2011年普通高等学校招生全国统一考试理科数学(北京卷)

合集下载

2011年高考数学北京卷(理科)含答案

2011年高考数学北京卷(理科)含答案

2011年高考数学——北京卷(理科)一.选择题1.已知集合 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 .若 EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 的取值范围是 ( )A . EMBED Equation.DSMT4B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT42.复数 EMBED Equation.DSMT4( )A . EMBED Equation.DSMT4B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT43.在极坐标系中,圆的圆心的极坐标是 ( ) A . EMBED Equation.DSMT4 B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT44.执行如图所示的程序框图,输出的 EMBED Equation.DSMT4 值为( ) A . EMBED Equation.DSMT4 B . EMBEDEquation.DSMT4 C . EMBED Equation.DSMT4D . EMBED Equation.DSMT45.如图, EMBED Equation.DSMT4 , EMBED Equation.DSMT4, EMBED Equation.DSMT4 分别与圆 EMBED Equation.DSMT4切于点 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,延长 EMBED Equation.DSMT4与圆 EMBED Equation.DSMT4 交于另一点 EMBEDEquation.DSMT4 .给出下列三个结论: ① EMBED Equation.DSMT4 ;② EMBED Equation.DSMT4 ;③ EMBED Equation.DSMT4 . 其中正确结论的序号是 ( )A .①②B .②③C .①③D .①②③6.根据统计,一名工人组装第 EMBED Equation.DSMT4 件某产品所用的时间(单位:11s s s -=+0,2i s ==4i <1i i =+s 输出开始结束第4题 CF O EG分钟)为 EMBED Equation.DSMT4( EMBED Equation.DSMT4 , EMBEDEquation.DSMT4 为常数),已知工人组装第4件产品用时30分钟,组装第 EMBED Equation.DSMT4 件产品用时15分钟, 那么 EMBED Equation.DSMT4 和 EMBED Equation.DSMT4 的值分别是( )A .75, 25B .75, 16C .60, 25D .60,167.某四面体的三视图如图所示,该四面体四个面的面积中最大的是( )A .8B . EMBED Equation.DSMT4C .10D . EMBED Equation.DSMT48.设 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 ).记 EMBED Equation.DSMT4为平行四边形 EMBED Equation.DSMT4 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数 EMBED Equation.DSMT4 的值域为 ( )A . EMBED Equation.DSMT4B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT4二.填空题9.在 EMBED Equation.DSMT4 中,若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4, EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4_________; EMBED Equation.DSMT4 ________.10.已知向量 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 .若 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 共线,则 EMBED Equation.DSMT4 ______.11.在等比数列 EMBED Equation.DSMT4 中,若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4,则公比 EMBED Equation.DSMT4 ; EMBED Equation.DSMT4. 12.用数字2,3组成四位数,且数字2,3 至少都出现一次,这样的四位数共有 个(用数字作答).13.已知函数 EMBED Equation.DSMT4若关于 EMBED Equation.DSMT4 的方程 EMBED Equation.DSMT4 有两个不同的实根,则实数 EMBED Equation.DSMT4 的取值范围是 .14.曲线 EMBED Equation.DSMT4 是平面内与两个定点 EMBED Equation.DSMT4 和 EMBED Equation.DSMT4的距离的积等于常数 EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 )的点的轨迹,给出下列三个结论:①曲线 EMBED Equation.DSMT4 过坐标原点;②曲线 EMBED Equation.DSMT4 关于坐标原点对称;③若点 EMBED Equation.DSMT4 在曲线 EMBED Equation.DSMT4 上,则 EMBED Equation.DSMT4 的面积不大于 EMBED Equation.DSMT4. 其中,所有正确结论的序号是 .三.解答题15.(13分)已知函数 EMBED Equation.DSMT4.(1)求 EMBED Equation.DSMT4 的最小正周期;(2)求 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4上的最大值和最小值.16.(14分)如图,在四棱锥 EMBED Equation.DSMT4 中, EMBED Equation.DSMT4 平面 EMBED Equation.DSMT4 ,底面EMBED Equation.DSMT4 是菱形, EMBED Equation.DSMT4 , EMBED Equation.DSMT4.(1)求证 EMBED Equation.DSMT4 平面EMBED Equation.DSMT4 ;(2)若 EMBED Equation.DSMT4 ,求 EMBEDEquation.DSMT4 与 EMBED Equation.DSMT4 所成角的余弦值;(3)当平面 EMBED Equation.DSMT4 与平面 EMBED Equation.DSMT4 垂直时,求 EMBEDEquation.DSMT4 的长.17.(13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以 EMBED Equation.DSMT4 表示.999X 008甲组乙组 C A B DP(1)如果 EMBED Equation.DSMT4 ,求乙组同学植树棵数的平均数和方差;(2)如果 EMBED Equation.DSMT4 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数 EMBED Equation.DSMT4 的分布列和数学期望.18.(13分)已知函数 EMBED Equation.DSMT4 .(1)求 EMBED Equation.DSMT4 的单调区间;(2)若对于任意的 EMBED Equation.DSMT4 ,都有 EMBED Equation.DSMT4,求 EMBED Equation.DSMT4 的取值范围.19.(14分)已知椭圆 EMBED Equation.DSMT4,过点 EMBED Equation.DSMT4作圆 EMBED Equation.DSMT4的切线 EMBED Equation.DSMT4 交椭圆 EMBED Equation.DSMT4 于 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 两点.(1)求椭圆 EMBED Equation.DSMT4 的焦点坐标和离心率;(2)将 EMBED Equation.DSMT4 表示为 EMBED Equation.DSMT4 的函数,并求 EMBED Equation.DSMT4 的最大值.20.(13分)若数列 EMBED Equation.DSMT4 : EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 )满足 EMBED Equation.DSMT4( EMBED Equation.DSMT4 ),则称 EMBED Equation.DSMT4为 EMBED Equation.DSMT4 数列.记 EMBED Equation.DSMT4. (1)写出一个满足 EMBED Equation.DSMT4 ,且 EMBED Equation.DSMT4 的 EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4; (2)若 EMBED Equation.DSMT4, EMBED Equation.DSMT4 .证明: EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4是递增数列的充要条件是 EMBED Equation.DSMT4; (3)对任意给定的整数 EMBED Equation.DSMT4 ( EMBED Equation.DSMT4),是否存在首项为0的 EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4 ,使得 EMBED Equation.DSMT4?若果存在,写出一个满足条件的 EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4;如果不存在,说明理由.HYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76eca 3d71bb8" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3d71bb8&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e66861fc5" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e66861fc5&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76eca 3e4c1a6" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3e4c1a6&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e672feab7" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e672feab7&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a3f73edb" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3f73edb&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e 67c8b2da" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e67c8b2da&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a400870c" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca400870c&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a3c042eb" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3c042eb&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a3cc5f9e" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3cc5f9e&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e6 60df7c8" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e660df7c8&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e 64a5792a" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e64a5792a&690" \* MERGEFORMATINET。

2011年普通高等学校招生全国统一考试理科数学

2011年普通高等学校招生全国统一考试理科数学

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =,直线2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。

2011年北京市高考理科数学试题及标准答案

2011年北京市高考理科数学试题及标准答案

2011年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合2{|1}P x x =≤,{}M a =.若PM P =,则a 的取值范围是(A)(,1]-∞-(B)[1,)+∞(C )[1,1]-(D)(,1][1,)-∞-+∞ (2)复数212i i-=+ (A )i (B)i - (C)4355i -- (D)4355i -+ (3)在极坐标系中,圆2sin ρθ=-的圆心的极坐标是(A )(1,)2π (B )(1,)2π- (C )(1,0) (D)(1,)π(4)执行如图所示的程序框图,输出的s 值为(A)3-(B)12- (C)13(D)2(5)如图,,,AD AE BC 分别与圆O 切于点,,D E F ,延长AF 与圆O 交于另一点G 。

