人教版数学八年级下册:第十七章 勾股定理综合测试题

合集下载

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A.10B.C.15D.10或2、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为()A.2B C D.5 23、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .52,6,132 C 2 D .9,12,156、如图,数轴上点A 所表示的数是( )A B C D 17、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .78、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要( )A .8 cmB .10 cmC .12 cmD .15 cm9、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .2、3、4 BC .5、12、13D .30、50、6010、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_____.2、△ABC 的三条边长a 、b 、c 满足8c =60b -=,则△ABC ____直角三角形(填“是”或“不是”)3、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.4、如图,已知△ABO 为等腰三角形,且OA =AB =5,B (﹣6,0),则点A 的坐标为_____.5、如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,当DF 的长度最小时,CE 的长度为______.三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.2、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC 的面积和周长.3、如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =5,点D 是边AB 上的一个动点,连接CD ,过C 点在上方作CE ⊥CD ,且CE =CD ,点P 是DE 的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.4、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图①中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图②中画出一个面积为10的正方形.5、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1(2)此三角形的面积是.---------参考答案-----------一、单选题1、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.2、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD ,∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,故此选项不符合题意;B 、不是勾股数,因为52,132不是正整数,故此选项不符合题意;CD 、是勾股数,因为222912=15+,故此选项符合题意;故选D .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.6、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.7、B【分析】在Rt ABC∆中利用勾股定理求出AC长,利用折叠性质:得到ADE ADC∆∆≌,求出对应相等的边,设DE=x,在Rt BDE∆中利用勾股定理,列出关于x的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,≌,∴∆∆ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.8、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AAB===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.9、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.二、填空题1、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.2、不是【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】60b -=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=≠,∴222a b c +≠,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.3、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB 距离公式是解题的关键.4、(﹣3,4)【分析】过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,根据AB =AO ,AC ⊥BO ,得OC =132OB =,在Rt △AOC 中,由勾股定理得:AC =4,即可求出点A 的坐标.【详解】解:如图,过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,∵B(﹣6,0),∴OB=6,∵AB=AO,AC⊥BO,∴OC=132OB=,在Rt△AOC中,由勾股定理得:AC4=,∴A(﹣3,4).故答案为:(﹣3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.5、【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD CG=以及FCD ECG,由旋转的性质可得出EC FC=,由此即可利用全等三角形的判定定理SAS证出ΔΔFCD ECG≅,进而即可得出DF GE=,再根据点G为AC的中点,求出AD和DE的长,由勾股定理可得出答案.【详解】取线段AC的中点G,连接EG,如图所示.ABC ∆为等边三角形,且AD 为ABC ∆的对称轴,162CD CG AB ∴===,60ACD ∠=︒, 60ECF =︒∠,FCD ECG .在ΔFCD 和ECG ∆中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ΔΔ()FCD ECG SAS ∴≅,DF GE ∴=.当//EG BC 时,EG 最小,此时E 为AD 的中点,12AB BC ==,6DC =,AD ∴==12DE AD ∴==CE ∴==故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.三、解答题1、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.2、面积是7【分析】利用面积和差和勾股定理求解即可.【详解】解:△ABC 的面积=111441432247222⨯-⨯⨯-⨯⨯-⨯⨯=;由勾股定理得:ABBC =AC ==所以△ABC【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长.3、(1)AP =12DE ,理由见解析;(2)BD =56或4514【分析】(1)连接AE ,首先根据∠ACB =∠ECD =90°,得到∠ECA =∠DCB ,然后证明△BCD ≌△ACE (SAS ),根据全等三角形对应角相等得到∠EAC =∠B =45°,进一步得出∠EAD =90°,最后根据直角三角形斜边上的中线等于斜边的一半即可得出AP =12DE ;(2)分两种情况讨论:当Q 在线段AB 上时和当Q 在线段BA 延长线上时,连接AE ,EQ ,根据题意得出CQ 垂直平分DE ,进而根据垂直平分线的性质得到EQ =DQ ,设BD =AE =x ,在Rt △AEQ 中根据勾股定理列方程求解即可;【详解】解:(1)AP =12DE ,理由:连接AE ,如图,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°.∵∠ACB =∠ECD =90°,∴∠ECA =∠DCB .在△BCD 和△ACE 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE (SAS ).∴∠EAC =∠B =45°.∴∠EAD=∠EAC+∠BAC=90°.又∵P为DE中点,∴AP=12DE.(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,EQ=DQ=AB﹣AQ﹣BD=3﹣x,由(1)知:∠EAB=90°,∴EA2+AQ2=EQ2.∴x2+22=(3﹣x)2,解得x=56,即BD=56;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,同理可得方程:x2+22=(7﹣x)2,解得x=45 14.综上:BD=56或4514.【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线.4、 (1)三角形如图①所示,三边长分别为2、(2)正方形如图②所示.【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.(2【详解】(1)如图①所示:很明显,12442EMFS=⨯⨯=,且FM=2,又由题意可得:EM=,EF=(2)如图②所示,由题意可得:AB=BC=CD=DA【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(1)画图见解析;(2)5.5【分析】(1)利用勾股定理在网格中确定2222223110,2313,1417,AB AC BC再顺次连接,,A B C即可;(2)利用长方形的面积减去周围三个三角形的面积即可. 【详解】解:(1)如图,ABC即为所求作的三角形,其中:2222223110,2313,1417, AB AC BC(2)11134132314 5.5,222ABCS故答案为:5.5【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.。

