新课标人教A版高中数学必修五典题精讲
2020高中数学精讲精练(新人教A版)第01章 集合与简易逻辑
2020高中数学精讲精练 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8或2___.【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .分析:先化简集合A ,由R B C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1){12}A x x =≤≤,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=, 可得A B ⊆.而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.{0,2}【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+.(1)若P Q P ⋃=,求实数a 的取值范围;(2)若P Q ⋂=∅,求实数a 的取值范围;(3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<,P Q P ⋃=,Q P ∴⊆.①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<.综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或. 综上,3(,5][,)2a ∈-∞-⋃+∞. (3)由{03}P Q x x ⋂=≤<,则0a =.第2课 命题及逻辑联结词【考点导读】1. 了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2. 了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3. 理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础练习】1.下列语句中:①230x -=;②你是高三的学生吗?③315+=;④536x ->.其中,不是命题的有____①②④_____.2.一般地若用p 和q 分别表示原命题的条件和结论,则它的逆命题可表示为若q 则p ,否命题可表示为 p q ⌝⌝若则,逆否命题可表示为q p ⌝⌝若则;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.【范例解析】例1. 写出下列命题的逆命题,否命题,逆否命题并判断真假.(1) 平行四边形的对边相等;(2) 菱形的对角线互相垂直平分;(3) 设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+.分析:先将原命题改为“若p 则q ”,在写出其它三种命题.解:(1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题;否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题.(2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题;否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题.(3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题;逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题;否命题:设,,,a b c d R ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题;逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p则q”的形式,找出其条件p 和结论q,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p的否定即p⌝时,要注意对p中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的命题,并判断真假. (1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程210-+=的两实根的绝对值相等.x xx x-+=的两实根的符号相同,q:方程210分析:先写出三种形式命题,根据真值表判断真假.解:(1)p或q:2是4的约数或2是6的约数,真命题;p且q:2是4的约数且2是6的约数,真命题;非p:2不是4的约数,假命题.(2)p或q:矩形的对角线相等或互相平分,真命题;p且q:矩形的对角线相等且互相平分,真命题;非p:矩形的对角线不相等,假命题.(3)p或q:方程210-+=的两实根的符号相同或绝对值相等,假命题;x xp且q:方程210-+=的两实根的符号相同且绝对值相等,假命题;x x非p:方程210-+=的两实根的符号不同,真命题.x x点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p,q的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题的否定,并判断真假.(1)p:所有末位数字是0或5的整数都能被5整除;(2)p:每一个非负数的平方都是正数;(3)p:存在一个三角形,它的内角和大于180°;(4)p:有的四边形没有外接圆;(5)p:某些梯形的对角线互相平分.分析:全称命题“,()∃∈⌝”,特称命题“,()x M p x∃∈”的x M p xx M p x∀∈”的否定是“,()否定是“,()∀∈⌝” .x M p x解:⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题;(1)p⌝:存在一个非负数的平方不是正数,真命题;(2)p⌝:任意一个三角形,它的内角和都不大于180°,真命题;(3)p(4)p ⌝:所有四边形都有外接圆,假命题;(5)p ⌝:任一梯形的对角线都不互相平分,真命题.点评:一些常用正面叙述的词语及它的否定词语列表如下:【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________.2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____.4.命题“若b a >,则122->b a ”的否命题为________________________. 5.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.(1)设,a b R ∈,若0ab =,则0a =或0b =;(2)设,a b R ∈,若0,0a b >>,则0ab >.解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题;否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题;逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题;(2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题;否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题;逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.若b M ∈,则a M ∉ 若a b ≤,则221a b ≤-第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合P Q ⊆,则P 是Q 的充分条件;若集合P Q ⊇,则P 是Q 的必要条件;若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件.(2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件.3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件;(4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件.(2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件. (3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_必要不充分 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围. 解::{12}q B x R x =∈≤≤,若q ⌝是p ⌝的充分不必要条件,则A B ⊆.若A =∅,则240a -<,即22a -<<;若A ≠∅,则240,a x ⎧-≥≤≤解得522a -≤≤-. 综上所述,522a -≤<.充分不必要。
均值不等式练习题.
利用均值不等式求最值的方法一.均值不等式1.(1)若R ba,,则ab ba222(2)若R ba,,则222b aab(当且仅当b a时取“=”)2. (1)若*,R ba ,则ab ba 2(2)若*,R b a ,则ab ba 2(当且仅当b a时取“=”)(3)若*,R ba ,则22ba ab(当且仅当b a时取“=”)3.若0x ,则12xx(当且仅当1x 时取“=”);若0x ,则12xx(当且仅当1x 时取“=”)若0x ,则11122-2x xxx xx即或 (当且仅当b a时取“=”)3.若0ab,则2ab ba(当且仅当b a时取“=”)若0ab ,则22-2a b a b a b bababa即或(当且仅当b a 时取“=”)4.若R ba,,则2)2(222b ab a (当且仅当b a时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.一、配凑1. 凑系数例1. 当04x 时,求y x x ()82的最大值。
解析:由04x知,820x,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2828x x ()为定值,故只需将y x x ()82凑上一个系数即可。
y x x x x x x()[()]()821228212282282·当且仅当282x x ,即x =2时取等号。
所以当x =2时,y x x ()82的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
2. 凑项例2. 已知x54,求函数f x xx()42145的最大值。
2021_2022学年新教材高中数学第五章三角函数5.2.2同角三角函数的基本关系课件新人教A版必修
所以原式=|sin2co =ss2i|n 2-cos 2.
2.已知sin α= 5 ,则sin4α-cos4α的值为
()
5
A .1 B .3 C .1 D .3
5
5 55
【解析】选4α-cos4α=sin2α-cos2α=2sin2α-1=2×
1 1= 3 .
5
5
3.若sin α+3cos α=0,则 cos+2sin 的值为________.
课堂素养达标
1.化简 12sin2cos2的结果是( )
A.sin 2+cos 2
B.sin 2-cos 2 C.cos 2-sin 2 D.-sin 2-cos 2
【解析】选B. 1 2 s in 2 c o s2 (s in 2 c o s2 )2 .
因为 <2<π,所以sin 2>0,cos 2<0,
sin2β+cos2αcos2β=sin2αcos2β+
cos2αcos2β+sin2β=cos2β(sin2α+
cos2α)+sin2β=1.
答案:1
谢谢观看!
本课结束
(1)已知角α的某一种三角函数值,求角α的其余三角函数值,要注意公式的合
理选择,一般是先选用平方关系,再用商数关系.
(2)若角α所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角
α所在的象限不确定,应分类讨论,一般有两组结果.