给出下列三个结论:① AD AE AB BC CA +=++;② AF AG AD AE ⋅=⋅;③ AFB ADG ∆∆其中,正确结论的序号是(A)① ② (B )② ③(C )① ③ (D )① ② ③(6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(,A c 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟, 那么c 和A 的值分别是(A )75,25 (B )75,16 (C )60,25 (D)60,16 (7)某四面体的三视图如图所示,该四面体四个面的面积中 最大的是(A ) 8(B)(C) 10(D)(8)设(0,0)A ,(4,0)B ,(4,4)C t +,(,4)D t (t R ∈),记()N t 为平行四边形内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的 值域为(A ){9,10,11} (B){9,10,12} (C){9,11,12} (D ){10,11,12}A G俯视图。

2011年新课标高考数学试题及答案(理科)

2011年新课标高考数学试题及答案(理科)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数212ii+-的共轭复数是A .35i -B .35iC .i -D .i2.下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 A .2y x = B .1y x =+C .21y x =-+D .2xy -=3.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 A .120 B .720 C .1440 D .50404.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A .13B .12 C .23D .345.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=A .45- B .35-C .35 D .456.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为7.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB为C 的实轴长的2倍,则C 的离心率为ABC .2D .38.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为A .-40B .-20C .20D .409.由曲线y =,直线2y x =-及y 轴所围成的图形的面积为A .103 B .4C .163D .610.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是A .14,P PB .13,P PC .23,P PD .24,P P11.设函数()s i n()c o s ()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 12.函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6D .8第Ⅱ卷本卷包括必考题和选考题两部分。

2011年高考理科数学试卷(及答案)_全国卷(word版)[1]1

2011年高考理科数学试卷(及答案)_全国卷(word版)[1]1

2011年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)本试卷共4页,三大题21小题。

满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。

3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.复数1z i =+,z 为z 的共轭复数,则1z z z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24xy x R =∈ (B)()204xy x =≥(C)()24y xx R =∈ (D)()240y xx =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1A B A C B D ===,则D 到平面ABC 的距离等于(A)22(B)33(C)63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13(B)12(C)23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14-(C)14(D)1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos A F B ∠= (A)45(B)35(C) 35-(D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60 二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) 3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927xyC -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F A F ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABC D A B C D - 的棱11BB C C 、上,且12B E E B =,12C F FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。

2011年北京高考数学答案解析(理科)

2011年北京高考数学答案解析(理科)

2011北京高考数学理科试卷分析说明:2011北京理科卷考点全面,,虽然"线性规划"、"不等式"两个小章未考到,但其中包含的图形处理技巧和最值思想,在第13题函数题需要用到数形结合和19题解析几何大题最后的最值问题中有所体现,所以今年的高考题考到了几乎所有章节。

对于学生而言,每个章节都不能遗漏。

考试难度和计算量总体上比平时的期中期末考试、一、二模更简单:1.小题:前14道小题中,只有第8题和第14题需要多思考才能做对,方法很常规,并没有设置障碍。

其他12个小题全是常规题型,非常容易得分,只要保证计算不错,中等基础的学生能拿到12个题满分。

2.大题:在后面的6个大题80分的考点中,前三个大题考的基础题型,大部分考生不算错的情况下能够得满分;从后三个大题才开始设置难度,拉开了学生层次。

第一题:三角函数大题依然考的热点考点,化简和求最值,学生基础中等偏下水平即可做对。

第二题:立体几何也是常见考点,垂直和角的问题,今年没有考二面角,考的线线角更简单,基础弱的学生甚至可以用几何向量法做出这三问,顺利拿到14分。

第三题:是统计题,没有像以前一样设计难度,考点全部是基础型,茎叶图、期望值、方差等在平时的小题考试中经常出现,求的概率甚至可以用数数的方法做出来。

从第四题开始,就要求中等以上基础了。

第四题:导数题一开始便求导,却是个复合函数,学生平时练少了就会疏忽此处而算错,此题就完全丢分。

到求单调性和最值的部分就是常规方法,但第一问就需要讨论参数,用画表格,讨论的方法能顺利解出两问,计算没有难度,中等偏上水平学生能拿到分。

平时学习只要求做到第一问的学生可能在讨论时会卡住,对于学习浅的同学第一问的分数也很难拿到。

第五题:解析几何考的是椭圆,第一问考基础知识是送分题,一般学生都能拿到分。

第二问考的是常规方法,只需要联立方程,用韦达定理求弦长公式,最后求最值即可做出。

计算量一如既往是整份试卷中最大的一题,也是决定能否过140分的关键一题,让很多学生畏惧,基础好的学生勇于一试。

2011年高考理科数学(全国卷)(含答案)

2011年高考理科数学(全国卷)(含答案)

2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效。

...... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题 (1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9(6)已知直二面角α –ι- β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14- (C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45(B)35(C)35- (D)45-(11)已知平面α截一球面得圆M,过圆心M且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a,b,c满足a=b =1,a b =12-,,a cb c--=060,则c的最大值等于(A)2 (B)3 (c)2 (D)1第Ⅱ卷注意事项:1、答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2011年普通高等学校招生全国统一考试数学(理)(北京卷) (2)

2011年普通高等学校招生全国统一考试数学(理)(北京卷) (2)

2011年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目
要求的一项。

1.已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是
A .(-∞, -1]
B .[1, +∞)
C .[-1,1]
D .(-∞,-1] ∪[1,+∞)
2.复数
212i i -=+ A .i B .-i C .4355i -- D .4355
i -+ 3.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是
A .(1,)2π
B .(1,)2π
-
C . (1,0)
D .(1,π)
4.执行如图所示的程序框图,输出的s 值为
A .-3
B .-
12 C .13 D .2
5.如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,
延长AF 与圆O 交于另一点G 。

给出下列三个结论:
①AD+AE=AB+BC+CA ;
②AF·AG=AD·AE
③△AFB ~△ADG
其中正确结论的序号是
A .①②
B .②③
C .①③
D .①②③。

2011新课标全国卷数学理科含答案

2011新课标全国卷数学理科含答案

2011年普通高等学校招生全国统一考试理科数学(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i (2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13(B )12(C )23(D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A(B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (B )-20 (C )20 (D )40 (9)由曲线y =2y x =-及y 轴所围成的图形的面积为 (A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则 (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫ ⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8 二、填空题:本大题共4小题,每小题5分。

2011年北京市高考数学试卷(理科)(含解析版)

2011年北京市高考数学试卷(理科)(含解析版)

;|a1|+|a2|+…+|an|=

12.(5 分)用数字 2,3 组成四位数,且数字 2,3 至少都出现一次,这样的四位数共有 数字作答)
个.(用
13.(5 分)已知函数
若关于 x 的方程 f(x)=k 有两个不同的实根,则数 k
16.(14 分)如图,在四棱锥 P﹣ABCD 中,PA⊥平面 ABCD,底面 ABCD 是菱形,AB=2,∠BAD=60°. (Ⅰ)求证:BD⊥平面 PAC; (Ⅱ)若 PA=AB,求 PB 与 AC 所成角的余弦值; (Ⅲ)当平面 PBC 与平面 PDC 垂直时,求 PA 的长.
20.(13 分)若数列 An=a1,a2,…,an(n≥2)满足|ak+1﹣ak|=1(k=1,2,…,n﹣1),数列 An 为 E 数列,记 S(An)=a1+a2+…+an.
(Ⅰ)写出一个满足 a1=as=0,且 S(As)>0 的 E 数列 An; (Ⅱ)若 a1=12,n=2000,证明:E 数列 An 是递增数列的充要条件是 an=2011; (Ⅲ)对任意给定的整数 n(n≥2),是否存在首项为 0 的 E 数列 An,使得 S(An)=0?如果存在,

