年全国中考数学压轴题范文含答案
(完整)中考数学压轴题精选含答案
一、解答题1.综合与探究.如图,抛物线y=ax2+bx+1与x轴交于A,C两点,点A(﹣1,0),C (3,0),与y轴交于点B,抛物线的顶点为D,直线l经过B,C两点.(1)求抛物线的函数解析式;(2)若P为抛物线上一点,横坐标为m,过点P作PM⊥y轴于点M,交线段BC于点N,当N是线段BC的黄金分割点时,求点P到x轴的距离;(3)若将抛物线向上平移个单位长度,点D的对应点为D′,坐标轴上是否存在点Q,使∠BD′Q=30°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2.矩形OABC中,OA=8,OC=10,将矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.(1)i:如图①,当点O落在AB边上的点D处时,点E的坐标为;ii:如图②,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.(2)如图③,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G,设H(t,s),用含s的代数式表示t.3.【基础巩固】(1)如图1,点A ,F ,B 在同一直线上,若∠A =∠B =∠EFC ,求证:△AFE ∼△BCF ;【尝试应用】(2)如图2,AB 是半圆⊙O 的直径,弦长AC =BC =42,E ,F 分别是AC ,AB 上的一点,∠CFE =45°,若设AE =y ,BF =x ,求出y 与x 的函数关系及y 的最大值. 【拓展提高】(3)已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上.如图3,如果AD :BD =1:2,求CE :CF 的值.4.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,求∠B 与∠C 的度数之和;(2)如图2,锐角△ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF .求证:四边形DBCF 是倍对角四边形;(3)如图3,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G .当4DH =3BG 时,求△BGH 与△ABC 的面积之比.5.抛物线212y x mx n =-++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0)A -,(0,2)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形CDBF 的面积最大时,求点E 的坐标.6.如图,抛物线2:C y ax bx c =++的对称轴为直线1x =-,且抛物线经过(1,0),(0,3)M D 两点,与x 轴交于点N .(1)点N 的坐标为_______.(2)已知抛物线1C 与抛物线C 关于y 轴对称,且抛物线1C 与x 轴交于点1,A B (点A 在点1B 的左边).①抛物线1C 的解析式为_________;②当抛物线1C 和抛物线C 上y 都随x 的增大而增大时,请直接写出此时x 的取值范围. (3)若抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=,抛物线n C 的顶点为n P ,与x 轴的交点为,n A B (点A 在点n B 的左边).①求123100AB AB AB AB ++++的值;②判断抛物线的顶点123,,,,n P P P P 是否在一条直线上,若在,请直接写出该直线的解析式;若不在,请说明理由.7.在平面直角坐标系xOy 中,规定:抛物线y =a (x ﹣h )2+k 的“伴随直线”为y =a (x ﹣h )+k .例如:抛物线y =2(x +1)2﹣3的“伴随直线”为y =2(x +1)﹣3,即y =2x ﹣1.(1)在上面规定下,抛物线y =(x +1)2﹣5的顶点坐标为_____,“伴随直线”为_____. (2)如图,顶点在第一象限的抛物线y =a (x ﹣1)2﹣4a (a ≠0)与其“伴随直线”相交于点A ,B (点A 在点B 的左侧),与x 轴交于点C ,D . ①若△ABC 为等腰三角形时,求a 的值;②如果点P (x ,y )是直线BC 上方抛物线上的一个动点,△PBC 的面积记为S ,当S 取得最大值274时,求a 的值.8.如图1,四边形ABCD 和四边形CEFG 都是菱形,其中点E 在BC 的延长线上,点G 在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.9.如图,对称轴x=1的抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B两点,与y轴交于点C(0,2),(1)求抛物线和直线BC的函数表达式;(2)若点Q是直线BC上方的抛物线上的动点,求△BQC的面积的最大值;(3)点P为抛物线上的一个动点,过点P作过点P作PD⊥x轴于点D,交直线BC于点E.若点P在第四象限内,当OD=4PE时,△PBE的面积;(4)在(3)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.10.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A ,E ,D 第一次在同一直线上,BG 与CE 交于点H ,连接BE . ①求证:BE 平分∠AEC .②取BC 的中点P ,连接PH ,求证:PH ∥CG . ③若BC =2AB =2,求BG 的长.(2)若点A ,E ,D 第二次在同一直线上,BC =2AB =4,直接写出点D 到BG 的距离. 11.在平面直角坐标系中,三角形ABC 为等腰直角三角形,AC BC =,BC 交x 轴于点D .(1)若()4,0A -,()0,2C ,直接写出点B 的坐标 ;(2)如图,三角形OAB 与ACD △均为等腰直角三角形,连OD ,求AOD ∠的度数;(3)如图,若AD 平分BAC ∠,()4,0A -,(),0D m ,B 的纵坐标为n ,求2n m +的值.12.已知抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,点D 是直线BC下方抛物线上的动点.(1)求直线BC的解析式;(2)如图1,过D作DE∥y轴交BC于E,点P是BC下方抛物线上的动点(P在D的右侧),过点P作PQ∥y轴交BC于Q,若四边形EDPQ为平行四边形.且周长最大.求点P的坐标;(3)如图2,当D点横坐标为1时,过A且平行于BD的直线交抛物线于另一点E,若M在x轴上,是否存在这样点的M,使得以M、B、D为顶点的三角形与△AEB相似?若存在,求出所有符合条件的点M的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,四边形AOBC是矩形,OB=4,OA=3,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当BF=13BC时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)将△EFC沿EF折叠,得到△EFG,当点G恰好落在矩形AOBC的对角线上时,求k的值.14.在平面直角坐标系中,抛物线:与x轴交于点A,B(点B 在点A的右侧).抛物线顶点为C点,△ABC为等腰直角三角形.(1)求此抛物线解析式.(2)若直线与抛物线有两个交点,且这两个交点与抛物线的顶点所围成的三角形面积等于6,求k的值.(3)若点,且点E,D关于点C对称,过点D作直线2l交抛物线于点M,N,过点E作直线轴,过点N作于点F,求证:点M,C,F三点共线.15.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2,将一张和△ABC一样大的纸片和△ABC重叠放置,点E是边BC上一点(不含点B、C),将△OCE 沿着OE翻折,点C落在点P处.(1)直接写出∠OBC、∠OCB的数量关系是.(2)连接DE,设△OPE的面积为S1,△ODE的面积为S2,在点E取边BC上每一点(除点B、C)的过程中,S1+S2的值是否变化?如果变化,请求出它的取值范围;如果不变,请求出S1+S2的值;(3)分别连接PD、PC,当点P与点B重合时,易知PO•PC=PE•PD,当点P不与点B重合时,PO•PC=PE•PD是否成立?请在图3、图4中选一种情况进行证明.16.如图,ABD△内接于O中,弦BC交AD于点E,连接CD,BG CD⊥交CD的延长线于点G,BG交O于点H,2∠=∠.ABC GBD(1)如图1,求证:DB平分GDE∠;(2)如图2,CN AB⊥于点N,CN=CG,求证:AN=HG;(3)如图3.