提醒: s i n =tan α并不是对任意角α∈R都成立,这时α≠kπ+ ,k∈Z.
3
4
探究点三 三角函数式的化简与证明
【典例3】化简下列各式:
人教A版2019年高中数学必修5讲义:第二章 2.3 等差数列的前n项和_含答案
等差数列的前n 项和[新知初探]1.数列的前n 项和对于数列{a n },一般地称a 1+a 2+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+…+a n .2.等差数列的前n 项和公式 [小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n 项和就是指从数列的第1项a 1起,一直到第n 项a n 所有项的和( ) (2)a n =S n -S n -1(n ≥2)化简后关于n 与a n 的函数式即为数列{a n }的通项公式( ) (3)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1( ) 解析:(1)正确.由前n 项和的定义可知正确. (2)错误.例如数列{a n }中,S n =n 2+2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又∵a 1=S 1=3,∴a 1不满足a n =S n -S n -1=2n -1,故命题错误. (3)错误.当项数m 为偶数2n 时,则S 偶-S 奇=nd . 答案:(1)√ (2)× (3)×预习课本P42~45,思考并完成以下问题2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n (n +1)2解析:选D 因为a 1=1,d =1,所以S n =n +n (n -1)2×1=2n +n 2-n 2=n 2+n 2=n (n +1)2,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20, 即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2d =-5, 解得n =15或n =-4(舍).(2)由已知,得S8=8(a1+a8)2=8(4+a8)2=172,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.[活学活用]设S n是等差数列{a n}的前n项和,已知a2=3,a8=11,则S9等于() A.13B.35C.49 D.63解析:选D∵{a n}为等差数列,∴a1+a9=a2+a8,∴S9=9(a2+a8)2=9×142=63.[典例]已知数列{a n}的前n项和S n=-2n2+n+2.(1)求{a n}的通项公式;(2)判断{a n}是否为等差数列?[解](1)∵S n=-2n2+n+2,∴当n≥2时,S n-1=-2(n-1)2+(n-1)+2=-2n2+5n-1,∴a n=S n-S n-1=(-2n2+n+2)-(-2n2+5n-1)=-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4, 但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2; (2)S n =3n -1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质: S n ,S 2n -S n ,S 3n -S 2n 成等差数列. 所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53[活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18B .17C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n (3+2n +1)2=n 2+2n , 所以S nn =n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得 25×17+17×(17-1)2d =25×9+9×(9-1)2d , 解得d =-2, [法一 公式法] S n =25n +n (n -1)2×(-2)=-(n -13)2+169. 由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎨⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2B .-32n 2-n 2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n (-1+2-3n )2=-32n 2+n 2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选C 由等差数列的性质及求和公式得,S 13=13(a 1+a 13)2=13a 7>0,S 15=15(a 1+a 15)2=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1 =(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n ,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45,即⎩⎪⎨⎪⎧a 2=11,a 3=9, 所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C.3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a nb n=a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -12(2n -1)b 1+b 2n -12(2n -1)=A 2n -1B 2n -1=7(2n -1)+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14,a 2+a 3=14, 又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c , ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n=2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝⎛⎭⎫-32×172+1032×17-⎝⎛⎭⎫-32n 2+1032n =32n 2-1032n +884. ∴S n=⎩⎨⎧-32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。
新课标版数学必修五(A版)作业13高考调研精讲精练
课时作业(十三)1.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64答案 A解析 a 8=S 8-S 7=82-72=15.2.等差数列{a n }中,S 15=90,则a 8等于( ) A .3 B .4 C .6 D .12 答案 C解析 ∵S 15=15a 8=90, ∴a 8=6.3.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使前n 项和S n 取得最大值的整数n 是( ) A .4或5 B .5或6 C .6或7 D .不存在 答案 B解析 ∵d <0,∴a 3=-a 9,∴a 3+a 9=0. 又a 3+a 9=2a 6, ∴a 6=0.又d <0,∴S 5或S 6最大.4.等差数列{a n }中,前n 项和S n =an 2+(a -1)·n +(a +2),则a n 等于( ) A .-4n +1 B .2an -1 C .-2an +1 D .-4n -1 答案 D解析 ∵{a n }为等差数列,且S n =an 2+(a -1)·n +(a +2),∴a +2=0,a =-2,∴S n =-2n 2-3n. ∴a n =-4n -1.5.数列{a n }的通项a n =2n +1,则由b n =a 1+a 2+…+a nn(n ∈N *),所确定的数列{b n }的前n 项和是( ) A .n(n +1) B.n (n +1)2C.n (n +5)2D.n (n +7)2答案 C解析 b n =a 1+a 2+…+a n n =a 1+a n 2=3+2n +12=n +2,∴{b n }前n 项和T n =n (3+n +2)2=12n(n +5).6.已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 值是( ) A .21 B .20 C .19 D .18答案 B解析 a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.7.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( ) A .99 B .66 C .33 D .0 答案 B解析 由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99.∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列. ∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66. 8.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5答案 D解析 ∵S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d =2a 1+(2k +1)d =2×1+(2k +1)×2=4k +4=24,∴k =5.9.等差数列{a n }中共有奇数个项,且该数列的奇数项之和为77,偶数项之和为66,若a 1=1,则其中间项为( ) A .7 B .8 C .11 D .16 答案 C10.已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,且S 17<0,则当S n 最大时n 的值为( ) A .16 B .8 C .9 D .10答案 B解析 S 16=16(a 1+a 16)2=8(a 8+a 9)>0,S 17=17(a 1+a 17)2=17a 9<0,∴a 8>0且d <0,∴S 8最大.11.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310 B.13 C.18 D.19 答案 A解析 据等差数列前n 项和性质可知:S 3,S 6-S 3,S 9-S 6,S 12-S 9仍成等差数列,设S 3=k ,则S 6=3k ,S 6-S 3=2k , ∴S 9-S 6=3k ,S 12-S 9=4k ,∴S 9=S 6+3k =6k ,S 12=S 9+4k =10k , ∴S 6S 12=3k 10k =310. 12.(2016·课标全国Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97 答案 C解析 设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98.选C.13.在等差数列{a n }中,a 1+a 2+a 3=15,a n +a n -1+a n -2=78,S n =155,则n =______. 答案 10解析 由⎩⎪⎨⎪⎧a 1+a 2+a 3=15,a n +a n -1+a n -2=78,可得3(a 1+a n )=93.∴a 1+a n =31.又S n =n (a 1+a n )2, ∴155=31n2, ∴n =10.14.首项为正数的等差数列,前n 项和为S n ,且S 3=S 8,当n =________时,S n 取到最大值. 答案 5或615.(1)(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.求数列{b n }的通项公式.(2)已知数列{a n }的前n 项和S n =3+2n ,求a n .解析 (1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11, 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1. (2)①当n =1时,a 1=S 1=3+2=5. ②当n ≥2时,S n -1=3+2n -1,又S n =3+2n ,∴a n =S n -S n -1=2n -2n -1=2n -1. 又当n =1时,a 1=21-1=1≠5,∴a n =⎩⎪⎨⎪⎧5 (n =1),2n -1 (n ≥2).16.在等差数列{a n }中,S 10=100,S 100=10.求S 110. 解析 (基本量法)设等差数列{a n }的首项为a 1,公差为d ,则 ⎩⎪⎨⎪⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎨⎧a 1=1 099100,d =-1150. ∴S 110=110a 1+110(110-1)2d =110×1 099100+110×1092×⎝⎛⎭⎫-1150=-110.17.设等差数列的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.解析 (1)依题意⎩⎨⎧S12=12a 1+12×112d>0,S13=13a 1+13×122d<0,即⎩⎪⎨⎪⎧2a 1+11d>0, ①a 1+6d<0. ② 由a 3=12,得a 1+2d =12. ③将③分别代入①,②,得⎩⎪⎨⎪⎧24+7d>0,3+d<0,解得-247<d<-3.(2)S 6的值最大,理由如下:由d<0可知数列{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大.已知数列{a n }的前n 项和S n =n 2,则a n 等于( ) A .n B .n 2 C .2n +1 D .2n -1答案 D。
高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质
-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.
