2015-2016学年山东省聊城市冠县八年级(下)期末数学试卷

合集下载

2015-2016(下)八年级期末试题及答案

2015-2016(下)八年级期末试题及答案

2015~2016学年度下期期末测试题八年级 数学(满分150分,考试时间120分钟)题号 一 二 三 四 五 总分 得分得分 评卷人 一、选择题:(本大题12个小题,每小题4分,共48分)在每小题给出的四个选项中,只有一项符合题意.1. 在a 中,a 的取值范围是( )A .0≥aB .0≤aC .0>aD .0<a 2. 下列运算中错误的是 ( )A.632=⨯ B. 532=+ C. 228=÷ D.3)3(2=-3. 某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。

为此,初二(1)班组 织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是,乙的成绩的方差是,根据以上数据,下列说法正确的是( ) A. 甲的成绩比乙的成绩稳定 B. 乙的成绩比甲的成绩稳定 C. 甲、乙两人的成绩一样稳定 D. 无法确定甲、乙的成绩谁更稳定 4. P 1(x 1,y 1)、P 2(x 2,y 2)是正比例函数x y 21-=图象上的两点,下列判断中,正确的是( )A 、y 1>y 2B 、y 1<y 2C 、当x 1<x 2 时,y 1<y 2D 、当x 1<x 2时, y 1>y 25. 如图是某射击选手5次射击成绩的折线图,根据图示信息,这 5次成绩的众数、中位数分别是( )A .8 、9B .7 、9C .7 、8D .8 、10 6. 甲、乙两艘客轮同时离开港口,航行的速度都是40m/min ,甲 客轮用15min 到达A ,乙客轮用20min 到达B .若A 、B 两处的 直线距离为1000m ,甲客轮沿着北偏东30°的方向航行,则乙 客轮的航行方向可能是( )5题图A .北偏西30°B .南偏西30°C .南偏西60°D .南偏东60° 7. 不能判定四边形ABCD 为平行四边形的条件是( )A .AB=CD ,AD=BCB .AB=CD ,AB ∥CDC .AB=CD ,AD ∥CD D .AD=BC ,AD ∥BC 8. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°, 则∠AOB 的大小为( )A, 30° B. 60° C. 90° D. 120°9. 如图,把一个小球垂直向上抛出,则下列描述该小球的运动速 度v (单位:m/s )与运动时间(单位:s )关系的函数图象中, 正确的是( )A B C D10. 已知一个直角三角形的两边长分别为8和15,则第三边长是( )A .17B .289C .161D .17或16111.如图所示,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm 2, 第②个图形的面积为18cm 2,第③个图形的面积 为36 cm 2,……,那么第⑥个图形的面积为( )A. 84 cm 2B. 90 cm 2C. 126 cm 2D. 168 cm 2 12.如图,直线233+-=x y 与x 轴,y 轴分别交于A 、B 两点,把 △AOB 沿着直线AB 翻折后得到△AO´B ,则点O´的坐标是( ) A .(3,3) B .(3,3)ByBO ´y9题图8题图ODCBA8题图11题图C .(2,32)D .(32,4)13. 计算:28-= .14. 如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC=6,则DE= .15. 如图已知函数b x y +=2与函数3-=kx y 的图像交于点P ,则 不等b x kx +>-23的解集是 .16. 有一组数据:3,a ,4,6,7.它们的平均数是5,那么这组数据的方差是________. 17. 如图,直线42+=x y 与x 、y 轴分别交于点A 、B 两点,以OB 为边在y 轴右侧作等边△OBC ,将点C 向左平移,使其对应点C´恰好落在直线AB 上,则点C´的坐标为 . 18. 如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论:①∠BGD=120°;②△BDF ≌△CGB ;③BG+DG=CG ;④S △ADE =43AB 2. 其中正确的有 . 19. 计算:1)31()12(132---+-得分 评卷人 二、填空题:(本大题6个小题,每小题4分,共24分)得分 评卷人 三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须写出必要的演算过程.14题图17题图18题图15题图20. △ABC 中,∠C=90°,BC=3,AB=5,CD ⊥AB 于D , (1)求AC 长; (2)求CD 长.得分 评卷人 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程.21. 先化简,再求值:)1()1112(2-⋅++-x x x ,其中x=313-.20题图22. 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):项目人员阅读思维表达甲93 86 73乙95 81 79(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用?(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.23. 如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.24.如图,在平行四边形ABCD 中,∠C =60°,M 、N 分别是AD 、BC 的中点,BC =2CD (1)求证:四边形MNCD 是平行四边形; (2)求证:BD =3MN 得分评卷人五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须写23题图 ABOxyABO Cx y24题图出必要的演算过程或推理过程.25. 某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“梦想中国秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量(件)和销售价(元/件)之间的函数关系式;(2若该店暂不考虑偿还债务,当天的销售价为48元时/件时,当天正好收支平衡(收入=支出),求该店员工的人数;25题图26、猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的关系,并证明你的结论. 拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其它条件不变,则DM和ME 的关系为_______;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.ABCDEFG M26题图① ABCDEFGM26题图②2015~2016学年度下期期末测试题八年级数学答案一、选择题:1.A2. B3. A4. D5. C6. D7. C8. B9. C 10. D 11. C 12. A 二、填空题: 13.2 14.3 15. x <4 16. 2 17.(-1,2) 18. ①③三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须写出必要的演算过程. 19. 解:原式=23﹣1+1﹣3=3.……………………………… 7分20.解:(1)∵△ABC 中,∠C=90°,BC=3,AB=5,∴AC=22BC AB -=2235-=4;………………………………4分(2) ∵CD ⊥AB ,AB=5,由(1)知AC=4,∴AB•CD=AC•BC ,即CD=AB BC AC ⋅=534⨯=512.……………………………7分 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须写出必要的演算过程或推理过程. 21.解:原式=)1()1)(1()1()1(22-⋅-+-++x x x x x=2x+2+x ﹣1=3x+1,………………………………8分 当x=313-时,原式=3. ………………………………10分 22. 解:(1)∵甲的平均成绩是:x 甲=3738693++=84(分),乙的平均成绩为:x 乙=3798195++=85(分),∴ x 乙>x 甲,∴ 乙将被录用;………………………………3分 (2)根据题意得:x 甲=253273586393++⨯+⨯+⨯(分),x 乙=253279581393++⨯+⨯+⨯(分);∴ x 甲>x 乙,∴ 甲将被录用;………………………………6分20题图(3)甲一定被录用,而乙不一定能被录用,理由如下:由直方图知成绩最高一组分数段85≤x <90中有7人,公司招聘8人,又因为x 甲分,显然甲在该组,所以甲一定能被录用;在80≤x <85这一组内有10人,仅有1人能被录用,而x 乙分,在这一段内不一定是最高分,所以乙不一定能被录用;由直方图知,应聘人数共有50人,录用人数为8人, 所以本次招聘人才的录用率为508=16%.………………………………10分 23.解:(1)设直线AB 的解析式为b kx y +=.直线AB 过点A(1,0)、B(0,-2), ∴ ⎩⎨⎧-==+20b b k 解得⎩⎨⎧-==22b k∴直线AB 的解析式为22-=x y .…………………5分(2)设点C 的坐标为(x ,y ).12222BOC S x =∴=△,··,解得x=2.∴ y=2×2-2=2 ∴ 点C 的坐标是(2,2) ………………………………10分24. 证明:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AD =BC ,∵M 、N 分别是AD 、BC 的中点 ∴MD =NC ,MD ∥NC ,∴四边形MNCD 是平行四边形 ………………………………5分 (2)∵N 是BC 的中点,BC =2CD ∴CD =NC ∵∠C =60°,∴△DCN 是等边三角形,∴ND =NC , ∠DNC =∠NDC =60° ∴ND =NB =CN∴∠DBC =∠BDN =30°∴∠BDC =∠BDN +∠NDC =90°∴CD CD DC CD BC BD 3)2(2222=-=-=∵四边形MNCD 是平行四边形 ∴MN =CD∴BD =3MN ………………………………10分五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须写出必要的演算过程或推理过程. 25. 解:(1)当40≤x <58时,设函数关系式为y =k x +b .把x =40,y =60和x =58,y =24分别代入得⎩⎨⎧=+=+24586040b x b x 解得⎩⎨⎧=-=1402b k . 即y =-2x +140.………………………………4分当58x ≤x ≤71时,设函数关系式为y =mx +n .把x =58,y =24和x =71,y =11分别代入得⎩⎨⎧=+=+11712458n m n m 解得⎩⎨⎧=-=821n m . 即y =-x +82. ………………………………8分(2)设该店员工为a 人.把x =48分别代入y =-2x +140得 y =-2×48+140=44.由题意 (48-40)×44=82a +106.解得 a =3.即该店员工为3人.………………………………12分26、解:猜想与证明猜想DM 与ME 的关系是:DM =ME .………………………………2分证明:如图1,延长EM 交AD 于点H .∵四边形ABCD 、四边形ECGF 都是矩形,∴AD ∥BG ,EF ∥BG ,∠HDE =90°.∴AD ∥EF . ∴∠AHM =∠FEM . 又∵AM =FM ,∠AMH =∠FME ,∴△AMH ≌△FME . ∴HM =EM . 又∵∠HDE =90°,∴DM =EM .………………………………6分拓展与延伸(1)DM 和ME 的关系为:DM =ME ,DM ⊥ME .………………………………8分(2)证明:如图2,连结AC .∵四边形ABCD 、四边形ECGF 都是正方形,∴∠DCA =∠DCE =45°,∴点E 在AC .∴∠AEF =∠FEC =90°.又∵M 是AF 的中点, ∴ME =21AF . ∵∠ADC =90°,M 是AF 的中点,∴DM =21AF . ∴DM =EM .∵ME =21AF =FM ,DM =21AF =FM , ∴∠DFM =21(180º-∠DMF ),∠MFE =21(180º-∠FME ), A BC D E F G M 图1 H A B C D E F G M 图2∴∠DFM +∠MFE =21(180º-∠DMF )+21(180º-∠FME ) =180°-21(∠DMF-∠FME ) =180°-21∠DME . ∵∠DFM +∠MFE =180°-∠CFE =180°-45°=135°, ∴180°-21∠DME =135°. ∴∠DME =90°.∴DM ⊥ME .………………………………12分。

