二叉树的建立与先序中序后序遍历 求叶子节点个数 求分支节点个数 求二叉树的高度
二叉树的建立与基本操作
二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
二叉树的遍历及常用算法
⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)
二叉树遍历操作的基本应用(复制、求深度、求叶子数、求节点数等)1. 引言1.1 概述二叉树是计算机科学领域中常用的数据结构之一,具有广泛的应用场景。
在二叉树的操作中,遍历是其中最基本和常见的操作之一。
通过遍历,我们可以按照特定规则依次访问二叉树中的所有节点。
本文将探讨二叉树遍历操作的基本应用,包括复制、求深度、求叶子数、求节点数等。
这些操作不仅在实际开发中有重要意义,而且对于理解和掌握二叉树数据结构及其相关算法也具有重要作用。
1.2 文章结构本文将分为五个部分进行论述。
首先,在引言部分(第1节)我们将概述文章的主题和目标。
紧接着,在第2节中,我们将介绍二叉树遍历的基本应用,包括复制、求深度、求叶子数和求节点数等。
在第3节中,我们将详细解析这些基本应用,并给出相应算法和实例分析。
接下来,在第4节中,我们将通过实际案例应用来验证并讨论这些基本应用的性能与适用范围。
最后,在第5节中总结全文内容,并对未来研究方向进行展望。
1.3 目的本文的目的是通过对二叉树遍历操作的基本应用进行详细剖析,帮助读者深入理解和掌握二叉树数据结构及其相关算法。
同时,我们希望通过实际案例应用与讨论,探讨如何优化算法性能、提高效率以及适应大规模二叉树遍历问题。
通过本文的阅读,读者将能够全面了解并应用二叉树遍历操作的基本方法,在实际开发中解决相关问题,并为进一步研究和探索提供思路与参考。
该部分主要介绍了文章的概述、结构和目的,引导读者了解全文并明确阅读目标。
2. 二叉树遍历的基本应用:二叉树是一种常见的数据结构,其遍历操作可以应用于多种实际问题中。
本节将介绍四个基本的二叉树遍历应用:复制二叉树、求二叉树的深度、求二叉树的叶子数和求二叉树的节点数。
2.1 复制二叉树:复制一个二叉树意味着创建一个与原始二叉树结构完全相同的新二叉树。
该应用场景在涉及对原始数据进行修改或者对数据进行独立操作时非常有用。
复制操作可以以递归方式实现,通过先复制左子树,再复制右子树,最后创建一个与当前节点值相等的新节点来完成。
中国石油大学期末考试复习题 070109数据结构-18
《数据结构》综合复习资料一、填空题1、数据结构是()。
2、数据结构的四种基本形式为集合、()、()和()。
3、线性结构的基本特征是:若至少含有一个结点,则除起始结点没有直接前驱外,其他结点有且仅有一个直接();除终端结点没有直接()外,其它结点有且仅有一个直接()。
4、堆栈的特点是(),队列的特点是(),字符串中的数据元素为()。
5、字符串s1=“I am a student!”(单词与单词之间一个空格),s2=“student”,则字符串s1的长度为(),串s2是串s1的一个()串,串s2在s1中的位置为()。
6、KMP算法的特点:效率较();()回溯,对主串仅需要从头到尾扫描()遍,可以边读入边匹配。
7、广义表((a),((b),c),(((d))))的长度为(),表头为(),表尾为()。
8、ADT称为抽象数据类型,它是指()。
9、求下列程序的时间复杂度,并用大O表示方法表示()。
for( i=1 ; i<=n ; + + i)for( j=1 ; j<=i; + + j ){ ++x;a[i][j] = x;}10、以下运算实现在链栈上的退栈操作,请在_____处用适当句子予以填充。
int Pop(LstackTp *ls,DataType *x){ LstackTp *p;if(ls!=NULL){ p=ls;*x= ;ls= ;;return(1);}else return(0);}11、用堆栈求中缀表达式a+b*c/d+e*f的后缀表达式,求出的后缀表达式为()。
12、C语言中存储数组是采用以()为主序存储的,在C语言中定义二维数组float a[8][10],每个数据元素占4个字节,则数组共占用()字节的内存。
若第一个数据元素的存储地址为8000,则a[5][8]的存储地址为()。
13、含零个字符的串称为()串,用 表示。
其他串称为()串。
任何串中所含字符的个数称为该串的()。
二叉树结点计算方法
二叉树结点计算方法二叉树是一种常见的数据结构,它由结点和连接结点的边组成。
每个结点最多有两个子结点,称为左子结点和右子结点。
在二叉树中,每个结点都有一个值,可以用来存储任何类型的数据。
计算二叉树结点的方法主要有以下几种:1.求二叉树的结点个数:-递归法:计算二叉树的结点个数可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,返回左子树的结点个数加上右子树的结点个数再加1,即根结点自身的个数。
递归地计算左右子树的结点个数,直到叶子结点为空,递归结束。
2.求二叉树的叶子结点个数:-递归法:计算二叉树的叶子结点个数也可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,如果根结点的左右子树都为空,则返回1,表示根结点为叶子结点。
递归地计算左右子树的叶子结点个数,通过累计求和的方式得到最终的结果。
3.求二叉树的深度:-递归法:计算二叉树的深度可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,分别计算左子树和右子树的深度,然后取两者中的较大值,再加上根结点自身的深度,即可得到二叉树的深度。