-
1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,
2013高中数学精讲精练(新人教A版)第05章_数列
2013高中数学精讲精练 第五章 数列【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证. 2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等. 5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课 数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系; 3. 能通过一些基本的转化解决数列的通项公式和前n 项和的问题。
【基础练习】1.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =3-。
分析:由a 1=0,)(1331++∈+-=N n a a a n n n 得⋅⋅⋅⋅⋅⋅==-=,0,3,3432a a a 由此可知: 数列}{n a 是周期变化的,且三个一循环,所以可得: .3220-==a a2.在数列{}n a 中,若11a =,12(1)n n a a n +=+≥,则该数列的通项n a = 2n-1 。
3.设数列{}n a 的前n 项和为n S ,*1(31)()2n n a S n N -=∈ ,且454a =,则1a =____2__. 4.已知数列{}n a 的前n 项和(51)2n n n S +=-,则其通项n a = 52n -+. 【范例导析】例1.设数列{}n a 的通项公式是285n a n n =-+,则 (1)70是这个数列中的项吗?如果是,是第几项? (2)写出这个数列的前5项,并作出前5项的图象; (3)这个数列所有项中有没有最小的项?如果有,是第几项?分析:70是否是数列的项,只要通过解方程27085n n =-+就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
2020秋新版高中数学人教A版必修5课件:第一章解三角形 1.2.4 .pptx
在三角形中,当涉及两边的和、两边的积或两边的平方和或三角
形的面积时,常用余弦定理解答.
-11-
第4课时 几何计算问题
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
【变式训练1】 设△ABC的内角A,B,C所对的边长分别为a,b,c,且
(1)若△ABC 的面积等于 3, 求������, ������的值;
(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积. 分析(1)利用余弦定理和面积公式列关于a,b的方程组求解; (2)先利用正弦定理得a与b的关系,再利用余弦定理得a与b的另一 个关系,列方程组求解a,b,进而求面积.
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
反思1.有关长度问题,要有方程意识.设未知数,列方程求解是经常 用到的方法.列方程时,要注意一些隐含关系的应用.
2.要灵活运用正、余弦定理及三角形面积公式.
-18-
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
解(1)由余弦定理及已知条件得a2+b2-ab=4.
又因为△ABC 的面积等于 3,
所以
1 2
������������sin
人教版A版高中数学必修5:等差数列_课件26
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数
10n n2 n2 10n
50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1
10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使
高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5
时,易忽略验证第一项.
[活学活用] 已知等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式;(2)若数列{an}的前 k 项和 Sk=-35,求 k 的值. 解:(1)设等差数列{an}的公差为 d,则 an=a1+(n-1)d. 由 a1=1,a3=-3 可得 1+2d=-3.解得 d=-2. 从而,an=1+(n-1)×(-2)=3-2n. (2)由(1)可知 an=3-2n.所以 Sn=n1+23-2n=2n- n2.进而由 Sk=-35,可得 2k-k2=-35. 又 k∈N*,故 k=7 为所求.
归纳小结
等差数列的前 n 项和公式
已知量 首项,末项与项数 首项,公差与项数
选用 公式
Sn=na12+an
Sn=na1+nn2-1d
[化解疑难] 等差数列前 n 项和公式的特点
(1)两个公式共涉及到 a1,d,n,an 及 Sn 五个基本量,它 们分别表示等差数列的首项,公差,项数,通项和前 n 项和.
[答案] B
(2)[解] ∵数列{an}为等差数列, ∴S10,S20-S10,S30-S20,…,S110-S100 也成等差数列. 设其公差为 D,则 S10+(S20-S10)+(S30-S20)+…+(S100 -S90)=S100,
即 10S10+10×2 9×D=S100=10. 又∵S10=100,代入上式,得 D=-22, ∴S110-S100=S10+(11-1)×D=100+10×(- 22)=-120, ∴S110=-120+S100=-110.