(精练)人教版八年级下册数学第十七章 勾股定理含答案

(精练)人教版八年级下册数学第十七章 勾股定理含答案

人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、在中,∠C=90°,sinA= ,则tanA=()A. B. C.1 D.2、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.D.3、如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=4,AB=1,F为AD的中点,则F到BC的距离是().A.1B.2C.4D.84、直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.90B.120C.121D.不能确定5、如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16B.18C.24D.326、在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8). 以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为().A.(6,0)B.(4,0)C.(6,0)或(-16,0)D.(4,0)或(-16,0)7、如图,平面直角坐标系中,A点坐标为,点在直线上运动,设的值为,则下面能够大致反映w与m的函数关系的图象是()A. B. C.D.8、如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有()A.1条B.2条C.3条D.4条9、在直角三角形ABC中,斜边AB=1,则AB²+BC²+AC²=()A.2B.4C.6D.810、如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2B.C.D.11、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以到达该建筑物的最大高度是( )A.12米B.13米C.14米D.15米12、小明从一根长6m的钢条上截取一段后,截取的钢条恰好与两根长分别为3m、5m的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.4mB. mC.4m或mD.6m13、如图,点E在y轴上,⊙E与x轴交于点A,B,与y轴交于点C,D,若C (0,9),D(0,﹣1),则线段AB的长度为()A.3B.4C.6D.814、小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米15、已知下列三角形的各边长:①3、4、5,②5、12、13,③3、4、6,④5、11、12其中直角三角形有()A.4个B.3个C.2个D.1个二、填空题(共10题,共计30分)16、已知,点O为数轴原点,数轴上的A,B两点分别对应,,以AB 为底边作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为________.17、如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为________.18、如图,扇形中,. 为弧上的一点,过点作,垂足为,与交于点,若,则该扇形的半径长为________19、图中是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大的正方形E的边长为3则正方形的面积之和为________.20、如图,一扇卷闸门用一块宽18cm,长80cm的长方形木板撑住,用这块木板最多可将这扇卷闸门撑起________cm高.21、如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).22、如图,在等腰中,,,则边上的高是 ________ .23、如图,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S 3、S4,则S1+S2+S3+S4=________.24、学校操场边上一块空地(阴影部分)需要绿化,测出CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,那么需要绿化部分的面积为________.25、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长.28、证明:斜边和一条直角边对应相等的两个直角三角形全等.29、已知如图,.求四边形的面积.30、如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、A5、C6、D7、A8、B9、A10、D11、A12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

人教版数学八年级下册第十七章勾股定理测试题含答案

人教版数学八年级下册第十七章勾股定理测试题含答案
7.B
【解析】
延长AD到E,使DE=AD,连接BE,
∵D为BC的中点,
∴DC=BD,在△ADC与△EDB中, ,
∴△ADC≌△EDB(SAS),
∴BE=AC=10,∠CAD=∠E,
又∵AE=2AD=8,AB=6,
∴AB2=AE2+BE2,
∴∠CAD=∠E=90°,
则S△ABC=S△ABD+S△ADC=
【详解】
解:根据题意,Rt△ABC中,∠BAC=30°.
∴BC=AB÷2=4÷2=2,AC= =2 ,
∴AC+BC=2+2 ,
即地毯的长度应为(2+2 )米.
故答案为2+2 .
【点睛】
本题考查解直角三角形,解题关键是求地毯的长度其实就是根据已知条件解相关的直角三角形.
11.3
【解析】
【分析】
首先过点D作DE⊥BC于E,由在Rt△ABC中,∠A=90°,BD平分∠ABC,根据角平分线的性质,即可得DE=AD,又由勾股定理求得AD的长,继而求得答案.
【详解】
解:过点D作DE⊥BC于E,
在Rt△ABC中:AC= =15(cm),
则这只铅笔的长度大于15cm.
故选D.
【点睛】
此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.
6.D
【解析】
如图,连接AC.
依题意得:∠ABC=90°,AB=4000米,BC=3000米,
则由勾股定理,得
AC= (米)故选:D.
点睛:本题考查了勾股定理在实际生活中的运用,关键是得出两船行驶的路程和两船的距离构成的直角三角形,然后根据勾股定理可求解.
A.30B.24C.20D.48

八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)

八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)

八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。

人教版八年级数学下册第十七章勾股定理单元练习题(含答案)

人教版八年级数学下册第十七章勾股定理单元练习题(含答案)

第十七章勾股定理一、选择题1.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,这里的水深为()A. 1.5米B. 2米C. 2.5米D. 1米2.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4等于()A. 86B. 64C. 54D. 483.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8 cm,AC=17 cm,AB=5 cm,BD=10m,则C,D两辆车之间的距离为()A. 5 mB. 4 mC. 3 mD. 2 m4.如图是由三个棱长均为1的正方体箱子堆积而成的几何体,在底端的顶点A处有一只蚂蚁,它想吃到顶端的顶点B处的食物,则它沿该几何体表面爬行的最短路程等于()A.B. 2+1C.D. 55.如图,长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为()A. 40 cmB. 60 cmC. 80 cmD. 100 cm6.三角形三边长为6、8、10,那么最长边上的高为()A. 6B. 4.5C. 4.8D. 87.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2 m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m,同时梯子的顶端B下降至B′,那么BB′()A.小于1 mB.大于1 mC.等于1 mD.小于或等于1 m8.如图,一根垂直于地面的旗杆在离地面5 m处撕裂折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()A. 5 mB. 12 mC. 13 mD. 18 m二、填空题9.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为________.10.一个三角形的三边长之比为5∶12∶13,它的周长为120,则它的面积是________.11.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC________直角三角形.(填“是”或“不是”)12.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.13.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为________;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为________(用含n的式子表示,n为正整数).14.如图,四边形ABCD中,AB⊥AD于A,AB=8,AD=8,BC=7,CD=25,则四边形ABCD的面积为__________.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.16.在△ABC中,已知AB=BC=CA=4 cm,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C 运动,速度为1 cm/s;点Q沿CA、AB向终点B运动,速度为2 cm/s,设它们运动的时间为x(s),当x=__________,△BPQ是直角三角形.三、解答题17.如图所示的一块地,AD=9 m,CD=12 m,∠ADC=90°,AB=39 m,BC=36 m,求这块地的面积.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?19.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.为了弘扬“社会主义核心价值观”,乐至县政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的距离分别是5米和3米.(1)求公益广告牌的高度AB;(2)求∠BDC的度数.21.阅读与应用:阅读以下材料,并按要求完成相应的任务.中国最早的一部数学著作--《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”任务:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做__________定理;(2)请你利用以上数学原理解决问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,求问题中葛藤的最短长度是多少尺.答案解析1.【答案】A【解析】设水深为h米,则红莲的高(h+1)米,且水平距离为2米,则(h+1)2=22+h2,解得h=1.5.故选A.2.【答案】C【解析】如图1,S1=AC2,S2=AB2,S3=BC2,∵BC2=AB2-AC2,∴S2-S1=S3,如图2,S4=S5+S6,∴S3+S4=45-16+11+14=54.故选C.3.【答案】D【解析】在Rt△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m,在Rt△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=2 m,故选D.4.【答案】A【解析】如图所示,由图可知,AB==.故选A.5.【答案】D【解析】如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A→Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80 cm,EG=60 cm,∴AQ+QG=A′Q+QG=A′G==100 cm.∴最短路线长为100 cm.故选D.6.【答案】C【解析】∵62+82=102,∴这个三角形是直角三角形,∴最长边上的高为6×8÷10=4.8.故选C.7.【答案】A【解析】在直角三角形AOB中,因为OA=2,OB=7,由勾股定理,得AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得OB′=,∴BB′=7-<1.故选A.8.【答案】D【解析】旗杆折断后,落地点与旗杆底部的距离为12 m,旗杆离地面5 m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13 m,所以旗杆折断之前高度为13 m+5 m=18 m.故选D.9.【答案】6【解析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=4.该直角三角形的面积S=×3×4=6.10.【答案】480【解析】设三边的长是5x,12x,13x,则5x+12x+13x=120,解得x=4,则三边长是20,48,52.∵202+482=522,∴三角形是直角三角形,∴三角形的面积是×20×48=480.11.【答案】是【解析】由分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,得BC2+AC2=AB2,则△ABC是直角三角形.12.【答案】96【解析】连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为S△ABC-S△ACD=×10×24-×6×8=96.13.【答案】55n【解析】已知小正方形ABCD的面积为1,则把它的各边延长一倍后,△AA1B1的面积是1,新正方形A1B1C1D1的面积是5,从而正方形A2B2C2D2的面积为5×5=25=52,…正方形AnBnCnDn的面积为5n.14.【答案】84+96【解析】连接BD,∵AB⊥AD,∴∠A=90°,∴BD=24,∵BC2+BD2=72+242=625=252=CD2,∴△CBD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=×8×8+×24×7=96+84.15.【答案】12【解析】∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.16.【答案】2或【解析】根据题意,得BP=t cm,CQ=2t cm,BQ=(8-2t) cm,若△BPQ是直角三角形,则∠BPQ=90°或∠BQP=90°,①当∠BPQ=90°时,Q在A点,CQ=CA=4 cm,4÷2=2(s);②当∠BQP=90°时,∵∠B=60°,∴∠BPQ=90°-60°=30°,∴BQ=BP,即8-2t=t,解得t=,故当t=2或秒时,△BPQ是直角三角形.17.【答案】解连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216.答:这块地的面积是216平方米.【解析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.18.【答案】解BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°-90°-60°=30°,故乙船沿南偏东30°方向航行.【解析】先根据路程=速度×时间,求出BM,BP的长,再根据勾股定理的逆定理得到∠MBP=90°,进一步即可求解.19.【答案】解如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,故152-x2=132-(14-x)2,解之得x=9.∴AD=12.∴S△ABC=BC·AD=×14×12=84.【解析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.20.【答案】解(1)在直角三角形ADC中,AC ===4(m),在直角三角形BDC中,BC ===3(m),故AB=AC-BC=1(米),答:公益广告牌的高度AB的长度为1 m;(2)∵在直角三角形BDC中,BC=CD=3 m,∴△DBC是等腰直角三角形,∴∠BDC=45°.【解析】(1)直接利用勾股定理得出AC的长,进而得出BC的长即可得出AB的长;(2)利用已知结合(1)中所求得出△DBC是等腰直角三角形,进而得出答案.21.【答案】解(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做勾股定理;故答案是勾股;(2)如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).答:问题中葛藤的最短长度是25尺.【解析】(1)根据勾股定理的概念填空;(2)这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.。