递归地计算左右子树的深度,直到叶子结点为空,递归结束。
4.求二叉树的最小深度:-递归法:计算二叉树的最小深度可以使用递归的方式,首先判断根结点是否为空,如果为空,则返回0;否则,如果根结点的左右子树都为空,则返回1,表示根结点为叶子结点。
如果根结点的左子树为空,则取右子树的最小深度;如果根结点的右子树为空,则取左子树的最小深度;否则,取左右子树中的较小深度。
递归地计算左右子树的最小深度,通过取较小值的方式得到最终的结果。
以上是常见的计算二叉树结点的方法,它们都可以通过递归的方式实现。
在实际应用中,可以根据具体的需求选择适当的方法来计算二叉树的结点。
二叉树的建立方法总结
⼆叉树的建⽴⽅法总结之前已经介绍了⼆叉树的四种遍历(如果不熟悉),下⾯介绍⼀些⼆叉树的建⽴⽅式。
⾸先需要明确的是,由于⼆叉树的定义是递归的,所以⽤递归的思想建⽴⼆叉树是很⾃然的想法。
1. 交互式问答⽅式这种⽅式是最直接的⽅式,就是先询问⽤户根节点是谁,然后每次都询问⽤户某个节点的左孩⼦是谁,右孩⼦是谁。
代码如下(其中字符'#'代表空节点):#include <cstdio>#include <cstdlib>using namespace std;typedef struct BTNode *Position;typedef Position BTree;struct BTNode{char data;Position lChild, rChild;};BTree CreateBTree(BTree bt, bool isRoot){char ch;if (isRoot)printf("Root: ");fflush(stdin); /* 清空缓存区 */scanf("%c", &ch);fflush(stdin);if (ch != '#'){isRoot = false;bt = new BTNode;bt->data = ch;bt->lChild = NULL;bt->rChild = NULL;printf("%c's left child is: ", bt->data);bt->lChild = CreateBTree(bt->lChild, isRoot);printf("%c's right child is: ", bt->data);bt->rChild = CreateBTree(bt->rChild, isRoot);}return bt;}int main(){BTree bt;bt = CreateBTree(bt, true);LevelOrderTraversal(bt); /* 层序遍历 */return0;}2. 根据先序序列例如输⼊序列ABDH##I##E##CF#J##G##(#表⽰空),则会建⽴如下图所⽰的⼆叉树思路和第⼀种⽅式很相似,只是代码实现细节有⼀点区别,这⾥给出创建函数BTree CreateBTree(){BTree bt = NULL;char ch;scanf("%c", &ch);if (ch != '#'){bt = new BTNode;bt->data = ch;bt->lChild = CreateBTree();bt->rChild = CreateBTree();}return bt;}3. 根据中序序列和后序序列和⽅式⼆不同的是,这⾥的序列不会给出空节点的表⽰,所以如果只给出先序序列,中序序列,后序序列中的⼀种,不能唯⼀确定⼀棵⼆叉树。
数据结构求二叉树中叶子结点的个数及二叉树的高度
数据结构求二叉树中叶子结点的个数及二叉树的高度二叉树是一种常用的数据结构,它由若干个节点组成,每个节点最多只有两个子节点:左子节点和右子节点。
二叉树常用来表示树状结构,如文件系统、家族关系等等。
本文将介绍如何求二叉树中叶子节点的个数以及二叉树的高度。
一、求二叉树中叶子节点的个数叶子节点是指没有子节点的节点。
要求二叉树中叶子节点的个数,可以使用递归的方法进行计算。
具体步骤如下:1.判断当前节点是否为空,如果为空,则返回0。
2.判断当前节点是否为叶子节点,如果是,则返回13.否则,递归计算当前节点的左子树中叶子节点的个数和右子树中叶子节点的个数,并将它们相加。
下面是一个示例代码:```pythonclass TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef get_leaf_nodes_count(root):if root is None:return 0if root.left is None and root.right is None:return 1return get_leaf_nodes_count(root.left) +get_leaf_nodes_count(root.right)```二叉树的高度也可以使用递归的方式进行计算。
根据二叉树的定义,二叉树的高度等于左子树的高度和右子树的高度的较大值,再加1、具体步骤如下:1.判断当前节点是否为空,如果为空,则返回0。
2.计算当前节点的左子树的高度和右子树的高度,取较大值。
3.将较大值加1,即得到当前二叉树的高度。
下面是一个示例代码:```pythondef get_tree_height(root):if root is None:return 0left_height = get_tree_height(root.left)right_height = get_tree_height(root.right)return max(left_height, right_height) + 1```综上所述,本文介绍了如何求二叉树中叶子节点的个数和二叉树的高度。