答案:104
新课标版数学必修五(A版)单元卷1高考调研精讲精练
第一章 章末测试卷(A)[时间:120分钟 满分:150分]一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,下列等式不成立的是( ) A .c =a 2+b 2-2abcosC B.a sinA =bsinB C .asinC =csinA D .cosB =a 2+c 2-b 22abc答案 D解析 很明显A ,B ,C 成立;由余弦定理得cosB =a 2+c 2-b 22ac ,所以D 不成立.2.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A .75° B .60° C .45° D .30° 答案 B解析 由S △ABC =33=12×3×4sinC ,得sinC =32,又角C 为锐角,故C =60°.3.已知△ABC 中,c =6,a =4,B =120°,则b 等于( ) A .76 B .219 C .27 D .27 答案 B解析 由余弦定理得b 2=a 2+c 2-2accosB =76,所以b =219. 4.已知△ABC 中,a =4,b =43,A =30°,则B 等于( ) A .30° B .30°或150° C .60° D .60°或120° 答案 D解析 由正弦定理得a sinA =b sinB .所以sinB =b a sinA =434sin30°=32.又a<b ,则A<B ,所以B=60°或120°.5.已知三角形的三边长分别为a ,b ,a 2+ab +b 2,则三角形的最大内角是( ) A .135° B .120° C .60°D .90°解析a 2+ab +b 2>a ,a 2+ab +b 2>b ,则长为a 2+ab +b 2的边所对的角最大.由余弦定理,得cos α=a 2+b 2-(a 2+b 2+ab )2ab =-12,所以三角形的最大内角是120°.6.△ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c.设向量p =(a +c ,b),q =(b -a ,c -a),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π3答案 B解析 由p ∥q ,得(a +c)(c -a)=b(b -a),则b 2+a 2-c 2=ab.由余弦定理,得cosC =a 2+b 2-c 22ab=12,所以C =π3. 7.在△ABC 中,已知a =2bcosC ,那么△ABC 的内角B ,C 之间的关系是( ) A .B>C B .B =C C .B<C D .关系不确定答案 B8.在△ABC 中,B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形 B .等边三角形 C .等腰三角形 D .直角三角形 答案 B9.在△ABC 中,cosAcosB>sinAsinB ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 答案 C10.在△ABC 中,已知sinB =1,b =3,则此三角形( ) A .无解 B .只有一解 C .有两解 D .解的个数不确定 答案 D11.在△ABC 中,若A<B<C ,b =10,且a +c =2b ,C =2A ,则a 与c 的值分别为( ) A .8,10 B .10,10 C .8,12D .12,8解析 ∵C =2A ,∴sinC =sin2A =2sinA ·cosA. 由正弦定理,余弦定理可得c =2a·100+c 2-a 22×10c,将a =20-c 代入上式整理,得c 2-22c +120=0,解得c =10(舍去)或c =12,∴a =8. 12.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cosA =78,则△ABC 的面积S 为( )A.152B.15C.8155D .6 3答案 A解析 由b 2-bc -2c 2=0,b 2-c 2=c 2+bc , 即b -c =c ,b =2c.cosA =b 2+c 2-a 22bc =4c 2+c 2-64c 2=78,得c 2=4,c =2,b =4.又sinA =158, ∴S =12bcsinA =12×2×4×158=152.故选A.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.在△ABC 中,A =30°,C =105°,b =8,则a =________. 答案 4 2解析 B =180°-30°-105°=45°,由正弦定理,得a =sinA sinB b =sin30°sin45°×8=4 2. 14.在△ABC 中,已知BC =8,AC =5,三角形面积为12,则cos2C =________. 答案725解析 由题意得S △ABC =12·AC ·BC ·sinC =12,即12×8×5×sinC =12,则sinC =35. cos2C =1-2sin 2C =1-2×⎝⎛⎭⎫352=725.15.甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为________m ,乙楼高为________m. 答案 2034033解析 如图所示,甲楼高为AB ,乙楼高为CD ,AC =20 m.则在△ABC 中,∠BAC =90°,AC =20(m),所以AB =ACtan60°=203(m),在△BCD 中,BC =40(m),∠BCD =90°-60°=30°,∠CBD =90°-30°-30°=30°,则∠BDC =180°-30°-30°=120°.由正弦定理,得BC sin ∠BDC =CD sin ∠CBD ,所以CD =sin ∠CBD sin ∠BDC BC =4033.16.在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________. 答案 60°解析 由∠ADB =120°,知∠ADC =60°.又因为AD =2,所以S △ADC =12AD ·DCsin60°=3- 3.所以DC =2(3-1).又因为BD =12DC ,所以BD =3-1.过A 点作AE ⊥BC 于E 点, 则S △ADC =12DC ·AE =3-3,所以AE = 3.又在直角三角形AED 中,DE =1, 所以BE = 3.在直角三角形ABE 中,BE =AE , 所以△ABE 是等腰直角三角形,所以∠ABC =45°. 在直角三角形AEC 中,EC =23-3, 所以tan ∠ACE =AE EC =323-3=2+ 3.所以∠ACE =75°,所以∠BAC =180°-75°-45°=60°.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cosBcosC -sinBsinC =12.(1)求A ;(2)若a =23,b +c =4,求△ABC 的面积. 解析 (1)∵cosBcosC -sinBsinC =12,∴cos(B +C)=12.∵A +B +C =π,∴cos(π-A)=12.∴cosA =-12.又∵0<A<π,∴A =2π3.(2)由余弦定理,得a 2=b 2+c 2-2bc·cosA. 则(23)2=(b +c)2-2bc -2bc·cos2π3. ∴12=16-2bc -2bc·⎝⎛⎭⎫-12.∴bc =4. ∴S △ABC =12bc ·sinA =12×4×32= 3.18.(12分)在△ABC 中,∠B =45°,AC =10,cosC =255.(1)求BC 边的长;(2)记AB 的中点为D ,求中线CD 的长. 解析 (1)由cosC =255,得sinC =55.sinA =sin(180°-45°-C)=22(cosC +sinC)=31010. 由正弦定理,知BC =AC sinB ·sinA =1022×31010=3 2. (2)AB =AC sinB ·sinC =1022×55=2.BD =12AB =1.由余弦定理,知CD =BD 2+BC 2-2BD·BC·cosB =1+18-2×1×32×22=13.19.(12分)在△ABC 中,C -A =π2,sinB =13.(1)求sinA 的值;(2)设AC =6,求△ABC 的面积.解析 (1)由C -A =π2和A +B +C =π,得2A =π2-B ,0<A<π4.故cos2A =sinB ,即1-2sin 2A =13,sinA =33.(2)由(1)得cosA =63. 又由正弦定理,得BC sinA =AC sinB ,BC =sinAsinB ·AC =3 2.所以S △ABC =12AC ·BC ·sinC =12AC ·BC ·cosA =3 2.20.(12分)已知△ABC 顶点的直角坐标分别为A(3,4),B(0,0),C(c ,0). (1)若c =5,求sinA 的值;(2)若∠A 是钝角,求c 的取值范围. 解析 (1)方法一:∵A(3,4),B(0,0), ∴|AB|=5,sinB =45.当c =5时,|BC|=5,|AC|=(5-3)2+(0-4)2=2 5.根据正弦定理,得|BC|sinA =|AC|sinB ⇒sinA =|BC||AC|·sinB =255. 方法二:∵A(3,4),B(0,0),∴|AB|=5. 当c =5时,|BC|=5,|AC|=(5-3)2+(0-4)2=2 5. 根据余弦定理,得cosA =|AB|2+|AC|2-|BC|22|AB||AC|=55.sinA =1-cos 2A =255.(2)已知△ABC 顶点坐标为A(3,4),B(0,0),C(c ,0), 根据余弦定理,得cosA =|AB|2+|AC|2-|BC|22|AB||AC|.若∠A 是钝角,则cosA<0⇒|AB|2+|AC|2-|BC|2<0,即52+[(c -3)2+42]-c 2=50-6c<0,解得c>253.21.(12分)如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60 °,AC =0.1 km.试探究图中B ,D 间距离与另外两点间距离哪个相等,然后求B ,D 间的距离(计算结果精确到0.01 km ,2≈1.414,6≈2.449).解析 在△ADC 中,∠DAC =30°,∠ADC =60°-∠DAC =30°, 所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°, 故CB 是△CAD 底边AD 的中垂线,所以BD =BA. 在△ABC 中,AB sin ∠BCA =ACsin ∠ABC,即AB =ACsin60°sin15°=32+620,因此,BD =32+620≈0.33 (km).故B ,D 间的距离约为0.33 km.22.(12分)在△ABC 中,角A ,B ,C 所对的边a ,b ,c 满足cosB cosC +b c =2ac .(1)求角C 的大小;(2)若边长c =3,求a +2b 的最大值.解析 (1)因为cosB cosC +b c =2ac,故cosBsinC +sinBcosC =2sinAcosC.也即sinA =2sinAcosC ,又sinA ≠0,所以cosC =12.又C ∈(0,π),故C =π3.(2)a +2b =c sinC (sinA +2sinB)=2[sin(B +C)+2sinB]=2⎣⎡⎦⎤12sinB +32cosB +2sinB =5sinB +3cosB ,令cos φ=528,sin φ=328,则a +2b =28sin(B +φ),当B +φ=π2时,(a +2b)max =28=27.。
高中数学 第二章 2.2(一)等差数列(一)课件 新人教A版必修5
第十六页,共25页。
研一研·问题(wèntí)探究、课堂更高
效 例2
已知1a,1b,1c成等差数列,求证:b+a c,a+b c,a+c b也
成等差数列.