{word试卷}人教版八年级数学下册第17章勾股定理综合训练(含答案)

{word试卷}人教版八年级数学下册第17章勾股定理综合训练(含答案)

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:人教版八年级数学第17章勾股定理综合训练一、选择题(本大题共10道小题)1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A. 7,24,25B. 3,4,5C. 3,4,5D. 4,7,82. 三角形的三边为,由下列条件不能判断直角三角形的()A. B.C. D.3. 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25 B.三角形周长为25C.斜边长为5 D.三角形面积为204. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()A B C D5. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B. 800米 C. 1000米 D. 不能确定6. 如图,在由单位正方形组成的网格图中标有,,,四条线段,其中能构成一个直角三角形三边的线段是()A.,, B.,,C.,, D.,,7. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.88. 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍9. 如图,梯子斜靠在墙面上,,当梯子的顶端沿方向下滑米时,梯足沿方向滑动米,则与的大小关系是()A. B. C. D.不确定10.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.332C.32D. 不能确定二、填空题(本大题共6道小题)11. 在中,,(1)如果,则;(2)如果,则;(3)如果,则;(4)如果,则.12. 已知直角三角形两边,的长满足,则第三边长为______________.13. 如图,点是的角平分线上一点,过点作交于点.若,则点到的距离等于__________.14. 如图,一个长为米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为米,如果梯子的顶端下滑米,那么,梯子底端的滑动距离米(填“大于”、“等于”、“小于”)15. 若的三边满足条件:,则这个三角形最长边上的高为16. 如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池,已知剩余的两直角三角形(阴影部分)的斜边长分别为和,则剩余的两个直角三角形(阴影部分)的面积和...为.三、解答题(本大题共5道小题)17. 张大爷家承包了一个长方形鱼池,已知其面积为,其对角线长为,为建立栅栏,要计算这个长方形鱼池的周长,你能帮张大爷计算吗?18. 在中,是边上的中线,,求证:.19. 已知斜边的长为,两直角边的差为,求三角形的周长及斜边上的高.20. 中,,,.若,如图1,根据勾股定理,则.若不是直角三角形,如图2和图3,请你类比勾股定理,试猜想与的关系,并证明你的结论.图3图2图1abcab ccbaABCABC CBA21. 如图,是斜边的中点,,分别在,上,,判断,与的数量关系并证明你的结论.人教版八年级数学第17章勾股定理综合训练-答案一、选择题(本大题共10道小题)1. 【答案】B【解析】按照勾股数的规律计算.选B.2. 【答案】A3. 【答案】C【解析】在直角三角形中,直接应用勾股定理.可得斜边为5.选C.4. 【答案】C【解析】注意实际长度.应用勾股定理逆定理.选C.5. 【答案】C【解析】速度一定且相同,路程比=时间比.再用勾股定理,直线距离应该是25分钟的路程.选C.6. 【答案】B【解析】,,,,选B.7. 【答案】D【解析】本题易错.最短边为6,它的高为8.选D .8. 【答案】B9. 【答案】B【解析】由勾股定理得,化简得,10. 【答案】B 【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题(本大题共6道小题)11. 【答案】(1)5;(2)10;(3)13;(4)25【解析】直接应用勾股定理,且为斜边. (1)5;(2)10;(3)13;(4)25.12. 【答案】或或【解析】根据绝对值和平方根的非负性可知:或或.13. 【答案】【解析】过点作,并交于点.∵是的角平分线,∴.又∵,∴.∴.∴.∴.14. 【答案】大于【解析】由勾股定理可知:大于15. 【答案】【解析】由,得,得三角形是直角三角形,所以高为16. 【答案】【解析】,,,在中,①在中,②在中,,即③③①②得,,最简单的方法为两个小的直角三角形旋转合并成一个大的直角三角形(正方形的边重合)故.三、解答题(本大题共5道小题)17. 【答案】【解析】设长方形的长和宽分别为,有,代入,可得18. 【答案】构造如上图所示的一个,延长,使,连接.易证得≌.∴,∴.∴.∴.∴.19. 【答案】【解析】由条件可设,∵,∴.又∵,∴.从而三角形的周长为.由三角形的面积公式可得,解得.20. 【答案】图2猜想:.证明:过点作于设,,,即,故.图3猜想:.证明:过作,交的延长线于.设为,则有根据勾股定理,得.即,∵,,∴,∴.21. 【答案】.延长到,使,连结、.显然,∴,,∵∴∴为直角三角形.∴.。