数据结构入门-树的遍历以及二叉树的创建
数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。
前序后序中序详细讲解
前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。
它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。
通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。
前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。
中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。
后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。
它们的不同之处在于访问根节点的时机不同。
前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。
中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。
后序遍历常用于删除二叉树或者释放二叉树的内存空间。
在实际应用中,前序、中序和后序遍历算法有着广泛的应用。
它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。
在图像处理中,前序遍历可以用于图像压缩或者图像识别。
另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。
综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。
通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。
1.2文章结构文章结构是指文章中各个部分的布局和组织方式。
一个良好的文章结构可以使读者更好地理解和理解文章的内容。
本文将详细讲解前序、中序和后序三个部分的内容和应用。
首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。
接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。
在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。
通过详细的解释和实例,读者将能更好地理解前序的概念和用途。
《数据结构与算法设计》第5章 树
5.2.2 二叉树的性质
➢ 满二叉树和完全二叉树
满二叉树是指深度为h且节点数取得最大值2h-1的二叉树。 如果一棵深度为h的二叉树,除第h层外,其他每层的节点数 都达到最大,且最后一层的节点自左而右连续分布,这样的二 叉树称为完全二叉树。
5.2.2 二叉树的性质
5.2.2 二叉树的性质
性质6 对含有n个节点的完全二叉树自上而下、同一层从左往右 对节点编号0,1,2,…,n-1,则节点之间存在以下关系: (1)若i=0,则节点i是根节点,无双亲;若i>0,则其双亲节 点的编号为i/2-1; (2)若2×i +1≤n,则i的左孩子编号为2×i+1; (3)若2×i+2≤n,则i的右孩子编号为2×i+2; (4)若i>1且为偶数,则节点i是其双亲的右孩子,且有编号为 i-1的左兄弟; (5)若i<n-1且为奇数,则节点i是其双亲的左孩子,且有编号 为i+1的右兄弟。
5.3.3 二叉树的二叉链表类模板定义
//根据二叉树的先序遍历序列和中序遍历序列创建以r为根的二叉树
void CreateBinaryTree(BTNode<DataType> * &r, DataType pre[], DataType
in[], int preStart, int preEnd, int inStart, int inEnd); int Height(BTNode<DataType> *r); //求以r为根的二叉树高度 //求以r为根的二叉树中叶子节点数目
5.1.2 树的术语
(9)节点的层次:从根节点开始,根为第一层,根的孩子为 第二层,根的孩子的孩子为第三层,依次类推,树中任一节 点所在的层次是其双亲节点所在的层次数加1。 (10)堂兄弟:双亲在同一层的节点互为堂兄弟。
《数据结构》第五章习题参考答案
《数据结构》第五章习题参考答案一、判断题(在正确说法的题后括号中打“√”,错误说法的题后括号中打“×”)1、知道一颗树的先序序列和后序序列可唯一确定这颗树。
( ×)2、二叉树的左右子树可任意交换。
(×)3、任何一颗二叉树的叶子节点在先序、中序和后序遍历序列中的相对次序不发生改变。
(√)4、哈夫曼树是带权路径最短的树,路径上权值较大的结点离根较近。
(√)5、用一维数组存储二叉树时,总是以前序遍历顺序存储结点。
( ×)6、完全二叉树中,若一个结点没有左孩子,则它必是叶子结点。
( √)7、一棵树中的叶子数一定等于与其对应的二叉树的叶子数。
(×)8、度为2的树就是二叉树。
(×)二、单项选择题1.具有10个叶结点的二叉树中有( B )个度为2的结点。
A.8 B.9 C.10 D.112.树的后根遍历序列等同于该树对应的二叉树的( B )。