证明 ∵1a,1b,1c成等差数列,
本
∴2b=1a+1c,即 2ac=b(a+c).
讲 栏 目
∵b+a c+a+c b=cb+c+acaa+b=c2+a2+acba+c
开 关
(5)1,2,5,8,11,….
第七页,共25页。
研一研·问题探究(tànjiū)、课堂更 高效
解 (1)是等差数列,a1=4,d=3;
(2)是等差数列,a1=31,d=-6;
本 讲
(3)是等差数列,a1=0,d=0;
栏 目
(4)是等差数列,a1=a,d=-b;
开 关
(5)不是等差数列,a2-a1=1,a3-a2=3,∴a2-a1≠a3-a2.
高效 探究 若数列{an}满足:an+1=an+2an+2,求证:{an}是等差
数列.
证明 ∵an+1=an+2an+2
本
⇔2an+1=an+an+2
讲 栏
⇔an+2-an+1=an+1-an
目
开 关
∴an+1-an=an-an-1=…=a2-a1(常数).
∴{an}是等差数列.
第十三页,共25页。
跟踪训练 2 已知 a,b,c 成等差数列,那么 a2(b+c),b2(c
+a),c2(a+b)是否能构成等差数列?
证明 ∵a,b,c 成等差数列,∴a+c=2b.
本 ∴a2(b+c)+c2(a+b)=a2b+a2c+c2a+c2b
讲 栏
=(a2b+c2b)+(a2c+c2a)=b(a2+c2)+ac(a+c)
高中数学人教A版必修五教学课件:第一章 《解三角形》 1.1.2 余弦定理
三角形中任何一边的平方等于其他两边的平方的和 减去 这两边与它们的夹角的余弦的积的 二 倍 在△ABC 中,
符号 语言
a2=b2+c2-2bccos A, b2=c2+a2-2accos B,
2 2 c2= a +b -2abcos C .
在△ABC 中, 推论 b2+c2-a2 c2+a2-b2 cos A= ,cos B= , 2bc 2ac
)
a2+c2-b2 1 解析:由题意知,cos B= =cos 120° =- ,∴a2+c2-b2 2ac 2 =-ac,∴a2+c2+ac-b2=-ac+ac=0.
答案:C
1 3.在△ABC 中,设角 A,B,C 的对边分别为 a,b,c,且 cos A= . 4 若 a=4,b+c=6,且 b<c,求 b,c 的值.
[解]
设 BD=x.在△ABD 中, 根据余弦定理, AB2=AD2+BD2-2AD· BDcos
∠BDA, ∴142=102+x2-2×10×xcos 60° ,………………………………3 分 即 x2-10x-96=0, 解得 x1=16,x2=-6(舍去),∴BD=16. ………………………6 分 ∵AD⊥CD,∠BDA=60° ,∴∠CDB=30° . ……………………9 分 在△BCD 中,由正弦定理, BC BD = , sin∠CDB sin ∠BCD
答案:120°
探究三
利用正余弦定理判断三角形的形状
[典例 3] 在△ABC 中,若 B=60° ,2b=a+c,试判断△ABC 的形状.
[解析] ∵B=60° , ∴b2=a2+c2-2accos 60° , 1 ∴ (a+c)2=a2+c2-ac, 4 ∴(a-c)2=0, ∴a=c, ∴a=b=c. 故△ABC 为等边三角形.
