数.下列数中既是三角形数又是正方形数的是 A.____ B.____ C.____ D.____D。
分类归纳(图形的变化类)。
近五年(2017-2021)年浙江中考数学真题分类汇编之图形的变化(含解析)
2017-2021年浙江中考数学真题分类汇编之图形的变化一.选择题(共14小题)1.(2020•绍兴)将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.2.(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.3.(2021•衢州)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.4.(2021•宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.5.(2020•嘉兴)如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(﹣1,﹣1)B.(﹣,﹣1)C.(﹣1,﹣)D.(﹣2,﹣1)6.(2020•台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)7.(2021•衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B =∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是()A.∠α=2∠βB.2∠α=3∠βC.4∠α+∠β=180°D.3∠α+2∠β=180°8.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.9.(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m 10.(2020•绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B 顺时针旋转θ(0°<θ<90°),得到BP,连接CP,过点A作AH⊥CP交CP的延长线于点H,连接AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小11.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm212.(2020•衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.13.(2019•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2 14.(2020•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为()A.14B.15C.8D.6二.填空题(共4小题)15.(2021•湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是.16.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF =AB,则∠DAF=度.17.(2021•嘉兴)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是;点P到达点B时,线段A′P扫过的面积为.18.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE =OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三.解答题(共3小题)19.(2021•杭州)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD=∠CBE,求证:BG2=GE•GD.20.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.21.(2020•宁波)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.2017-2021年浙江中考数学真题分类汇编之图形的变化参考答案与试题解析一.选择题(共14小题)1.(2020•绍兴)将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.【考点】中心对称图形;七巧板;多边形.【专题】平移、旋转与对称;几何直观.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够于原图形重合.2.(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;几何直观.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2021•衢州)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【解答】解:从正面看该组合体,所看到的图形与选项A中的图形相同,故选:A.【点评】本题考查简单组合体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.4.(2021•宁波)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【分析】根据主视图是从正面看得到的视图,可得答案.【解答】解:从正面看,底层是一个比较长的矩形,上层中间是一个比较窄的矩形.故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是正视图,注意圆柱的主视图是矩形.5.(2020•嘉兴)如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为的位似图形△OCD,则点C的坐标为()A.(﹣1,﹣1)B.(﹣,﹣1)C.(﹣1,﹣)D.(﹣2,﹣1)【考点】位似变换;坐标与图形性质.【专题】图形的相似;应用意识.【分析】根据关于以原点为位似中心的对应点的坐标的关系,把A点的横纵坐标都乘以﹣即可.【解答】解:∵以点O为位似中心,位似比为,而A(4,3),∴A点的对应点C的坐标为(﹣,﹣1).故选:B.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.6.(2020•台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【考点】坐标与图形变化﹣平移.【专题】平面直角坐标系;平移、旋转与对称;推理能力.【分析】利用平移规律进而得出答案.