A. 先序序列B. 中序序列C. 后序序列3、二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG 。
该二叉树根的右子树的根是:( C )A. EB. FC. GD. H04、在下述结论中,正确的是( D )。
①具有n个结点的完全二叉树的深度k必为┌log2(n+1)┐;②二叉树的度为2;③二叉树的左右子树可任意交换;④一棵深度为k(k≥1)且有2k-1个结点的二叉树称为满二叉树。
A.①②③B.②③④C.①②④D.①④5、某二叉树的后序遍历序列与先序遍历序列正好相反,则该二叉树一定是( D )。
A.空或只有一个结点B.完全二叉树C.二叉排序树D.高度等于其结点数三、填空题1、对于一棵具有n个结点的二叉树,对应二叉链接表中指针总数为__2n____个,其中___n-1_____个用于指向孩子结点,___n+1___个指针空闲着。
2、一棵深度为k(k≥1)的满二叉树有_____2k-1______个叶子结点。
c++实现树(二叉树)的建立和遍历算法(一)(前序,中序,后序)
c++实现树(⼆叉树)的建⽴和遍历算法(⼀)(前序,中序,后序)最近学习树的概念,有关⼆叉树的实现算法记录下来。
不过学习之前要了解的预备知识:树的概念;⼆叉树的存储结构;⼆叉树的遍历⽅法。
⼆叉树的存储结构主要了解⼆叉链表结构,也就是⼀个数据域,两个指针域,(分别为指向左右孩⼦的指针),从下⾯程序1,⼆叉树的存储结构可以看出。
⼆叉树的遍历⽅法:主要有前序遍历,中序遍历,后序遍历,层序遍历。
(层序遍历下⼀篇再讲,本篇主要讲的递归法)下篇主要是,之后会有c++模板实现和。
如这样⼀个⼆叉树:它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左⼦树,再前序遍历右⼦树)它的中序遍历顺序为:GDHBAEICF(规则是先中序遍历左⼦树,再是根结点,再是中序遍历右⼦树)它的后序遍历顺序为:GHDBIEFCA(规则是先后序遍历左⼦树,再是后序遍历右⼦树,再是根结点)如果不懂的话,可以参看有关数据结构的书籍。
1,⼆叉树的存储结构(⼆叉链表)//⼆叉树的⼆叉链表结构,也就是⼆叉树的存储结构,1个数据域,2个指针域(分别指向左右孩⼦)typedef struct BiTNode{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree;2,⾸先要建⽴⼀个⼆叉树,建⽴⼆叉树必须要了解⼆叉树的遍历⽅法。
//⼆叉树的建⽴,按前序遍历的⽅式建⽴⼆叉树,当然也可以以中序或后序的⽅式建⽴⼆叉树void CreateBiTree(BiTree *T){ElemType ch;cin >> ch;if (ch == '#')*T = NULL; //保证是叶结点else{*T = (BiTree)malloc(sizeof(BiTNode));//if (!*T)//exit(OVERFLOW); //内存分配失败则退出。
二叉树的遍历(前序、中序、后序、已知前中序求后序、已知中后序求前序)
⼆叉树的遍历(前序、中序、后序、已知前中序求后序、已知中后序求前序)之前的⼀篇随笔()只对⼆叉树的遍历进⾏了笼统的描述,这篇随笔重点对前、中、后序的遍历顺序进⾏分析⼆叉树的遍历⼆叉树的深度优先遍历可细分为前序遍历、中序遍历、后序遍历,这三种遍历可以⽤递归实现(本篇随笔主要分析递归实现),也可使⽤⾮递归实现的前序遍历:根节点->左⼦树->右⼦树(根->左->右)中序遍历:左⼦树->根节点->右⼦树(左->根->右)后序遍历:左⼦树->右⼦树->根节点(左->右->根)在进⾏已知两种遍历顺序求另⼀种遍历顺序前,先看⼀下不同遍历顺序对应的代码前序遍历1/* 以递归⽅式前序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 printf("data = %c level = %d\n ", t->data, level);9 PreOrderTraverse(t->lchild, level + 1);10 PreOrderTraverse(t->rchild, level + 1);11 }中序遍历1/* 以递归⽅式中序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 PreOrderTraverse(t->lchild, level + 1);9 printf("data = %c level = %d\n ", t->data, level);10 PreOrderTraverse(t->rchild, level + 1);11 }后序遍历1/* 以递归⽅式后序遍历⼆叉树 */2void PreOrderTraverse(BiTree t, int level)3 {4if (t == NULL)5 {6return ;7 }8 PreOrderTraverse(t->lchild, level + 1);9 PreOrderTraverse(t->rchild, level + 1);10 printf("data = %c level = %d\n ", t->data, level);11 }三种遍历⽅式对应的代码⼏乎相同,只是⼀条语句的位置发⽣了变化printf("data = %c level = %d\n ", t->data, level);只看⽂字和代码来理解遍历的过程是⽐较困难的,建议读者亲⾃去遍历,为了理清遍历的过程下⾯上题(图⽚来源:)前序遍历前序的遍历的特点,根节点->左⼦树->右⼦树,注意看前序的遍历的代码printf语句是放在两条递归语句之前的,所以先访问根节点G,打印G,然后访问左⼦树D,此时左⼦树D⼜作为根节点,打印D,再访问D的左⼦树AA⼜作为根节点,打印A,A没有左⼦树或者右⼦树,函数调⽤结束返回到D节点(此时已经打印出来的有:GDA)D节点的左⼦树已经递归完成,现在递归访问右⼦树F,F作为根节点,打印F,F有左⼦树访问左⼦树E,E作为根节点,打印E,(此时已经打印出来的有:GDAFE),E没有左⼦树和右⼦树,函数递归结束返回F节点,F的左⼦树已经递归完成了,但没有右⼦树,所以函数递归结束,返回D节点,D节点的左⼦树和右⼦树递归全部完成,函数递归结束返回G节点,访问G节点的右⼦树M,M作为根节点,打印M,访问M的左⼦树H,H作为根节点,打印H,(此时已经打印出来的有:GDAFEMH)H没有左⼦树和右⼦树,函数递归结束,返回M节点,M节点的左⼦树已经递归完成,访问右⼦树Z,Z作为根节点,打印Z,Z没有左⼦树和右⼦树,函数递归结束,返回M节点,M节点的左⼦树右⼦树递归全部完成,函数递归结束,返回G节点,G节点的左右⼦树递归全部完成,整个⼆叉树的遍历就结束了(MGJ,终于打完了··)前序遍历结果:GDAFEMHZ总结⼀下前序遍历步骤第⼀步:打印该节点(再三考虑还是把访问根节点这句话去掉了)第⼆步:访问左⼦树,返回到第⼀步(注意:返回到第⼀步的意思是将根节点的左⼦树作为新的根节点,就好⽐图中D是G的左⼦树但是D也是A节点和F节点的根节点)第三步:访问右⼦树,返回到第⼀步第四步:结束递归,返回到上⼀个节点前序遍历的另⼀种表述:(1)访问根节点(2)前序遍历左⼦树(3)前序遍历右⼦树(在完成第2,3步的时候,也是要按照前序遍历⼆叉树的规则完成)前序遍历结果:GDAFEMHZ中序遍历(详细遍历过程就不再赘述了,(┬_┬))中序遍历步骤第⼀步:访问该节点左⼦树第⼆步:若该节点有左⼦树,则返回第⼀步,否则打印该节点第三步:若该节点有右⼦树,则返回第⼀步,否则结束递归并返回上⼀节点(按我⾃⼰理解的中序就是:先左到底,左到不能在左了就停下来并打印该节点,然后返回到该节点的上⼀节点,并打印该节点,然后再访问该节点的右⼦树,再左到不能再左了就停下来)中序遍历的另⼀种表述:(1)中序遍历左⼦树(2)访问根节点(3)中序遍历右⼦树(在完成第1,3步的时候,要按照中序遍历的规则来完成)所以该图的中序遍历为:ADEFGHMZ后序遍历步骤第⼀步:访问左⼦树第⼆步:若该节点有左⼦树,返回第⼀步第三步:若该节点有右⼦树,返回第⼀步,否则打印该节点并返回上⼀节点后序遍历的另⼀种表述:(1)后序遍历左⼦树(2)后序遍历右⼦树(3)访问根节点(在完成1,2步的时候,依然要按照后序遍历的规则来完成)该图的后序遍历为:AEFDHZMG(读者如果在纸上遍历⼆叉树的时候,仍然容易将顺序搞错建议再回去看⼀下三种不同遍历对应的代码)进⼊正题,已知两种遍历结果求另⼀种遍历结果(其实就是重构⼆叉树)第⼀种:已知前序遍历、中序遍历求后序遍历前序遍历:ABCDEF中序遍历:CBDAEF在进⾏分析前读者需要知道不同遍历结果的特点1、前序遍历的第⼀元素是整个⼆叉树的根节点2、中序遍历中根节点的左边的元素是左⼦树,根节点右边的元素是右⼦树3、后序遍历的最后⼀个元素是整个⼆叉树的根节点(如果读者不明⽩上述三个特点,建议再回去看⼀下三种不同遍历对应的代码,并在纸上写出⼀个简单的⼆叉树的三种不同的遍历结果,以加深对三种不同遍历的理解)⽤上⾯这些特点来分析遍历结果,第⼀步:先看前序遍历A肯定是根节点第⼆步:确认了根节点,再来看中序遍历,中序遍历中根节点A的左边是CBD,右边是EF,所有可以确定⼆叉树既有左⼦树⼜有右⼦树第三步:先来分析左⼦树CBD,那么CBD谁来做A的左⼦树呢?这个时候不能直接⽤中序遍历的特点(左->根->右)得出左⼦树应该是这个样⼦因为有两种情况都满⾜中序遍历为CBD⽆法直接根据中序遍历来直接得出左⼦树的结构,这个时候就要返回到前序遍历中去观察前序遍历ABCDEF,左⼦树CBD在前序遍历中的顺序是BCD,意味着B是左⼦树的根节点(这么说可能不太好理解,换个说法就是B是A的左⼦树),得出这个结果是因为如果⼀个⼆叉树的根节点有左⼦树,那么这个左⼦树⼀定在前序遍历中⼀定紧跟着根节点(这个是⽤前序遍历的特点(根->左->右)得出的),到这⾥就可以确认B是左⼦树的根节点第四步:再观察中序遍历CBDAEF,B元素左边是C右边是D,说明B节点既有左⼦树⼜有右⼦树,左右⼦树只有⼀个元素就可以直接确定了,不⽤再返回去观察前序遍历第五步:到这⾥左⼦树的重建就已经完成了,现在重建右⼦树,因为重建右⼦树的过程和左⼦树的过程⼀模⼀样,步骤就不像上⾯写这么细了((┬_┬)),观察中序遍历右⼦树为EF,再观察前序遍历ABCDEF中右⼦树的顺序为EF,所以E为A的右⼦树,再观察中序便利中E只有右边有F,所有F为E的右⼦树,最后得到的⼆叉树是这个样⼦的所有求得的后序遍历为:CDBFEA总结⼀下上述步骤:先观察前序遍历找到根节点->观察中序遍历将根节点左边归为左⼦树元素,右边归为右⼦树元素(可能会出现只有左⼦树或者右⼦树的情况)->观察前序遍历中左\右⼦树⼏个元素的顺序,最靠前的为左\右⼦树的根节点->重复前⾯的步骤第⼆种:已知中序遍历、后序遍历求前序遍历(题还是上⾯这道)中序遍历:CBDAEF后序遍历为:CDBFEA仍然是根据不同遍历⽅式结果的特点来重构⼆叉树,过程很相似这⾥就不详细说了,后序遍历的最后⼀个元素A是根节点,在中序遍历中以根节点A作为分界将元素分为左⼦树(CBD)和右⼦树(EF),再观察后序遍历中左⼦树的顺序是CDB,可以判断出B是左⼦树的根节点(因为后序遍历是:左->