高中数学 一些数列的求和教案 新人教A版必修5
一些数列的求和方法一、教学目标 1.熟练掌握等差数列与等比数列的求和公式;2.分析数列通项特征,选用分组求和、裂项相加、错位相减、倒序相加、通项化归、并项相加等数学方法求和;二、教学重难点:特殊数列求和的方法.三、教学过程:一、基础知识:1.公式法:即直接用等差、等比数列的求和公式求和,主要适用于等差、等比数列求和。
(1)等差数列求和公式d n n na a a n S n n 2)1(2)(11-+=+=; (2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n (切记:公比含字母时定要讨论) 2.其它公式:)1(211+==∑=n n k S n k n ; )12)(1(6112++==∑=n n n k S n k n ; 213)]1(21[+==∑=n n k S n k n 。
二、例题精讲1、分组求和法(把数列的每一项分成若干项,使其转化为等差或等比数列,再分别求和) 例1:求数列n n )21()12(,,815,413,211+- 的前n 项和。
练习:求)0()1()1()1(22222≠++++++=x xx x x x x S n n n 。
2、裂项相加法:把数列通项拆成两项之差、正负相消剩下首尾若干项。
(分式求和常用裂项相消) 常见的拆项公式:111)1(1+-=+n n n n 1111()(2)22n n n n =-++)121121(21)12)(12(1+--=+-n n n n 例2、求1111,,,,,132435(2)n n ⨯⨯⨯+前n 项和。
练习:求,11,,321,211++++n n 前n 项和。
3、错位相减法求和(适用于{}{}的和求等比等差n n n n b a b a b a b a +++ 2211,,问题) 例3、求12321-++++=n n nx x x S 的和。
练习:求数列n n 212,...,167,85,43,21-求前n 项和。
人教A版高中数学必修五 1-1-3习题课 教案 精品
正、余弦定理习题课一、教学目标:知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感、态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
二.重点难点重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
难点:正、余弦定理与三角形的有关性质的综合运用。
三、教材与学情分析本节课中,应先通过分析典型例题,帮助学生理解并掌握正弦定理和余弦定理;应指出正弦定理和余弦定理是相通的,凡是能用正弦定理解的三角形,用余弦定理也可以解,反之亦然.但解题的时候,应有最佳选择.教学过程中,我们应指导学生对利用正弦定理和余弦定理解斜三角形的问题进行归类。
同时应指出,在解斜三角形问题时,经常要利用正弦、余弦定理实施边角转换,转化的主要途径有两条:(1)化边为角,然后通过三角变换找出角与角之间的关系,进而解决问题;(2)化角为边,将三角问题转化为代数问题加以解决.一般地,当已知三角形三边或三边数量关系时,常用余弦定理;若既有角的条件,又有边的条件,通常利用正弦定理或余弦定理,将边化为角的关系,利用三角函数公式求解较为简便.总之,关键在于灵活运用定理及公式.四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)课题导入师 前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容 (给出幻灯片1.1.3A ).从幻灯片大体可以看出,正弦定理、余弦定理实质上反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在判断三角形形状和证明三角恒等式时的应用.(二)推进新课思考:在△ABC 中,已知A =22c m ,B =25c m,A =133°,解三角形.(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.下面进一步来研究这种情形下解三角形的问题.【例1】在△ABC 中,已知A ,B ,A ,讨论三角形解的情况.师 分析:先由a A b B sin sin =可进一步求出B ;则C =180°-(A +B ),从而AC a c sin sin =. 一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况.1.当A 为钝角或直角时,必须a >b 才能有且只有一解;否则无解.2.当A 为锐角时,如果a ≥b ,那么只有一解; 如果a <b ,那么可以分下面三种情况来讨论:(1)若a >b sin A ,则有两解; (2)若a =b sin A ,则只有一解; (3)若a <b sin A ,则无解.(以上解答过程详见课本第9到第10页)师 注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且b sin A <a<b 时,有两解;其他情况时则只有一解或无解.(1)A 为直角或钝角(2)A 为锐角【例2】在△ABC中,已知a =7,b=5,c =3,判断△ABC的类型.分析:由余弦定理可知 a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
高中数学人教A版必修5课件:2.3.1 等差数列的前n项和
-4-
第1课时 等差数列的 前n项和
1 2
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
2.等差数列{an}的前 n 项和 设等差数列{an}的公差是 d,则 Sn=
������(������1+������������ ) 2
������(������1 +������������ ) 2
=
������ 6-2 2
53
= −5, 解得n=15.∴a15 =
=
8(4+������8 ) 2
= 172, 解得a8=39.
又 a8=4+(8-1)d=39,∴d=5. (3)由 ������������ = ������1 + (������-1)������, ������������ = ������������1 + ������ = 7, ������ = 5, 解方程组得 或 ������1 = 3 ������1 = -1.
-12-
第1课时 等差数列的 前n项和
题型一 题型二 题型三
M 目标导航
题型四
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(2)设数列{an}的前 n 项和为 Sn,点
������
������������ ������, ������
D典例透析
IANLI TOUXI
【变式训练1】 (1)已知数列{an}的前n项和为Sn,且Sn=3· 2n+1,则 an= . 解析:当n=1时,a1=S1=7; 当n≥2时,an=Sn-Sn-1=3· 2n+1-3· 2n-1-1=3· 2n-3· 2n-1=3· 2n-1(21)=3· 2n-1. 当n=1时,不满足上式. 7,������ = 1, ∴an= 3· 2������ -1 ,������ ≥ 2. 7,������ = 1, 答案: 3· 2������ -1 ,������ ≥ 2
【新教材】高中数学新教材人教A版选择性必修培优练习:专题05 直线的倾斜角与斜率(学生版+解析版)
专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30B .45C .60D .902.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0B .3πC .2π D .π3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( )A .4πB .34π C .54π D .2π 4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6B .-7C .-8D .-95.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3)B .(0,1)C .(3,3)D .(3,2)7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( ) A .-1B .-2C .2D .18.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( )A .0B .2π C .56π D .π10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.⎡⎢⎣⎦D.,⎛-∞ ⎝⎦⎫+∞⎪⎪⎣⎭二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角; D .坐标平面上所有的直线都有斜率.13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________.17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒. 