在(2)的条件下,点F在AE上,连接BF、CF,且BF CF⊥,∠=∠,BC=5.求AE的长.BCN CBF217.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连结BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.由此得出中线AD的取值范围是__________【应用】如图②,如图,在△ABC中,D为边BC的中点、已知AB=10,AC=6,AD=4,求BC的长.【拓展】如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作D F⊥DE交边AC于点F,连结EF.已知BE=5,CF=6,则EF的长为__________.18.如图,点P是矩形ABCD的边AB的其中一个四等分点(点P靠近点A),8AB ,将直角三角尺的顶点放在P处,直角尺的两边分别交AD、DC于点E,F,(如图1).(1)当点E与点D重合时,点F恰好与点C重合(如图2),求AD的长;(2)探究:将直尺从图2中的位置开始,绕点P逆时针旋转,当点E和点A重合时停止,在这个过程中,请你观察、猜想,并解答:①∠PEF的大小是否发生变化?请说明理由;②求出从点E与D重合开始,到点E与点A重合结束,线段EF的中点经过的路线的长度.19.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF ∽△GDF : (2)求证: BC 是⊙O 的切线: (3)若cos∠CAE =32,DF =102,求线段GF 的长. 20.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上. ①求点F 的坐标; ②直接写出点P 的坐标.【参考答案】参考答案**科目模拟测试一、解答题 1.(1) 51或(3)存在,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0)【解析】【分析】(1)用待定系数法即可求解;(2)MP∥CO,则,进而求解;(3)当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F (1,0)、E,tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°;当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,求出直线D′Q′的表达式,即可求解.(1)解:将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:;(2)∵MP∥CO,则,∵N是线段BC的黄金分割点,∴或,即或,而OB=1,故MO=512-或,即点P到x轴的距离为:512-或;(3)存在,理由:由抛物线的表达式知,点D(1,43),则将抛物线向上平移个单位长度,点D的对应点为D′的坐标为(1,3+1),①当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F(1,0)、E,则BE3﹣13ED′=1,∴tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°,即点Q的坐标为(1,0);②当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,则∠BD′Q′=30°,故∠Q′Q″O=30°+30°=60°,则∠D′Q′O=90°﹣60°=30°,故设直线Q′D′的表达式为y 3+t,将点D′的坐标代入上式得:3t,解得t=,故直线D′Q′的表达式为y=33x+,对于y=33x+,令y=33x+=0,解得x=﹣2﹣3,令x=0,则y=,故点Q′、Q″的坐标分别为(﹣2﹣3,0)、(0,),综上,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0).【点睛】本题是二次函数综合题,主要考查了一次函数的性质、三角形相似、解直角三角形等,其中(3),要注意分类求解,避免遗漏.2.(1)i:(0,5);ii:AT=52;(2)t=120s2+5.【解析】【分析】(1)i:如图①中,根据翻折变换的性质以及勾股定理得出BD的长,进而得出AE,EO的长即可得出答案.ii:如图②中,连接ET.证明△CET是直角三角形,由勾股定理得2222ED TD TC EC+=-,代入数据计算即可求出AT.(2)根据H点坐标得出各边长度,进而利用勾股定理求出t与s的关系即可.【详解】解:(1)i:如图①中,∵OA=8,OC=10,根据折叠的性质,∴OC=DC=10,∵BC=OA=8,∴BD2222108CD BC--,∴AD=10-6=4,设AE =x ,则EO =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴AE =3,则EO =8-3=5,∴点E 的坐标为:(0,5);故答案为:(0,5); ii :如图②中,连接ET .∵点E 是AO 的中点,∴EA =EO ,∵OE =ED ,EC =EC ,∠EOC =∠EDC =90°,∴Rt △ECD ≌Rt △ECO (HL ),∴∠CEO =∠CED ,同法可证,Rt △ETA ≌Rt △ETD (HL ),∴∠AET =∠DET ,∴∠DET +∠CED =90°,即∠CET =90°,由折叠的性质得:ED =EO =12OA =5,OC =CD =10,AT =TD , 222125EC EO OC =+=, 设AT =x ,则TD =x ,∵2222ED TD TC EC +=-,即()222510125x x +=+-, 解得:52x =∴AT =52; (2)如图③中,过点H 作HW ⊥OC 于点W ,根据折叠的性质得:∠1=∠2,∵EG∥OC,∴∠1=∠3,∴∠2=∠3,∴EH=HC,设H(t,s),∴EH=HC=t,WC=10-t,HW=s,∴HW2+WC2=HC2,∴s2+(10-t)2=t2,∴t与s之间的关系式为:t=120s2+5.【点睛】本题属于四边形综合题,主要考查了翻折变换的性质以及勾股定理和全等三角形的判定与性质等知识,熟练构建直角三角形利用勾股定理得出相关线段长度是解题关键.3.(1)见解析;(2)y2x22(0≤x≤8),23)4:5【解析】【分析】(1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE∽△BCF,由相似三角形的性质:对应边的比值相等即可得到y 和x的数量关系,进而求出y与x的函数关系式;(3)首先证明△ADE∽△BFD,表示出ED,DF,EA,DB,AD,BF,再利用相似三角形的性质解决问题即可.【详解】(1)证明:∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB=22AC BC+=8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴AE AFBF BC=,即842y xx-=,∴y=﹣28x2+2x(0≤x≤8),∴当x=4时,y最大=22;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴DE EA AD DF DB BF==,∴323a x a xb x x b-==-,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a =75x , ∴3425a x ab x -==, ∴CE :CF =4:5.【点睛】本题是圆的综合题,考查了相似三角形的判定与性质,圆的有关知识,勾股定理以及二次函数最值等知识,解题的关键是学会利用参数解决问题.4.(1)120°;(2)见解析;(3)215 【解析】【分析】(1)根据四边形内角和为360°,即可得出答案;(2)利用SAS 证明△BED ≌△BEO ,得∠BDE =∠BEO ,连接OC ,设∠EAF =α,则∠AFE =2α,则∠EFC =180°−∠AFE =180°−2α,可证∠EFC =∠AOC =2∠ABC 即可;(3)过点O 作OM ⊥BC 于M ,由(1)知∠BAC =60°,再证明△DBG ∽△CBA ,得2ΔΔ()DBG ABC S BD S BC =,再根据4DH =3BG ,BG =2HG ,得DG =52GH ,则ΔΔBHG BDG S S =HG DG =25,从而解决问题.