2015—2016学年人教版八年级下期末数学试题及答案

2015—2016学年人教版八年级下期末数学试题及答案

2015—2016学年度第二学期期末考试八年级数学试题(90分钟完成)一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入答题纸的相应表格中.)1x 的取值范围是 A.3x 2≥ B. 3x 2> C. 2x 3≥ D. 2x 3> 2.下列二次根式中,最简二次根式是3.下列命题的逆命题成立的是A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .全等三角形的对应角相等D .两条直线平行,内错角相等4.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC的长为半径作弧交数轴的正半轴于M ,则点M 表示的实数为A . 2.5B .C.D.15.如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是A.平行四边形B. 菱形C.正方形D. 矩形6.在平面直角坐标系中,将正比例函数y=kx (k >0)的图象向上平移一个单位,那么平移后的图象不经过A.第一象限B. 第二象限C.第三象限D. 第四象限7.下列描述一次函数y=-2x+5图象性质错误的是A. y 随x 的增大而减小B. 直线经过第一、二、四象限C.直线从左到右是下降的D. 直线与x 轴交点坐标是(0,5)8.商场经理要了解哪种型号的洗衣机最畅销,在相关数据的统计量中,对商场经理来说最有意义的是A.平均数B.众数C.中位数D.方差9. 小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米 10.如图,已知ABCD 的面积为48,E 为AB连接DE ,则△ODE 的面积为 第4题图第10题图 B DA.8B.6C.4D.3二、填空题:11.在一次学校的演讲比赛中,从演讲内容、演讲能力、演讲效果三个方面按照5:3:2计算选手的最终演讲成绩。

2015-2016学年初二数学第二学期期末试卷带答案

2015-2016学年初二数学第二学期期末试卷带答案

八年级数学期末考试卷2016.6注意事项:1.本卷考试时间为100分钟,满分100分.2. 请把试题的答案写在答卷上,不要写在试题上。

2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题(本大题共10小题,每小题2分,共20分.)1.下列根式中,与是同类二次根式的是(▲) A . B . C . D .2.下列图标中,既是中心对称图形又是轴对称图形的是(▲)A .B .C .D .3.在代数式、、、、、a+中,分式的个数有(▲)A .2个B .3个C .4个D .5个4.为了解一批电视机的使用寿命,从中抽取100台进行试验,这个问题的样本是(▲) A .这批电视机 B .这批电视机的使用寿命 C .抽取的100台电视机的使用寿命 D .100台5.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,AC=12,F 是DE 上一点,连接AF ,CF ,DF=1.若∠AFC=90°,则BC 的长度为(▲) A .12 B .13 C .14 D .156.函数(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是(▲)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 1 7.下列一元二次方程没有实数根的是(▲)A .x 2+2x+1=0B .x 2+x+2=0C .x 2﹣1=0D .x 2﹣2x ﹣1=0第5题图第10题图8.若分式方程+1=有增根,则a 的值是(▲)A .4B .0或4C .0D .0或﹣49.在△ABC 中,∠C =90°,AC 、BC 的长分别是方程x 2﹣7x +12=0的两根,△ABC 内一点P 到三边的距离都相等,则PC 长为 (▲)A .1B .2C .223 D .22 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2014的坐标为(▲)A .(1343,0)B .(1342,0)C .(1343.5,)D .(1342.5,)二、填空题(本大题共8小题,每空2分,共20分.)11.若二次根式5-x 在实数范围内有意义,则x 的取值范围是 ▲ ;若分式392+-x x 的值为0,则x 的取值是__▲_.12.关于x 的一元二次方程(a -1)x 2+x +||a -1=0的一个根是0,则实数a 的值是▲ . 13.某种油菜籽在相同条件下的发芽试验结果如下:由此可以估计油菜籽发芽的概率约为_▲_(精确到0.01),其依据是__▲_. 14.若实数a 、b 、c 在数轴的位置,如图所示,则化简= ▲ .15.已知点P (a ,b )是反比例函数y=图象上异于点(﹣1,﹣1)的一个动点,则ba +++1212= ▲ . 16.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数xy 3=的图像经过A ,B 两点,则菱形ABCD 的面积为 ▲ .第17题图17.如图,直线y 1=﹣x+b 与双曲线y 2=交于A 、B 两点,点A 的横坐标为1,则不等式 ﹣x+b <的解集是 ▲ .18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且 ∠AOB =60°,反比例函数ky x=(k >0)在第一象限内过点A ,且与BC 交于点F 。

2015-2016学年度第二学期八年级数学期末测试题(含答案)

2015-2016学年度第二学期八年级数学期末测试题(含答案)

2015--2016学年度第二学期八年级数学期末测试题一.选择题(共12小题,每题3分,共计36分。

)1.(2015•乐山)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.(2015•甘孜州)下列图形中,是中心对称图形的是()A.B.C.D.3.(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0 4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣15.(2015•济南)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.(2015•贵港)下列因式分解错误的是()A.2a﹣2b=2(a﹣b)B.x2﹣9=(x+3)(x﹣3)C.a2+4a﹣4=(a+2)2 D.﹣x2﹣x+2=﹣(x﹣1)(x+2)7.(2015•义乌市)化简的结果是()A.x+1 B.C.x﹣1 D.8.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣19.(2015•营口)若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3 10.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC11.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个12.(2015•乌鲁木齐)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20二.填空题(共6小题,每题4分,共计24分。

2016-2017学年山东省聊城市冠县八年级(下)期末数学试卷(解析版)

2016-2017学年山东省聊城市冠县八年级(下)期末数学试卷(解析版)

2016-2017学年山东省聊城市冠县八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD3.(3分)如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()A.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1)B.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣5,﹣1)C.A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣1,﹣5)D.A1(﹣6,﹣4),B1(﹣3,﹣3),C1(﹣1,﹣5)4.(3分)下列说法正确的是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.如果一个数有立方根,则它必有平方根D.不为0的任何数的立方根,都与这个数本身的符号相同5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高BH=()A.4.6B.4.8C.5D.5.27.(3分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3B.y=x﹣3C.y=2x﹣3D.y=﹣x+3 8.(3分)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2B.x<0C.x>0D.x>29.(3分)实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.(3分)化简﹣()2,结果是()A.6x﹣6B.﹣6x+6C.﹣4D.4二、填空题(每小题3分,共15分)11.(3分)若+=0,则xy的值为.12.(3分)已知等腰直角三角形的面积为16,则这个三角形的周长为.13.(3分)如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D=.14.(3分)函数y=kx+b的图象如图所示,则当y<0时,x的取值范围是.15.(3分)如图直线l:y=﹣x,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l 于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2018的坐标为.三、解答题(共75分)16.(10分)计算(1)(3+2)(2﹣3);(2)﹣+++.17.(10分)求下列各式中x的值:(1)16(x+2)2﹣81=0(2)(2x﹣1)3=﹣418.(12分)已知m=﹣3,求(m+n)2017的值.19.(12分)某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?20.(15分)已知点P(2a﹣12,1﹣a)位于第三象限,点Q(x,y)位于第二象限且是由点P向上平移一定单位长度得到的.(1)若点P的纵坐标为﹣3,试求出a的值;(2)在(1)题的条件下,试求出符合条件的一个点Q的坐标;(3)若点P的横、纵坐标都是整数,试求出a的值以及线段PQ长度的取值范围.21.(16分)如图,O是正方形ABCD的中心,BE平分∠DBC,交DC于点E,将点E绕着点C按顺时针方向旋转90°得到点F,连接CF,DF,BE的延长线交DF于点G,连接OG.(1)求证:BE=DF;(2)OG与BC有怎样的位置关系?证明你的结论.2016-2017学年山东省聊城市冠县八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、=,故不是最简二次根式,故本选项错误;B、==,故不是最简二次根式,故本选项错误;C、符合最简二次根式的定义,故本选项正确;D、=b,故不是最简二次根式,故本选项错误;故选:C.2.【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.3.【解答】解:△A1B1C1如图所示,A1(﹣4,﹣6),B1(﹣3,﹣3),C1(﹣5,﹣1).故选:A.4.【解答】解:A、负数的立方根是负数,故选项错误;B、一个正数的立方根只有一个,故选项错误;C、负数有立方根,它没有平方根,故选项错误;D、不为0的任何数的立方根,都与这个数本身的符号相同是正确的.故选:D.5.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.6.【解答】解:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=AC=×8=4,OB=BD=×6=3,在Rt△AOB中,AB==5,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×6×8=5•DH,解得DH=4.8,故选:B.7.【解答】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3,故选:D.8.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选:A.9.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.10.【解答】解:由已知条件可得3x﹣5≥0,即3x≥5,则3x﹣1>0,∴原式=()2=3x﹣1﹣(3x﹣5)=3x﹣1﹣3x+5=4.故选:D.二、填空题(每小题3分,共15分)11.【解答】解:∵+=0,∴,解得:,则xy=﹣12,故答案为:﹣12.12.【解答】解:设等腰直角三角形的直角边长x,由题意,得•x2=16,解得:x=4,在等腰直角三角形中,由勾股定理,得斜边=x=8.∴三角形的周长为:4+4+8=8+8.故答案为8+8.13.【解答】解:∵∠A=30°,AC=10,∠ABC=90°,∴∠C=60°,BC=BC′=AC=5,∴△BCC′是等边三角形,∴CC′=5,∵∠A′C′B=∠C′BC=60°,∴C′D∥BC,∴DC′是△ABC的中位线,∴DC′=BC=,故答案为:.14.【解答】解:根据图象和数据可知,当y<0即图象在x轴下方,x<﹣3.故答案为x<﹣3.15.【解答】解:∵点A1坐标为(﹣3,0),∴OA1=3,∵在y=﹣x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),∴由勾股定理可得OB1==5,即OA2=5=3×,同理可得,OB2=,即OA3==5×()1,OB3=,即OA4==5×()2,以此类推,OA n=5×()n﹣2=,即点A n坐标为(﹣,0),当n=2018时,点A2018坐标为(﹣,0).故答案为:(﹣,0).三、解答题(共75分)16.【解答】解:(1)原式=8﹣9=﹣1;(2)原式=2+2+3+3+5=10+3+2.17.【解答】解:(1)∵16(x+2)2﹣81=0∴16(x+2)2=81∴(x+2)2=∴x+2=,解得,x1=,x2=;(2)∵(2x﹣1)3=﹣4∴(2x﹣1)3=﹣8∴2x﹣1=﹣2解得,x=.18.【解答】解:由题意,得16﹣n2≥0且n2﹣16≥0,n+4≠0,解得n=4,则m=﹣3,所以(m+n)2017=1.19.【解答】解:(1)设该公司购进甲型显示器x台,则购进乙型显示器(50﹣x)台,由题意,得:1000x+2000(50﹣x)≤77000解得:x≥23.∴该公司至少购进甲型显示器23台.(2)依题意可列不等式:x≤50﹣x,解得:x≤25.∴23≤x≤25.∵x为整数,∴x=23,24,25.∴购买方案有:①甲型显示器23台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.20.【解答】解:(1)1﹣a=﹣3,a=4.(2)由a=4得:2a﹣12=2×4﹣12=﹣4,又点Q(x,y)位于第二象限,所以y>0;取y=1,得点Q的坐标为(﹣4,1).(3)因为点P(2a﹣12,1﹣a)位于第三象限,所以,解得:1<a<6.因为点P的横、纵坐标都是整数,所以a=2或3或4或5;当a=2时,1﹣a=﹣1,所以PQ>1;当a=3时,1﹣a=﹣2,所以PQ>2;当a=4时,1﹣a=﹣3,所以PQ>3;当a=5时,1﹣a=﹣4,所以PQ>4.21.【解答】证明:(1)在△BCE和△DCF中,∵,∴△BCE≌△DCF(SAS),∴BE=DF;第11页(共12页)(2)OG∥BC,∵△BCE≌△DCF,∴∠CBE=∠FDC,∵∠CBE+∠BEC=90°,∠BEC=∠DEG,∴∠CDG+∠DEG=90°,∴∠DGB=∠FGB=90°,在△DGB和△FGB中,∵,∴△DGB≌△FGB(ASA),∴DG=FG,即G为DF中点,又∵点O是BD中点,∴OG是△BDF中位线,∴OG∥BC.第12页(共12页)。