【解答】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,﹣1),∴F(0+3,﹣1+2),即F(3,1),故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,正确得出对应点位置是解题关键.7.(2021•衢州)如图.将菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∠B =∠β.当AC平分∠B′AC′时,∠α与∠β满足的数量关系是()A.∠α=2∠βB.2∠α=3∠βC.4∠α+∠β=180°D.3∠α+2∠β=180°【考点】旋转的性质;菱形的性质.【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】由菱形和旋转的性质可证:∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,再根据AD∥BC,即可得出4∠α+∠β=180°.【解答】解:∵AC平分∠B′AC′,∴∠B'AC=∠C'AC,∵菱形ABCD绕点A逆时针旋转∠α得到菱形AB′C′D′,∴∠BAB'=∠CAC'=∠α,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠BAB'=∠DAC',∴∠BAB'=∠B'AC=∠CAC'=∠DAC'=∠α,∵AD∥BC,∴∠B+∠BAD=180°,∴4∠α+∠β=180°,故选:C.【点评】本题考查了菱形的性质,以及旋转前后对应角相等等知识,熟记其性质是解题的关键.8.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【专题】投影与视图;空间观念.【分析】根据简单几何体的三视图进行判断即可.【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.【点评】本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.9.(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【考点】相似三角形的应用;中心投影.【专题】图形的相似;应用意识.【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.【点评】本题考查中心投影以及相似三角形的应用.测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.10.(2020•绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B 顺时针旋转θ(0°<θ<90°),得到BP,连接CP,过点A作AH⊥CP交CP的延长线于点H,连接AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小【考点】旋转的性质;三角形的外角性质;等腰直角三角形.【专题】等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】由旋转的性质可得BC=BP=BA,由等腰三角形的性质和三角形内角和定理可求∠BPC+∠BP A=135°=∠CP A,由外角的性质可求∠P AH=135°﹣90°=45°,即可求解.【解答】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BP A=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BP A=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BP A=135°=∠CP A,∵∠CP A=∠AHC+∠P AH=135°,∴∠P AH=135°﹣90°=45°,∴∠P AH的度数是定值,故选:C.【点评】本题考查了旋转的性质,等腰三角形的性质,三角形的外角性质,灵活运用这些性质解决问题是本题的关键.11.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm2【考点】翻折变换(折叠问题);矩形的性质.【专题】矩形菱形正方形;几何直观.【分析】根据题意可知阴影部分的面积=长方形的面积﹣三角形ABC的面积,根据题中数据计算三角形ABC的面积即可.【解答】解:根据翻折可知,∠MAB=∠BAP,∠NAC=∠P AC,∴∠BAC=∠P AB+∠P AC=(∠MAB+∠BAP+∠NAC+∠P AC)=180°=90°,∵∠α=60°,∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°,∴AB==6(cm),AC==2(cm),∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2),故选:A.【点评】本题主要考查翻折和矩形的性质等知识点,熟练掌握和应用翻折的性质是解题的关键.12.(2020•衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.【考点】翻折变换(折叠问题);等腰直角三角形;矩形的性质.【专题】平移、旋转与对称;运算能力.【分析】先判断出∠ADE=45°,进而判断出AE=AD,利用勾股定理即可得出结论.【解答】解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DA'E=∠A=90°,∠ADE=∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADE中,根据勾股定理得,DE=AD=,由第二次折叠知,CD=DE=,∴AB=.故选:A.【点评】此题主要考查了折叠问题,掌握折叠前后的对应边,对应角相等是解本题的关键.13.(2019•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2【考点】图形的剪拼;正方形的性质.【专题】图表型;矩形菱形正方形.【分析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.求出△DFN与△DNK的面积比即可.【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.【点评】本题考查图形的拼剪,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.(2020•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为()A.14B.15C.8D.6【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【专题】矩形菱形正方形;图形的相似;解直角三角形及其应用.