【详解】(1)解:在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +∠3∠C =360°,∴∠B +∠C =120°,∴∠B 与∠C 的度数之和为120°;(2)证明:在△BED 与△BEO 中,BD BO EBD EBO BE BE =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BEO (SAS ),∴∠BDE =∠BEO ,∵∠BOE =2∠BCF ,∴∠BDE =2∠BCF连接OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°﹣∠AFE =180°﹣2α,∵OA =OC ,∴∠OAC =∠OCA =α,∴∠AOC =180°﹣∠OAC ﹣∠OCA =180°﹣2α,∴∠EFC =∠AOC =2∠ABC ,∴四边形DBCF 是倍对角四边形;(3)解:过点O 作OM ⊥BC 于M ,∵四边形DBCF 是倍对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°,∴BC =2BM 33,∵DG ⊥OB ,∴∠HGB =∠BAC =60°,∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴2ΔΔ()DBG ABC S BD S BC =13, ∵4DH =3BG ,BG =2HG , ∴DG =52GH ,∴ΔΔBHG BDG S S =25HG DG =, ∵ΔΔ15315DBG ABC S S == ∴ΔΔBHG ABC S S =215. 【点睛】本题是新定义题,主要考查了圆的性质,相似三角形的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质等知识,读懂题意,利用前面探索的结论解决新的问题是解题的关键.5.(1)213222y x x =-++;(2)存在,13(,4)2P ,235(,)22P ,335(,)22P -;(3)点()2,1E【解析】【分析】(1)把()1,0A -,()0,2C 代入抛物线的解析式,利用待定系数法求解即可;(2)先求解抛物线的对称轴3,2x = 再求解CD 的长,由CDP 是以CD 为腰的等腰三角形,可得123CP DP DP CD ===.再作CH ⊥对称轴于点H ,从而可得答案;(3)先求解()4,0B .再求解直线BC 的解析式为122y x =-+.过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,根据BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅列函数关系式,从而可得答案.【详解】解:(1)∵抛物线212y x mx n =-++经过()1,0A -,()0,2C , ∴10,22,m n n ⎧--+=⎪⎨⎪=⎩解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为213222y x x =-++. (2)∵22131325222228y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴抛物线的对称轴是直线32x =.∴32OD =. ∵()0,2C ,∴2OC =.在Rt OCD △中,由勾股定理,得2235222CD ⎛⎫=+= ⎪⎝⎭. ∵CDP 是以CD 为腰的等腰三角形,∴123CP DP DP CD ===.作CH ⊥对称轴于点H ,∴12HP HD ==.∴14DP =.∴13(,4)2P ,235(,)22P ,335(,)22P -. (3)当0y =时,由2132022x x -++=,解得11x =-,24x =, ∴()4,0B .设直线BC 的解析式为y kx b =+,得2,40,b k b =⎧⎨+=⎩解得1,22.k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为122y x =-+. 过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭. ∵BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅ 2215111122(4)2222222a a a a a a ⎛⎫⎛⎫=⨯⨯+-++--+ ⎪ ⎪⎝⎭⎝⎭225134(2)22a a a =-++=--+. ∴根据题意04a ≤≤,∴当2a =时,CDBF S 四边形的最大值为132,此时点()2,1E . 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数与等腰三角形,图形面积的最值问题,灵活运用二次函数的图象与性质解决问题是解题的关键.6.(1)(3,0)-;(2)①2(1)4y x =--+;②1x <-;(3)①5350;②不在,理由见解析【解析】【分析】(1)由题意可得,点N 和点M 关于1x =-轴对称,求解即可;(2)①先求得抛物线C 的解析式,再根据关于y 轴对称,求得抛物线1C 即可;②根据二次函数的性质,求解即可;(3)①由抛物线解析式可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,求得线段1AB 、2AB 、……、100AB 的值,即可求解;②求得顶点1P 、2P 、3P ,求得13P P 的解析式,然后验证2P 是否在直线上.【详解】解:(1)由题意可得,点N 和点M 关于1x =-轴对称∵(1,0)M∴点(3,0)N -故答案为(3,0)-(2)①由(1)得,抛物线C 过点(1,0)M 、(3,0)N -、(0,3)D抛物线C 的解析式为31y a x x =+-()(),将点(0,3)D 代入解析式得:(03)(01)3a +-=解得1a =-∴22(3)(1)(23)(1)4y x x x x x =-+-=-+-=-++,顶点坐标为(1,4)-∵抛物线C 与抛物线1C 关于y 轴对称∴抛物线1C 的顶点为(1,4),开口与抛物线C 相同∴抛物线1C 解析式为2(1)4y x =--+②抛物线C 的解析式为2(1)4y x =-++,由二次函数的性质可得,当1x <-时,y 随x 的增大而增大,抛物线1C 解析式为2(1)4y x =--+,由二次函数的性质可得,当1x <时,y 随x 的增大而增大, ∴当1x <-时,抛物线C 和抛物线1C 上y 都随x 的增大而增大, (3)①抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,即1(3,0)B ,2(4,0)B ,……,100(102,0)B∴14AB =,25AB =,……,100103AB = ∴123100103455350AB AB AB AB =+++++=++②当1n =时,抛物线1C 的解析式为2(1)(3)(1)4y x x x =-+-=--+,1(1,4)P 当2n =时,抛物线2C 的解析式为2325(1)(4)()24y x x x =-+-=--+,2325(,)24P当3n =时,抛物线3C 的解析式为2(1)(5)(2)9y x x x =-+-=--+,3(2,9)P 设直线13P P 的解析式为y kx b =+,将点1(1,4)P ,3(2,9)P 代入得429k b k b +=⎧⎨+=⎩,解得51k b =⎧⎨=-⎩,即51y x =- 当32x =时,3132551224y =⨯-=≠ ∴点2325(,)24P 不在直线13P P 上∴抛物线的顶点123,,,,n P P P P 不在一条直线上【点睛】此题考查了二次函数的图像与性质,涉及了待定系数法求解二次函数和一次函数解析式,解题的关键是熟练掌握二次函数的有关性质.7.(1)(﹣1,﹣5),y =x ﹣4;(2)①a 的值为a =﹣2. 【解析】 【分析】(1)由“伴随直线”的定义即可求解;(2)①先求y =a (x −1)2−4a 的伴随直线为y =ax −5a ,再联立方程组2(1)45y a x ay ax a ⎧=--⎨=-⎩,求出A (1,−4a ),B (2,−3a ),C (−1,0),D (3,0),由于当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,即可求a 的值;②先求直线BC 解析式为y =−ax −a ,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x ,则P [x ,a (x −1)2−4a ],Q (x ,−ax −a ),23127()228PBC S a x a ∆=--,即可求面积的最大值,进而求a 的值. 