19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围.20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α. (1)求tan α;(2)求sin α,cos2α的值.21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α. (1)写出α关于m 的函数解析式; (2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围.22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围; (2)直线l 倾斜角α的范围;23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.专题05 直线的倾斜角与斜率一、单选题1.(2020·四川省高二期末(理))直线x =( ) A .30 B .45C .60D .90【答案】D 【解析】直线x ∴其倾斜角为90. 故选:D .2.(2019·四川省仁寿一中高二期中(文))若直线1x =的倾斜角为α,则α=( ) A .0 B .3πC .2π D .π【答案】C 【解析】直线1x =与x 轴垂直,故倾斜角为2π. 故选:C.3.(2020·江苏省丹徒高中高一开学考试)直线10x y ++=的倾斜角为( ) A .4π B .34π C .54π D .2π 【答案】B 【解析】由题意,直线10x y ++=的斜率为1k =- 故3tan 14k παα==-∴= 故选:B4.(2019·江苏省扬州中学高一期中)如果()3,1A 、()2,B k -、()8,11C 在同一直线上,那么k 的值是( ) A .-6 B .-7C .-8D .-9【答案】D 【解析】(3,1)A 、(2,)B k -、(8,11)C 三点在同一条直线上,∴直线AB 和直线AC 的斜率相等, ∴11112383k --=---,解得9k =-.故选:D .5.(2019·山东省高二期中)若直线过点(2,4),(1,4+,则此直线的倾斜角是( ) A .30︒ B .60︒C .120︒D .150︒【答案】C 【解析】由题意知,直线的斜率k =即直线的倾斜角α满足tan α=, 又0180α︒︒≤<,120α︒∴=,故选:C6.(2019·浙江省高三期中)以下哪个点在倾斜角为45°且过点(1,2)的直线上( ) A .(﹣2,3) B .(0,1)C .(3,3)D .(3,2)【答案】B 【解析】由直线的倾斜角为45°,则直线的斜率为tan 451k ==,则过点()2,3-与点(1,2)的直线的斜率为321213-=---,显然点()2,3-不满足题意;过点()0,1与点(1,2)的直线的斜率为12101-=-,显然点()0,1满足题意; 过点()3,3与点(1,2)的直线的斜率为321312-=-,显然点()3,3不满足题意; 过点()3,2与点(1,2)的直线的斜率为22031-=-,显然点()2,3-不满足题意; 即点()0,1在倾斜角为45°且过点(1,2)的直线上, 故选:B.7.(2020·四川省高二期末(理))已知一直线经过两点(2,4)A ,(,5)B a ,且倾斜角为135°,则a 的值为( )A .-1B .-2C .2D .1【答案】D 【解析】由直线斜率的定义知,tan1351AB k ==-, 由直线的斜率公式可得,542AB k a -=-, 所以5412a -=--,解得1a =. 故选:D8.(2019·浙江省高二期中)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B .3[0,][,)44πππ⋃ C .[0,]4πD .[0,][,)42πππ⋃ 【答案】B 【解析】直线xsinα+y +2=0的斜率为k =﹣sinα, ∵﹣1≤sinα≤1,∴﹣1≤k ≤1 ∴倾斜角的取值范围是[0,4π]∪[34π,π) 故选:B .9.(2019·内蒙古自治区高二期末(文))已知直线l 的倾斜角为α,若tan 3πα⎛⎫+= ⎪⎝⎭α=( ) A .0 B .2π C .56π D .π【答案】A 【解析】tan 3πα⎛⎫+== ⎪⎝⎭tan 0α=,0απ≤<,0α∴=.故选:A10.(2019·浙江省镇海中学高一期末)已知直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦,则此直线的斜率的取值范围是( ) A.⎡⎣B.(,-∞)+∞ C.,33⎡-⎢⎣⎦D.,3⎛-∞-⎝⎦3⎫+∞⎪⎢⎪⎣⎭【答案】B 【解析】因为直线倾斜角的范围是,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤ ⎥⎝⎦,又直线的斜率tan k α=,,32ππα⎡⎫∈⎪⎢⎣⎭2,23ππ⎛⎤⎥⎝⎦.故tan tan3πα≥=2tan tan3πα≤=故(,k ∈-∞)+∞. 故选:B 二、多选题11.(2020·吴江汾湖高级中学高一月考)下列说法中正确的是( ) A .若α是直线l 的倾斜角,则0180α≤< B .若k 是直线l 的斜率,则k ∈RC .任意一条直线都有倾斜角,但不一定有斜率D .任意一条直线都有斜率,但不一定有倾斜角 【答案】ABC 【解析】A. 若α是直线l 的倾斜角,则0180α≤<,是正确的;B. 若k 是直线l 的斜率,则tan k α=∈R ,是正确的;C. 任意一条直线都有倾斜角,但不一定有斜率,倾斜角为90°的直线没有斜率,是正确的;D. 任意一条直线都有斜率,但不一定有倾斜角,是错误的,倾斜角为90°的直线没有斜率. 故选:ABC12.(2020·江苏省苏州实验中学高一月考)有下列命题:其中错误的是( ) A .若直线的斜率存在,则必有倾斜角与之对应; B .若直线的倾斜角存在,则必有斜率与之对应; C .坐标平面上所有的直线都有倾斜角;D .坐标平面上所有的直线都有斜率. 【答案】BD 【解析】任何一条直线都有倾斜角,但不是任何一条直线都有斜率 当倾斜角为90︒时,斜率不存在 故选:BD13.(2018·全国单元测试)已知直线1:10l x y --=,动直线2:(1)0()l k x ky k k R +++=∈,则下列结论错误..的是( ) A .不存在k ,使得2l 的倾斜角为90° B .对任意的k ,1l 与2l 都有公共点 C .对任意的k ,1l 与2l 都不.重合 D .对任意的k ,1l 与2l 都不垂直...【答案】AC 【解析】逐一考查所给的选项:A .存在0k =,使得2l 的方程为0x =,其倾斜角为90°,故选项不正确.B 直线1:10l x y --=过定点()0,1-,直线()()()2:1010l k x ky k k R k x y x +++=∈⇒+++=过定点()0,1-,故B 是正确的.C .当12x =-时,直线2l 的方程为1110222x y --=,即10x y --=,1l 与2l 都重合,选项C 错误;D .两直线重合,则:()()1110k k ⨯++-⨯=,方程无解,故对任意的k ,1l 与2l 都不垂直,选项D 正确. 故选:AC. 三、填空题14.(2019·银川唐徕回民中学高三月考(理))已知点P (1),点Q 在y 轴上,直线PQ 的倾斜角为120°,则点Q 的坐标为_____. 【答案】(0,-2) 【解析】因为Q 在y 轴上,所以可设Q 点坐标为()0,y ,又因为tan120︒==2y =-,因此()0,2Q -,故答案为()0,2-.15.(2020·浙江省温州中学高三月考)平面直角坐标系中,直线倾斜角的范围为______,一条直线可能经过______个象限. 【答案】0, 0,2,3【解析】平面直角坐标系中,直线倾斜角的范围为[)0,π,一条直线可能经过2个象限,如过原点,或平行于坐标轴; 也可能经过3个象限,如与坐标轴不平行且不过原点时; 也可能不经过任何象限,如坐标轴; 所以一条直线可能经过0或2或3个象限. 故答案为:[)0,π,0或2或3.16.(2019·浙江省效实中学高一期中)若直线斜率k ∈(-1,1),则直线倾斜角α∈________. 【答案】[0°,45°)∪(135°,180°) 【解析】直线的斜率为负时,斜率也随着倾斜角的增大而增大由于斜率有正也有负,且直线的斜率为正时,斜率随着倾斜角的增大而增大,故α∈(0°,45°);又直线的斜率为负时,斜率也随着倾斜角的增大而增大,故α∈(135°,180°);斜率为0时,α=0°.所以α∈[0°,45°)∪(135°,180°) 故答案为[0°,45°)∪(135°,180°) 17.(2018·山西省山西大附中高二期中(文))已知直线l 经过点()1,0P 且与以()2,1A ,()3,2B -为端点的线段AB 有公共点,则直线l 的倾斜角的取值范围为____. 【答案】3[0,][,)44πππ 【解析】当直线l 过B 时,设直线l 的倾斜角为α,则3tan 14παα=-⇒=当直线l 过A 时,设直线l 的倾斜角为β,则tan 14πββ=⇒=综合:直线l 经过点()P 1,0且与以()A 2,1,()B 3,2-为端点的线段AB 有公共点时,直线l 的倾斜角的取值范围为][30,,44πππ⎡⎫⋃⎪⎢⎣⎭四、解答题18.(2019·全国高一课时练习)已知点()1,2A ,在y 轴上求一点P ,使直线AP 的倾斜角为120︒.【答案】(0,2P 【解析】设(0,)P y ,201PA y k -=-,tan120︒∴=201y --,2y ∴=P ∴点坐标为(0,2.19.(2019·全国高一课时练习)点(,)M x y 在函数28y x =-+的图像上,当[2,5]x ∈时,求11y x ++的取值范围. 