【分析】如图,连接EC,CH.设AB交CR于J.证明△ECP∽△HCQ,推出===,由PQ=15,可得PC=5,CQ=10,由EC:CH=1:2,推出AC:BC=1:2,设AC=a,BC=2a,证明四边形ABQC是平行四边形,推出AB=CQ=10,根据AC2+BC2=AB2,构建方程求出a即可解决问题.【解答】解:如图,连接EC,CH.设AB交CR于J.∵四边形ACDE,四边形BCIH都是正方形,∴∠ACE=∠BCH=45°,∵∠ACB=90°,∠BCI=90°,∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=180°∴B,C,D共线,A,C,I共线,E、C、H共线,∵DE∥AI∥BH,∴∠CEP=∠CHQ,∵∠ECP=∠QCH,∴△ECP∽△HCQ,∴===,∵PQ=15,∴PC=5,CQ=10,∵EC:CH=1:2,∴AC:BC=1:2,设AC=a,BC=2a,∵PQ⊥CR,CR⊥AB,∴CQ∥AB,∵AC∥BQ,CQ∥AB,∴四边形ABQC是平行四边形,∴AB=CQ=10,∵AC2+BC2=AB2,∴5a2=100,∴a=2(负根已经舍弃),∴AC=2,BC=4,∵•AC•BC=•AB•CJ,∴CJ==4,∵JR=AF=AB=10,∴CR=CJ+JR=14,故选:A.【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.二.填空题(共4小题)15.(2021•湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是.【考点】锐角三角函数的定义.【专题】解直角三角形及其应用;运算能力.【分析】根据在直角三角形中sin B=,代值计算即可得出答案.【解答】解:∵∠ACB=90°,AC=1,AB=2,∴sin B==.故答案为:.【点评】此题考查了锐角三角函数的定义,熟练掌握在直角三角形中,正弦=是解题的关键.16.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF =AB,则∠DAF=18度.【考点】翻折变换(折叠问题);矩形的性质.【专题】三角形;矩形菱形正方形;运算能力;推理能力.【分析】连接DM,利用斜边上的中线等于斜边的一半可得△AMD和△MCD为等腰三角形,∠DAF=∠MDA,∠MCD=∠MDC;由折叠可知DF=DC,可得∠DFC=∠DCF;由MF=AB,AB=CD,DF=DC,可得FM=FD,进而得到∠FMD=∠FDM;利用三角形的外角等于和它不相邻的两个内角的和,可得∠DFC=2∠FMD;最后在△MDC中,利用三角形的内角和定理列出方程,结论可得.【解答】解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠F AD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠F AD+∠ADM,∴∠DMC=2∠F AD.设∠F AD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.【点评】本题主要考查了矩形的性质,折叠问题,三角形的内角和定理及其推论,利用三角形内角和定理列出方程是解题的关键.17.(2021•嘉兴)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A 出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是;点P 到达点B时,线段A′P扫过的面积为(1+)π﹣1﹣.【考点】轴对称的性质.【专题】平移、旋转与对称;推理能力.【分析】如图1中,过点B作BH⊥AC于H.解直角三角形求出CA,当CA′⊥AB时,点A′到直线AB的距离最大,求出CA′,CK.可得结论.如图2中,点P到达点B时,线段A′P扫过的面积=S扇形A′CA﹣2S△ABC,由此求解即可.【解答】解:如图1中,过点B作BH⊥AC于H.在Rt△ABH中,BH=AB•sin30°=1,AH=BH=,在Rt△BCH中,∠BCH=45°,∴CH=BH=1,∴AC=CA′=1+,当CA′⊥AB时,点A′到直线AB的距离最大,设CA′交AB的延长线于K.在Rt△ACK中,CK=AC•sin30°=,∴A′K=CA′﹣CK=1+﹣=.如图2中,点P到达点B时,线段A′P扫过的面积=S扇形A′CA﹣2S△ABC=﹣2××(1+)×1=(1+)π﹣1﹣.故答案为:,(1+)π﹣1﹣.【点评】本题考查轴对称的性质,翻折变换,解直角三角形,扇形的面积,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用分割法求面积,属于中考填空题中的压轴题.18.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE =OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.【考点】旋转的性质;角平分线的性质.【专题】平移、旋转与对称;应用意识.【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∴EF=2cm,∴AB=CD=2cm,∴此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=×6=(cm),∵OE=OF=1cm,∴CO垂直平分线段EF,∵OC===(cm),∵•OE•EC=•CO•EH,∴EH==(cm),∴EF=2EH=(cm)∵EF∥AB,∴==,∴AB=×=(cm).故答案为.【点评】本题考查旋转的性质,矩形的判定和性质,平行线分线段成比例定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三.解答题(共3小题)19.(2021•杭州)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD=∠CBE,求证:BG2=GE•GD.【考点】相似三角形的判定与性质;圆周角定理;三角形的外接圆与外心.【专题】圆的有关概念及性质;应用意识.【分析】(1)根据∠BAC的平分线AG交⊙O于点G,知∠BAG=∠F AC,由圆周角定理知∠G=∠C,即可证△ABG∽△AFC;(2)由(1)知=,由AC=AF得AG=AB,即可计算FG的长度;(3)先证△DGB∽△BGE,得出线段比例关系,即可得证BG2=GE•GD.