初二下册数学 聊城市冠县2015-2016学年八年级下期中数学试卷含答案解析

初二下册数学 聊城市冠县2015-2016学年八年级下期中数学试卷含答案解析

2015-2016学年山东省聊城市冠县八年级(下)期中数学试卷一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.下列说法中错误的是( )A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形2.下列各组数中,互为相反数的是( )A.﹣2与 B.|﹣|与C.与D.与3.不等式组的解集在数轴上表示为( )A.B.C.D.4.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.14 B.15 C.16 D.175.若,则(a+2)2的平方根是( )A.16 B.±16 C.2 D.±26.如果不等式组无解,那么m的取值范围是( )A.m>8 B.m≥8 C.m<8 D.m≤87.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为( )A.8 B.6 C.4 D.38.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+B.2+C.2﹣1 D.2+19.若关于x的不等式的整数解共有4个,则m的取值范围是( )A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤710.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里11.如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.∠ADE=∠CBF B.∠ABE=∠CDF C.DE=BF D.OE=OF12.水果店进了某种水果1吨,进价7元/千克,出售价为11元/千克,销去一半后为尽快销完,准备打折出售,如果要使总利润不低于3450元,那么余下水果可按原定价打( )折出售.A.7折B.8折C.8.5折D.9折二、填空题(共6小题,每小题4分,满分24分)13.一个正数x的平方根为2a﹣3和5﹣a,则x= .14.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ,使ABCD成为菱形(只需添加一个即可)15.已知|x﹣3|+=0,以x,y为两边长的等腰三角形的周长是 .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD 的中点,则四边形EFGH的周长是 .18.对于整数a、b、c、d规定符号=ac﹣bd,若,则b+d= .三、解答题(共6小题,满分60分,解答题应写出文字说明、计算过程或推演步骤)19.(1)解不等式﹣<1(2)解不等式组,并把解集在数轴上表示出来.20.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.21.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.22.A、B两个村庄在笔直的小河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建一水厂向A、B两村输送自来水,铺设管道的工程费用为每千米2万元.请你在CD上选择水厂的位置并作出点O,使铺设水管的费用最节省,并求出铺设水管的总费用.23.某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.24.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)求EF的长;(2)求梯形ABCE的面积.2015-2016学年山东省聊城市冠县八年级(下)期中数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.下列说法中错误的是( )A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形【考点】矩形的判定;平行四边形的判定;正方形的判定.【分析】根据矩形的对角线相等且平分,和正方形的对角线互相垂直、相等平分进行判定即可得出结论.【解答】解:A、对角线互相平分的四边形是平行四边形,故A选项正确;B、对角线相等的平行四边形才是矩形,故B选项错误;C、对角线互相垂直的矩形是正方形,故C选项正确;D、两条对角线相等的菱形是正方形,故D选项正确;综上所述,B符合题意,故选:B.【点评】平行四边形的判定方法共有五种,在四边形中如果有:①四边形的两组对边分别平行;②一组对边平行且相等;③两组对边分别相等;④对角线互相平分;⑤两组对角分别相等.则四边形是平行四边形.2.下列各组数中,互为相反数的是( )A.﹣2与 B.|﹣|与C.与D.与【考点】实数的性质.【专题】计算题.【分析】由于两数互为相反数,它们的和为0,可将选项中的两个数相加,若和为0,则这两个数互为相反数,由此即可判定选择项.【解答】解:A、﹣2﹣=﹣,故选项错误;B、|﹣|=,,故选项错误;C、=2,=﹣2.﹣2+2=0,故选项正确;D、=﹣2,=﹣2,﹣2﹣2=﹣4,故选项错误.故选C.【点评】本题考查的是相反数的概念,两数互为相反数,它们的和为0.3.不等式组的解集在数轴上表示为( )A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选A.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.4.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.14 B.15 C.16 D.17【考点】菱形的性质;等边三角形的判定与性质;正方形的性质.【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长. 5.若,则(a+2)2的平方根是( )A.16 B.±16 C.2 D.±2【考点】平方根;算术平方根.【分析】利用若求得a的值,代入(a+2)2中求得其平方根即可.【解答】解:∵,∴a+2=42=16,∴(a+2)2=162,∴(a+2)2的平方根±16.故选B.【点评】本题考查了平方根的定义,比较简单.6.如果不等式组无解,那么m的取值范围是( )A.m>8 B.m≥8 C.m<8 D.m≤8【考点】解一元一次不等式组.【专题】计算题.【分析】根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可.【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.【点评】本题考查不等式解集的表示方法,根据大大小小无解,也就是没有中间(公共部分)来确定m的范围.做题时注意m=8时也满足不等式无解的情况.7.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为( )A.8 B.6 C.4 D.3【考点】中点四边形.【分析】连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH是菱形,根据菱形的面积等于×GH×HF,代入求出即可.【解答】解:连接AC,BD,FH,EG,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴AH=AD,BF=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC,EH=BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH是平行四边形,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选C.【点评】本题考查了矩形的性质,菱形的判定和性质,平行四边形的判定等知识点,关键是求出四边形EFGH 是菱形.8.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+B.2+C.2﹣1 D.2+1【考点】实数与数轴.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【解答】解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选D.【点评】本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.9.若关于x的不等式的整数解共有4个,则m的取值范围是( )A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【解答】解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤7.故选:D.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.10.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里【考点】勾股定理的应用;方向角.【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32海里,12×2=24海里,根据勾股定理得:=40(海里).故选D.【点评】熟练运用勾股定理进行计算,基础知识,比较简单.11.如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.∠ADE=∠CBF B.∠ABE=∠CDF C.DE=BF D.OE=OF【考点】平行四边形的判定与性质.【分析】根据平行四边形的性质,以及平行四边形的判定定理即可作出判断.【解答】解:A、在平行四边形ABCD中,∵AO=CO,DO=BO,AD∥BC,AD=BC,∴∠DAE=∠BCF,若∠ADE=∠CBF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴AE=CF,∴OE=OF,∴四边形DEBF是平行四边形;B、若∠ABE=∠CDF,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=CF,∵AO=CO,∴OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;C、若DE与AC不垂直,则满足AC上一定有一点DM=DE,同理有一点N使BF=BN,则四边形DEBF 不一定是平行四边形,则选项错误;D、若OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;故选C.【点评】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.12.水果店进了某种水果1吨,进价7元/千克,出售价为11元/千克,销去一半后为尽快销完,准备打折出售,如果要使总利润不低于3450元,那么余下水果可按原定价打( )折出售.A.7折B.8折C.8.5折D.9折【考点】一元一次不等式的应用.【分析】分别表示出打折前后的利润,进而得出不等式求出即可.【解答】解:设余下水果可按原定价打x折出售,根据题意可得:500×4+500×(×11﹣7)≥3450,解得:x≥9.故选:D.【点评】此题主要考查了不等式的应用,根据题意得出正确的不等关系是解题关键.二、填空题(共6小题,每小题4分,满分24分)13.一个正数x的平方根为2a﹣3和5﹣a,则x= 49 .【考点】平方根.【专题】计算题.【分析】首先根据正数的两个平方根互为相反数,列的方程:(2a﹣3)+(5﹣a)=0,解方程即可求得a的值,代入即可求得x的两个平方根,则可求得x的值.【解答】解:∵一个正数x的平方根为2a﹣3和5﹣a,∴(2a﹣3)+(5﹣a)=0,解得:a=﹣2.∴2a﹣3=﹣7,5﹣a=7,∴x=(±7)2=49.故答案为:49.【点评】此题考查了正数有两个平方根,且此两根互为相反数的知识.注意方程思想的应用.14.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 OA=OC ,使ABCD 成为菱形(只需添加一个即可)【考点】菱形的判定.【专题】开放型.【分析】可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.15.已知|x﹣3|+=0,以x,y为两边长的等腰三角形的周长是 15 .【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【分析】由|x﹣3|+=0,知|x﹣3|≥0,≥0得到:x﹣3=0,y﹣6=0,从而求出x,y的值,也就是已知等腰三角形的两边.要求周长还需要讨论哪是底边,哪是腰长.【解答】解:∵|x﹣3|+=0,而|x﹣3|≥0,≥0,∴x﹣3=0,y﹣6=0∴x=3,y=6当腰是3,底边是6时,不满足三角形的三边关系,两边之和>第三边,因而应该舍去.当底边是3,腰长是6时,能构成三角形,则周长是3+6+6=15.∴等腰三角形的周长是15.【点评】本题考查了三个知识点,非负数,解法法则,三角形的三边关系定理,也利用分类讨论的思想. 16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.17.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD 的中点,则四边形EFGH的周长是 11 .【考点】三角形中位线定理;勾股定理.【专题】压轴题.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.18.对于整数a、b、c、d规定符号=ac﹣bd,若,则b+d= ±3 .【考点】一元一次不等式的整数解;不等式的性质;解一元一次不等式.【专题】计算题.【分析】根据已知得到1<4﹣db<3,求出不等式组的整数解db=2,即可求出d、b的值,代入即可求出答案.【解答】解:,1<4﹣db<3,∴1<bd<3,∵b d是整数,∴db=2,∴当d=1时b=2或当d=﹣1时b=﹣2,∴b+d=±3.故答案为:±3.【点评】本题主要考查对不等式的性质解一元一次不等式,一元一次不等式的整数解等知识点的理解和掌握,能求出db=2是解此题的关键.三、解答题(共6小题,满分60分,解答题应写出文字说明、计算过程或推演步骤)19.(1)解不等式﹣<1(2)解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(1)去分母得,2(y+1)﹣3(2y﹣5)<12,去括号得,2y+2﹣6y+15<12,移项得,2y﹣6y<12﹣15﹣2,合并同类项得,﹣4y<﹣5,x的系数化为1得,y>;(2),由①得,x≥1,由②得,x<4,故不等式组的解集为:1≤x<4.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求12a+2b的立方根.【考点】立方根;平方根;算术平方根.【分析】分别根据2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求出a、b的值,再求出12a+2b的值,求出其立方根即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=(±3)2,解得a=5;∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,把a=5代入得,3×5+b﹣1=16,解得b=2,∴12a+2b=12×5+4=64,∴=4,即12a+2b的立方根是4.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b 的值是解答此题的关键.21.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.【考点】菱形的判定;矩形的性质.【专题】证明题.【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.【点评】此题主要考查了菱形的判定,矩形的性质,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形. 22.A、B两个村庄在笔直的小河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建一水厂向A、B两村输送自来水,铺设管道的工程费用为每千米2万元.请你在CD上选择水厂的位置并作出点O,使铺设水管的费用最节省,并求出铺设水管的总费用.【考点】轴对称-最短路线问题.【分析】根据已知得出作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点O到A、B两点的距离和最小,再利用构造直角三角形得出即可.【解答】解:依题意,只要在直线l上找一点O,使点O到A、B两点的距离和最小.作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点O到A、B两点的距离和最小,且OA+OB=OA′+OB=A′B.过点A′向BD作垂线,交BD的延长线于点E,在Rt△A′BE 中,A′E=CD=3,BE=BD+DE=4,根据勾股定理可得:A′B=5(千米)即铺设水管长度的最小值为5千米.所以铺设水管所需费用的最小值为:5×2=10(万元).【点评】此题主要考查了应用与设计作图和勾股定理的应用,利用已知由轴对称得出是解题关键.23.某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.【考点】一元一次不等式组的应用.【专题】方案型.【分析】(1)本题可根据题意列出不等式组:,化简得出x的取值,看在取值范围中x可取的整数的个数即为方案数.(2)本题可分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.【解答】解:(1)由租用甲种汽车x辆,则租用乙种汽车(8﹣x)辆,由题意得:,解得:5≤x≤6.即共有2种租车方案:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆.(2)解法一:第一种租车方案的费用为5×2000+3×1800=15400(元);第二种租车方案的费用为6×2000+2×1800=15600(元).∴租用甲种汽车5辆,乙种汽车3辆的方案更省费用.解法二:设总的租车费用为y元,y=2000x+1800(8﹣x)=14400+200x,5≤x≤6.∵200>0,∴y随x增大而增大,∴当x=5时,取得最小值,y=5×2000+3×1800=15400(元);∴租用甲种汽车5辆,乙种汽车3辆的方案更省费用.【点评】这是考试考得最多的题目:(1)根据学生的人数和行李的件数≤车的运载量列不等式组,然后根据人数必须为整数找出不等式的特殊解,即方案的种类情况;(2)根据(1)中方案直接计算即可.24.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.(1)求EF的长;(2)求梯形ABCE的面积.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】计算题.【分析】(1)根据折叠的性质,折叠前后边相等,即CF=CD,DE=EF,得:AE=AD﹣EF,在Rt△ACD中,根据勾股定理,可将AC的长求出,知CF的长,可求出AF的长,在Rt△AEF中,根据AE2=EF2+AF2,可将EF的长求出;(2)根据S梯形=,将各边的长代入进行求解即可.【解答】解:(1)设EF=x依题意知:△CDE≌△CFE,∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC==10,∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5,∴S梯形ABCE==(5+8)×6÷2=39.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后边相等.第21页(共21页)。