右->根),再观察中序遍历,B元素左边是C右边是D,说明B节点既有左⼦树⼜有右⼦树,左右⼦树只有⼀个元素就可以直接确定了,不⽤再返回去观察后序遍历,左⼦树重建完成,现在来看右⼦树,右⼦树有两个元素EF,观察后序遍历E在F的后⾯,所以E是右⼦树的根节点,然后看中序遍历中E只有右边⼀个F元素了,即F是E的右⼦树,此时整个⼆叉树重构完成总结⼀下上述步骤:先观察后序遍历找到根节点->观察中序遍历将根节点左边归为左⼦树元素,右边归为右⼦树元素(可能会出现只有左⼦树或者右⼦树的情况)->观察后序遍历中左\右⼦树⼏个元素的顺序,最靠后的为左\右⼦树的根节点->重复前⾯的步骤注意:已知前序遍历、后序遍历⽆法求出中序遍历(因为由前序后序重构出来的⼆叉树不⽌⼀种)举个栗⼦左图这两种⼆叉树前序(BEFA)和后序(AFEB)⼀样,但对应的中序遍历结果不⼀样(左边的是AFEB右边的是BEFA),所以仅靠前序后序是重构出唯⼀的⼆叉树。
二叉树的四种遍历算法
⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。
上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。
上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。
上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。
先序中序后序遍历算法
先序中序后序遍历算法
先序、中序和后序遍历是二叉树遍历的三种基本方法,它们可以帮助我们按照不同顺序访问树中的节点。
下面我会分别介绍这三种遍历算法。
1. 先序遍历:
先序遍历是指先访问根节点,然后递归地对左子树进行先序遍历,最后递归地对右子树进行先序遍历。
因此,先序遍历的顺序是根-左-右。
2. 中序遍历:
中序遍历是指先递归地对左子树进行中序遍历,然后访问根节点,最后递归地对右子树进行中序遍历。
因此,中序遍历的顺序是左-根-右。
3. 后序遍历:
后序遍历是指先递归地对左子树进行后序遍历,然后递归地
对右子树进行后序遍历,最后访问根节点。
因此,后序遍历的顺序
是左-右-根。
这三种遍历算法都是基于递归的思想实现的,它们在不同的应
用场景下都有各自的优势。
例如,先序遍历常用于复制整棵树,中
序遍历常用于二叉搜索树的查找操作,后序遍历常用于计算表达式
树的值等。
除了递归实现外,这三种遍历算法也可以通过迭代的方式实现,通常使用栈来辅助实现。
在实际应用中,根据具体的问题和数据结
构的特点,选择合适的遍历算法可以提高算法的效率和准确性。
总之,先序、中序和后序遍历算法是树结构中常用的基本算法,它们在数据结构和算法领域具有重要的意义,对于理解树的结构和
实现树相关的操作非常重要。
希望以上介绍能够帮助你更好地理解
这三种遍历算法。
二叉树的先序,中序,后序遍历的递归工作栈的关系
二叉树的先序,中序,后序遍历的递归工作栈的关系在计算机科学中,二叉树是一种非常重要的数据结构,它在很多算法和数据处理中都有着广泛的应用。
而二叉树的先序、中序、后序遍历以及它们与递归和工作栈的关系更是程序员面试中常见的问题。
本文将从深度和广度两个方面,按照先序、中序、后序的顺序逐步展开对这个主题的探讨。
一、先序遍历先序遍历是指先访问根节点,然后递归地先序遍历左子树,最后递归地先序遍历右子树。
在实际的计算机算法中,我们可以使用递归或者栈来实现先序遍历。
1.1 递归实现当我们使用递归来实现先序遍历时,可以很容易地写出下面这段代码:```pythondef preorderTraversal(root):if not root:return []return [root.val] + preorderTraversal(root.left) + preorderTraversal(root.right)```这段代码非常简洁明了,但是在实际执行时,会使用工作栈来保存递归中间结果。
因为递归本质上就是一个栈结构,在调用递归函数时,会将当前函数的局部变量和参数压入栈中,直到递归结束,栈中的内容才会依次出栈执行。
1.2 栈实现除了递归之外,我们也可以使用显式栈来实现先序遍历。
这种方法通常会更加高效一些,因为递归会有一定的性能损耗。
栈的实现思路是,我们首先将根节点压入栈中,然后弹出栈顶节点并访问它,接着先将右子节点压入栈中,再将左子节点压入栈中。
重复上述操作直到栈为空。
这样就可以保证先访问根节点,再访问左子树,最后访问右子树,符合先序遍历的要求。
二、中序遍历中序遍历是指先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
中序遍历同样可以用递归或者显式栈来实现。
2.1 递归实现递归实现中序遍历同样非常简单:```pythondef inorderTraversal(root):if not root:return []return inorderTraversal(root.left) + [root.val] + inorderTraversal(root.right)```在这个递归函数中,同样使用了递归的工作栈来保存中间结果。
叶子结点与节点数的计算公式(一)
叶子结点与节点数的计算公式(一)叶子结点与节点数的计算公式1. 计算二叉树的叶子结点个数•叶子结点是指没有子节点的节点,通常位于树的最底层。
•计算二叉树的叶子结点个数可以使用以下公式:叶子结点数 = (总节点数 + 1) / 2例子:假设有一个二叉树,总共有7个节点,那么可以使用公式计算叶子结点数:叶子结点数 = (7 + 1) / 2 = 4所以该二叉树有4个叶子结点。