【解答】(1)证明:∵AG平分∠BAC,∴∠BAG=∠F AC,又∵∠G=∠C,∴△ABG∽△AFC;(2)解:由(1)知,△ABG∽△AFC,∴=,∵AC=AF=b,∴AB=AG=a,∴FG=AG﹣AF=a﹣b;(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,∴∠BAG=∠CBG,∵∠ABD=∠CBE,∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,又∵∠DGB=∠BGE,∴△DGB∽△BGE,∴=,∴BG2=GE•GD.【点评】本题主要考查的是相似三角形的判定和性质,圆周角定理等知识,熟练掌握圆周角定理和相似三角形的判定和性质是解题的关键.20.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.【考点】利用平移设计图案;相似三角形的性质;七巧板;勾股定理.【专题】作图题;几何直观.【分析】(1)直接将其中正方形向右平移3个单位得出符合题意的图形;(2)直接将其中直角边为的三角形边长扩大为原来的倍,即可得出所求图形.【解答】解:(1)如图2所示,即为所求;(2)如图3所示,即为所求.【点评】此题主要考查了平移变换以及图形的相似,正确将三角形各边扩大是解题关键.21.(2020•宁波)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=∠BAD,AE=2,DF=5,求菱形ABCD的边长.【考点】相似形综合题.【专题】几何综合题;等腰三角形与直角三角形;图形的相似;运算能力;推理能力.【分析】(1)证明△ADC∽△ACB,得出,则可得出结论;(2)证明△BFE∽△BCF,得出比例线段,则BF2=BE•BC,求出BC,则可求出AD.(3)分别延长EF,DC相交于点G,证得四边形AEGC为平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出比例线段,则DE=EF,可求出DG,则答案可求出.【解答】解:(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C,又∵∠FBE=∠CBF,∴△BFE∽△BCF,∴,∴BF2=BE•BC,∴BC==,∴AD=.(3)如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC为平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴,∴DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵,∴DG=,∴DC=DG﹣CG=5﹣2.【点评】此题是相似形综合题,主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,正确掌握相似三角形的判定方法是解题关键.。
2017年中考数学试题分项版解析汇编(第01期)专题05 数量和位置变化(含解析)
专题05 数量与位置变化一、选择题1.(2017浙江衢州市第16题)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限。
△ABO 沿x 轴正方向作无滑动的翻滚,经第一次翻滚后得△A 1B 1O ,则翻滚3次后点B 的对应点的坐标是__________;翻滚2017次后AB 中点M 经过的路径长为__________【答案】(53;13463(+896)3π.【解析】 试题解析:如图,作B 3E ⊥x 轴于E ,易知OE=5,B 33,∴B 3(53,观察图象可知三次一个循环,一个循环点M 的运动路径为:1203120112013+4++=1801801803ππππ⨯⨯⨯⨯, ∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为: 672•(3+4233+=(+896)333πππ. 考点:点的坐标.22.(2017山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为( )A .121B .362C .364D .729【答案】C【解析】试题分析:①图1,0×3+1=1;②图2,1×3+1=4;③图3,4×3+1=13;④图4,13×3+1=40;⑤图5,40×3+1=121;⑥图6,121×3+1=364;故选C考点:探索规律3.(2017广西贵港第6题)在平面直角坐标系中,点()3,42P m m -- 不可能在( )A .第一象限B .第二象限 C. 第三象限 D .第四象限【答案】A【解析】试题解析:①m ﹣3>0,即m >3时,﹣2m <﹣6,4﹣2m <﹣2,所以,点P (m ﹣3,4﹣2m )在第四象限,不可能在第一象限;②m ﹣3<0,即m <3时,﹣2m >﹣6,4﹣2m >﹣2,点P (m ﹣3,4﹣2m )可以在第二或三象限,综上所述,点P 不可能在第一象限.故选A .考点:点的坐标.4.(2017湖北武汉第6题)点(3,2)A -关于y 轴对称的坐标为( )A .(3,2)-B .(3,2)C . (3,2)--D .(2,3,)-【答案】B.考点:关于x 轴、y 轴对称的点的坐标特征5.(2017甘肃兰州第9题)抛物线233y x =-向右平移3个单位长度,得到新抛物线的表达式为( )A.()2333y x =--B.23y x =C.()2332y x =+-D.236y x =-【答案】A【解析】试题解析:y=3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为y=3(x ﹣3)2﹣3,故选:A .点:二次函数图象与几何变换.二、填空题:1.(2017湖南怀化第16题)如图,在菱形ABCD 中,120ABC =∠°,10cm AB =,点P 是这个菱形内部或边上的一点,若以,,P B C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为 cm.【答案】10(cm ).【解析】③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;.综上所述,PD的最小值为310(cm)考点:菱形的性质;等腰三角形的性质.2.(2017江苏盐城第15题)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.13【解析】试题解析:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,4观察图象可知,旋转角为90°(逆时针旋转)时B 运动的路径长最短,∴B 运动的最短路径长为13ππ=. 考点:旋转的性质. 3.(2017贵州黔东南州第11题)在平面直角坐标系中有一点A (﹣2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 .