八年级数学(下)第十七章《勾股定理》测试题含答案

八年级数学(下)第十七章《勾股定理》测试题含答案

八年级数学(下)第十七章《勾股定理》测试题(测试时间:90分钟满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是().A. ,,B. ,,C. ,,D. ,,2.设直角三角形的两条直角边长分别为a和b,斜边长为c.已知b=8,c=10,则a的值为( ) A. 2 B. 6 C. 5 D. 363.在△ABC中,AB=1,AC=2,BC=5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形().A. 仍是直角三角形B. 可能是锐角三角形C. 可能是钝角三角形D. 不可能是直角三角形5.如图字母所代表的正方形的面积是().A. B. C. D.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米B. 63米C. 6米D. 23米8.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10mB. 15mC. 18mD. 20m9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A、B、C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A. 102B.104C.105D. 510.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()24二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________.12.斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是_______.13.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m,木板顶端向下滑动了0.9m,则小猫在木板上爬动了_____________m.14.如图,数轴上点A所表示的实数是______________.15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.16.如图,若要建一个蔬菜大棚,棚宽3.2 m,高2.4 m,长15 m,请你计算,覆盖在顶上的塑料薄膜需要____m2.17.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.18.如图,在△ABC中,∠C=90°,AD是角平分线,AC=12,AD=15,则点D到AB的距离为__________.19.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m220.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DACB(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米?25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?27.(8分)一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了4 m吗?28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m、8 m.现要将其扩建成等腰三角形,且扩充部分是以8 m为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.答案(测试时间:90分钟 满分:120分)一.选择题(共10小题,每题3分,共30分)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A. ,, B. ,,C. ,, D. ,,【答案】D2.设直角三角形的两条直角边长分别为a 和b ,斜边长为c .已知b =8,c =10,则a 的值为( ) A. 2 B. 6 C. 5 D. 36 【答案】B【解析】a =22c b -=22108-=6.故选B .3.在△ABC 中,AB =1,AC =2,BC =5,则该三角形为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形 【答案】B【解析】在△ABC 中,AB =1,AC =2,BC =5.∵()222125+=,∴△ABC 是直角三角形.故选B .4.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形( ). A. 仍是直角三角形 B. 可能是锐角三角形 C. 可能是钝角三角形 D. 不可能是直角三角形 【答案】A【解析】将直角三角形三条边的长度都扩大同样的倍数后得到的三角形只是改变大小,不会改变它形状,故选A.5.如图字母所代表的正方形的面积是( ).A. B. C. D.【答案】C【解析】∵图中三角形为,∴,∴.故选C.6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A. 4米B. 8米C. 9米D. 7米【答案】D7.如图,AC是电线杆的一根拉线,测得BC=6米,∠ACB=60°,则AB的长为( )A. 12米3 C. 6米3【答案】B8.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m 【答案】C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴AC=22AB BC +=22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m. 故选:C. 学@科网9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A 、B 、C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A.102 B. 104 C. 105D. 5 【答案】A10.如图,在△ABC 中,有一点P 在直线AC 上移动,若AB =AC =5,BC =6,则 BP 的最小值为( )A. 24B. 5C. 4D. 4.8 【答案】D【解析】根据垂线段最短,得到BP ⊥AC 时,BP 最短,过A 作AD ⊥BC ,交BC 于点D ,∵AB =AC ,AD ⊥BC ,∴D 为BC 的中点,又BC =6,∴BD =CD =3.在Rt △ADC 中,AC =5,CD =3,根据勾股定理得:AD =22AB BD -=2253-=4.又∵S △AB C =12BC •AD =12BP •AC ,∴BP =BC AD AC ⋅=645⨯=4.8.故选D .二.填空题(共10小题,每题3分,共30分)11.已知直角三角形的两直角边长分别为5和12,则其斜边长为________. 【答案】13【解析】∵直角三角形的两直角边长分别是5和12,∴斜边长=22512 =13.故答案为:13.12.斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是_______. 【答案】60cm 213.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7m ,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3m ,木板顶端向下滑动了0.9m ,则小猫在木板上爬动了_____________m .【答案】2.5 【解析】如图所示:14.如图,数轴上点A所表示的实数是______________.【答案】【解析】由勾股定理,得斜线的为=,由圆的性质,得点表示的数为,故答案为:. 学科%网15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米, ∴CD=2米, ∴CE===1.5(米),∴AE=AC-EC=0.5(米). 故答案为:0.5.16.如图,若要建一个蔬菜大棚,棚宽3.2 m ,高2.4 m ,长15 m ,请你计算,覆盖在顶上的塑料薄膜需要____m 2.【答案】6017.如图,将一根长24厘米的筷子,置于底面直径为6厘 米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_______厘米.【答案】14【解析】如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形, ∴勾股定理求得圆柱形水杯的最大线段的长度,即2268 =10cm ,∴筷子露在杯子外面的长度至少为24-10=14cm , 故答案为14.18.如图,在△ABC 中,∠C=90°,AD 是角平分线,AC=12,AD=15,则点D 到AB 的距离为__________.【答案】919.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为________m 2【答案】24【解析】如图,连接AC .由勾股定理可知:AC=2222435AD CD +=+=,又∵AC 2+BC 2=52+122=132=AB 2, ∴△ABC 是直角三角形这块地的面积为=△ABC 的面积-△ACD 的面积=12×5×12- 12×3×4=24(m 2). 学#科网20.如图是一个三级台阶,每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,若一只壁虎从A 点出发沿着台阶面爬到B 点,则壁虎爬行的最短路线的长是________.【答案】130cm三、解答题(共60分)21.(8分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.DC(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. (2)求这块地的面积.【答案】(1)以点A 、点B 、点C 为顶点的三角形是直角三角形; (2)这块地的面积24m 2. 【解析】试题分析:(1)根据勾股定理求得AC的长,再根据勾股定理的逆定理判定△ABC为直角三角形,考点:勾股定理的逆定理.22.(6分)飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?【答案】飞机每小时飞行540千米.学科%网【解析】试题分析:先画出图形,构造出直角三角形,利用勾股定理解答.试题解析:设A点为男孩头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2-AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),即飞机每小时飞行540千米.考点:勾股定理的应用.23.(6分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.【答案】旗杆的高度是12米. 【解析】考点:勾股定理24.(6分)一艘轮船以16千米/时的速度离开港口向正北方向航行,另一艘轮船同时离开港口以12千米/时的速度向正东方向航行,它们离开港口半小时后相距多少千米? 【答案】它们离开港口半小时后相距10千米 【解析】试题分析:根据已知条件,构建直角三角形,利用勾股定理进行解答. 试题解析:如图,由已知得,OB=16×0.5=8海里,OA=12×0.5=6海里,在△OAB 中,∵∠AOB=90°,由勾股定理得OB 2+OA 2=AB 2, 即82+62=AB 2,AB=2286 =10海里.考点:勾股定理25.(8分)正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【答案】(1)作图见解析;(2)作图见解析.【解析】考点:1.勾股定理;2.作图题.26.(8分)如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.学%科网(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?【答案】(1)20s;(2)可以通行.【解析】考点:勾股定理的应用.27.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?【答案】(1)24;(2)不是. 【解析】试题分析:(1)应用勾股定理求出AB 的高度; (2)应用勾股定理求出BE 的距离即可解答. 试题解析:(1)如图:∠B=90°,在Rt △ABC 中,222225724AC BC -=-=,∴这个梯子的顶端A 距地面有24米高.(2)如果梯子下滑4米,则:BD=24-4=20,在Rt △BDE 中,2222252015DE BD -=-=, ∴CE=15-7=8,即:梯子的底部在水平方向也是滑动了8 m ,而不是滑动4m. 考点:勾股定理的应用. 学!科网28.(10分)某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6 m 、8 m .现要将其扩建成等腰三角形,且扩充部分是以8 m 为一个直角边长的直角三角形.请在下面三张图上分别画出三种不同的扩建后的图形,并求出扩建后的等腰三角形花圃的面积.【答案】48或40或1003.【解析】考点:1.勾股定理的应用;2.等腰三角形的性质.。