【答案】15,63⎡⎤-⎢⎥⎣⎦【解析】1(1)1(1)y y x x +--=+--的几何意义是过(,),(1,1)M x y N --两点的直线的斜率,点M 在线段28,[2,5]y x x =-+∈上运动,易知当2x =时,4y =,此时(2,4)M 与(1,1)N --两项连线的斜率最大,为53; 当5x =时,2y =-,此时(5,2)M -与(1,1)N --两点连线的斜率最小,为16-.115613y x +∴-+,即HF 的取值范围为15,63⎡⎤-⎢⎥⎣⎦20.(2020·广东省恒大足球学校高三期末)已知直线l :320x y +-=的倾斜角为角α.(1)求tan α;(2)求sin α,cos2α的值.【答案】(1)13-;(2)10;45 【解析】(1)因为直线320x y +-=的斜率为13-,且直线的倾斜角为角α, 所以1tan 3α=- (2)由(1)知1tan 3α=-, 22sin 1tan cos 3sin cos 1ααααα⎧==-⎪∴⎨⎪+=⎩解得sin 10cos αα⎧=⎪⎪⎨⎪=⎪⎩sin 10cos αα⎧=-⎪⎪⎨⎪=⎪⎩, 因为,2παπ⎛⎫∈ ⎪⎝⎭,所以sin cos αα⎧=⎪⎪⎨⎪=⎪⎩224cos 22cos 1215αα⎛∴=-=⨯-= ⎝⎭21.(上海市七宝中学高二期中)已知直线l 的方程为320x my -+=,其倾斜角为α.(1)写出α关于m 的函数解析式;(2)若3,34ππα⎛⎫∈ ⎪⎝⎭,求m 的取值范围. 【答案】(1)3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩;(2)3,3m .【解析】(1)直线l 的方程为320x my -+=,其倾斜角为α,当0m =时,2πα=当0m >时,则斜率3tan k m α==,3arctan m α=, 当0m <时,则斜率3tan k m α==,3arctan mαπ=+, 所以3arctan ,0,023arctan ,0m m m m m παπ⎧>⎪⎪⎪==⎨⎪⎪+<⎪⎩; (2)当,32ππα时,33,,0,3k m m ,当2πα=时,0m =, 当3,24ππα时,3,1,3,0k m m , 综上所述:3,3m .22.(2019·全国高一课时练习)经过点(0,1)P -作直线l ,若直线l 与连接(1,2)(2,1)A B -、的线段总有公共点.(1)求直线l 斜率k 的范围;(2)直线l 倾斜角α的范围;【答案】(1)11k -≤≤(2)3044ππααπ≤≤≤<或 【解析】(1)2(1)110pA k --==-- 1(1)120pB k --==- l 与线段AB 相交pA pB k k k ∴≤≤11k ∴-≤≤(2)由(1)知0tan 11tan 0αα≤≤-≤<或由于tan 0,2y x π⎡⎫=⎪⎢⎣⎭在及(,0)2π-均为减函数3044ππααπ∴≤≤≤<或 23.(上海位育中学高二期中)直角坐标系xOy 中,点A 坐标为(-2,0),点B 坐标为(4,3),点C 坐标为(1,-3),且AM t AB =(t ∈R ).(1) 若CM ⊥AB ,求t 的值;(2) 当0≤ t ≤1时,求直线CM 的斜率k 和倾斜角θ的取值范围.【答案】(1) 15t =;(2) k ∈(-∞.,-1]⋃[2,+∞],3[arctan 2,]4πθ∈ 【解析】(1)由题意可得()42,30(6,3)AB =+-=,(6,3)AM t AB t t ==, ()12,30(3,3)AC =+--=-,所以(63,33)CM AM AC t t =-=-+, ∵CM AB ⊥,则CM AB ⊥,∴()()6633334590CM AB t t t ⋅=-++=-=, ∴解得15t =; (2)由01t ≤≤,AM t AB =,可得点M 在线段AB 上,由题中A 、B 、C 点坐标,可得经过A 、C 两点的直线的斜率11k =-,对应的倾斜角为34π,经过C 、B 两点的直线的斜率22k =,对应的倾斜角为2arctan ,则由图像可知(如图所示),直线CM 的斜率k 的取值范围为:1k ≤-或2k ≥,倾斜角的范围为:3[arctan 2,]4πθ∈.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标人教A 版高中数学必修五典题精讲(3.4基本不等式)典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x1≥2x x 1∙=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x-1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值. 思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数.解:∵x >-1,∴x+1>0.∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+∙+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1. 变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开. 解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2t t 1∙=2,当且仅当t=t1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y9=1, ∴x+y=(x+y)·(x 1+y9)=10+y x x y 9+. ∵x >0,y >0,∴yx x y 9+≥2y x x y 9∙=6. 当且仅当yx x y 9=,即y=3x 时,取等号.又x 1+y9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥299)9(-∙-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y9=1,得y+9x=xy, ∴(x-1)(y-9)=9.∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12.产生不同结果的原因是不等式①等号成立的条件是x 1=y9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+xay y bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4.又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+xlg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx <0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.解:∵0<x <1,∴lgx <0,x lg 4<0.∴-xlg 4>0. ∴(-lgx)+(-xlg 4)≥2)lg 4)(lg (x x --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=1001时取得等号.则有f(x)=3+lgx+xlg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x <45,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451-]+3 ≤-2xx 451)45(-∙-+3=-2+3=1. 当且仅当5-4x=x451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,再求最值.解:y=21(2x-3)+328-x +23=-(xx 238223-+-)+23, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥x x 2382232-∙-=4,当且仅当xx 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6,∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大.方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.方法一:∵2x+3y≥2y x 32∙=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.方法二:由xy=24,得x=y24. ∴l=4x+6y=y96+6y=6(y 16+y)≥6×2y y ⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x324)+16 000≥800×2x x 324∙+16 000=44 800, 当且仅当x=x324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.探究:设此人应选第n 层楼,此时的不满意程度为y.由题意知y=n+n 8.∵n+n 8≥2248=⨯n n ,当且仅当n=n 8,即n=22时取等号.但考虑到n ∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.。