三、解答题(共 6 小题,满分 80 分) 15.(13 分)已知 f(x)=4cosxsin(x+ )﹣1. (Ⅰ)求 f(x)的最小正周期; (Ⅱ)求 f(x)在区间[﹣ , ]上的最大值和最小值.
17.(13 分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊, 无法确认,在图中以 X 表示.
绝密★启用前
2011 年普通高等学校招生全国统一考试
①AD+AE=AB+BC+CA;②AF•AG=AD•AE③△AFB~△ADG 其中正确结论的序号是( )

2011年北京市高考数学试卷(理科)答案与解析

2011年北京市高考数学试卷(理科)答案与解析

2011年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•北京)已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1]∪[1,+∞)【考点】集合关系中的参数取值问题.【专题】集合.【分析】通过解不等式化简集合P;利用P∪M=P⇔M⊆P;求出a的范围.【解答】解:∵P={x|x2≤1},∴P={x|﹣1≤x≤1}∵P∪M=P∴M⊆P∴a∈P﹣1≤a≤1故选:C.【点评】本题考查不等式的解法、考查集合的包含关系:根据条件P∪M=P⇔M⊆P是解题关键.2.(5分)(2011•北京)复数=()A.i B.﹣i C.D.【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】将分子、分母同乘以1﹣2i,再按多项式的乘法法则展开,将i2用﹣1代替即可.【解答】解:==i故选A【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数;再按多项式的乘法法则展开即可.3.(5分)(2011•北京)在极坐标系中,圆ρ=﹣2sinθ的圆心的极坐标系是()A.B.C.(1,0)D.(1,π)【考点】简单曲线的极坐标方程.【专题】直线与圆;坐标系和参数方程.【分析】先在极坐标方程ρ=﹣2sinθ的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标系,再利用直角坐标方程求解即可.【解答】解:将方程ρ=﹣2sinθ两边都乘以p得:ρ2=﹣2ρsinθ,化成直角坐标方程为x2+y2+2y=0.圆心的坐标(0,﹣1).∴圆心的极坐标故选B.【点评】本题考查点的极坐标和直角坐标的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互,能在极坐标系中用极坐标刻画点的位置.4.(5分)(2011•北京)执行如图所示的程序框图,输出的s值为()A.﹣3 B.﹣C.D.2【考点】循环结构.【专题】算法和程序框图.【分析】i=0,满足条件i<4,执行循环体,依此类推,当i=4,s=2,此时不满足条件i<4,退出循环体,从而得到所求.【解答】解:i=0,满足条件i<4,执行循环体,i=1,s=满足条件i<4,执行循环体,i=2,s=﹣满足条件i<4,执行循环体,i=3,s=﹣3满足条件i<4,执行循环体,i=4,s=2不满足条件i<4,退出循环体,此时s=2故选:D【点评】根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.5.(5分)(2011•北京)如图,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G.给出下列三个结论:①AD+AE=AB+BC+CA;②AF•AG=AD•AE③△AFB~△ADG其中正确结论的序号是()A.①② B.②③ C.①③ D.①②③【考点】与圆有关的比例线段.【专题】直线与圆.【分析】根据从圆外一点引圆的两条切线,切线长相等,得到第一个说法是正确的,根据切割线定理知道第二个说法是正确的,根据切割线定理知,两个三角形△ADF~△ADG,得到第三个说法错误.【解答】解:根据从圆外一点引圆的两条切线,切线长相等,有CE=CF,BF=BD,∴AD+AE=AB+BC+CA,故①正确,∵AD=AE,AE2=AF•AG,∴AF•AG=AD•AE,故②正确,根据切割线定理知△ADF~△ADG故③不正确,综上所述①②两个说法是正确的,故选A.【点评】本题考查与圆有关的比例线段,考查圆的切线长定理,考查圆的切割线定理,考查切割线构成的两个相似的三角形,本题是一个综合题目.6.(5分)(2011•北京)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为(A,C为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A.75,25 B.75,16 C.60,25 D.60,16【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】首先,x=A的函数值可由表达式直接得出,再根据x=4与x=A的函数值不相等,说明求f(4)要用x <A对应的表达式,将方程组联解,可以求出C、A的值.【解答】解:由题意可得:f(A)==15,所以c=15而f(4)==30,可得出=30故=4,可得A=16从而c=15=60故答案为D【点评】分段函数是函数的一种常见类型,解决的关键是寻找不同自变量所对应的范围,在相应区间内运用表达式加以解决.7.(5分)(2011•北京)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B. C.10 D.【考点】由三视图求面积、体积.【专题】立体几何.【分析】三视图复原的几何体是一个三棱锥,根据三视图的图形特征,判断三棱锥的形状,三视图的数据,求出四面体四个面的面积中,最大的值.【解答】解:三视图复原的几何体是一个三棱锥,如图,四个面的面积分别为:8,6,,10,显然面积的最大值,10.故选C.【点评】本题是基础题,考查三视图复原几何体的知识,考查几何体的面积,空间想象能力,计算能力,常考题型.8.(5分)(2011•北京)设A(0,0),B(4,0),C(t+4,4),D(t,4)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数N(t)的值域为()A.{9,10,11} B.{9,10,12} C.{9,11,12} D.{10,11,12}【考点】集合的含义.【专题】集合.【分析】分别由t=0,1,2求出N(t),排除错误选项A,B,D,从而得到正确选项.【解答】解:当t=0时,▱ABCD的四个顶点是A(0,0),B(4,0),C(4,4),D(0,4),符合条件的点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共九个,N(t)=9,故选项D不正确.当t=1时,▱ABCD的四个顶点是A(0,0),B(4,0),C(5,4),D(1,4),同理知N(t)=12,故选项A不正确.当t=2时,▱ABCD的四个顶点是A(0,0),B(4,0),C(6,4),D(2,4),同理知N(t)=11,故选项B不正确.故选C.【点评】本题考查集合的性质和应用,解题时要注意排除法的合理运用.本题中取整点是个难点,常用的方法是,先定横(或纵)坐标,在定纵(横)坐标,以确定点的个数,如果从图形上看,就是看直线x=r(r是整数)上有几个整点在四边形内.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011•北京)在△ABC中.若b=5,,tanA=2,则sinA= ;a= 2.【考点】正弦定理;同角三角函数间的基本关系.【专题】解三角形.【分析】由tanA的值,利用同角三角函数间的基本关系求出cosA的平方,然后由A的范围,再利用同角三角函数的基本关系求出sinA的值,然后再利用正弦定理,由sinA,sinB及b的值即可求出a的值.【解答】解:由tanA=2,得到cos2A==,由A∈(0,π),得到sinA==,根据正弦定理得:=,得到a===2.故答案为:;2【点评】此题考查学生灵活运用同角三角函数间的基本关系以及正弦定理化简求值,是一道中档题.10.(5分)(2011•北京)已知向量=(,1),=(0,﹣1),=(k,).若与共线,则k= 1 .【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】利用向量的坐标运算求出的坐标;利用向量共线的坐标形式的充要条件列出方程,求出k的值.【解答】解:∵与共线,∴解得k=1.故答案为1.【点评】本题考查向量的坐标运算、考查向量共线的坐标形式的充要条件:坐标交叉相乘相等.11.(5分)(2011•北京)在等比数列{a n}中,a1=,a4=﹣4,则公比q= ﹣2 ;|a1|+|a2|+…+|a n|=.【考点】等比数列的性质;等比数列的前n项和.【专题】等差数列与等比数列.【分析】先利用等比数列的通项公式求得公比;|a n|是以a1为首项,|q|为公比,进而利用等比数列的求和公式求解.【解答】解:q===﹣2,|a1|+|a2|+…+|a n|==故答案为:﹣2,【点评】本题主要考查了等比数列的性质.考查了对等比数列的通项公式和求和公式的灵活运用.12.(5分)(2011•北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有14 个.(用数字作答)【考点】计数原理的应用.【专题】算法和程序框图.【分析】本题是一个分类计数问题,首先确定数字中2和3 的个数,当数字中有1个2,3个3时,当数字中有2个2,2个3时,当数字中有3个2,1个3时,写出每种情况的结果数,最后相加.【解答】解:由题意知本题是一个分类计数问题,首先确定数字中2和3 的个数,当数字中有1个2,3个3时,共有C41=4种结果,当数字中有2个2,2个3时,共有C42=6种结果,当数字中有3个2,1个3时,共有有C41=4种结果,根据分类加法原理知共有4+6+4=14种结果,故答案为:14【点评】本题考查分类计数原理,是一个数字问题,这种问题一般容易出错,注意分类时要做到不重不漏,本题是一个基础题,也是一个易错题,易错点在数字中重复出现的数字不好处理.13.(5分)(2011•北京)已知函数若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是(0,1).【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】要求程f(x)=k有两个不同的实根是数k的取值范围,根据方程的根与对应函数零点的关系,我们可以转化为求函数y=f(x)与函数y=k交点的个数,我们画出函数的图象,数形结合即可求出答案.【解答】解:函数的图象如下图所示:由函数图象可得当k∈(0,1)时方程f(x)=k有两个不同的实根,故答案为:(0,1)【点评】本题考查的知识点是根的存在性及根的个数判断,其中根据方程的根与对应函数零点的关系,将方程问题转化为函数问题是解答的关键.14.