人教版八年级数学下册 第十七章勾股定理 章节达标测试卷

人教版八年级数学下册 第十七章勾股定理 章节达标测试卷

人教版八年级数学下册第十七章勾股定理章节达标测试卷一、单选题1.设三角形的三边长分别等于下列各组数,能构成直角三角形的是()。

A.1,13B235C.0.2,0.3,0.5D.13,14,152.如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC中,长为无理数的边有()A.0条B.1条C.2条D.3条3.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A5cm B.3cm C3cm D.2cm4.如图,一棵大树被台风刮断,若树在离地面6m处折断,树顶端落在离树底部8m处,则树折断之前高()A.15m B.17m C.18m D.16m5.在ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A .5B .6C .4D .4.86.如图,Rt△OAB 的直角边OA 长为2,直角边AB 长为1,OA 在数轴上,在OB 上截取BC=BA ,以原点O 为圆心,OC 的长为半径画弧,交正半轴于一点P ,则OP 中点对应的实数是( )A 51-B 31- C 5 D 37.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A .12米B .13米C .14米D .15米8.如图,在 Rt ABC 中, 90B ∠=︒ ,分别以 A , C 为圆心,大于12AC 的长为半径作弧,两弧分别交于点 D , E ,直线 DE 交 AC 于点 F ,交 AB 于点 G ,4AC = , 3AB = ,则 CG 的长为( )A .4B .83C .43D .29.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .261 cm C 61cmD .234cm10.由下列线段 ,,a b c 不能组成直角三角形的是( )A .1,2,3a b c ===B .1,2,5a b c ===C .3,4,5a b c ===D .2,23,3a b c ===11.如图,在Rt△ABC 中,△ACB =90°,以AB ,AC ,BC 为边作等边△ABD ,等边△ACE ,等边△CBF.设△AEH 的面积为S 1,△ABC 的面积为S 2,△BFG 的面积为S 3,四边形DHCG 的面积为S 4,则下列结论正确的是( )A .S 2=S 1+S 3+S 4B .S 1+S 2=S 3+S 4C .S 1+S 4=S 2+S 3D .S 1+S 3=S 2+S 412.已知a 、b 为两正数,且 12a b += ,则代数式2249a b ++ 最小值为( )A .12B .13C .14D .15二、填空题13.满足 的三个正整数a ,b ,c 称为勾股数.14.如图,点B 在射线AN 上,以AB 为边作等边ABC ,M 为AN 中点,且4AN =,P 为BC 中点,当PM PN +最小时,AB = .15.如图,数轴上的点A 表示的数是 .16.已知2、3、5是三角形的三边长,则最短边上的中线长为.,连接BP,作17.已知正方形ABCD的边长为6,点P是直线AD上一点,且3AP AD线段BP的垂直平分线交直线BC于点Q,则线段CQ的长为.三、解答题18.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)19.一阵大风把一根高为9m的树在离地4m处折断,折断处仍相连,此时在离树3.9m处,一头高1m的小马正在吃草,小马有危险吗?为什么?20.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA△AB于A,CB△AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?21.在一次课外实践活动中,同学们要知道校园内A,B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,△CAB=120°,请计算A,B 两处之间的距离.22.有一块土地,如图所示,已知AB=8,△B=90°,BC=6,CD=24,AD=26,求这块土地的面积.23.在△ABC中,△BAC=90°,AB=AC.点D为直线BC上一动点(点D不与点B、C重合),以AD 为直角边在AD右侧作等腰直角三角形ADE,使△DAE=90°,连结CE.(1)探究:如图①,当点D在线段BC上时,证明BC=CE+CD.(2)应用:在探究的条件下,若AB= 2,CD=1,则△DCE的周长为.(3)拓展:①如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为.②如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.。

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。

人教版八年级下册数学第17章《勾股定理》章末综合测试题(含答案)

人教版八年级下册数学第17章《勾股定理》章末综合测试题(含答案)