【答案】(1,﹣1)【解析】试题解析:由题意可知:A 的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A 的坐标为(1,﹣1)考点:坐标与图形变化﹣平移.4. (2017贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与y 轴重合且点A 的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB 1与第一块三角板的斜边AB 垂直且交y 轴于点B 1;第三块三角板的斜边B 1B 2与第二块三角板的斜边BB 1垂直且交x 轴于点B 2;第四块三角板的斜边B 2B 3与第三块三角板的斜边B 1B 2C 垂直且交y 轴于点B 3;…按此规律继续下去,则点B 2017的坐标为 .6【答案】(0,﹣2017(3))【解析】考点:点的坐标.5.(2017山东烟台第16题)如图,在平面直角坐标系中,每个小方格的边长均为1.AOB ∆与''OB A ∆是以原点O 为位似中心的位似图形,且相似比为2:3,点B A ,都在格点上,则点'B 的坐标是 .【答案】(﹣2,43) 【解析】试题解析:由题意得:△A′OB′与△AOB 的相似比为2:3,又∵B (3,﹣2)∴B′的坐标是[3×2()3-,﹣2×2()3-],即B′的坐标是(﹣2,43) 考点:位似变换;坐标与图形性质.三、解答题1.(2017浙江宁波第20题)在44´的方格纸中,ABC △的三个顶点都在格点上.(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可);(2)将图2中的ABC △绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:根据题意画出图形即可.试题解析:(1)如图所示:或(2)如图所示:考点:1.轴对称图形;2.旋转.2.(2017江苏盐城第24题)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【答案】(1)作图见解析;(2)3【解析】试题分析:(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为C△OO1O2,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.8试题解析:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为C△OO1O2,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,10 ∵11BD =BG O B =O B⎧⎨⎩,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG=∠O 1BD=30°,在Rt △O 1BD 中,∠O 1DB=90°,∠O 1BD=30°, ∴BD=12233033O Dtan ==︒∴OO 133,∵O 1D=OE=2,O 1D ⊥BC ,OE ⊥BC , ∴O 1D ∥OE ,且O 1D=OE ,∴四边形OEDO 1为平行四边形, ∵∠OED=90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形, 又OE=OF ,∴四边形OECF 为正方形,∵∠O 1GH=∠CDO 1=90°,∠ABC=60°, ∴∠GO 1D=120°,又∵∠FO 1D=∠O 2O 1G=90°,∴∠OO 1O 2=360°-90°-90°=60°=∠ABC , 同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA , ∴1212OO O ABC C O O C BC =127232793OO O C -=+ ∴C △OO 1O 23O 运动的路径长为3 考点:切线的性质;作图—复杂作图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2017年中考数学真题分类汇编图形的对称、平移与旋转一、单选题1、(2017•湖州)在平面直角坐标系中,点关于原点的对称点的坐标是()A、B、C、D、2、(2017•湖州)在每个小正方形的边长为的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在的正方形网格图形中(如图1),从点经过一次跳马变换可以到达点,,,等处.现有的正方形网格图形(如图2),则从该正方形的顶点经过跳马变换到达与其相对的顶点,最少需要跳马变换的次数是()A、B、C、D、3、(2017•绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A、B、C、D、4、(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A、y=x2+8x+14B、y=x2-8x+14C、y=x2+4x+3D、y=x2-4x+35、(2017·嘉兴)一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A、B、C、D、6、(2017·嘉兴)如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A、向左平移1个单位,再向下平移1个单位B、向左平移个单位,再向上平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移1个单位,再向上平移1个单位7、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位8、(2017·台州)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A、B、2C、D、49、(2017·衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A、B、C、D、二、填空题10、(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y= (k≠0)的图象恰好经过点A′,B,则k的值为________.11、(2017•舟山)一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)12、(2017•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为________.13、(2017•宁波)已知△ABC的三个顶点为A ,B ,C ,将△ABC向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为________.14、(2017·衢州)如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。