2015-2016学年第二学期新人教版八年级数学期末试卷及答案(非常详细) - 副本

2015-2016学年第二学期新人教版八年级数学期末试卷及答案(非常详细) - 副本

2015-2016学年第二学期八年级数学期末测试卷(复习用,答案详解)学校 姓名 班级一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个 2.x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAA D O二、填空题(本题共10小题,满分共30分)11.48-1-⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

人教版2015-2016学年八年级下册期末数学试卷含答案

人教版2015-2016学年八年级下册期末数学试卷含答案

2016-2017学年八年级(下)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣22.在Rt△ABC中,∠C=90°,a、b、c分别表示∠A,∠B,∠C的对边,则下列各式中,不正确的是()A.a2+b2=c2B.c2﹣a2=b2C.a=D.a2﹣b2=c23.平行四边形的对角线一定具有的性质是()A.相等 B.互相平分C.互相垂直 D.互相垂直且相等4.已知一次函数y=2x+b,其中b<0,它的函数图象可能是()A.B.C.D.5.有15位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设8个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在下列15位同学成绩的统计量中只需知道一个量,它是()A.平均数B.众数 C.中位数D.方差6.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2 C.6cm2D.8cm27.如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<38.如图,网格纸中的小正方形的边长均为1,△ABC的三个顶点都在格点上,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题(共6小题,每小题3分,满分18分)9.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.10.如图,已知AC=6,AB=10,∠ACB=90°,阴影部分是圆的一半,则阴影部分的面积为(结果保留π).11.从知识结构来看,平行四边形、矩形、菱形、正方形的包含关系可以如图表示,则其中最大的椭圆表示的是形,阴影部分表示的是形.12.某中学对八年级学生进行了一次数学测试,甲、乙两班的平均分和方差分别为=79,=79,S甲2=201,S乙2=235,则成绩较整齐是(填甲或乙)班.13.已知一次函数y=kx+b的图象过点(0,1),且y随x增大而增大,请你写出一个符合这个条件的一次函数关系式.14.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为.三、解答题(共8小题,满分50分)15.计算:(1)4﹣+;(2)(﹣)2+2×3.16.如图所示,在平行四边形ABCD中,∠BAD的平分线AE交CD于E,若∠DAE=35°,求∠C 与∠B的度数.17.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.18.如图,已知直线l经过点A(1,1)和点B(﹣1,﹣3).试求:(1)直线l的解析式;(2)直线l与坐标轴的交点坐标;(3)直线l与坐标轴围成的三角形面积.19.下表是某校八年级(1)班抽查20位学生某次数学测验的成绩统计表:(1)若这20名学生成绩的平均分是82分,求x、y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数是a,中位数是b,求的a、b值.20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.21.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.22.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2)利用你观察到的规律,化简:;(3)计算:….2016-2017学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.在Rt△ABC中,∠C=90°,a、b、c分别表示∠A,∠B,∠C的对边,则下列各式中,不正确的是()A.a2+b2=c2B.c2﹣a2=b2C.a=D.a2﹣b2=c2【考点】勾股定理.【分析】在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,由此可得出答案.【解答】解:∵∠C=90°,∴c为斜边,∴A、B、C正确.故选D.【点评】本题考查了勾股定理的知识,关键是掌握勾股定理的内容.3.平行四边形的对角线一定具有的性质是()A.相等 B.互相平分C.互相垂直 D.互相垂直且相等【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分可得答案.【解答】解:平行四边形的对角线互相平分,故选:B .【点评】此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.4.已知一次函数y=2x+b ,其中b <0,它的函数图象可能是( )A .B .C .D .【考点】一次函数的图象.【分析】根据k=2>0,b <0,可得图象经过一、三、四象限解答即可.【解答】解:因为k=2>0,b <0,可得图象经过一、三、四象限,故选A【点评】本题考查一次函数图象,关键把握准:y >0,图象在x 轴上方,y <0,图象在x 轴下方,y=0,看图象与x 轴交点.5.有15位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设8个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在下列15位同学成绩的统计量中只需知道一个量,它是( )A .平均数B .众数C .中位数D .方差【考点】统计量的选择.【分析】由于比赛设置了8个获奖名额,共有13名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2 C.6cm2D.8cm2【考点】正方形的性质.【分析】根据正方形的性质可求得边长,从而根据面积公式即可求得其面积.【解答】解:根据正方形的性质可得,正方形的边长为cm,则其面积为2cm2故选A.【点评】此题主要考查学生对正方形的性质的理解及运用.7.如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<3【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】kx+b>0可看作是函数y=kx+b的函数值大于0,然后观察图象得到图象在x轴上方,对应的自变量的取值范围为x>﹣2,这样即可得到不等式kx+b>0的解集.【解答】解:根据题意,kx+b>0,即函数y=kx+b的函数值大于0,图象在x轴上方,对应的自变量的取值范围为x>﹣2,∴不等式kx+b>0的解集是:x>﹣2.故选A.【点评】本题考查了一次函数与一元一次不等式:对于一次函数y=kx+b,当y>0时对应的自变量的取值范围为不等式kx+b>0的解集.8.如图,网格纸中的小正方形的边长均为1,△ABC的三个顶点都在格点上,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】先根据勾股定理求出△ABC各边平方的值,再根据勾股定理的逆定理判断出△ABC的形状即可.【解答】解:由图形可知:AB2=42+62=52;AC2=22+32=13;BC2=82+12=65,∴AB2+AC2=BC2,∴△ABC是直角三角形.故选B.【点评】本题考查的是勾股定理及其逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.二、填空题(共6小题,每小题3分,满分18分)9.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.【考点】函数的图象.【专题】几何图形问题.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.10.如图,已知AC=6,AB=10,∠ACB=90°,阴影部分是圆的一半,则阴影部分的面积为8π(结果保留π).【考点】勾股定理.【分析】由勾股定理求出BC,再根据圆的面积公式即可得出结果.【解答】解:∵AC=6,AB=10,∠ACB=90°,∴BC===8,∴阴影部分的面积=×π×()2=×π×42=8π;故答案为:8π.【点评】本题考查了勾股定理、圆的面积公式;熟练掌握勾股定理,由勾股定理求出半圆的直径是解决问题的关键.11.从知识结构来看,平行四边形、矩形、菱形、正方形的包含关系可以如图表示,则其中最大的椭圆表示的是平行四边形,阴影部分表示的是正方形.【考点】多边形.【分析】根据正方形、平行四边形、菱形和矩形的定义或性质逐个进行分析,即可得出答案.【解答】解:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即有是一个角为直角的菱形;正方形、矩形和菱形都是特殊的平行四边形,故答案为:平行四边,正方.【点评】此题主要考查学生对正方形、平行四边形、菱形和矩形的包含关系的理解和掌握,解答此题的关键是熟练掌握这四种图形的性质.12.某中学对八年级学生进行了一次数学测试,甲、乙两班的平均分和方差分别为=79,=79,S甲2=201,S乙2=235,则成绩较整齐是甲(填甲或乙)班.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵为=79,=79,S甲2=201,S乙2=235,∴S甲2<S乙2,∴成绩较整齐是甲;故答案为:甲.【点评】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.已知一次函数y=kx+b的图象过点(0,1),且y随x增大而增大,请你写出一个符合这个条件的一次函数关系式y=x+1.【考点】一次函数的性质.【专题】开放型.【分析】由于所求一次函数y随着x的增大而增大,所以其k>0,由图象经过点(0,1),所以答案不唯一,只要满足这两个条件即可.【解答】解:∵一次函数y随着x的增大而增大,经过点(0,1),∴符合的一次函数关系式为:y=x+1(答案不唯一),故答案为:y=x+1.【点评】此题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.此题的答案不唯一,是开放性试题.14.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长为3.【考点】翻折变换(折叠问题).【专题】几何图形问题.【分析】根据翻折变换的特点可知.【解答】解:根据翻折变换的特点可知:DE=GE∵∠CFE=60°,∴∠GAE=30°,∴AE=2GE=2DE=2,∴AD=3,∴BC=3.故答案为:3.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题(共8小题,满分50分)15.计算:(1)4﹣+;(2)(﹣)2+2×3.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的乘法法则运算.【解答】解:(1)原式=4﹣2+4=4+2;(2)原式=2﹣2+3+×3=2﹣2+3+2=5.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.16.如图所示,在平行四边形ABCD中,∠BAD的平分线AE交CD于E,若∠DAE=35°,求∠C 与∠B的度数.【考点】平行四边形的性质.【分析】由AE平分∠BAD,∠DAE=35°,可求得∠BAD的度数,又由四边形ABCD是平行四边形,根据平行四边形的对角相等,邻角互补,即可求得∠C与∠B的度数.【解答】解:∵AE平分∠BAD,∠DAE=35°,∴∠BAD=2∠DAE=70°,∵四边形ABCD是平行四边形,∴∠C=∠DAB=70°,∵AB∥CD,∴∠B=180°﹣∠C=110°.【点评】此题考查了平行四边形的性质.注意掌握平行四边形的对角相等,邻角互补定理的应用是解此题的关键.17.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.18.如图,已知直线l经过点A(1,1)和点B(﹣1,﹣3).试求:(1)直线l的解析式;(2)直线l与坐标轴的交点坐标;(3)直线l与坐标轴围成的三角形面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【专题】计算题.【分析】(1)利用待定系数求直线解析式;(2)利用坐标轴上点的坐标特征求直线l与坐标轴的交点坐标;(3)根据三角形面积公式求解.【解答】解:(1)设直线l的解析式为y=kx+b,根据题意得,解得,所以直线l的解析式为y=2x﹣1;(2)当x=0时,y=2x﹣1=﹣1,则直线l与y轴的交点坐标为(0,﹣1);当y7=0时,2x﹣1=0,解得x=,则直线l与x轴的交点坐标为(,0);(3)直线l与坐标轴围成的三角形面积=×1×=.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.19.下表是某校八年级(1)班抽查20位学生某次数学测验的成绩统计表:(1)若这20名学生成绩的平均分是82分,求x、y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数是a,中位数是b,求的a、b值.【考点】中位数;二元一次方程组的应用;加权平均数;众数.【专题】图表型.【分析】(1)根据平均分列二元一次方程组,解得x、y的值;(2)此时可以看到出现最多的是90,出现了7次,确定众数.中位数所处的第十,十一个分数均是80,所以中位数是80.【解答】解:(1)依题意得:整理得:解得答:x=5,y=7;(2)由(1)知a=90分,b=80分.答:众数是90分,中位数是80分.【点评】此题主要考查了学生对中位数,众数,平均数的理解及二元一次方程组的应用.平均数求出数据之和再除以总个数即可,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.【考点】菱形的判定;平行四边形的判定;矩形的性质.【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)连接OE.由菱形OCED得:CD⊥OE,又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8∴S=OE•CD=×8×6=24.四边形OCED【点评】本题主要考查矩形的性质,平行四边形、菱形的判定,菱形面积的求法;菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.21.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.【考点】一次函数的应用.【分析】(1)根据甲,乙两种销售方案,分别得出两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,即单价×质量,列出即可;(2)根据分析9x与8x+5000的大小关系,得出不等式的解集可以得出购买方案付款的多少问题.【解答】解:(1)甲方案:每千克9元,由基地送货上门,根据题意得:y=9x;x≥3000,乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元,根据题意得:y=8x+5000;x≥3000.(2)根据题意可得:当9x=8x+5000时,x=5000,当购买5000千克时两种购买方案付款相同,当大于5000千克时,9x>8x+5000,∴甲方案付款多,乙付款少,当小于5000千克时,9x<8x+5000,∴甲方案付款少,乙付款多.【点评】此题主要考查了一次函数的应用,得出两函数的解析式利用不等式即可得出付费的多少.22.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:,;(2)利用你观察到的规律,化简:;(3)计算:….【考点】分母有理化.【专题】规律型.【分析】根据观察,可得规律,根据规律,可得答案.【解答】解:(1)写出第n个等式,故答案为:;(2)原式==;(3)原式=+…+=﹣1.【点评】本题考查了分母有理化,发现规律是解题关键.。