人教版八年级下册数学第17章《勾股定理》章末综合测试题一.选择题(共10小题,满分30分)1.判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,2.已知三角形的三边分别为6,8,10,则最长边上的高等于()A.10B.14C.4.8D.2.43.如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.94.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是9、16、1、9,则最大正方形E的边长是()A.35B.C.70D.无法确定5.下面的三角形中:①△ABC中,∠C=∠A﹣∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=5:12:13;④△ABC中,三边长分别为,其中,直角三角形的个数有()A.1个B.2个C.3个D.4个6.如图,分别以数轴的单位长度1和2为直角边长作Rt△OBC,然后以点B为圆心,线段BC的长为半径画弧,交数轴于点A,那么点A所表示的数为()A.B.1+C.+2D.3.27.如图,在Rt△ABC中,∠ACB=90°,AE为△ABC的角平分线,且ED⊥AB,若AC=6,BC=8,则BD的长()A.2B.3C.4D.58.小明准备测量一段河水的深度,他把一根竹竿直插到离岸边6米远的水底,竹竿高出水面2米,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.7m B.8m C.9m D.10m9.已知直角三角形纸片的两条直角边长分别为m和3(m<3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+6m+9=0B.m2﹣6m+9=0C.m2+6m﹣9=0D.m2﹣6m﹣9=0 10.如图,Rt△ACB中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.或B.或12或4C.或或12D.或12或4二.填空题(共6小题,满分18分)11.若一个直角三角形的两直角边长分别是1、2,则第三边长为.12.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为.13.如图,在平面直角坐标系中,A(8,0),B(0,6),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C的坐标为.14.如图,在△ABC中,AB=5,AC=4,BC=3,分别以点A、点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则CO的长为.15.如图,斜靠在一面墙上的一根竹竿,它的顶端A距离地面的距离AO为4m,底端B远离墙的距离BO为3m,当它的顶端A下滑2m时,底端B在地面上水平滑行的距离是m.16.如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为30°,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设AB=a,则图中阴影部分面积为(用含a的代数式表示)三.解答题(共8小题,满分52分)17.在Rt△ABC中,∠C=90°,a、b、c分别表示∠A、∠B、∠C的对边.(1)如图1,已知:a=7,c=25,求b;(2)如图2,已知:c=25,a:b=4:3,求a、b.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=12,BC=5,求BD的长.19.如图,在4×4的正方形网格中,每个小正方形的边长都为1.(1)△ABC的周长为;(2)∠ABC=度;(3)△ABC的面积为.20.某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行20nmile,“海天”号每小时航行15nmile,它们离开港口两个小时后,“远航”号到达A处,“海天”号到达B处,A,B相距50nmile,且知道“远航”号沿东北方向航行,那么“海天”号沿什么方向航行?21.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.22.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?23.在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.(1)如图1,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿CB匀速运动.两点同时出发,在B点处首次相遇.设点P的速度为xcm/s.则点Q的速度可以表示为cm/s(用含x的代数式表示);(2)在(1)的条件下,两点在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持原速度不变,沿B→A→C的路径匀速运动,如图2.两点在AC边上点D处再次相遇后停止运动.又知AD=1cm.求点P原来的速度x的值.24.如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣B﹣C﹣A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在∠ABC的角平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP为等腰三角形(直接写出结果)?参考答案一.选择题(共10小题)1.【解答】解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.2.【解答】解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×8=×10h,解得h=4.8.故选:C.3.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=DC=BC=6,在Rt△ABD中,AD===8,故选:C.4.【解答】解:正方形A、B、C、D的面积分别是9、16、1、9,由勾股定理得,正方形G的面积为:9+16=25,正方形H的面积为:1+9=10,则正方形E的面积为:25+10=35,最大正方形E的边长=,故选:B.5.【解答】解:①△ABC中,∠C=∠A﹣∠B,即∠C+∠B=∠A,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故①正确;②△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故②正确;③∵△ABC中,a:b:c=5:12:13,∴a2+b2=c2,即△ABC是直角三角形,故③正确;④∵△ABC中,三边长分别为,∴()2+()2≠()2,即△ABC不是直角三角形,故④错误;即正确的个数是3个,故选:C.6.【解答】解:∵Rt△OBC中,OC=2,OB=1,∴BC==,∵以点B为圆心,线段BC的长为半径画弧,交数轴于点A,∴BA=BC=,∴OA=1+,∴点A所表示的数为1+,故选:B.7.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB=,∵AE为△ABC的角平分线,ED⊥AB,∴AD=AC=6,∴BD=10﹣6=4,故选:C.8.【解答】解:在直角△ABC中,AC=6m.AB﹣BC=2m.设河深BC=xm,则AB=2+x(m).根据勾股定理得出:∵AC2+BC2=AB2∴62+x2=(x+2)2解得:x=8.即河水的深度为8m,故选:B.9.【解答】解:如图,m2+m2=(3﹣m)2,2m2=32﹣6m+m2,m2+6m﹣9=0.故选:C.10.【解答】解:∵∠C=90°,AB=13cm,AC=5cm,∴BC=12cm.①当BP=BA=13时,∴t=s.②当AB=AP时,BP=2BC=24cm,∴t=12s.③当PB=P A时,PB=P A=t cm,CP=(12﹣t)cm,AC=5 cm,在Rt△ACP中,AP2=AC2+CP2,∴(t)2=52+(12﹣t)2,解得t=s.综上,当△ABP为等腰三角形时,t=s或12s或s,故选:C.二.填空题(共6小题)11.【解答】解:∵直角三角形的两直角边长分别是1和2,∴斜边==,故答案为.12.【解答】解:在Rt△BAC中,∠BAC=90°,AB=3,BC=5,由勾股定理得:AC==4,所以阴影部分的面积S=×π×()2+×π×()2+×3×4﹣×π×()2=6.故答案为:6.13.【解答】解:由题意得,OB=6,OA=8,∴AB==10,则AC=10,∴OC=AC﹣OA=2,∴点C坐标为(﹣2,0),故答案为:(﹣2,0).14.【解答】解:∵AB=5,AC=4,BC=3,∴AB2=AC2+BC2,∴∠ACB=90°,由作图可知:MN是AB的垂直平分线,∴O是AB的中点,∴CO=AB=,故答案为:.15.【解答】解:∵∠C=90°,AO=4m,BO=5m,∴AB==5m;∵梯子的顶端A下滑2m,∴OA′=4﹣2=2m,∴OB′===(m),∴BB′=B′C﹣BC=﹣3(m).∴底端B在地面上水平滑行的距离是(﹣3)m.16.【解答】解:如图,设AC=x,则BC=AD=a+x,∵∠ADC=30°,∴AD=AC,∴a+x=x,∴x=,∴AC=,∴图中阴影部分面积=4×AC2=4××()2=(2+)a2.故答案为:(2+)a2.三.解答题(共8小题)17.【解答】解:(1)b=,(2)设a=4x,b=3x,可得:c==5x=25,解得:x=5,所以a=20,b=15.18.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB==13,∵AB•CD=AC•BC∴CD==,∴BD==.19.【解答】解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5;(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.(3)△ABC的面积为2×÷2=5.故答案为:3+5;90;5.20.【解答】解:如图所示:由题意得:P A=2×20=40(nmile),PB=2×15=30(nmile),AB=50nmile,∵402+302=502,∴P A2+PB2=AB2,∴△P AB是直角三角形,∴∠APB=90°,∵“远航”号沿东北方向航行,∴“海天”号沿西北方向或东南方向航行.21.【解答】解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米22.【解答】解:(1)连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB﹣S△ACD=•AC•BC﹣AD•CD,=×10×24﹣×8×6=96(m2).(2)需费用96×200=19200(元).23.【解答】解解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;(2)AC==5,CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),经检验x=是原方程的根,答:点P原来的速度为cm/s.24.【解答】解:(1)∵△ABC中,∠ACB=90°,AB=5cm,BC=4cm,∴AC=cm,故答案为:3;(2)如图,过P作PD⊥AB于D,∵BP平分∠ABC,∠C=90°,∴PD=PC,BC=BD=4,∴AD=5﹣4=1,设PD=PC=y,则AP=3﹣y,在Rt△ADP中,AD2+PD2=AP2,∴12+y2=(3﹣y)2,解得y=,∴CP=,∴t=;当点P与点B重合时,点P也在∠ABC的角平分线上,此时,t=;综上所述,点P恰好在∠ABC的角平分线上,t的值为或;(3)分四种情况:①如图,当P在AB上且AP=CP时,∠A=∠ACP,而∠A+∠B=90°,∠ACP+∠BCP=90°,∴∠B=∠BCP,∴CP=BP,∴P是AB的中点,即AP=AB=,∴t=;②如图,当P在AB上且AP=CA=3时,t=;③如图,当P在AB上且AC=PC时,过C作CD⊥AB于D,则CD=,∴Rt△ACD中,AD=,∴AP=2AD=,∴t=;④如图,当P在BC上且AC=PC=3时,BP=4﹣3=1,∴t==3.综上所述,当t=或或或3s时,△ACP为等腰三角形.。