(5分)(2011•北京)曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于常数a2(a >1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于a2.其中,所有正确结论的序号是②③.【考点】轨迹方程.【专题】圆锥曲线的定义、性质与方程.【分析】由题意曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于常数a2(a>1),利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.【解答】解:对于①,由题意设动点坐标为(x,y),则利用题意及两点间的距离公式的得:⇔[(x+1)2+y2]•[(x﹣1)2+y2]=a4(1)将原点代入验证,此方程不过原点,所以①错;对于②,把方程中的x被﹣x代换,y被﹣y 代换,方程不变,故此曲线关于原点对称.②正确;对于③,由题意知点P在曲线C上,则△F1PF2的面积=a2sin∠F1PF2,≤a2,所以③正确.故答案为:②③.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性及利用解析式选择换元法求出值域.三、解答题(共6小题,满分80分)15.(13分)(2011•北京)已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.【考点】三角函数的周期性及其求法;两角和与差的余弦函数;三角函数的最值.【专题】三角函数的图像与性质.【分析】(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.【解答】解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的最值.解题的关键是对函数解析式的化简整理.16.(14分)(2011•北京)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:B D⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.【专题】空间位置关系与距离.【分析】(I)由已知条件可得ACBD,PABD,根据直线与平面垂直的判定定理可证(II)结合已知条件,设AC与BD的交点为O,则OB⊥OC,故考虑分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系,设PB与AC所成的角为θ,则,代入公式可求(III)分别求平面PBC的法向量,平面PDC的法向量由平面PBC⊥平面PDC可得从而可求t即PA【解答】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力17.(13分)(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(Ⅰ)如果X=8,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望.(注:方差,其中为x1,x2,…x n的平均数)【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(Ⅰ)根据所给的数据,把所有数据相加再除以4写出这组数据的平均数,再利用所给的方差的公式,做出这组数据的方差.(Ⅱ)根据所给的变量写出随机变量可能的取值,结合变量对应的事件写出变量的概率,写出分布列,做出期望值.【解答】解:(Ⅰ)当X=8,乙组同学植树棵数是8,8,9,10,平均数是=,方差为+=;(Ⅱ)当X=9时,甲组同学的植树棵数是9,9,11,11;乙组同学的植树棵数是9,8,9,10,分别从甲和乙两组中随机取一名同学,共有4×4=16种结果,这两名同学植树的总棵数Y可能是17,18,19,20,21,事件Y=17,表示甲组选出的同学植树9棵,乙组选出的同学植树8棵,∴P(Y=17)=P(Y=18)=P(Y=19)=P(Y=20)=,P(Y=21)=∴随机变量的期望是EY==19.【点评】本题考查一组数据的平均数和方差,考查离散型随机变量的分布列和期望值,考查等可能事件的概率,本题是一个概率与统计的综合题目.18.(13分)(2011•北京)已知函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x )≤,求k的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【专题】函数的性质及应用;导数的概念及应用.【分析】(I)求导,令导数等于零,解方程,跟据f′(x),f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据若对于任意的x∈(0,+∞),都有f(x )≤,利用导数求函数f(x)在区间(0,+∞)的最大值,即可求出k的取值范围.【解答】解:(Ⅰ)=,令f′(x)=0,得x=±k当k>0时,f′(x)f(x)随x的变化情况如下:所以,f(x)的单调递增区间是(﹣∞,﹣k),和(k,+∞),单调递减区间是(﹣k,k);当k<0时,f′(x)f(x)随x的变化情况如下:所以,f(x)的单调递减区间是(﹣∞,k),和(﹣k,+∞),单调递增区间是(k,﹣k);(Ⅱ)当k>0时,有f(k+1)=,不合题意,当k<0时,由(I)知f(x)在(0,+∞)上的最大值是f(﹣k)=,∴任意的x∈(0,+∞),f(x)≤,⇔f(﹣k)=≤,解得﹣,故对于任意的x∈(0,+∞),都有f(x)≤,k的取值范围是﹣.【点评】此题是个难题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根大小进行讨论,体现了分类讨论的思想方法,特别是(II)的设置,有关恒成立问题一般转化为求函数的最值问题,体现了转化的思想,增加了题目的难度.19.(14分)(2011•北京)已知椭圆.过点(m,0)作圆x2+y2=1的切线I交椭圆G于A,B 两点.(Ⅰ)求椭圆G的焦点坐标和离心率;(Ⅱ)将|AB|表示为m的函数,并求|AB|的最大值.【考点】圆与圆锥曲线的综合.【专题】圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.【分析】(I)由题意及椭圆和圆的标准方程,利用椭圆离心率的定义和点到直线的距离公式即可求解;(II)由题意即m得取值范围分m=1时,m=﹣1及当m≠±1三大类求出|AB|的长度,利用直线方程与椭圆方程进行联立,利用根与系数的关系得到k与m之间关系等式,利用直线与圆相切的条件即可.【解答】解:(I)由题意得a=2,b=1,所以c=∴椭圆G的焦点坐标离心率e=.(II)由题意知:|m|≥1,当m=1时,切线l的方程为x=1,点A(1,)点B(1,﹣)此时|AB|=;当m=﹣1时,同理可得|AB|=;当|m|>1时,设切线l的方程为:y=k(x﹣m),由⇒(1+4k2)x2﹣8k2mx+4k2m2﹣4=0,设A(x1,y1),B(x2,y2)则x1+x2=又由l与圆x2+y2=1相切∴圆心到直线l的距离等于圆的半径即=1⇒m2=,所以|AB|==]=,由于当m=±1时,|AB|=,当m≠±1时,|AB|=,此时m∈(﹣∞,﹣1]∪[1,+∞)又|AB|=≤2(当且仅当m=±时,|AB|=2),所以,|AB|的最大值为2.故|AB|的最大值为2.【点评】此题重点考查了椭圆及圆的标准方程,还考查了点到直线的距离公式,对于第二问,重点考查了利用m 的范围分裂进行讨论,联立直线与椭圆的方程利用整体代换的思想建立m与k的关系等式,还考查两点间的距离公式及又m的范围解出|AB|的最值.20.(13分)(2011•北京)若数列A n=a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),数列A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个满足a1=a s=0,且S(A s)>0的E数列A n;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列A n,使得S(A n)=0?如果存在,写出一个满足条件的E数列A n;如果不存在,说明理由.【考点】数列的应用.【专题】等差数列与等比数列;点列、递归数列与数学归纳法.【分析】(Ⅰ)根据题意,a2=±1,a4=±1,再根据|a k+1﹣a k|=1给出a5的值,可以得出符合题的E数列A5;(Ⅱ)从必要性入手,由单调性可以去掉绝对值符号,可得是A n公差为1的等差数列,再证充分性,由绝对值的性质得出不等式,再利用同向不等式的累加,可得a k+1﹣a k=1>0,A n是递增数列;(Ⅲ)根据定义构造数列,再用等差数列求和公式求出S(A n),最后通过讨论得出符合条件的S(A n).【解答】解:(Ⅰ)0,1,0,1,0是一个满足条件的E数列A5(Ⅱ)必要性:因为E数列A n是递增数列所以a k+1﹣a k=1(k=1,2, (1999)所以A n是首项为12,公差为1的等差数列.所以a2000=12+(2000﹣1)×1=2011充分性:由于a2000﹣a1999≤1a1999﹣a1998≤1…a2﹣a1≤1,所以a2000﹣a1≤1999,即a2000≤a1+1999又因为a1=12,a2000=2011所以a2000=a1+1999故a k+1﹣a k=1>0(k=1,2,…,1999),即A n是递增数列.综上所述,结论成立.(Ⅲ)设c k=a k+1﹣a k(k=1,2,…,n﹣1),则c k=±1因为a2=a1+c1a3=a1+c1+c2…a n=a1+c1+c2+…+c n﹣1所以S(A n)=na1+(n﹣1)c1+(n﹣2)c2+(n﹣3)c3+…+c n﹣1=(n﹣1)+(n﹣2)+…+1﹣[(1﹣c1)(n﹣1)+(1﹣c2)(n﹣2)+…+(1﹣c n﹣1)]=因为c k=±1,所以1﹣c k为偶数(k=1,2,…,n﹣1))所以(1﹣c1)(n﹣1)+(1﹣c2)(n﹣2)+…+(1﹣c n﹣1)为偶数所以要使S(A n)=0,必须=使为偶数即4整除n(n﹣1),亦即n=4m或n=4m+1(m∈N*)当n=4m(m∈N*)时,E数列A n的项满足a4k+1=a4k﹣1=0,a4k﹣2=﹣1,a4k=1(k=1,2,…,n﹣1))此时,有a1=0且S(A n)=0成立当n=4m+1(m∈N*)时,E数列A n的项满足a4k+1=a4k﹣1=0a4k﹣2=﹣1a4k=1(k=1,2,…,n﹣1))a4m+1=0时,亦有a1=0且S(A n)=0成立当n=4m+2或n=4m+3(m∈N*)(m∈N*)时,n(n﹣1)不能被4整除,此时不存在数列数列A n,使得a1=0且S(A n)=0成立【点评】本题以数列为载体,考查了不等式的运用技巧,属于难题,第三小问注意去绝对值,分类讨论思想的运用.。