15-16学年第二学期八年级期末数学试卷及参考答案

15-16学年第二学期八年级期末数学试卷及参考答案

2015-2016学年度第二学期期末质量监测八 年 级 数 学 试 题(时间:100分钟 总分:100分)温馨提示:1.亲爱的同学,欢迎你参加本次考试,本次考试满分100分,时间100分钟,祝你答题成功!2.数学试卷共6页,共22题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题. 一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题意的,请把你认 为正确的选项前字母填写在该题后面的括号中.1. 在数﹣,0,1,中,最大的数是( )A .B .1C .0D . 2. 下列长度的三条线段能组成直角三角形的是( ) A .4,5,6 B .2,3,4 C .1,1, D .1,2,23.如图,在 ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( )A .4B .3C .D .2第3题 第4题4. 如图,在 ABCD 中,对角线AC 、BD 相交于点O ,AC=10,BD=6,AD=4,则 ABCD 的面积是( ) A .12 B .12C .24D .30 5.函数y=2x ﹣1的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6. 若=b ﹣a ,则( )A .a >bB .a <bC .a ≥bD .a ≤b7. 为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,C.中位数40 D.这10户家庭月用电量共205度8. 两个一次函数y=ax﹣b,y=bx﹣a(a,b为常数),它们在同一直角坐标系中的图象可能是()A.B.C.D.9. 如图,是一长、宽都是3cm,高BC=9cm的长方体纸箱,BC上有一点P,PC=BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.6cm B.3cm C.10cm D.12cm第9题第10题10. 甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法:①a=4.5;②甲的速度是60千米/时;③乙出发80分钟追上甲;④乙刚到达货站时,甲距B地180千米;其中正确的有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6小题,每小题3分,共18分) 11. 若二次根式有意义,则x 的取值范围是 .12. 已知a 、b 、c 是的△ABC 三边长,且满足关系+|a ﹣b|=0,则△ABC 的形状为 .13. 如图,在线段AB 上取一点C ,分别以AC 、BC 为边长作菱形ACDE 和菱形BCFG ,使点D 在CF 上,连接EG ,H 是EG 的中点,EG=4,则CH 的长是 . 14. 在△ABC 中,∠ABC=30°,AB=8,AC=2,边AB 的垂直平分线与直线BC 相交于点F ,则线段CF 的长为 .第13题 第16题x 与方差S 2: 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 . 16.如图,已知正方形ABCD ,以AB 为边向外作等边三角形ABE ,CE 与DB 相交于点F ,则∠AFD 的度数. 三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)计算:(1)﹣÷(2)(2﹣3)(3+2)18. (本小题满分8分)如图,直线y=kx+b经过A(0,﹣3)和B(﹣3,0)两点.(1)求k、b的值;(2)求不等式kx+b<0的解集.19.(本小题满分8分)分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.20. (本小题满分8分)某校为了解八年级女生体能情况,抽取了50名八年级女学生进行“一分钟仰卧起坐”测试.测(1)通过计算得出这组数据的平均数是40,请你直接写出这组数据的众数和中位数,它们分别是、;(2)被抽取的八年级女生小红在“一分钟仰卧起坐”项目测试中的成绩是39次,小红认为成绩比平均数低,觉得自己成绩不理想,请你根据(1)中的相关数据分析小红的成绩;(3)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为38次,已知该校八年级有女生250名,试估计该校八年级女生“一分钟仰卧起坐”的合格人数是多少?21. (本小题满分9分)A、B两个水果市场各有荔枝13吨,现从A、B向甲、乙两地运送荔枝,其中甲地需要荔枝14吨,乙地需要荔枝12吨,从A到甲地的运费为50元/吨,到乙地的运费为30元/吨,从B到甲地的运费为60元/吨,到乙地的运费为45元/吨.(2)设总运费为W元,请写出W与x的函数关系式,并直接写出x的取值范围.(3)怎样调送荔枝才能使运费最少?如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.(1)求证:四边形PMAN是正方形;(2)求证:EM=BN;(3)若点P在线段AC上移动,其它不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.2015-2016学年度第二学期期末质量监测八年级数学参考答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)二、填空题:(本大题共6小题,每小题3分,共18分)11. x≥﹣1 12.等腰直角三角形 13. 214.或 15.甲 16. 60°三、解答题:(本大题共6小题,共52分.解答应写明文字说明和运算步骤. )17.(本小题满分8分)(1)解:原式=2﹣…………………………………………………3分=…………………………………………………………………4分(2)解:原式=(2)2﹣32…………………………………………2分=﹣1……………………………………………………………4分18.(本小题满分8分)解:(1)将A(0,﹣3)和(﹣3,0)代入y=kx+b得:,解得:k=﹣1,b=﹣3.…………………………………………………………………5分(2)x>﹣3.……………………………………………………………………………8分19.(本小题满分8分)解:(每小题4分,满分8分)20.(本小题满分8分)解:(1)38 ;38 ………………………………………………………………………2分(2)尽管低于平均数,但高于众数和中位数,所以还有比较好的;………………4分(3)合格人数为:250×80%=200(人).………………………………………………8分21.(本小题满分9分)(1)如下表:………………3分(2)根据题意得,W=50x+30(13﹣x)+60(14﹣x)+45(x﹣1)=5x+1185,……5分由,解得:1≤x≤13.……………………………………………………………………………6分(3)在函数W=5x+1185中,k=5>0,∴W随x的增大而增大,当x=1时,W取得最小值,最小值为5×1+1185=1190.此时A调往甲地1吨,调往乙地12吨,B调往甲地13吨.…………………………9分22.(本小题满分11分)解:(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AC平分∠BAD,∵PM⊥AD,PN⊥AB,∴PM=PN,∠PMA=∠PNA=90°,∴四边形PMAN是矩形,∴四边形PMAN是正方形;………………………………………… 3分(2)证明:∵四边形PMAN是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE=∠NPB,在△EPM和△BPN中,,∴△EPM≌△BPN(ASA),∴EM=BN…………………………………………………………………………… 6分(3)解:作PF⊥BC于F,如图所示:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC=1,∠PCF=45°,∴AC==,△PCF是等腰直角三角形,∴AP=AC﹣PC=﹣x,BN=PF=x,∴EM=BN=x,∵∠PAM=45°,∠PMA=90°,∴△APM是等腰直角三角形,∴AP=AM=(AE+EM),即﹣x=(y+x),解得:y=1﹣x,……………………………………………………………… 10分x的取值范围为0≤x≤.………………………………………………………… 11分。