【详解】(1)∵抛物线y =(x +1)2﹣5,∴顶点坐标为(﹣1,﹣5),“伴随直线”为y =x ﹣4, 故答案为:(﹣1,﹣5),y =x ﹣4;(2)①由“伴随直线”定义可得:y =a (x ﹣1)2﹣4a 的伴随直线为y =ax ﹣5a ,联立2(1)45y a x a y ax a ⎧=--⎨=-⎩,解得14x y a =⎧⎨=-⎩或23x y a=⎧⎨=-⎩,∴A (1,﹣4a ),B (2,﹣3a ),在y =a (x ﹣1)2﹣4a 中,令y =0可解得x =﹣1或x =3, ∴C (﹣1,0),D (3,0), ∴AC 2=4+16a 2,BC 2=9+9a 2,∵当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,∴AC 2=BC 2,即4+16a 2=9+9a 2,解得=a ∵抛物线开口向下,∴a =∴若△ABC 为等腰三角形时,a 的值为 ②设直线BC 的解析式为y =kx +b , ∵B (2,﹣3a ),C (﹣1,0),∴200k b k b +=⎧⎨-+=⎩,解得k a b a =-⎧⎨=-⎩, ∴直线BC 解析式为y =﹣ax ﹣a ,如图,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x , ∴P [x ,a (x ﹣1)2﹣4a ],Q (x ,﹣ax ﹣a ), ∵P 是直线BC 上方抛物线上的一个动点,∴22219(1)4(2)()24PQ a x a ax a a x x a x ⎡⎤=--++=--=--⎢⎥⎣⎦,∴23127()228PBC S a x a ∆=--, ∴当12x =时,△PBC 的面积有最大值278-a , ∴S 取得最大值274时,即272784-=a ,解得a =﹣2.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,理解新定义,将所求问题转化为直线与抛物线的知识是解题的关键.8.(1)见解析;(2)7;(3)2193.【解析】【分析】(1)根据两个菱形中,点E在BC的延长线上,点G在DC的延长线上这一特殊的位置关系和CE=BH可证明相应的边和角分别相等,从而证明结论;(2)由AB=BC,∠ABC=60 ,可证明△ABC是等边三角形,从而证明∠AHB=90°,再由△ABH≌△HEF,得∠HFE=∠AHB=90°,再得∠DPF=180°﹣∠HFE=90°,在Rt△DPF 中用勾股定理求出DF的长;(3)作FM⊥BG于点M,当EH⊥BC时,可证明CH=CM=12CG=12BH,从而求出BM、FM的长,再由勾股定理求出BF的长.【详解】解:(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E 在BC 的延长线上,点G 在DC 的延长线上, ∴AB ∥DG ∥EF , ∴∠B =∠E , 在△ABH 和△HEF 中, BH EF B E AB HE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△HEF (SAS ).(2)如图2,设FH 交CG 于点P ,连结CF ,∵AB =BC ,∠ABC =60°, ∴△ABC 是等边三角形, ∵BH =CH , ∴AH ⊥BC , ∴∠AHB =90°,由(1)得,△ABH ≌△HEF , ∴∠HFE =∠AHB =90°, ∵DG ∥EF ,∴∠DPF =180°﹣∠HFE =90°, ∴PF ⊥CG ,∵CG =FG ,∠G =∠E =∠B =60°, ∴△GFC 是等边三角形, ∴PC =PG =12CG ;∵BC =AB =2, ∴CG =EF =BH =12BC =1,∴PC =12;∵CD =AB =2, ∴PD =12+2=52, ∵CF =CG =1,∴PF 2=CF 2﹣PC 2=12﹣(12)2=34, ∴22253()724DF PD PF =+=+=.(3)如图3,作FM ⊥BG 于点M ,则∠BMF =90°,∵EH ⊥BC ,即EH ⊥BG , ∴EH ∥FM ,∵∠CEF =∠ACB =60°, ∴EF ∥MH ,∴四边形EHMF 是平行四边形, ∵∠EHM =90°, ∴四边形EHMF 是矩形, ∴EH =FM ;∵EF =EC ,∠CEF =60°, ∴△CEF 是等边三角形, ∴CE =CF ,∵∠EHC =∠FMC =90°, ∴Rt △EHC ≌Rt △FMC (HL ), ∴CH =CM =12CG ;∵CG =CE =BH , ∴CH =12BH ,∴CM =CH =13BC =13×2=23,∴CF =CG =2CM =2×23=43, ∴2FM =(43)2﹣(23)2=43,∵BM =2+23=83,∴2224876219()339BF FM BM =++==. 【点睛】本题主要考查了几何综合,其中涉及到了菱形的性质,全等三角形的判定及性质,等边三角形的判定及性质,勾股定理,矩形的判定及性质等,熟悉掌握几何图形的性质和合理做出辅助线是解题的关键.9.(1)抛物线表达式为211242y x x =-++;直线表达式为122y x =-+;(2)△BQC的面积的最大值为2(3)△PBE 的面积为58(4)点N的坐标为(5(5235,45-)或(92,14). 【解析】 【分析】(1)首先根据二次函数的对称性求出点B 的坐标,然后利用待定系数法把点的坐标代入表达式求解即可;(2)过Q 点作QH 垂直x 轴交BC 于点H ,连接CQ ,BQ ,由二次函数表达式设点Q 的坐标为(x ,211242x x -++),表示出△BQC 的面积,根据二次函数的性质即可求出△BQC的面积的最大值;(3)根据题意设出点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),表示出OD 和PE 的长度,根据OD =4PE 列出方程求出m 的值,即可求出PE 和BD 的长度,然后根据三角形面积公式求解即可;(4)当BD 是菱形的边和对角线时两种情况分别讨论,设出点M 和点N 的坐标,根据菱形的性质列出方程求解即可. 【详解】解:(1)∵抛物线的对称轴为x =1,A (﹣2,0), ∴B 点坐标为(4,0),∴将A (﹣2,0),B (4,0),C (0,2),代入y =ax 2+bx +c 得,42016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得:14122a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的表达式为211242y x x =-++;设直线BC 的函数表达式为y kx b =+,∴将B (4,0),C (0,2),代入y kx b =+得,4002k b b +=⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为122y x =-+. (2)如图所示,过Q 点作QH 垂直x 轴交BC 于点H ,交x 轴于点M ,连接CQ ,BQ ,设点Q 的坐标为(x ,211242x x -++),点H 的坐标为(x ,122x -+),∴HQ =221111224224x x x x x ⎛⎫-++--+=-+ ⎪⎝⎭,∴()221111111422222242QBC QHC QHB S S S QH OM QH BM QH OM BM QH OB x x x x ⎛⎫=+=+=+==⨯-+⨯=-+ ⎪⎝⎭△△△, ∴当221222bx a=-=-=⎛⎫⨯- ⎪⎝⎭时,2122222S =-⨯+⨯=, ∴△BQC 的面积的最大值为2;(3)设点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),∴221111222424PE m m m m m ⎛⎫=-+--++=- ⎪⎝⎭,OD m =,∵OD =4PE ,∴21=44m m m ⎛⎫⨯- ⎪⎝⎭,整理得:250m m -=,解得:10m =(舍去),25m =,∴2211555444PE m m =-=⨯-=,D 点坐标为(5,0), ∴BD =1,∴115512248PBE S PE BD ==⨯⨯=△; (4)如图所示,当BD 是菱形的边时,BM 是菱形的边时,∵四边形BDNM 是菱形, ∴BD =BM =MN ,∴设M 点坐标为(a ,122a -+),N 点坐标为(a +1,122a -+),又∵B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =1,()221422BM a a ⎛⎫=-+-+ ⎪⎝⎭, ∵BD =BM , ∴BD 2=BM 2, ∴()2214212a a ⎛⎫-+-+= ⎪⎝⎭, 整理得:2540760a a -+=, 解得:1225254455a a =+=-,, ∴N 点坐标为(2555+,55-)或(2555-,55), 当BD 是菱形的边时,DM 是菱形的边时,∵四边形BDMN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =MN =DM =1,∴设M 点坐标为(b ,122b -+),N 点坐标为(b -1,122b -+), ∴DM2=()221522b b ⎛⎫-+-+ ⎪⎝⎭, ∵BD =DM , ∴BD 2=DM 2,∴()2215212b b ⎛⎫-+-+= ⎪⎝⎭, 整理得:25481120b b -+=, 解得:122845b b ==,(舍去), ∴N 点坐标为(235,45-);当BD 是菱形的对角线时,∵四边形BMDN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴M 点横坐标为45922+=, 将92x =代入122y x =-+得:y =14-, ∴M 点的坐标为(92,14-),又∵点M 和点N 关于x 轴对称, ∴点N 的坐标为(92,14).