△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________;翻滚2017次后AB中点M经过的路径长为________.15、(2017·金华)如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.三、解答题16、(2017•宁波)在的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.17、(2017·丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.18、(2017·金华)(本题6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).B1C1.(1)作出ABC关于原点O成中心对称的A(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在AB1C1的内部(不包括顶点和边界),求a的取值范围.19、(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.20、(2017•温州)如图,过抛物线y= x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y 轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.21、(2017•绍兴)如图1,已知□ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是□ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).22、(2017·金华)(本题10分) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG:S□ABCD=________(2)ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形.请你帮助画出叠合正方形的示意图,并求出AD,BC的长.答案解析部分一、单选题1、【答案】D【考点】点的坐标【解析】【解答】解:依题可得:P′(-1,-2).故答案为:D【分析】根根据在平面直角坐标系中,关于原点对称的点的坐标的特点:横纵坐标均变符号,可得出答案.2、【答案】B【考点】勾股定理,探索图形规律【解析】【解答】解:由图一可知,沿AC或AD可进行下去,然后到CF,从而求出AF=3,此时可知跳过了3格,然后依次进行下去;而20×20的网格中共有21条线,所以要进行下去,正好是(20+1)÷3×2=14. 故答案为B.【分析】根据图一可知,沿AC或AD可进行下去,然后到CF,从而求出AF=3,此时可知跳过了3格,然后依次进行下去;而20×20的网格中共有21条线,所以可知要进行下去,正好是(20+1)÷3×2=14. 3、【答案】B【考点】翻折变换(折叠问题)【解析】【解答】解:绕MN翻折180°后,是下面的图形:再逆时针旋转90°,可得故选B.【分析】绕MN翻折180°,本来排在第一行的横纸条排在了第5条,而且5根竖条,分别叠放在它的下、上、上、下、上面,通过这样的分析,确认五根横条的位置,再将其逆时针旋转90°可得答案.4、【答案】A【考点】二次函数的图象【解析】【解答】解:如图,A(2,1),则可得C(-2,-1).由A(2,1)到C(-2,-1),需要向左平移4个单位,向下平移2个单位,则抛物线的函数表达式为y=x2,经过平移变为y=(x+4)2-2= x2+8x+14,故选A.【分析】题中的意思就是将抛物线y=x2平移后,点A平移到了点C,由A的坐标不难得出C的坐标,由平移的性质可得点A怎样平移到点C,那么抛物线y=x2,就怎样平移到新的抛物线.5、【答案】A【考点】三角形中位线定理,翻折变换(折叠问题)【解析】【解答】解:由折叠可得,A'D=AD=A'E=2,则A'C'=A'C=1,则GC'是△DEA'的中位线,而DE=,则GG=DE=。
故选A.【分析】第一折叠可得A'D=AD=A'E=2,则可得A'C'=A'C=1,即可得GC'是△DEA'的中位线,则GG=DE,求出DE即可.6、【答案】D【考点】勾股定理,菱形的判定,平移的性质,坐标与图形变化-平移【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.7、【答案】D【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【解答】解:A. 向左平移1个单位后,得到y=(x+1)2,当x=1时,y=4,则平移后的图象经过A(1,4);B. 向右平移3个单位,得到y=(x-3)2,当x=1时,y=4,则平移后的图象经过A(1,4);C. 向上平移3个单位,得到y=x2+3,当x=1时,y=4,则平移后的图象经过A(1,4);D. 向下平移1个单位,得到y=x2-1,当x=1时,y=0,则平移后的图象不经过A(1,4);故选.【分析】遵循“对于水平平移时,x要左加右减”“对于上下平移时,y要上加下减”的原则分别写出平移后的函数解析式,将x=1代入解析式,检验y是否等于4.8、【答案】A【考点】菱形的性质,翻折变换(折叠问题)【解析】【解答】解:依题可得阴影部分是菱形.∴设S菱形ABCD=16,BE=x.∴AB=4.∴阴影部分边长为4-2x.∴(4-2x)2=1.∴4-2x=1或4-2x=-1.∴x=或x=(舍去).∴==.故答案为A.【分析】依题可得阴影部分是菱形.设S菱形ABCD=16,BE=x.从而得出AB=4,阴影部分边长为4-2x.根据(4-2x)2=1求出x,从而得出答案.9、【答案】B【考点】等腰三角形的性质,勾股定理的应用,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由题意得:EC=BC=6,AE=AB=4,∠BCA=∠FCA,∵四边形ABCD是矩形,∴AD∥BC,AB=CD,∴∠FAC=∠BCA,∴∠FAC=∠FCA,∴AF=CF,∴AD-AF=CE-CF,即DF=FE.设DF=FE=x,CF=6-x,在Rt△CDF中,.即,解得:x=,即DF=.故选B.【分析】根据折叠前后的图形是全等形,得出EC=BC=6,AE=AB=4,∠BCA=∠FCA,再根据AD∥BC,从而得出∠FAC=∠BCA,∠FAC=∠FCA,AF=CF,DF=FE.在在Rt△CDF中,根据勾股定理得出DF的长度即可。