人教版八年级下册数学第十七章 勾股定理练习题(含答案)

人教版八年级下册数学第十七章 勾股定理练习题(含答案)

第十七章勾股定理一、选择题1.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为()A. 26 cmB. 52 cmC. 78 cmD. 104 cm2.由以下三边不能组成直角三角形的是()A. 5,13,12B. 2,3,C. 4,7,5D. 1,,3.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GHB.AB、EF、GHC.AB、CD、GHD.AB、CD、EF4.下列命题中是假命题的是()A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形B.△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形5.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个6.已知一个直角三角形的两直角边长分别为3和4,则斜边长是()A. 5B.C.D.或57.长方体敞口玻璃罐,长、宽、高分别为16 cm、6 cm和6 cm,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD中心的正上方2 cm处,则蚂蚁到达饼干的最短距离是多少cm.()A. 7B.C. 24D.8.如图:一个长、宽、高分别为4 cm、3 cm、12 cm的长方体盒子能容下的最长木棒长为()A. 11 cmB. 12 cmC. 13 cmD. 14 cm9.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,则平板车的长最多为()A. 2B. 2C. 4D. 410.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为()A. 4B.C.D. 5二、填空题11.如下图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为________.12.等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=________.13.如图,△ABC中,D是AC边上的一点,AD=9,BD=12,BC=13,CD=5,那么△ABC的面积是__________.14.甲船以每小时16海里的速度从港口A出发向北偏东50°的方向航行,乙船以每小时12海里的速度同时从港口A出发向南偏东方向航行,离开港口2小时后两船相距40海里,则乙船向南偏东________方向航行.15.如图,△AOB是等腰三角形,OA=OB,点B在x轴的正半轴上,点A的坐标是(1,1),则点B的坐标是________.16.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD的面积__________.17.如图,在等腰△ABC中,AD是角平分线,E是AB的中点,已知AB=AC=15 cm.BC=18 cm,则△ADE的周长是________ cm.18.如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为________.19.在△ABC中,∠C=90°,AC=6,BC=8,点D是斜边AB的中点,连接CD,则CD长为________.20.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD 于点E,交CB于点F,则CF的长是________.三、解答题21.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.22.东明县是鲁西南的化工基地,有东明石化集团,洪业化工集团,玉皇化工集团等企业,化学工业越来越成为东明县经济的命脉,化工厂里我们会经常看到如图储存罐,根据需要,在圆柱形罐的外围要安装小梯子,如果油罐的底面半径为6米,高24米,梯子绕罐体半圆到达罐顶,则梯子至少要多长?23.如图,在Rt△ABC中,∠BAC=90°,AD是中线,AE是高,AC=6,AD=5,求AE的长.24.如图,在△ABC中,AC=AB,底边BC=10,点D是腰AB上一点,且CD=8,BD=6,求△ABC的周长.25.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)26.如图,一幢居民楼与马路平行且相距9米,在距离载重汽车41米处(图中B点位置)就会受到噪音影响,试求在马路上以4米/秒速度行驶的载重汽车,给这幢居民楼带来多长时间的噪音影响?若影响时间超过25秒,则此路禁止该车通行,那么载重汽车可以在这条路上通行吗?27.如图,△ABC中,AC=13,AB=12,BC=5,CD是△ABC的角平分线,DE⊥AC于E,连结EB.(1)求证:∠ABC=90°;(2)求证:∠CBE=∠CEB.28.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)已知点A在第四象限,且到x轴距离为1,到y轴距离为5,求点A的坐标;(2)在(1)的条件下,已知点B(a+1,-2a+10),且点B在第一、三象限的角平分线上,判断△OAB 的形状.答案解析1.【答案】C【解析】设长为3a cm,宽为2a cm.由题意30+3a+2a≤160,解得a≤26,∴a的最大值为26,3a=78,∴该行李箱的长的最大值为78 cm,故选C.2.【答案】C【解析】A.∵52+122=132,∴此三角形是直角三角形,不符合题意;B.∵22+()2=32,∴此三角形是直角三角形,不符合题意;C.∵42+52≠72,∴此三角形不是直角三角形,符合题意;D.∵12+()2=()2,∴此三角形是直角三角形,不符合题意;故选C.3.【答案】B【解析】设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选B.4.【答案】C【解析】A.∠B+∠A=∠C,所以∠C=90°,所以△ABC是直角三角形,故本选项不符合题意.B.若a2=(b+c)(b-c),所以a2+c2=b2,所以△ABC是直角三角形,故本选项不符合题意.C.若∠A∶∠B∶∠C=3∶4∶5,最大角为75°,故本选项符合题意.D.若a∶b∶c=5∶4∶3,则△ABC是直角三角形,故本选项不符合题意.故选C.5.【答案】C【解析】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A∶∠B∶∠C=1∶2∶3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°-∠B,所以∠A+∠B=90°,则∠C=180°-90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选C.6.【答案】A【解析】设斜边长为c,由勾股定理可得:c2=32+42,则c=5,故选A.7.【答案】B【解析】①若蚂蚁从平面ABCD和平面CDFE经过,蚂蚁到达饼干的最短距离如图1:H′E===7,②若蚂蚁从平面ABCD和平面BCEH经过,则蚂蚁到达饼干的最短距离如图2:H′E==.故选B.8.【答案】C【解析】∵侧面对角线BC2=32+42=52,∴CB=5 m,∵AC=12 m,∴AB==13(m),∴空木箱能放的最大长度为13 m,故选C.9.【答案】C【解析】设平板手推车的长度为x米,当x为最大值,且此时平板手推车所形成的△CBP为等腰直角三角形.连接PO,与BC交于点N.∵直角通道的宽为2m,∴PO=4 m,∴NP=PO-OO=4-2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CN=2NP=4(m).故选C.10.【答案】C【解析】在Rt△ABC中,∠C=90°,AC=2,BC=3,由勾股定理,得AB===;故选C.11.【答案】8π【解析】在Rt△ABC中,AB===8,所以S半圆=×42=8π.12.【答案】2或4【解析】作CD⊥AB于D,则∠ADC=∠BDC=90°,△ABC的面积=AB·CD=×5×CD=10,解得CD=4,∴AD===3;分两种情况:①等腰△ABC为锐角三角形时,如图1所示:BD=AB-AD=2,∴BC===2;②等腰△ABC为钝角三角形时,如图2所示:BD=AB+AD=8,∴BD===4;综上所述:BC的长为2或4.。