2011年高考北京市数学试卷-理科(含详细答案)

2011年高考北京市数学试卷-理科(含详细答案)

2011年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是 (A )(-∞, -1] (B )[1, +∞)(C )[-1,1] (D )(-∞,-1] ∪[1,+∞)【答案】C【解析】:2{|1}{|11}P x x x x =≤=-≤≤,[1,1]PM P a =⇒∈-,选C 。

(2)复数212i i-=+ (A )i (B )-i (C )4355i -- (D )4355i -+【答案】A【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i ii i ---------+====++----,选A 。

(3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是(A) (1,)2π (B) (1,)2π-(C) (1,0) (D)(1,π)【答案】B【解析】:222sin (1)1x y ρθ=-⇒++=,圆心直角坐标为(0,-1),极坐标为(1,)2π-,选B 。

(4)执行如图所示的程序框图,输出的s 值为 (A )-3 (B )-12(C )13(D )2【答案】D【解析】:循环操作4次时S 的值分别为11,,3,232--,选D 。

(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G 。

给出下列三个结论:○1AD+AE=AB+BC+CA ; ○2AF ·AG=AD ·AE③△AFB ~△ADG 其中正确结论的序号是(A )①② (B )②③ (C )①③ (D )①②③【答案】A.【解析】:①正确。

2011年北京市高考试题集锦理数北京卷)

2011年北京市高考试题集锦理数北京卷)

2011年高考试题 数学(理)【北京市试题卷】本试卷共5页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合P ={x ︱x 2≤1},M ={a }.若P ∪M =P,则a 的取值范围是 (A)(-∞, -1] (B)[1, +∞) (C)[-1,1] (D)(-∞,-1] ∪[1,+∞) (2)复数212i i-=+ (A)i (B)-i (C)4355i -- (D)4355i -+(3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是(A) (1,)2π (B) (1,)2π- (C) (1,0)(D)(1,π)(4)执行如图所示的程序框图,输出的s 值为 (A)-3 (B)-12(C)13(D)2(5)如图,AD,AE,BC 分别与圆O 切于点D,E,F,延长AF 与圆O 交于另一点G 。

给出下列三个结论:○1AD +AE =AB +BC +CA;○2AF ·AG =AD ·AE③△AFB ~△ADG 其中正确结论的序号是(A)①② (B)②③ (C)①③ (D)①②③(6)根据统计,一名工作组装第4件某产品所用的时间(单位:分钟)为(A,C 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是(A)75,25 (B)75,16 (C)60,25 (D)60,16(7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) 62 (C)10 (D) 82(8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为(A){}9,10,11 (B){}9,10,12 (C){}9,11,12 (D){}10,11,12 第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2011年北京高考数学答案(理科)

2011年北京高考数学答案(理科)

2011北京高考数学理科试卷分析题号章节内容分值高中所有章节考分汇总1 集合 52 复数 5 章节分值3 极坐标 57大章函数204 算法框图5 三角函数185 平面几何 5 数列186 函数(分段函数) 5 立体几何147 三视图 5 解析几何148 创新题(函数、画图法) 5 导数139 解三角形 5 统计概率1310 平面向量 511 数学通项、求和公式 510小章集合 512 排列组合 5 复数 513 函数-数形结合 5 极坐标 514 创新题(解析几何、对称性) 5 算法与框图 515 三角函数(周期、最值)13 平面几何 516 立体几何(垂直、线线角)14 平面向量 517 统计(茎叶图、方差、概率、期望)13 三视图 518 导数(单调性、最值)13 排列组合 519 解析(椭圆、韦达定理、最值)14 线性规划020 创新题(数列、充分、必要条件)13 不等式0 说明:2011北京理科卷考点全面,,虽然"线性规划"、"不等式"两个小章未考到,但其中包含的图形处理技巧和最值思想,在第13题函数题需要用到数形结合和19题解析几何大题最后的最值问题中有所体现,所以今年的高考题考到了几乎所有章节。