综上所述,点N 的坐标为(25552555235,45-)或(92,14). 【点睛】此题考查了一次函数和二次函数表达式的求法,二次函数的性质,二次函数中三角形最大面积问题,菱形存在性问题等知识,解题的关键是根据题意设出点的坐标,表示出三角形面积,根据菱形的性质列出方程求解.10.(1)①见解析;②见解析;③7 (2)57221+77【解析】 【分析】(1)①根据旋转的性质得到CB CE =,求得EBC BEC ∠=∠,根据平行线的性质得到EBC BEA ∠=∠,于是得到结论;②如图1,过点B 作CE 的垂线BQ ,根据角平分线的性质得到AB BQ =,求得=CG BQ ,根据全等三角形的性质得到BH GH =,根据三角形的中位线定理即可得到结论; ③如图2,过点G 作BC 的垂线GM ,解直角三角形即可得到结论.(2)如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,根据旋转的性质得到4==CE BC ,2CD AB ==,解直角三角形得到1NG =,3PG =,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,CB CE ∴=,EBC BEC ∴∠=∠,又//AD BC ,EBC BEA ∴∠=∠, BEA BEC ∴∠=∠,BE ∴平分AEC ∠;②证明:如图1,过点B 作CE 的垂线BQ ,BE 平分AEC ∠,BA AE ⊥,BQ CE ⊥,AB BQ ∴=,CG BQ ∴=,90BQH GCH ∠=∠=︒,BQ AB CG ==,BHQ GHC ∠=∠, ()BHQ GHC AAS ∴∆≅∆,即点H 是BG 中点, 又点P 是BC 中点,//PH CG ∴;③解:如图2,过点G 作BC 的垂线GM ,22BC AB ==,1BQ ∴=,30BCQ ∴∠=︒,90ECG ∠=︒, 60GCM ∴∠=︒, 1CG AB CD ===,32GM ∴=,12CM =, 222253()()722BG BM MG ∴=+=+=;(2)解:如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,24BC AB ==,2AB ∴=,将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,4CE BC ∴==,2CD AB ==,点A ,E ,D 第二次在同一直线上,90CDE,12CD CE ∴=,60DCE ∴∠=︒,30NCG ∴∠=︒,2CG =, 1NG ∴=,3PG =,523DBG DBC DCG BCG S S S S ∆∆∆∆∴=++=+,2227BG BP PG =+=,25722177DBG S DM BG ∆∴==+. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.11.(1)(2,2)-;(2)90°;(3)4- 【解析】 【分析】(1)如图1中,作BH y ⊥轴于H .只要证明()ACO CBH AAS △≌△即可解决问题; (2)过C 作CK x ⊥轴交OA 的延长线于K ,求证ACK DCO △≌△即可求出AOD ∠的度数可求;(3)作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,证明()ABE AFE ASA △≌△,由全等三角形的性质得出BE FE =,证明()ACD CBF ASA △≌△,得出BF AD =,则可得出答案. 【详解】解:(1)如图1中,作BH y ⊥轴于H .(4,0)-A ,(0,2)C ,4∴=OA ,2OC =,90AOC ACB BHC ∠=∠=∠=︒,90ACO BCH ∴∠+∠=︒,90CAO ACO ∠+∠=︒,CAO BCH ∴∠=∠,在ACO △与CBH 中,AOC BHCCAO BCH AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ACO CBH AAS ∴△≌△,4CH OA ∴==,2BH OC ==, 2OH CH OC ∴=-=,(2,2)C ∴-,故答案为:(2,2)-;(2)如图所示,过C 作CK x ⊥轴交OA 的延长线于K ,则90OCK ∠=︒,∵AOB 为等腰直角三角形, ∴45AOB ∠=︒, 又∵90OCK ∠=︒,∴9045K AOB AOB ∠=︒-∠=︒=∠, ∴OC CK =,ACD 为等腰直角三角形, 90ACD ∴∠=︒,AC DC =,90ACO OCD ∴∠+∠=︒,又∵90OCK ∠=︒,90ACO ACK ∴∠+∠=︒, ACK OCD ∴∠=∠,在ACK 与DCO 中,CK OC ACK OCD AC DC =⎧⎪∠=∠⎨⎪=⎩()ACK DCO SAS ∴△≌△,45DOC K ∴∠=∠=︒, 90AOD AOB DOC ∴∠=∠+∠=︒;(3)如图2中,作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,(4,0)-A ,(,0)D m ,4AD m ∴=+,AD 平分BAC ∠, BAE FAE ∴∠=∠,∵BE x ⊥轴于点E ,90AEB AEF ∴∠=∠=︒,在ABE △和AFE △中, AEB AEF AE AEBAE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE AFE ASA ∴△≌△,BE FE ∴=,∵B 的纵坐标为n ,且点B 在第四象限,BE FE n ∴==-, 2BF BE FE n ∴=+=-, 90ACB AEB ∠=∠=︒,90CAD CDA CBF BDE ∴∠+∠=∠+∠=︒,又∵CDA BDE ∠=∠,CAD CBF ∴∠=∠,在ACD △和BCF △中,ACD BCF AC BCCAD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACD CBF ASA ∴△≌△,AD BF ∴=,42m n ∴+=-,即:24m n +=-, ∴2n m +的值为4-. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的性质和判定,角平分线的定义,坐标与图形性质,熟练掌握全等三角形的判定与性质是解题的关键.12.(1)y=x﹣4(2)P(4)(3)存在,M(,0)或(﹣17,0)【解析】【分析】(1)先分别求出A、B、C三点的坐标,即可利用待定系数法求出直线BC的解析式;(2)设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),由平行四边形的性质得到ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),从而推出x1+x2=4,再由四边形EDPQ的周长(0<x<4),即可利用二次函数的性质得到答案;(3)分△AEB∽△BDM和△AEB∽△BM′D,利用相似三角形的性质求解即可.(1)解:∵抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,∴令x=0,则y=4,令y=0,则x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∴C(0,﹣4),A(﹣1,0),B(4,0),设直线BC的解析式为:y=kx+b(k≠0),∴把B、C坐标代入上式得:,解得:,∴直线BC的解析式为:y=x﹣4;(2)解:如图1,过D作轴交BC于E,点P是BC下方抛物线上动点(P在D的右∥轴交BC于Q,侧),过点P作PQ y又∵抛物线的解析式为:y=x2﹣3x﹣4,直线BC的解析式为:y=x﹣4,∴设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),若四边形EDPQ为平行四边形,则ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),∴,∴解得:x1=x2(不合题意,应舍去),x1+x2=4,∵,ED=4x1﹣x12,又∵四边形EDPQ的周长把x2=4﹣x1代入上式得:四边形EDPQ的周长(0<x<4),∵﹣2<0,∴当时,四边形EDPQ的周长有最大值12,此时,∴P(,);(3)解:如图2,若DM∥EB,则∠DMB=∠EBM,∵AE∥DB,∴∠EAB=∠DBM,∴△AEB∽△BDM,∴,∵xD=1,∴yD=1﹣3﹣4=﹣6,∴D(1,﹣6),∵B(4,0),D(1,﹣6),∴yBD=2x﹣8,∵AE∥BD,∴设yAE=2x+n并把A(﹣1,0)代入得:yAE=2x+2,联立,解得:(与A重合,应舍去)或,∴,,∴,∴,∴,∴M(,0),②如图3,若∠DM′B=∠BEA且∠EAB=∠DBM′,∴△AEB∽△BM′D,∴,∴,∴BM′=21,∴OM′=BM′﹣BO=21﹣4=17,∴M′(﹣17,0),综上所述,M(,0)或(﹣17,0).