山东省聊城市冠县2015-2016学年八年级数学下学期期中试题(扫描版) 青岛版

山东省聊城市冠县2015-2016学年八年级数学下学期期中试题(扫描版) 青岛版

山东省聊城市冠县2015-2016学年八年级数学下学期期中试题
百度文库是百度发布的供网友在线分享文档的平台。

百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。

网友可以在线阅读和下载这些文档。

百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。

百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。

当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。

本文档仅用于百度文库的上传使用。

山东省聊城市冠县八年级数学下学期期末试卷(含解析)

山东省聊城市冠县八年级数学下学期期末试卷(含解析)

2015-2016学年山东省聊城市冠县八年级(下)期末数学试卷一、选择题(每题3分)1.下列关于的说法中,错误的是()A.是8的平方根B. =±2C.是无理数D.2<<32.若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.﹣3m<﹣3n D.2m+1<2n+13.下列运算错误的是()A.×=B. =C.2+3=5D. =1﹣4.在平面中,下列命题为真命题的是()A.四个角相等的四边形是矩形 B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形 D.四边相等的四边形是正方形5.若正比例函数y=(1﹣4m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.D.6.在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位7.若a为实数,则的化简结果正确的是()A.B.C. D.08.已知一次函数随着的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.9.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确 B.仅乙正确 C.甲、乙均正确 D.甲、乙均错误10.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.11.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10° B.15° C.20° D.25°12.若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>二、填空题(每题4分)13.已知实数a满足|2015﹣a|+=a,则a﹣20152=______.14.已知x=,y=,则x2+2xy+y2的值是______.15.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,则线段OA1的长是______;∠AOB1的度数是______.16.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k2x>k1x+b的解集为______.17.如图,在△ABC中,AB=AC=13,DE是△ABC的中位线,F是DE的中点.已知B(﹣1,0),C(9,0),则点F的坐标为______.18.如图,点B、C分别在两条直线y=2x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是正方形,则k值为______.三、解答题19.化简:.20.计算:(2+3)(2﹣3)﹣(﹣)2.21.解不等式组,并在数轴上表示出它的解集.22.如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)写出点A′、B′、C′的坐标.(2)请在图中作出△A′B′C′.23.如图,矩形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm,当沿AE折叠时,顶点D落在BC边上的点F处,试求CE的长.24.如图,四边形ABCD为矩形,四边形AEDF为菱形.(1)求证:△ABE≌△DCE;(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.25.小丽驾车从甲地到乙地,设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是多少?(2)当20<x<30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度.2015-2016学年山东省聊城市冠县八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分)1.下列关于的说法中,错误的是()A.是8的平方根B. =±2C.是无理数D.2<<3【考点】算术平方根.【分析】根据算术平方根的定义、实数的定义和性质进行选择即可.【解答】解:A.是8的平方根,故A选项正确;B. =2,故B选项错误;C. =2是无理数,故C选项错误;D.2<<3,故D选项正确;故选B.2.若m<n,则下列不等式中,正确的是()A.m﹣4>n﹣4 B.>C.﹣3m<﹣3n D.2m+1<2n+1【考点】不等式的性质.【分析】运用不等式的基本性质求解即可.【解答】解:已知m<n,A、m﹣4<n﹣4,故A选项错误;B、<,故B选项错误;C、﹣3m>﹣3n,故C选项错误;D、2m+1<2n+1,故D选项正确.故选:D.3.下列运算错误的是()A.×=B. =C.2+3=5D. =1﹣【考点】二次根式的混合运算.【分析】根据二次根式的乘法法则对A进行判断;根据分母有理化对B进行判断;根据合并同类二次根式对C进行判断;根据二次根式的性质对D计算判断.【解答】解:A、×==,所以A选项的计算正确;B、==,所以B选项的计算正确;C、2+3=5,所以C选项的计算正确;D、=|1﹣|=﹣1,所以D选项的计算错误.故选D.4.在平面中,下列命题为真命题的是()A.四个角相等的四边形是矩形 B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形 D.四边相等的四边形是正方形【考点】命题与定理.【分析】分别根据矩形、菱形、正方形的判定与性质分别判断得出即可.【解答】解:A、根据四边形的内角和得出,四个角相等的四边形即四个内角是直角,故此四边形是矩形,故A正确;B、只有对角线互相平分且垂直的四边形是菱形,故B错误;C、对角线互相平分且相等的四边形是矩形,故C错误;D、四边相等的四边形是菱形,故D错误.故选:A.5.若正比例函数y=(1﹣4m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.D.【考点】一次函数图象上点的坐标特征.【分析】根据正比例函数的增减性确定系数(1﹣4m)的符号,则通过解不等式易求得m的取值范围.【解答】解:∵正比例函数y=(1﹣4m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,∴该函数图象是y随x的增大而减小,∴1﹣4m<0,解得,m>.故选:D.6.在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位【考点】坐标与图形变化-平移.【分析】利用平面坐标系中点的坐标平移方法,利用点A的坐标是(0,2),点A′(5,﹣1)得出横纵坐标的变化规律,即可得出平移特点.【解答】解:根据A的坐标是(0,2),点A′(5,﹣1),横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位,故选:B.7.若a为实数,则的化简结果正确的是()A.B.C. D.0【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a<0,进而化简求出即可.【解答】解:∵a为实数,∴=﹣a+=﹣a+=(﹣a+1).故选:A.8.已知一次函数随着的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.【考点】一次函数的图象.【分析】先根据一次函数的增减性判断出k的符号,再由kb<0判断出b的符号,进而可得出结论.【解答】解:∵一次函数随着x的增大而减小,∴k<0.∵kb<0,∴b>0,∴函数图象经过一二四象限.故选A.9.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确 B.仅乙正确 C.甲、乙均正确 D.甲、乙均错误【考点】菱形的判定.【分析】首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.10.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.【考点】勾股定理;三角形的面积.【分析】根据小正方形的边长为1,利用勾股定理求出AB,由正方形面积减去三个直角三角形面积求出三角形ABC面积,利用面积法求出AB边上的高即可.【解答】解:S△ABC=22﹣×1×2﹣×1×1﹣×1×2=,且S△ABC=AB•CD,∵AB==,∴AB•CD=,则CD==.故选:A.11.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10° B.15° C.20° D.25°【考点】旋转的性质;正方形的性质.【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:B.12.若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x>n﹣m的解集是()A.x<﹣B.x>﹣C.x<D.x>【考点】不等式的解集;不等式的性质.【分析】先解关于x的不等式mx﹣n>0,得出解集,再根据不等式的解集是x<,从而得出m与n的关系,选出答案即可.【解答】解:∵关于x的不等式mx﹣n>0的解集是x<,∴m<0, =,解得m=5n,∴n<0,∴解关于x的不等式(m+n)x>n﹣m得,x<,∴x<=﹣,故选A.二、填空题(每题4分)13.已知实数a满足|2015﹣a|+=a,则a﹣20152= 2016 .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件求出a的取值范围,再去绝对值符号,得出a=20152﹣2016,代入代数式进行计算即可.【解答】解:∵有意义,∴a﹣2016≥0,解得a≥2016,∴原式=a﹣2015+=a,即=2015,解得a=20152+2016,∴a﹣20152=20152+2016﹣20152=2016.故答案为:2016.14.已知x=,y=,则x2+2xy+y2的值是12 .【考点】二次根式的化简求值.【分析】利用完全平方公式可得x2+2xy+y2=(x+y)2,再把x,y的值代入计算即可.【解答】解:∵x2+2xy+y2=(x+y)2,x=,y=,∴原式=(+)2=12.故答案为12.15.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,则线段OA1的长是 6 ;∠AOB1的度数是135°.【考点】旋转的性质.【分析】△OAB是等腰直角三角形,△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,则△OAB≌△OA1B1,根据全等三角形的性质即可求解.【解答】解:∵△OAB≌△OA1B1,∴OA1=OA=6;∵△OAB是等腰直角三角形,∴∠A1OB=45°∴∠AOB1=∠BOB1+∠BOA=90+45=135°.16.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k2x>k1x+b的解集为x<﹣1 .【考点】一次函数与一元一次不等式.【分析】由图象可以知道,当x=﹣1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.【解答】解:两个条直线的交点坐标为(﹣1,3),且当x>﹣1时,直线l1在直线l2的上方,故不等式k2x>k1x+b的解集为x<﹣1.故本题答案为:x<﹣1.17.如图,在△ABC中,AB=AC=13,DE是△ABC的中位线,F是DE的中点.已知B(﹣1,0),C(9,0),则点F的坐标为(4,6).【考点】三角形中位线定理;坐标与图形性质.【分析】如图,延长AF交BC于点G.易证DF是△ABG的中位线,由三角形中位线定理可以求得点F的坐标.【解答】解:如图,延长AF交BC于点G.∵B(﹣1,0),C(9,0),∴BC=10.∵AB=AC=13,DE是△ABC的中位线,F是DE的中点,∴AG⊥BC,则BG=CG=5.∴G(4,0)∴在直角△ABG中,由勾股定理得AG===12.则F(4,6).故答案是:(4,6).18.如图,点B、C分别在两条直线y=2x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是正方形,则k值为.【考点】正方形的性质;正比例函数的性质.【分析】设正方形的边长为a,根据正方形的性质分别表示出B,C两点的坐标,再将C的坐标代入函数中从而可求得k的值.【解答】解:设正方形的边长为a,则B的纵坐标是a,把点B代入直线y=2x的解析式,则设点B的坐标为(,a),则点C的坐标为(+a,a),把点C的坐标代入y=kx中得,a=k(+a),解得,k=.故答案为:.三、解答题19.化简:.【考点】实数的运算.【分析】先化简再计算.(1)化简时,往往需要把被开方数分解因数或分解因式;(2)当一个式子的分母中含有二次根式时,一般应把它化简成分母中不含二次根式的式子,也就是把它的分母有理化.【解答】解:原式===.20.计算:(2+3)(2﹣3)﹣(﹣)2.【考点】二次根式的混合运算.【分析】首先利用平方差计算:(2+3)(2﹣3),利用完全平方公式(﹣)2.然后再计算加减法即可.【解答】解:原式=(2)2﹣(3)2﹣(3+2﹣2),=12﹣18﹣5+2,=﹣11+2.21.解不等式组,并在数轴上表示出它的解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x<2,由②得:x≥﹣3,∴不等式组的解集为﹣3≤x<2,22.如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)写出点A′、B′、C′的坐标.(2)请在图中作出△A′B′C′.【考点】作图-平移变换.【分析】(1)根据P(x1,y1)平移后的对应点为P′(x1+6,y1+4),得出平移的方向与距离,进而得到A′、B′、C′的坐标;(2)根据平移的方向与距离,先作出A′、B′、C′的位置,再顺次连接起来得到△A′B′C′.【解答】解:(1)∵P(x1,y1)平移后的对应点为P′(x1+6,y1+4),∴△ABC向右平移6个单位,向上平移4个单位得到△A′B′C′,∴A′、B′、C′的坐标分别为(2,3)、(1,0)、(5,1);(2)如图所示:∴△A′B′C′即为所求.23.如图,矩形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm,当沿AE折叠时,顶点D落在BC边上的点F处,试求CE的长.【考点】翻折变换(折叠问题);矩形的性质.【分析】先根据矩形的性质得到AD=BC=10,DC=AB=8,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,则可利用勾股定理计算出BF,从而得到CF的长,设CE=x,则DE=EF=8﹣x,然后在Rt△CEF中利用勾股定理得到关于x的方程,从而解方程求出x即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=10,DC=AB=8,∠B=∠D=∠C=90°,∵沿AE折叠时,顶点D落在BC边上的点F处,∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴CF=BC﹣BF=10﹣6=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=5,即CE的长为3.24.如图,四边形ABCD为矩形,四边形AEDF为菱形.(1)求证:△ABE≌△DCE;(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.【考点】矩形的性质;全等三角形的判定与性质;菱形的性质;正方形的判定.【分析】(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,根据菱形的四条边都相等可得AE=DE,然后利用“HL”证明Rt△ABE和Rt△DCE全等即可;(2)BC=2AB时,菱形AEDF为正方形.根据全等三角形对应边相等可得BE=CE,然后求出AB=BE,从而求出∠BAE=∠AEB=45°,同理可得∠DEC=45°,然后求出∠AED=90°,最后根据有一个角是90°的菱形是正方形判断.【解答】(1)证明:∵四边形ABCD为矩形,∴∠B=∠C=90°,AB=DC,∵四边形AEDF为菱形,∴AE=DE,在Rt△ABE和Rt△DCE中,,∴Rt△ABE≌Rt△DCE(HL);(2)解:当BC=2AB时,菱形AEDF为正方形.理由:∵Rt△ABE≌Rt△DCE,∴BE=CE,∠AEB=∠DEC,又∵BC=2AB,∴AB=BE,∴∠BAE=∠AEB=45°,同理可得,∠DEC=45°,∵∠AEB+∠AED+∠DEC=180°,∴∠AED=180°﹣∠AEB﹣∠DEC=90°,∴菱形AEDF是正方形.25.小丽驾车从甲地到乙地,设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是多少?(2)当20<x<30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度.【考点】一次函数的应用.【分析】(1)观察图象可知,第10min到20min之间的速度最高;(2)设y=kx+b(k≠0),利用待定系数法求一次函数解析式解答,再把x=22代入函数关系式进行计算即可得解.【解答】解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)当20≤x≤30时,设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得.所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h.。