人教版数学八年级下册第十七章 勾股定理测试卷(含答案)

人教版数学八年级下册第十七章 勾股定理测试卷(含答案)

人教版数学八年级下册第十七章勾股定理测试卷一、单选题(共10题;共20分)1.判断以下各组线段为边作三角形,可以构成直角三角形的是()A. 6,15,17B. 7,12,15C. 13,15,20D. 7,24,252.如图,在4×4的正方形网格中,ΔABC的顶点都在格点上,下列结论错误的是()A. AB=5B. ∠C=90°C. AC=2√5D. ∠A=30°3.下列各组数中不能作为直角三角形的三边长的是()A. 7,24,25B. √41,4,5C. 54,1,34D. 40,50,604.小明搬来一架3.5 米长的木梯,准备把拉花挂在2.8 米高的墙上,则梯脚与墙脚的距离为( )A. 2.7 米B. 2.5 米C. 2.1 米D. 1.5 米5.如图,在ΔABC中,D是BC上一点,已知AB=15,AD=12,AC=13,CD=5,则BC 的长为()A. 14B. 13C. 12D. 96.将一根24cm 的筷子,置于底面直径为15cm,高8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h 的取值范围是()A. h≤15cmB. h≥8cmC. 8cm≤h≤17cmD. 7cm≤h≤16cm7.将面积为2π的半圆与两个正方形A和正方形B拼接如图所示,这两个正方形面积的和为()A. 4B. 8C. 2πD. 168.在四边形ABCD中,∠B=90°,AB=BC=1,CD=√6,AD=2,若∠D=α,则∠BCD的大小为()A. 2αB. 90°+αC. 135°−αD. 180°−α9.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺A. 10B. 12C. 13D. 1410.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A. 360B. 400C. 440D. 484二、填空题(共10题;共30分)11.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________12.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在距离根部4m处,这棵大树在折断前的高度为________ m.13.三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是________.14.没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为________cm.15.在△ABC中,∠C=90°,若AB= √5,则AB2+AC2+BC2=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
5米
3米
八年级第二学期数学试卷(二)
(第十七章:勾股定理)
一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)
1.满足下列条件的三角形中,不是直角三角形的是( )
A.、三内角之比为1∶2∶3
B.、三边长的平方之比为1∶2∶3
C.、三边长之比为3∶4∶5 D 、.三内角之比为3∶4∶5
2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 A 、4 cm B 、8 cm
C 、10 cm
D 、12 cm
3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25
B 、14
C 、7
D 、7或25
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) A 、13 B 、8 C 、25 D 、64
5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
7
1524
25
20715
2024
25
157
25
20
24
25
7
202415
(A)
(B)
(C)
(D)
6. 在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ). A .16π B .12π C .10π D .8π
7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) A 、 25 B 、 12.5 C 、 9 D 、 8.5
8. 三角形的三边长为ab c b a 2)(2
2
+=+,则这个三角形是( )
A 、 等边三角形
B 、 钝角三角形
C 、 直角三角形
D 、 锐角三角形.
9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). A 、0a 元 B 、600a 元 C 、1200a 元 D 、1500a 元
10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).
A 、12
B 、7
C 、5
D 、13
二、填一填,要相信自己的能力!(每小题3分,共18分)
11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要_____米.
12. 在直角三角形ABC 中,斜边AB =2,则2
2
2
AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .
14.
如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是________.
(第14题) (第15题) (第16题)
15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶
端飞到另一棵树的顶端,小鸟至少要飞___________米.
16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.
三、做一做,要注意认真审题呀!(5大题,17—20题每题10分,21题12分,共52分)
17. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.
密 封 线 内 不 得 答 题
C
18、 如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
19.如图,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1
),B (2,4),△OAB 是直角三角形吗?借助于网格,证明你的结论.
20. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?
21、去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,为了方便A 、B 两地师生的交往,学校准备在相距2km 的A 、B 两地之间修筑一条笔直公路(即图中的线段AB ),经测量,在A 地的北偏东60°方向、B 地的西偏北45°方向C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)
A
B
C D
L。

相关文档
最新文档