对于学生而言,每个章节都不能遗漏。

考试难度和计算量总体上比平时的期中期末考试、一、二模更简单:1.小题:前14道小题中,只有第8题和第14题需要多思考才能做对,方法很常规,并没有设置障碍。

其他12个小题全是常规题型,非常容易得分,只要保证计算不错,中等基础的学生能拿到12个题满分。

2.大题:在后面的6个大题80分的考点中,前三个大题考的基础题型,大部分考生不算错的情况下能够得满分;从后三个大题才开始设置难度,拉开了学生层次。

第一题:三角函数大题依然考的热点考点,化简和求最值,学生基础中等偏下水平即可做对。

第二题:立体几何也是常见考点,垂直和角的问题,今年没有考二面角,考的线线角更简单,基础弱的学生甚至可以用几何向量法做出这三问,顺利拿到14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2011年普通高等学校招生全国统一考试理科数学(北京卷)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是( )A.(-∞, -1]B.[1, +∞)C.[-1,1]D.(-∞,-1] ∪[1,+∞) 2.复数212i i-=+( ) A.i B.i - C.4355i -- D.4355i -+ 3.在极坐标系中,圆2sin ρθ=-的圆心的极坐标是( )A. (1,)2πB. (1,)2π- C. (1,0) D.(1,π) 4执行如图所示的程序框图,输出的s 值为( )A.-3B.-12C.13D.25.如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G.给出下列三个结论:①AD+AE=AB+BC+CA ;②AF ·AG=AD ·AE ;③△AFB ~△ADG ,其中正确结论的序号是( )A.①②B.②③C.①③D.①②③6.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,C 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是( )A.75,25B.75,16C.60,25D.60,167.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是( )A. 8B.C.10D. 8.设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为( )A.{}9,10,11B.{}9,10,12C.{}9,11,12D.{}10,11,12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在ABC ∆中,若b=5,4B π∠=,tanA=2,则sinA=____________;a=_______________.10.已知向量a = ,)1,0(-=b,(c k = .若2a b - 与c 共线,则k =__________. 11.在等比数列{}n a 中,112a =,44-=a ,则公比=q _____________,12...n a a a +++=____________________.12.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有___________个.(用数字作答)13.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______________.14.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数 a 2(a >1)的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点; ② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于21a 2. 其中,所有正确结论的序号是_________________. 答案:②③三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期:(2)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.主题16(本小题共14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠= .(1)求证:BD ⊥平面PAC ;(2)若,PA AB =求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.17(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵数的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦ ,其中x 为1x ,2x ,…… n x 的平均数)18(本小题共13分)已知函数2()()xkf x x k e =- (1)求()f x 的单调区间;(2)若对于任意的(0,)x ∈+∞,都有()f x ≤1e,求k 的取值范围.主题19(本小题共14分)已知椭圆22:14x G y +=.过点)0,(m 作圆221x y +=的切线l 交椭圆G 于B A ,两点. (1)求椭圆G 的焦点坐标和离心率;(2)将AB 表示为m 的函数,并求AB 的最大值.20(本小题共13分)若数列12,,...,(2)n n A a a a n =≥满足11(1,2,...,1)k k a a k n +-==-,数列n A 为E 数列,记()n S A =12...n a a a +++.(1)写出一个满足150a a ==,且()s S A >0的E 数列n A ;(2)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011; (3)对任意给定的整数n (n ≥2),是否存在首项为0的E 数列n A ,使得()n S A =0?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.2011年普通高等学校招生全国统一考试理科数学(北京卷)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.答案:C思路分析:考点解剖:本题主要考查集合的并集运算以及不等式的求解,掌握集合的运算是解决本题的前提.解题思路:已知集合P与集合M,由并集运算求参数取值范围,常常利用数轴求解. 解答过程:2{|1}{|11}P x x x x=≤=-≤≤,[1,1]P M P M P a=⇒⊆⇒∈-.2.答案:A思路分析:考点解剖:本题主要考查复数的运算.主要考查学生运算的能力.掌握复数的运算是解决本题的前提.解题思路:1.对212ii-+实行分母实数化计算,再利用21i=-化简计算.2. 对212ii-+分母因式分解直接求解. 解答过程:解法一:直接整理222(i2)(12)2242(1)2412(12)(12)1414(1)i i i i i i iii i i i---------+ ====++----.解法二:分解因式212ii-=+2+2(12)1212i i i iii i+==++,答案为A3.答案:B 思路分析:考点解剖:本小题考查简单曲线的极坐标方程,考察学生的记忆、计算、互化能力,熟练掌握极坐标方程与直角坐标方程的互化是解决本题的前提.解题思路:将极坐标方程转化为直角坐标方程求解.解答过程:222sin (1)1x y ρθ=-⇒++=,圆心直角坐标为(0,-1),极坐标为(1,)2π-. 规律总结:遇到极坐标方程的题目,我们一般根据极坐标直角坐标互化公式,将极坐标方程转化为我们熟悉的直角坐标方程. 4.答案:D 思路分析:考点解剖:本小题考查按照一定条件,反复执行某一步骤的算法结构.主要考查学生的观察、推理执行步骤的能力.搞清算法步骤中赋值、循环变量、循环体是解决本题的前提.解题思路:搞清楚循环变量的取值是解题关键.解答过程 :第一次循环1i =13s =;第二次循环2i = 12s =-;第三次循环3i =3s =-;第四次循环4i =2s =,输出s ,循环操作4次时S 的值分别为11,,3,232--.规律总结:1.认清赋值,循环变量的初始、终止条件;2. 弄清循环体及循环次数,3. 得出结果. 5.答案:A 思路分析:考点解剖:本小题考查圆的切线、割线、弦等知识,主要考察学生的观察、推理能力;掌握直线与圆的关系并灵活应用平面几何知识是解决本题的前提.解题思路:①利用对称知识,②割线定理与对称性;③假设法,对出矛盾. 解答过程:①正确.由条件可知,BD=BF ,CF=CE ,可得CA BC AB AE AD ++=+.②正确,通过条件可知,AD=AE.