山东省聊城市八年级下学期数学期末考试试卷

山东省聊城市八年级下学期数学期末考试试卷

山东省聊城市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣.其中正确的是()A . ①②④B . ①③④C . ②③D . ②④2. (2分) (2017八上·南海期末) 下列说法不正确的是()A . 1的平方根是±1B . ﹣1的立方根是﹣1C . 的算术平方根是2D . 是最简二次根式3. (2分)已知样本数据1,2,4,3,5,下列说法不正确的是()A . 平均数是3B . 中位数是4C . 极差是4D . 方差是24. (2分) (2017八下·建昌期末) 下列等式不成立的是()A . + =B . ﹣ =C . × =D . =5. (2分)(2018·宿迁) 在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。

A . 5B . 4C . 3D . 26. (2分)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A . 45°或75°B . 75°C . 45°或75°或15°D . 60°7. (2分)给出下列命题及函数y=x与y=x2和的图象:①如果>a>a2 ,那么0<a<1;②如果a2>a>,那么a>1或﹣1<a<0;③如果>a2>a,那么﹣1<a<0;④如果a2>>a,那么a<﹣1.则()A . 正确的命题只有①B . 正确的命题有①②④C . 错误的命题有②③D . 错误的命题是③④8. (2分) (2018八上·昌图期末) 若一次函数y=kx+b的图象如图所示,则k、b的取值范围是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<09. (2分)顺次连接某个四边形各边中点得到一个正方形,则原四边形一定是()A . 正方形B . 对角线互相垂直的等腰梯形C . 菱形D . 对角线互相垂直且相等的四边形10. (2分)一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t(分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是A . 爸爸登山时,小军已走了50米;B . 爸爸走了5分钟,小军仍在爸爸的前面;C . 小军比爸爸晚到山顶;D . 爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快。

山东省聊城市八年级下学期数学期末考试试卷

山东省聊城市八年级下学期数学期末考试试卷

山东省聊城市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2019·江北模拟) 在函数y=中,自变量x的取值范围是()A . x≥1B . x≤1且x≠0C . x≥0且x≠1D . x≠0且x≠12. (2分) (2019八下·宁化期中) 下列图形中,有可能是中心对称图形的是()A .B .C .D .3. (2分)一个多边形的内角和是1 260°,它的边数是()A . 7B . 8C . 9D . 104. (2分) (2015八下·滦县期中) 下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图像的是()A .B .C .D .5. (2分) 5月9号重庆实验外国语学校就行了“五四表彰大会”,初三某班老师准备从包括小明在内的四名优秀团员中,随机抽取了2名学生参加表彰大会,则抽到小明的概率是()A .B .C .D .6. (2分)如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A . 100°B . 108°C . 110°D . 120°7. (2分)一组数据4,5,3,4,4的中位数、众数和方差分别是()A . 3,4,0.4B . 4,0.4,4C . 4,4,0.4D . 4,3,0.48. (2分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为()A . x<1B . x>1C . x≥1D . x≤19. (2分)将直线y=﹣2x+3向上平移2个单位长度,得到一次函数的解析式为()A . y=﹣2x+1B . y=﹣2x+5C . y=4x+3D . y=﹣2x+210. (2分) (2017八上·金牛期末) 园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A . 40平方米B . 50平方米C . 65平方米D . 80平方米11. (2分)如图,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是()A . 5B . 7C . 9D . 1112. (2分) (2019九上·新泰月考) 如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC 于D ,则阴影部分面积为(结果保留π)()A . 16B .C .D .13. (2分) (2019八下·贵池期中) 若一个直角三角形两边长分别是5和12,则第三边长为()A . 13B .C . 13或D . 119或16914. (2分) (2020八上·巴东期末) 图中有三个正方形,若阴影部分面积为4个平方单位,则最大正方形的面积是()平方单位.A . 48B . 12C . 24D . 36二、填空题 (共4题;共4分)15. (1分) (2018九上·恩阳期中) 已知、、均为正数,且.下列各点中,在正比例函数上的点是________(填序号)① ② ③ ④16. (1分)如表给出的是关于一次函数y=kx+b的自变量x及其对应的函数值y的若干信息:x…﹣101…y…01m…则根据表格中的相关数据可以计算得到m的值是________.17. (1分)四边形ABCD中AC⊥BD,且AC=4cm,BD=6cm,那么顺次连接四边形ABCD的各边中点所得到的四边形的面积是________ cm2 .18. (1分)(2017·西固模拟) 如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是________度.三、解答题 (共8题;共83分)19. (5分) (2019八下·左贡期中) 已知一次函数的图象经过点(-2,5)和(2,-3),求该一次函数解析式并求出x=0时,y的值.20. (15分)(2019·合肥模拟) 如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)21. (10分) (2017九上·临沭期末) 如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠C AB=,AB=3,求BD的长.22. (8分) (2017八下·江东期中) 下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩888690929096(1)李刚同学6次成绩众数是________.(2)李刚同学6次成绩的中位数是________.(3)李刚同学平时成绩的平均数是________.(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23. (10分)(2016·泉州) A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?24. (10分)(2017·合肥模拟) 如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O 上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为3,sin∠ADE= ,求AE的值.25. (15分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?26. (10分)如图,在平行四边形ABCD中,BC=6cm,将△ABC沿对角线AC折叠,点B的对应点落在点E处,BC边的对应边CE与AD边交于点F,此时△CDF为等边三角形.(1)求AB的长.(2)求图中阴影部分的面积.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共8题;共83分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