2. 计算普通树的叶子结点个数•普通树是指每个节点可以有多个子节点,而非只有两个子节点的树。
•计算普通树的叶子结点个数可以使用以下公式:叶子结点数 = (总节点数 - 总分支数) / 2 + 1例子:假设有一个普通树,总共有10个节点,总共有12条分支,那么可以使用公式计算叶子结点数:叶子结点数 = (10 - 12) / 2 + 1 = 0所以该普通树没有叶子结点。
3. 计算二叉树的节点总数•二叉树的节点总数包括所有的内部节点和叶子结点。
•计算二叉树的节点总数可以使用以下公式:总节点数 = 内部节点数 + 叶子结点数例子:假设有一个二叉树,有4个叶子结点,3个内部节点,那么可以使用公式计算总节点数:总节点数 = 3 + 4 = 7所以该二叉树有7个节点。
4. 计算普通树的节点总数•普通树的节点总数包括所有的内部节点和叶子结点。
•计算普通树的节点总数可以使用以下公式:总节点数 = 内部节点数 + 叶子结点数例子:假设有一个普通树,有5个叶子结点,10个内部节点,那么可以使用公式计算总节点数:总节点数 = 10 + 5 = 15所以该普通树有15个节点。
以上就是关于叶子结点与节点数的计算公式的列举和解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
/*一下总结一些二叉树的常见操作:包括建立二叉树先/中/后序遍历二叉树求二叉树的叶子节点个数求二叉树的单分支节点个数计算二叉树双分支节点个数计算二叉树的高度计算二叉树的所有叶子节点数*/#include<stdio.h> //c语言的头文件#include<stdlib.h>//c语言的头文件stdlib.h千万别写错了#define Maxsize 100/*创建二叉树的节点*/typedef struct BTNode //结构体struct 是关键字不能省略结构体名字可以省略(为无名结构体)//成员类型可以是基本型或者构造形,最后的为结构体变量。
{char data;struct BTNode *lchild,*rchild;}*Bitree;/*使用先序建立二叉树*/Bitree Createtree() //树的建立{char ch;Bitree T;ch=getchar(); //输入一个二叉树数据if(ch==' ') //' '中间有一个空格的。
T=NULL;else{ T=(Bitree)malloc(sizeof(Bitree)); //生成二叉树(分配类型*)malloc(分配元素个数*sizeof(分配类型))T->data=ch;T->lchild=Createtree(); //递归创建左子树T->rchild=Createtree(); //地柜创建右子树}return T;//返回根节点}/*下面先序遍历二叉树*//*void preorder(Bitree T) //先序遍历{if(T){printf("%c-",T->data);preorder(T->lchild);preorder(T->rchild);}} *//*下面先序遍历二叉树非递归算法设计*/void preorder(Bitree T) //先序遍历非递归算法设计{Bitree st[Maxsize];//定义循环队列存放节点的指针Bitree p;int top=-1; //栈置空if(T){top++;st[top]=T; //根节点进栈while(top>-1) //栈不空时循环{p=st[top]; //栈顶指针出栈top--;printf("%c-",p->data );if(p->rchild !=NULL) //右孩子存在进栈{top++;st[top]=p->rchild ;}if(p->lchild !=NULL) //左孩子存在进栈{top++;st[top]=p->lchild ;}}printf("\n");}}/*下面中序遍历二叉树*//*void inorder(Bitree T) //中序遍历{if(T){inorder(T->lchild);printf("%c-",T->data);inorder(T->rchild);}}*//*下面中序遍历二叉树非递归算法设计*/void inorder(Bitree T) //中序遍历{Bitree st[Maxsize]; //定义循环队列,存放节点的指针Bitree p;int top=-1;if(T){p=T;while (top>-1||p!=NULL) //栈不空或者*不空是循环{while(p!=NULL) //扫描*p的所有左孩子并进栈{top++;st[top]=p;p=p->lchild ;}if(top>-1){p=st[top]; //出栈*p节点,它没有右孩子或右孩子已被访问。