【点睛】本题主要考查了二次函数的综合,二次函数与平行四边形,二次函数与相似三角形,一次函数与二次函数综合等等,解题的关键在于能够熟练掌握相关知识.13.(1)E(43,3)(2)4 3(3)k=6【解析】【分析】(1)由OB=4、OA=3,求出点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),由BF=13BC得到点F(4,1),进而求解;(2)F点的横坐标为4,则F(4,),E的纵坐标为3,则E(,3),进而求解;(3)当点G落在对角线AB上时,得到EF∥AB,则MF是△CGB的中位线,则点F是BC 的中点,即可求解;当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故该情况不存在.(1)解:∵OB=4,OA=3,∴点A、B的坐标分别为:(0,3)、(4,0)∵四边形OACB为矩形,则点C(4,3),当BF=13BC时,点F(4,1),将点F的坐标代入y=kx并解得:k=4,故反比例函数的表达式为:y=4x,当y=3时,x=43,故E(43,3);(2)解:∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC-BF=3-=,∵E的纵坐标为3,∴E(,3),∴CE=AC-AE=4-13k=,在Rt△CEF中,tan∠EFC==43;(3)①当点G落在对角线AB上时,在Rt△ABC中,tan∠ABC=ACBC=43=tan∠EFC,故EF∥AB,连接CG交EF于点M,则MG=MC,即点M是CG的中点,而EF∥AB,故MF是CGB的中位线,则点F是BC的中点,故点F的坐标为(4,32),将点F的坐标代入反比例函数表达式得:k=4×32=6;②当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故点G不会落在OC上;综上,k=6.【点睛】。
2023年中考数学压轴题专题20 二次函数与对称变换综合问题【含答案】
专题20二次函数与对称变换综合问题【例1】(2021秋•开化县月考)定义:关于x轴对称且对称轴相同的两条抛物线叫作“镜像抛物线”.例如:y=(x﹣h)2﹣k的“镜像抛物线”为y=﹣(x﹣h)2+k.(1)请写出抛物线y=(x﹣2)2﹣4的顶点坐标,及其“镜像抛物线”y=﹣(x﹣2)2+4的顶点坐标.写出抛物线的“镜像抛物线”为.(2)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“镜像抛物线”于点C,分别作点B,C关于抛物线对称轴对称的点B',C',连接BC,CC',B'C',BB'.①当四边形BB'C'C为正方形时,求a的值.②求正方形BB'C'C所含(包括边界)整点个数.(说明:整点是横、纵坐标均为整数的点)【例2】(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.【例3】(2022•济宁二模)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,已知B点的坐标为(3,0),C点的坐标为(0,3).(1)求抛物线的解析式;(2)图1中,点P为抛物线上的动点,且位于第二象限,过P,B两点作直线l交y轴于点D,交直线AC于点E.是否存在这样的直线l:以C,D,E为顶点的三角形与△ABE相似?若存在,请求出这样的直线l的解析式;若不存在,请说明理由.(3)图2中,点C和点C'关于抛物线的对称轴对称,点M在抛物线上,且∠MBA=∠CBC',求M点的横坐标.【例4】(2022•合肥四模)已知抛物线L1:y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0).(1)求抛物线的表达式;(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线L1对称抛物线L2的解析式;(3)在(2)的条件下,点M是x轴上方的抛物线L2上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN﹣2ON,求W的最大值.一.解答题(共20题)1.(2022•广陵区二模)已知二次函数y=﹣mx2﹣4mx﹣4m+4(m为常数,且m>0).(1)求二次函数的顶点坐标;(2)设该二次函数图象上两点A(a,y a)、B(a+2,y b),点A和点B间(含点A,B)的图象上有一点C,将点C纵坐标的最大值和最小值的差记为h.①当m=1时,若点A和点B关于二次函数对称轴对称,求h的值;②若存在点A和点B使得h的值是4,则m的取值范围是.2.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.3.(2022•荷塘区校级模拟)已知二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B (x2,0)两点,且(x1<0<x2),交y轴于点C,顶点为D.(1)a=﹣1,b=2,c=4,①求该二次函数的对称轴方程及顶点坐标;②定义:若点P在某函数图象上,且点P的横纵坐标互为相反数,则称点P为这个函数的“零和点”,求证:此二次函数有两个不同的“零和点”;(2)如图,过D、C两点的直线交x轴于点E,满足∠ACE=∠CBE,求ac的值.4.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.5.(2022•兴化市二模)已知一次函数y=kx+m的图象过点(2,3),A(k,y1)、B(k+1,y2)是二次函数y=x2﹣(m﹣2)x+2m图象上的两点.(1)若该二次函数图象的对称轴是直线x=1,分别求出一次函数和二次函数的表达式;(2)当点A、B在二次函数的图象上运动时,满足|y1﹣y2|=1,求m的值;(3)点A、B的位置随着k的变化而变化,设点A、B的运动路线分别与直线x=n交于点P、Q,当PQ=2时,求n的值.6.(2022•三门峡一模)已知二次函数y=ax2﹣2ax+2a(a≠0).(1)该二次函数图象的对称轴是直线x=;(2)若该二次函数的图象开口向上,当﹣1≤x≤4时,y的最大值是5,求抛物线的解析式;(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当x2取大于3的任何实数时,均满足y1<y2,请结合图象,直接写出x1的取值范围.7.(2022•无锡二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN 相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.8.(2022秋•乐陵市校级月考)如图,已知二次函数的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.(4)若点D为抛物线与x轴的另一个交点,在抛物线上是否存在一点M,使△ADM的面积为△ABC的面积的2倍,若存在,请求出M的坐标,若不存在,请说明理由.9.(2022秋•永城市月考)如图,关于x的二次函数y=﹣x2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且过点D(﹣1,4).(1)求b的值及该二次函数图象的对称轴;(2)连接AC,AD,CD,求△ADC的面积;(3)在AC上方抛物线上有一动点M,请直接写出△ACM的面积取到最大值时,点M的坐标.10.(2022秋•越秀区校级月考)如图,在平面直角坐标系xOy中,A(1,0),B(0,2),以AB为边向右作等腰直角△ABC,∠BAC=90°,AB=AC,二次函数的图象经过点C.(1)求二次函数的解析式;(2)平移该二次函数图象的对称轴所在的直线l,若直线l恰好将△ABC的面积分为1:2两部分,请求出直线l平移的最远距离;(3)将△ABC以AC所在直线为对称轴翻折,得到△AB'C,那么在二次函数图象上是否存在点P,使△PB'C是以B'C为直角边的直角三角形?