山东省聊城市八年级下学期期末考试数学试题

山东省聊城市八年级下学期期末考试数学试题

山东省聊城市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分)(2018·益阳模拟) 下列判断错误的是()A . 两组对边分别平行的四边形是平行四边形B . 四个内角都相等的四边形是矩形C . 四条边都相等的四边形是菱形D . 两条对角线垂直且平分的四边形是正方形3. (2分) (2019八上·法库期末) 在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A . 3B . 4C . 15D . 7.24. (2分)下列函数中,y随x的增大而减小的有()A . y=﹣3x+1B . y=2x﹣1C . y=x﹣1D . y= x﹣55. (2分)如图,平行四边形ABCD中,EF垂直平分AC,与边AD、BC分别相交于点E、F.则四边形AECF一定是()A . 正方形B . 矩形C . 菱形D . 不能确定6. (2分) (2019八上·榆林期末) 为展示榆林美食、弘扬陕北饮食文化,某地举办了豆腐宴烹饪大赛据了解,榆林豆腐是陕西榆林经典的传统小吃,国家地理标志产品,若对此次烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价评价的满分均为100分,三个方面的重要性之比依次为7:2:某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是A . 90分B . 87分C . 89分D . 86分7. (2分) (2017八下·万盛期末) 一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A . 20 LB . 25 LC . 27LD . 30 L8. (2分)有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A . 8mB . 10mC . 12mD . 14m9. (2分)函数与在同一坐标系中的大致图象是()A .B .C .D .10. (2分)下列说法正确的是()A . 平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B . 图形可以向某方向平移一定的距离,也可以向某方向旋转一定距离C . 平移和旋转的共同点是改变图形的位置D . 在平移和旋转图形中,对应角相等,对应线段相等且平行11. (2分)(2019·合肥模拟) 某组长统计组内5人一天在课堂上的发言次数分别为3,0,4,3,5,关于这组数据,下列说法错误的是()A . 平均数是3B . 众数是3C . 中位数是4D . 方差是2.812. (2分)(2018·定兴模拟) 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A . 6B . 2 +1C . 9D .二、填空题 (共6题;共8分)13. (1分) (2018九上·云梦期中) 已知点A(a,1)与点A(4,b)关于原点对称,则a+b=________.14. (2分)一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.15. (2分) (2020八上·吴兴期末) 课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的,,满足的数量关系是________. 现将△ABF向上翻折,如图②,已知,,,则△ABC的面积是________.16. (1分) (2018八上·四平期末) 如图,在中,为斜边AB的中点, AC=6 cm,BC=8 cm,则 CD的长为________cm.17. (1分)(2017·松北模拟) 如图,▱ABCD中,E是AB的中点,AB=10,AC=9,DE=12,则△CDE的面积S=________.18. (1分) (2017八上·满洲里期末) 如图,Rt△ABC中,∠B=90°,∠A=30°,AB=5,D是AC的中点,P 是AB上一动点,则CP+PD的最小值为________.三、解答题 (共7题;共72分)19. (10分)(2018·甘孜) 如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。

聊城市八年级下学期数学期末考试试卷

聊城市八年级下学期数学期末考试试卷

聊城市八年级下学期数学期末考试试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2016 七下·玉州期末) 下列调查中,适合用全面调查的是( )A . 调査某批次汽车的抗撞击能力B . 鞋厂检测生产鞋底能承受的弯折次数C . 了解某班学生的身髙情况D . 调査市场上某种贪品的色素含量是否符备国家标准2. (2 分) (2017 八下·罗山期中) 下列二次根式中属于最简二次根式的是( )A.B.C.D. 3. (2 分) (2019 九上·天台月考) 《代数学》中记载,形如 x2+10x=39 的方程,求正数解的几何方法是:如图 1,先构造一个面积为 x2 的正方形,再以正方形的边长为一边向外构造四个面积为 的矩形,得到大正方 形的面积为 39+25=64,则该方程的正数解为 8-5=3,小聪按此方法解关于 x 的方程 x2+6x+m=0 时,构造出如图 2 所 示的图形,己知阴影部分的面积为 36,则该方程的正数解为( )A.6 B. C.D. 4. (2 分) (2017 九上·临海期末) 从正方形的四个顶点中,任取三个顶点连成三角形.把“这个三角形是等边三角形”记作事件 M,下列判断正确的是( )A . 事件 M 是不可能事件第 1 页 共 14 页B . 事件 M 是必然事件 C . 事件 M 发生的概率为 D . 事件 M 发生的概概率为 5. (2 分) (2020 八上·甘州期末) 如图,直线 l1∥l2 , 被直线 l3、l4 所截,并且 l3⊥l4 , ∠1=44°, 则∠2 等于( )A . 56°B . 36°C . 44°D . 46°6. (2 分) (2018·新乡模拟) 某校八年级两个班,各选派 10 名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是(班级 八(1)班 八(2)班平均数 94 95中位数 93 95.5众数 94 93A . 八(2)班的总分高于八(1)班)方差 12 8.4B . 八(2)班的成绩比八(1)班稳定C . 八(2)班的成绩集中在中上游D . 两个班的最高分在八(2)班7. (2 分) (2019·南浔模拟) 如图,已知在平行四边形 ABCD 中,BD=BC,点 E 是 AB 的中点,连结 DE 并延长,与 CB 的延长线相交于点 F,连结 AF.若 AD=5,tan∠BDC=2,则四边形 AFBD 的面积是( )A . 20第 2 页 共 14 页B. C . 10D. 8. (2 分) 下列各式的运算结果中,正确的是( )A. ÷ =B.( )•(x﹣3)=C . ( - )• =4D . ( - )• =ab 9. (2 分) 直线 y=kx+3 与 x 轴的交点是(1,0),则 k 的值是( )A.3B.2C . -2D . -310. ( 2 分 ) (2020· 衢 江 模 拟 ) 如 图 所 示 , 已 知 在 三 角 形 纸 片中,,,在 边上取一点 ,以 为折痕,使 的一部分与 重合, 与的点 重合,则 的长度为( ), 延长线上A. B. C. D.二、 填空题 (共 8 题;共 8 分)11. (1 分) (2016 八下·费县期中) 若代数式有意义,则实数 x 的取值范围是________.12. (1 分) (2017 八上·孝义期末) 当 x=________时,分式的值为 0.13. (1 分) 为了解学生课外阅读的喜好,某校从八年级 1200 名学生中随机抽取 50 名学生进行问卷调查,整第 3 页 共 14 页理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有________ 人.14. (1 分) (2018·曲靖) 如图:在△ABC 中,AB=13,BC=12,点 D,E 分别是 AB,BC 的中点,连接 DE,CD, 如果 DE=2.5,那么△ACD 的周长是________.15. (1 分) (2018 八上·宁城期末) 已知 m2-2m-1=0,则代数式 2m2-4m+2017 的值为________.16. (1 分) (2019·抚顺) 如图,矩形若点 的坐标为,,的顶点 , 在反比例函数 轴,则点 的坐标为________.的图象上,17. (1 分) (2020·南昌模拟) 已知菱形 ,经过 点的双曲线交 于 ,则在坐标系中如图放置,点 的面积为________.在 轴上,若点坐标为18. (1 分) 如图,在菱形 ABCD 中,对角线 AC=6,BD=8,则这个菱形的边长为________第 4 页 共 14 页三、 解答题 (共 9 题;共 84 分)19. (6 分) (2020 八下·杭州期中) 计算:(1) (2) 20. (10 分) (2019 七上·荔湾期末) 解下列方程: (1) 3x+3=2x﹣1;(2).21. (15 分) (2011·资阳) 如图,已知反比例函数 y= 数 y=﹣x+b 的图象分别交于 A(1,3)、B 两点.(x>0)的图象与一次函(1) 求 m、b 的值; (2) 若点 M 是反比例函数图象上的一动点,直线 MC⊥x 轴于 C,交直线 AB 于点 N,MD⊥y 轴于 D,NE⊥y 轴于 E,设四边形 MDOC、NEOC 的面积分别为 S1、S2 , S=S2﹣S1 , 求 S 的最大值. 22. (6 分) (2018·柳州模拟) 如图,把长方形纸片 ABCD 沿 EF 折叠后.点 D 与点 B 重合,点 C 落在点 C′ 的位置上.若∠1=60°,AE=1.(1) 求∠2、∠3 的度数;第 5 页 共 14 页(2) 求长方形纸片 ABCD 的面积 S.23. (10 分) (2020·嘉兴·舟山) 经过实验获得两个变量 x(x>0),y(y>0)的一组对应值如下表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省聊城市冠县八年级(下)期末
数学试卷
一、选择题(每题3分)
1.(3分)下列关于的说法中,错误的是()
A.是8的平方根B.=±2C.是无理数 D.2<<3
2.(3分)若m<n,则下列不等式中,正确的是()
A.m﹣4>n﹣4 B.>C.﹣3m<﹣3n D.2m+1<2n+1
3.(3分)下列运算错误的是()
A.×= B.= C.2+3=5D.=1﹣
4.(3分)在平面中,下列命题为真命题的是()
A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形
C.对角线相等的四边形是矩形D.四边相等的四边形是正方形
5.(3分)若正比例函数y=(1﹣4m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()
A.m<0 B.m>0 C.D.
6.(3分)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是()
A.先向右平移5个单位,再向下平移1个单位
B.先向右平移5个单位,再向下平移3个单位
C.先向右平移4个单位,再向下平移1个单位
D.先向右平移4个单位,再向下平移3个单位
7.(3分)若a为实数,则的化简结果正确的是()A.B.C.D.0
8.(3分)已知一次函数随着的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()
A.B.C.D.
9.(3分)如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()
A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误10.(3分)如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()
A.B.C.D.
11.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()
A.10°B.15°C.20°D.25°
12.(3分)若关于x的不等式mx﹣n>0的解集是x<,则关于x的不等式(m+n)x>n﹣m的解集是()
A.x<﹣B.x>﹣C.x<D.x>
二、填空题(每题4分)
13.(4分)已知实数a满足|2015﹣a|+=a,则a﹣20152=.14.(4分)已知x=,y=,则x2+2xy+y2的值是.
15.(4分)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,则线段OA1的长是;∠AOB1的度数是.
16.(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为.
17.(4分)如图,在△ABC中,AB=AC=13,DE是△ABC的中位线,F是DE的中点.已知B(﹣1,0),C(9,0),则点F的坐标为.
18.(4分)如图,点B、C分别在两条直线y=2x和y=kx上,点A、D是x轴上两点,已知四边形ABCD是正方形,则k值为.
三、解答题
19.(6分)化简:.
20.(6分)计算:(2+3)(2﹣3)﹣(﹣)2.
21.(8分)解不等式组,并在数轴上表示出它的解集.
22.(10分)如图,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC 经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).
(1)写出点A′、B′、C′的坐标.
(2)请在图中作出△A′B′C′.
23.(10分)如图,矩形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC 为10cm,当沿AE折叠时,顶点D落在BC边上的点F处,试求CE的长.
24.(10分)如图,四边形ABCD为矩形,四边形AEDF为菱形.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.
25.(10分)小丽驾车从甲地到乙地,设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.
(1)小丽驾车的最高速度是多少?
(2)当20<x<30时,求y与x之间的函数关系式,并求出小丽出发第22min 时的速度.。

相关文档
最新文档