由切割定理可得2AF AG AD AD AE ⋅==⋅. ③错误,连接FD ,若ADG AFB ∽△△,则有ABF DGF ∠=∠.通过图像可知2ABF BFD BDF DGF ∠=∠+∠=∠,因而错误.规律总结:解决问题时由圆的切线、割线、弦、直径,根据几何关系建立关系. 6.答案:D思路分析:考点解剖:本题考查函数的知识;主要考察学生数学知识在实际中的运用;会用待定系数法求解函数解析式是解决本题的前提.解题思路:解析式为分段函数,第4件与第A 件产品用时分属哪个区间,求得参数. 解答过程:由条件可知,x A ≥时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即(4)3060f c ==⇒=,()1516f A A ==⇒=. 规律总结:求含参数的分段函数的解析式,应分清自变量所属的区间,从而找到切入点,分段函数需要分段讨论. 7.答案:C 思路分析:考点解剖:本题主要考察的是空间想象能力,会计算多面体的侧面积,掌握三视图的特征是解决本题的前提.解题思路:先根据三视图还原实物图,然后利用面积公式计算侧面积.解答过程:由三视图还原几何体如下图,该四面体四个面的面积中最大的是∆PAC ,面积为10.规律总结:三视图想象几何体特征时遵从:“长对正,宽相等,高平齐”的基本原则.8.答案:C 思路分析:考点解剖:本小题考察归纳、推理能力.要求学生有较强的观察、分析、归纳、推理能力,具有较强的想象、分析、归纳能力是解决本题的前提.解题思路:首先找出四边形右边上三临界点1(,1)4tA ,2(,2)2t A 、33(,3)4tA ,分四类进行讨论.解答过程:如下图,在t=0,0<t<1,t=1时分别对应点为9,11,12,图3 t=1时情况点分布(12点)A(0,0)在平面直角系中画出平行四边形ABCD ,其中A 位于原点,B 位于x 正半轴;设(1,2,3)y k k ==于AD 边的交点k A ,与BC 边的交点k B .四边形ABCD (不包括边界)的整点都在线段上k k A B ,线段k k A B 上的整点有3个或4个所以()3334N t ⨯≤≤⨯不难求得1233,1,,2,,3424t t t A A A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.①当t 不是整数时,123,,A A A 都不是整点,()12N t =. ②当t 是4n 型整数时,123,,A A A 均是整点,()9N t =.③当t 是4n+2型整数时,123,,A A A 中只有2A 是整点,()11N t =.④当t 是4n+3或4n+1型整数时,都不是整点,()12N t =.(n Z ∈概括了所有的情形)上面4种情形涵概了t 的所有可能取值,所以()N t 的值域为{ 9,11,12 },如图所示. 规律总结:这种类型的题目,通常是由特殊到一般,通过观察、归纳、推理得出结论.第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9; 思路分析:考点解剖:本小题考查的是三角函数的基本关系式及正弦定理,考察了学生记忆、运算、形能力.,熟练运用三角公式是解决本题的前提.解题思路:首先由同角三角函数的基本关系求得sin A ,然后通过正弦定理求得实数a. 解答过程:由tan 2A =⇒sin 12cos sin cos 2A A A A =⇒=, 又22sin cos 1A A +=所以221sin sin 14A A +=解得sin 5A =55,sin42a π==则a =.规律总结:熟练运用同角三角函数的基本关系同角sin tan cos A A A= ,22sin cos 1A A +=,正弦定理2sin sin sin a b cR A B C===是解三角形的关键. 10.答案:1 思路分析:考点解剖:本题考查向量的坐标表示及共线向量,考查学生运算能力,熟练掌握平面向量的坐标运算是解决本题的前提.解题思路:先求出向量2a b - ,然后根据2a b -与c 共线求得实数k .解答过程:2a b -=由2a b - 与c31k k =⇒=规律总结:向量()11,a x y =,()22,b x y = 共线12210x y x y ⇔-=11.答案:2-;1122n --思路分析:考点解剖:本小题考查等比数列的概念及等比数列的前n 项和,考查学生的记忆、计算能力;熟记等比数列的公式是解决本题的前提.解题思路:根据等比数列的通项公式求得公比,然后利用等比数列的前n 项和公式求解. 解答过程:由{}n a 是等比数列得341a a q =,又141,4,2a a ==- 所以31422q q -=⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=- .规律总结:通项公式11n n a a q -=,前n 项和公式()()()111111n n na q s a q q q ⎧=⎪=-⎨≠⎪-⎩.12.思路分析:考点解剖:本小题考查的是分步乘法计数原理,主要考查的是学生对分步乘法计数原理的理解运用.灵活掌握分步乘法计数原理是解决本题的前提.解题思路:首先分四步:422222⨯⨯⨯=,然后出去不满足题意的2种减去得422-种.解答过程:个数为42214-=.规律总结:直接考虑的时候若情况比较复杂,可以考虑总的情况然后去掉不合适的情况即可. 13.答案:(0,1) 思路分析:考点解剖:本题考查的是分段函数与直线的交点问题.主要考查学生的分析理解能力、以及数形结合思想,掌握函数的单调性是解决本题的前提.解题思路:先判断函数单调性及求2()(2)f x x x=≥、3()(1)(2)f x x x =-<的值域,然后判断函数()f x 与直线y k =的交点情况. 解答过程:2()(2)f x x x=≥单调递减且值域为(0,1],3()(1)(2)f x x x =-<单调递增且值域为(,1)-∞,()f x k =有两个不同的实根,则实数k 的取值范围是(0,1).规律总结:在求解方程过程中,直接求解不便时,常常可以转化为函数的思想,借助于数形结合显得更为简洁. 14.答案:②③ 思路分析:考点解剖:本题主要考查理解能力和分析问题的能力.解题思路:1.注意题目条件中的(a >1);2.注意已经确认正确的结论对下面问题的帮助. 解答过程:①曲线C 经过原点,这点不难验证是错误的,如果经过原点,即么1a =,与条件不符;②曲线C 关于原点对称,这点显然正确,如果在某点处212||||,PF PF a =关于原点的对称点处也一定符合212||||;PF PF a = ③三角形12F F P 的面积:invm S 12=12||||PF PF 121sin 2F PF ∠≤12||||PF PF =22a . 规律总结:这类题目不属于常规性的知识考点,但是可以利用所学过的知识对题目进行深刻的理解与分析,即可解决问题. 三、解答题共6小题,共80分, 15.(本小题共13分) 思路分析:考点解剖:本题考查三角恒等变形以及三角函数及其基本性质知识.主要考查学生观察、灵活变通能力.能够熟练运用三角恒等变形公式是解决本题的前提.解题思路:先利用两角和的正弦公式展开sin()6x π+,再通过变形逆用两角和的正弦公式或两角差的余弦公式,根据函数单调性在给定区间求最值. 解答过程:解:(1)因为1)6sin(cos 4)(-+=πx x x f 1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x x x x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π (2)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是, 当6,262πππ==+x x 即时,)(x f 取得最大值2;当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. 规律总结:求函数周期、给定区间的最值,常常利用三角恒等变换为一个角、一种三角函数的形式.16.(本小题共14分) 思路分析:考点解剖:本题考查空间直线与平面的位置关系和异面直线所成角等知识.主要考查学生的空间想象能力,推理论证能力和运算求解能力.搞清线线、线面垂直的判定定理,或空间向法求异面直线所成角与线段长度的方法是解决本题的前提.解题思路:(1)利用线线、线面垂直的判定证明;或利用向量的数量积证明;(2)建立空间直角坐标系,利用向量的数量积求异面直线所成的角;(3)利用待定参数通过向量的数量积来求线段长度. 解答过程:证明:(1)因为四边形ABCD 是菱形,所以AC BD ⊥又因为PA ⊥平面ABCD .所以PA BD ⊥,所以BD ⊥平面PAC .