若存在,请求出P点坐标;若不存在,请说明理由.11.(2022秋•西城区校级期中)定义:若两个函数的图象关于某一点Q中心对称,则称这两个函数关于点Q互为“对称函数”.例如,函数y=x2与y=﹣x2关于原点O互为“对称函数”.(1)函数y=﹣x+1关于原点O的“对称函数”的函数解析式为,函数y=(x﹣2)2﹣1关于原点O的“对称函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点Q(0,1)互为“对称函数”,若函数y=x2﹣2x 与函数G的函数值y都随自变量x的增大而减小,求x的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0),与函数N关于点C互为“对称函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.12.(2022春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.13.(2022春•西湖区校级期末)如图所示,在矩形AOCD中,把点D沿AE对折,使点D 落在OC上的F点.已知AO=8,AD=10.(1)求F点的坐标;(2)如果一条不与抛物线对称轴平行的直线与抛物线仅一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过O,F,且直线y=6x﹣36是该抛物线的切线.求抛物线的解析式.并验证点M(5,﹣5)是否在该抛物线上.(3)在(2)的条件下,若点P是位于该二次函数对称轴右侧图象上不与顶点重合的任意一点,试比较∠POF与∠MOF的大小(不必证明),并写出此时点P的横坐标x P的取值范围.14.(2022•南京模拟)已知,如图,抛物线与坐标轴相交于点A(﹣1,0),C(0,﹣3)两点,对称轴为直线x=1,对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是抛物线上的点,当∠ACP=45°时,求点P的坐标;(3)点F为二次函数图象上与点C对称的点,点M在抛物线上,点N在抛物线的对称轴上,是否存在以点F,A,M,N为顶点的平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.15.(2022•兴宁区校级模拟)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M 的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.16.(2022•南京模拟)已知二次函数解析式为y=x﹣1(a≠0),该抛物线与y 轴交于点A,其顶点记为B,点A关于抛物线对称轴的对称点记为C.已知点D在抛物线上,且点D的横坐标为2,DE⊥y轴交抛物线于点E.(1)求点D的纵坐标.(2)当△ABC是等腰直角三角形时,求出a的值.(3)当0≤x≤2时,函数的最大值与最小值的差为2时,求a的取值范围.(4)设点R(a﹣3,﹣1),点A、R关于直线DE的对称点分别为N、M,当抛物线在以A、R、M、N为顶点的四边形内部的图象中,y随x的增大而增大或y随x的增大而减小时,直接写出a的取值范围.17.(2021•九龙坡区校级模拟)若直线y=﹣2x+4与y轴交于点A,与x轴交于点B,二次函数y=ax2+3x+c的图象经过点A,交x轴于C、D两点,且抛物线的对称轴为直线x=.(1)求二次函数的解析式;(2)过点C作直线CE∥AB交y轴于点E,点P是直线CE上一动点,点Q是第一象限抛物线上一动点,求四边形APBQ面积的最大值与此时点Q的坐标;(3)在(2)的结论下,点E是抛物线的顶点,对称轴与x轴交于点G,直线EQ交x轴于点F,在抛物线的对称轴上是否存在一点M,使得∠MFQ+∠CAO=45°,求点M的坐标.18.(2022•成都模拟)如图1所示,直线y=x+3与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式;(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.19.(2022秋•甘井子区校级月考)抛物线y=x2+bx+c过A(﹣1,0),B(3,0)两点,与y轴相交于点C,点C、D关于抛物线的对称轴对称.(1)抛物线的解析式是,△ABD的面积为;(2)在直线AD下方的抛物线上存在点P,使△APD的面积最大,求出最大面积.(3)当t≤x≤t+1时,函数y=x2+bx+c的最小值为5,求t的值.(4)若点M在y轴上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时M点的坐标.20.(2021秋•沙坪坝区月考)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点E与点C关于抛物线对称轴对称,抛物线的对称轴与x轴交于点G.(1)求直线AE的解析式及△ACE的面积.(2)如图1,连接AE,交y轴于点D,点P为直线AE上方抛物线一点,连接PD、PE,直线l过点B且平行于AE,点F为直线l上一点,连接FD、FE,当四边形PDFE面积最大时,在y轴上有一点N,连接PN,过点N作NM垂直于抛物线对称轴于点M,求的最小值.(3)连接AC,将△AOC向右平移得△A'O'C',当A'C'的中点恰好落在∠CAB的平分线上时,将△A'O'C'绕点O'旋转,记旋转后的三角形为△A″O′C″,在旋转过程中,直线A″C″与y轴交于点K,与直线AC交于点H,在平面中是否存在一点Q,使得以C、K、H、Q为顶点的四边形是以KH为边的菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【例1】(2021秋•开化县月考)定义:关于x轴对称且对称轴相同的两条抛物线叫作“镜像抛物线”.例如:y=(x﹣h)2﹣k的“镜像抛物线”为y=﹣(x﹣h)2+k.(1)请写出抛物线y=(x﹣2)2﹣4的顶点坐标(2,﹣4),及其“镜像抛物线”y =﹣(x﹣2)2+4的顶点坐标(2,4).写出抛物线的“镜像抛物线”为.(2)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“镜像抛物线”于点C,分别作点B,C关于抛物线对称轴对称的点B',C',连接BC,CC',B'C',BB'.①当四边形BB'C'C为正方形时,求a的值.②求正方形BB'C'C所含(包括边界)整点个数.(说明:整点是横、纵坐标均为整数的点)【分析】(1)根据定义直接求解即可;(2)①分别求出B(1,1﹣3a),C(1,3a﹣1),B'(3,1﹣3a),C'(3,3a﹣1),由正方形的性质可得BB'=BC,即2=6a﹣2,求出a即可;②由①求出B(1,﹣1),C(1,1),B'(3,﹣1),C'(3,1),在此区域内找出所含的整数点即可.【解答】解:(1)y=(x﹣2)2﹣4的顶点坐标为(2,﹣4),y=﹣(x﹣2)2+4的顶点坐标为(2,4),的“镜像抛物线”为,故答案为:(2,﹣4),(2,4),;(2)①∵y=ax2﹣4ax+1=a(x﹣2)2+1﹣4a,∴抛物线L的“镜像抛物线”为y=﹣a(x﹣2)2﹣1+4a,∵点B的横坐标为1,∴B(1,1﹣3a),C(1,3a﹣1),∵抛物线的对称轴为直线x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=2,BC=6a﹣2,∵四边形BB'C'C为正方形,∴2=6a﹣2,∴a=;②∵a=,∴B(1,﹣1),C(1,1),B'(3,﹣1),C'(3,1),∴正方形BB'C'C所含(包括边界)整点有(1,﹣1),(1,1),(3,﹣1),(3,1),(1,0),(3,0),(2,﹣1),(2,0),(2,1)共9个.【例2】(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据OB=OC可得B点的坐标为(3,0),把A、B的坐标代入二次函数y=ax2+bx﹣3,求出a、b的值即可;(2)求出二次函数的顶点坐标为(1,﹣4),根据二次函数的性质即可得出答案;(3)先设出P的坐标,根据相似三角形的性质列出方程,解出方程即可得到点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣3的图象与y轴交于C点,∴C(0,﹣3).∵OB=OC,点A在点B的左边,∴B(3,0).∵点A的坐标为(﹣1,0),由题意可得,解得:,∴二次函数的解析式为y=x2﹣2x﹣3;(2)∵二次函数的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴二次函数顶点坐标为(1,﹣4),∴当x=1时,y=﹣4,最小值∵当0≤x≤1时,y随着x的增大而减小,∴当x=0时,y=﹣3,∵当1<x≤4时,y随着x的增大而增大,∴当x=4时,y=5.