top--;printf("%c-",p->data ); //访问p=p->rchild ; //扫描*p的右孩子节点}}printf("\n");}}/*下面后序遍历二叉树*//*void postorder(Bitree T) //后序遍历{if(T){postorder(T->lchild);postorder(T->rchild);printf("%c-",T->data);}}*//*二叉树后序遍历非递归算法设计*/void postorder(Bitree T) //后序遍历非递归{Bitree st[Maxsize];Bitree p=T,q;int flag; //作为一个标志处理栈定时候用int top=-1; //栈置空if(T){do{while(p) //将*p所在的左节点进栈{top++;st[top]=p;p=p->lchild ;}q=NULL;flag=1; //设置flag=1表示处理栈顶节点while(top!=-1&&flag==1){p=st[top];if(p->rchild==q) //右孩子不存在或者右孩子已被访问,访问之{printf("%c-",p->data );top--;q=p; //让q指向刚被访问的节点}else{p=p->rchild ; //p指向右孩子flag=0; //设置flag=0表示栈顶节点处理完毕}}}while(top!=-1) ;//栈不空是循环printf("\n");}}/*下面层序遍历二叉树*/ //(层序遍历的模板)void levelorder(Bitree T) //层序遍历二叉树{Bitree p;Bitree qu[Maxsize]; //定义一个循环队列int front, rear; //定义队头队尾指针front=0; //队列置空rear=0;rear++; //根节点进队qu[rear]=T;while(front!=rear) //队列不空front=(front+1)%Maxsize; //对头出队列p=qu[front];printf("%C-",p->data ); //访问对头节点if(p->lchild !=NULL) //左子树不空进队{rear=(rear+1)%Maxsize;qu[rear]=p->lchild ;}if(p->rchild !=NULL) //右子树不空进队{rear=(rear+1)%Maxsize;qu[rear]=p->rchild ;}}}/*计算二叉树节点数*//*方法一*//*int num(Bitree T){if(T==NULL)return 0;else{return num(T->lchild )+num(T->rchild )+1;}}*//*方法二*/int num (Bitree T)if(T!=NULL)return num(T->lchild )+num(T->rchild )+1;return 0;}/*下面程序段计算二叉树的叶子节点个数*/int countleaf(Bitree T){if(T==NULL) //如果节点为空,则返回0return 0;else if((T->lchild==NULL) && (T->rchild==NULL))//否则如果节点左右孩子有一个为空,另一个存在,则返回1return 1;elsereturn(countleaf(T->lchild)+countleaf(T->rchild));//否则返回左右子树叶子节点之和}/*下面程序段计算二叉树的单分支节点个数*/int Sfenzhi(Bitree T){if(T==NULL)return 0;else if (T->lchild==NULL&&T->rchild!=NULL||T->lchild!=NULL&&T->rchild==NULL) //为单分支节点return Sfenzhi(T->lchild )+Sfenzhi(T->rchild )+1;elsereturn Sfenzhi(T->lchild )+Sfenzhi(T->rchild );}/*下面程序段计算二叉树的双分支节点个数*/int Dfenzhi(Bitree T){if(T==NULL)return 0;else if (T->lchild!=NULL&&T->rchild!=NULL||T->lchild!=NULL&&T->rchild!=NULL) //为单分支节点return Dfenzhi(T->lchild )+Dfenzhi(T->rchild )+1;elsereturn Dfenzhi(T->lchild )+Dfenzhi(T->rchild );}/*计算二叉树的高度(深度*/int depth (Bitree T){int lh,rh;if (T==NULL)return 0;else{lh=depth(T->lchild); //递归左子树rh=depth(T->rchild); //递归右子树return (lh>rh)?(lh+1):(rh+1); //高度等于左子树和右子树中大者加1 }}/*下面为主函数*/void main(){Bitree T;printf("先序创建二叉树,用空格代表虚结点:\n");T=Createtree();printf("先序遍历:\n");preorder(T);printf("\n");printf("中序遍历:\n");inorder(T);printf("\n");printf("后序遍历:\n");postorder(T);printf("\n");printf("层序遍历:\n");levelorder(T);printf("\n");printf("二叉树的节点数为:");printf("%d个",num(T));printf("\n");printf("二叉树的叶子节点数为:"); printf("%d个",countleaf(T));printf("\n");printf("二叉树的单分支节点数为:"); printf("%d个",Sfenzhi(T));printf("\n");printf("二叉树的双分支节点数为:"); printf("%d个",Dfenzhi(T));printf("\n");printf("二叉树的高度(深度)为:"); printf("%d",depth(T));printf("\n");}。