(2)设AC BD O = ,因为060,2BAD PA AB ∠===所以1,BO AO CO ==O 为坐标原点, 建立空间直角坐标系O xyz -,则(0,(0,(1,0,0),p A B C所以(12),PB AC =-=设PB 与AC 所成角为θ,则cos PB AC PB ACθ⋅===(3)由(2)知(1BC =-设(0,)P t =(0)t >.则(1,),BP t =-设平面PBC 的法向量(,,),m x y z =则0,0BC m BP m ⋅=⋅= ,所以0,0x x tz ⎧-+=⎪⎨-+=⎪⎩令y 则3,x =6z t =,所以6)m t = 同理,平面PDC 的法向量n6()t=-,因为平面PBC ⊥PDC ,所以0m n ⋅= ,即2660t-+=解得t =所以PA =规律总结:本题主要考线面关系的证明,角度的求解等.涉及到线面垂直,面面垂直,异面直线所成角等知识.立体几何常考查的线面关系有:线面平行,线面垂直,面面垂直等;常考查的求角有二面角,线面角,异面角等;另外,还常考查几何体的体积等.要求考生有较强的空间想象能力与推理运算能力. 17.(本小题共13分) 思路分析:考点解剖:本题考查了认识茎叶图及数据的数字特征,离散型变量的分布列,数学期望;主要考查学生的记忆,计算能力,明白茎叶图,熟悉离散型变量的分布列的求法是解决本题的前提.解题思路:根据茎叶图求平均数,方差,根据.离散型随机变量的意义求离散型变量的分布列,计算数学期望.解答过程:解:(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为;435410988=+++=x方差为.1611])43510()4359()4358()4358[(4122222=-+-+-+-=s(2)当X=9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P (Y=17)=.81162= 同理可得;41)18(==Y P ;41)19(==Y P .81)21(;41)20(====Y P Y P所以随机变量Y 的分布列为:17(17)18(18)19(19)20(20)EY P Y P Y P Y P Y =⨯=+⨯=+⨯=+⨯=21(21)P Y +⨯==11111171819202184448⨯+⨯+⨯+⨯+⨯=19 规律总结:求期望的关键在于求出分布列,熟练掌握离散型随机变量分布列的性质理解每个性质的含义,运用其解决实际问题. 18.(本小题共13分) 思路分析:考点解剖:本题考查求可导函数的单调区间及证明不等式恒成立问题,主要考查学生的记忆、变形、计算能力,掌握求函数单调性、最值的步骤是解决本题的前提.解题思路:(1)求导,对k 分类讨论,解()()()00f x f x ''><得出函数的单调区间;(2)不等式()f x ≤1e恒成立问题转换为最值问题. 解答过程:解:(1)221()()xk f x x k e k'=-,令()0,f x x k '==±,当0k >时,()()f x f x '与的情况如下:所以,()f x 的单调递增区间是(,)k -∞-和(,)k +∞:单调递减区间是(,)k k -, 当0k <时,()f x 与()f x '的情况如下:所以,()f x 的单调递减区间是(,)k -∞和(,)k -+∞:单调递减区间是(,)k k -.(2)当0k >时,因为111(1)kf k ee++=>,所以不会有1(0,),().x f x e ∀∈+∞≤当0k <时,由(1)知()f x 在(0,)+∞上的最大值是24()k f k e -=所以1(0,),()x f x e ∀∈+∞≤等价于24()k f k e-=1e ≤,解得10.2k -≤< 故当1(0,),()xf x e ∀∈+∞≤时,k 的取值范围是[12-,0). 规律总结:利用求导对含有参数的函数的求最值的时候,注意对参数对最值的影响,一定要分类讨论,对于不等式恒成立问题,常常转化为最值问题. 19.(本小题共14分)思路分析:考点解剖:本题考查椭圆的性质焦点坐标与离心率的求法、弦长等基本知识.主要考查学生的推理、计算、变形能力,以及分类与整合和数形结合的思想.搞清椭圆、圆的方程的特性是解决本题的前提.解题思路:(1)由椭圆性质求焦点坐标和离心率,(2)根据切线方程,由隐含条件1||≥m ,后分类讨论用m 表示弦长求最值. 解答过程:解:(1)由已知得2, 1.a b ==所以c =所以椭圆G的焦点坐标为(,离心率为c e a ==. (2)由题意知,1||≥m .当1=m 时,切线l 的方程1=x ,点A 、B 的坐标分别),23,1(),23,1(- 此时3||=AB 当1-=m 时,同理可得3||=AB当1||>m 时,设切线l 的方程为),(m x k y -=由22(),1.4y k x m x y =-⎧⎪⎨+=⎪⎩222(14)8k x k mx +-得22440k m +-= 设A 、B 两点的坐标分别为),)(,(2211y x y x ,则2222122214144,418k m k x x k mk x x +-=+=+, 又由l 与圆221,x y +=相切2221, 1.m k k ==+即所以212212)()(||y y x x AB -+-=]4))[(1(412212x x x x k -++=]41)44(4)41(64)[1(2222242km k k m k k +--++=2.3||342+=m m由于当1±=m 时,,3||=AB所以),1[]1,(,3||34||2+∞--∞∈+=m m m AB .因为2|||233||||m AB m m m ==≤++,且当3±=m 时,|AB|=2, 所以|AB|的最大值为2.规律总结:直线与圆锥曲线相交的弦长问题计算,解由直线方程与圆锥曲线组成的方程组,得到关于x (或y )的一元二次方程,若交点为()11,A x y ,()22,B x y 直线斜率为k 则弦长公式为AB =AB =20.(本小题共13分) 思路分析:考点解剖:本题考察数列的综合应用,是探索性的开放题目,主要考察了学生对探索性问题的分析、推理、解决;掌握数列的性质,具有良好的分析、逻辑推理能力是解决本题的前提.解题思路:(1)根据11(1,2,...,1)k k a a k n +-==-满足150a a ==即可;(2)充分性:n a =2011 ⇒ E 数列n A 是递增数列;必要性:E 数列n A 是递增数列⇒n a =2011.(3)构造数列,利用放缩思想,分类讨论得出结论. 解答过程:解:(1)0,1,2,1,0是一个满足条件的E 数列A 5.(答案不唯一,0,1,0,1,0也是一个满足条件的E 的数列A 5) (2)必要性:因为E 数列n A 是递增数列, 所以)1999,,2,1(11 ==-+k a a k k .所以n A 是首项为12,公差为1的等差数列.所以a 2000=12+(2000—1)×1=2011. 充分性,由于a 2000—a 1999≤1,a 1999—a 1998≤1……a 2—a 1≤1所以a 2000—a 1≤19999, 即a 2000≤a 1+1999.又因为a 1=12,a 2000=2011,所以a 2000=a 1+1999.故n n n A k a a 即),1999,,2,1(011 =>=-+是递增数列.综上,结论得证.(3)令.1),1,,2,1(1±=-=-=+A k k k c n k a a c 则因为112c a a +=,2113c c a a ++=,…… ,1211+++++=n n c c c a a所以13211)3()2()1()(-++-+-+-+=n n c c n c n c n na A S)].1()2)(1()1)(1[(2)1(121--++--+----=n c n c n c n n 因为).1,,1(1,1-=-±=n k c c k k 为偶数所以 所以12(1)(1)(1)(2)(1)n c n c n c --+--++- 为偶数, 所以要使2)1(,0)(-=n n A S n 必须使为偶数, 即4整除*)(144),1(N m m n m n n n ∈+==-或亦即.当,1,0,*)(4241414-===∈=--+k k k n a a a A E N m m n 的项满足数列时14=k a),,2,1(m k =时,有;0)(,01==n A S a当n A E N m m n 数列时,*)(14∈+=的项满足,,1,0243314-===---k k k a a a),,2,1,0(14m k a k ==.014=+m a 时,有;0)(,01==n A S a当)1(,)(3424-∈+=+=m n N m m n m n 时或不能被4整除, 此时不存在E 数列A n ,使得.0)(,01==n A S a规律总结:探索性问题常在数列的解答中出现,通过构造、推理、分类、放缩等方法,融知识、能力与素质与一体,探索性问题对分析问题,解决问题能力具有很高要求.。

相关文档
最新文档