∴当0≤x≤4时,函数的最大值为5,最小值为﹣4;(3)在y轴上存在点P,使△PCC'与△POB相似,理由如下:设P(0,m),如图,∵点C'与点C关于该抛物线的对称轴直线x=1对称,C(0,﹣3).∴C′(2,﹣3).∴CC'∥OB,∵△PCC'与△POB相似,且PC与PO是对应边,∴,即:,解得:m=﹣9或m=﹣,∴存在,P(0,﹣9)或P(0,﹣).【例3】(2022•济宁二模)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,已知B点的坐标为(3,0),C点的坐标为(0,3).(1)求抛物线的解析式;(2)图1中,点P为抛物线上的动点,且位于第二象限,过P,B两点作直线l交y轴于点D,交直线AC于点E.是否存在这样的直线l:以C,D,E为顶点的三角形与△ABE相似?若存在,请求出这样的直线l的解析式;若不存在,请说明理由.(3)图2中,点C和点C'关于抛物线的对称轴对称,点M在抛物线上,且∠MBA=∠CBC',求M点的横坐标.【分析】(1)利用待定系数法求解析式即可;(2)存在直线l,证明△ACO≌△DBO(ASA)得到OA=OD,求出A点坐标即可求出D点坐标,再利用待定系数法求直线解析式即可;(3)连接BM,CC′,作C′H⊥BC交BC于H,求出tan∠MBA=,进一步可求出N(0,)或N(0,﹣)分情况讨论,即可求出M的横坐标为﹣或﹣.【解答】(1)解:抛物线y=﹣x2+bx+c过B(3,0),C(0.3),∴,解得:,∴函数解析式为:y=﹣x2+2x+3;(2)解:存在直线l使得以C,D,E为顶点的三角形与△ABE相似,当l⊥AC时,以C,D,E为顶点的三角形与△ABE相似,∴∠ACD=∠EBO,在Rt△ACO和Rt△DBO中,,∴ΔΑCO≌△DBO(ASA),∴OA=OD,解﹣x2+2x+3=0,得:x1=3(不符合题意,舍去),x2=﹣1,∴A(﹣1,0),∴D(0,1),设直线的解析式为:y=kx+b,将B(3,0),D(0,1)代入解析式可得,解得:,∴直线的解析式为:y=x+1;(3)解:连接BM,CC′,作C′H⊥BC交BC于H,∵抛物线对称轴为直线:x==1,∴CC′=2,∵OB=OC,∴∠BCO=45°,∴∠C′CB=45°,∵C′H⊥BC,CC′=2,∴C′H=CH=,∵OB=OC=3,∴BC=3,∴BH=,∴tan∠CBC′=,∵∠MBA=∠CBC′,∴tan∠MBA=,∴ON=,∴N(0,)或N(0,﹣),当N(0,),如图:∵B(3,0),∴,∴,∴直线BN解析式为:y=x+,解方程﹣x2+2x+3=﹣x+,得:(不符合题意,舍去),∴M的横坐标为﹣;当N(0,﹣),如图:∵B(3,0),∴,∴,∴直线BN解析式为:y=x﹣,解方程﹣x2+2x+3=x﹣,得:(不符合题意,舍去),∴M的横坐标为﹣,综上所述:M的横坐标为﹣或﹣.【例4】(2022•合肥四模)已知抛物线L1:y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0).(1)求抛物线的表达式;(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线L1对称抛物线L2的解析式;(3)在(2)的条件下,点M是x轴上方的抛物线L2上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN﹣2ON,求W的最大值.【分析】(1)将点A(﹣3,0),B(1,0)代入y=ax2+bx﹣3,即可求解;(2)求出顶点的对称点为(﹣1,4),设抛物线L2的解析式为y=n(x+1)2+4,再将抛物线与x轴的交点为(﹣3,0)或(1,0)代入,即可求解析式;(3)由题意可知M(m,﹣m2﹣2m+3),N(m,0),则MN=﹣m2﹣2m+3,ON=|m|,分两种情况讨论;当﹣3<x≤0时,W=﹣m2+3,当m=0时,W有最大值3;当0≤x<1时,W=﹣(m+2)2+7,当m=0时,W有最大值3.【解答】解:(1)将点A(﹣3,0),B(1,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2+2x﹣3;(2)令y=0,则x2+2x﹣3=0,解得x=﹣3或x=1,∴抛物线与x轴的交点为(﹣3,0)或(1,0),∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点为(﹣1,﹣4),∴顶点关于x轴的对称点为(﹣1,4),设抛物线L2的解析式为y=n(x+1)2+4,∵抛物线经过点(﹣3,0)或(1,0),∴n=﹣1,∴y=﹣x2﹣2x+3;(3)∵点M是x轴上方的抛物线L2上一动点,∴﹣3<x<1,∵M的横坐标为m,∴M(m,﹣m2﹣2m+3),N(m,0),∴MN=﹣m2﹣2m+3,ON=|m|,当﹣3<x≤0时,W=MN﹣2ON=﹣m2﹣2m+3+2m=﹣m2+3,∴当m=0时,W有最大值3;当0≤x<1时,W=MN﹣2ON=﹣m2﹣2m+3﹣2m=﹣m2﹣4m+3=﹣(m+2)2+7,∴当m=0时,W有最大值3;综上所述:W的最大值为3.一.解答题(共20题)1.(2022•广陵区二模)已知二次函数y=﹣mx2﹣4mx﹣4m+4(m为常数,且m>0).(1)求二次函数的顶点坐标;(2)设该二次函数图象上两点A(a,y a)、B(a+2,y b),点A和点B间(含点A,B)的图象上有一点C,将点C纵坐标的最大值和最小值的差记为h.①当m=1时,若点A和点B关于二次函数对称轴对称,求h的值;②若存在点A和点B使得h的值是4,则m的取值范围是0<m≤4.【分析】(1)利用配方法求出顶点坐标即可.(2)①根据A,B关于抛物线的对称轴对称,求出a的值,在求出﹣3≤x≤﹣1时,二次函数的最大值,最小值,可得结论.②分四种情形:当a+2≤﹣2,即a≤﹣4时,当﹣4<a≤﹣3时,当﹣3<a≤﹣2时,当a >﹣2时,分别求出满足条件的m的取值范围,可得结论.【解答】解:(1)y=﹣mx2﹣4mx﹣4m+4=﹣m(x2+4x+4)+4=﹣m(x+2)2+4,∴二次函数的顶点坐标为(﹣2,4).(2)①∵点A、B关于对称轴对称=﹣2,∴a=﹣3,当m=1时,y=﹣x2﹣4x﹣4+4=﹣x2﹣4x,则当x=﹣3(或x=﹣1)时,y=3,最小值=4,当x=﹣2时,y最大值∴h=1.②结论:0<m≤4,理由如下:当a+2≤﹣2,即a≤﹣4时,h=y b﹣y a=﹣m(a+2+2)2+4﹣[﹣m(a+2)2+4]=﹣4m(a+3),∵h=4,∴4=﹣4m(a+3),∴a=﹣﹣3≤﹣4,∵m>0,解得m≤1,当﹣4<a≤﹣3时,h=4﹣y a=4﹣[﹣m(a+2)2+4]=m(a+2)2,∴可得a=﹣﹣2,∴﹣4<﹣﹣2≤﹣3,解得1<m≤4,当﹣3<a≤﹣2时,h=4﹣y b=4﹣[﹣m(a+2+2)2+4]=m(a+4)2,可得a=﹣4,∴﹣3<﹣4≤﹣2,不等式无解.当a>﹣2时,h=y a﹣y b=﹣m(a+2)2+4﹣[﹣m(a+2+2)2+4]=4m(a+3),可得a=﹣3,∴﹣3>﹣2,∴m<1,综上所述,满足条件的m的值为0<m≤4.故答案为:0<m≤4.2.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线x=1.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.【分析】(1)①根据所给的点可知A、B两点关于抛物线对称轴对称,利用对称性可求对称轴;②利用待定系数法求函数的解析式即可;(2)用的待定系数法求函数的解析式y=﹣(x﹣m)2+m+3,再分两种情况讨论:当m>0时,m≤x≤m,当x=m时,函数有最大值m+3;当m<0时,﹣m≤x≤﹣m,当x=﹣m时,函数有最大值;分别求m的值即可求解;(3)先判断△ABC是等腰直角三角形,且∠ACB=90°,则过点A、B、C的圆是以AB的中点M为圆心,AB为半径,再分两种情况讨论:当m>0时,MN=AM=|m|=3,可求C 点坐标;当m<0时,CM=AM=3=|m|,可求C点坐标.【解答】解:(1)①∵A(0,3)、B(2m,3),∴A、B两点关于抛物线对称轴对称,∵m=1,∴抛物线的对称轴为直线x=1,故答案为:x=1;②设y=ax2+bx+c(a≠0),∵m=1,∴B(2,3)、C(1,4),将点A、B、C代入y=ax2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)∵A(0,3)、B(2m,3)两点关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=m,设抛物线的解析式为y=a(x﹣m)2+m+3,将点A(0,3)代入,∴am2+m+3=3,∴a=﹣,∴y=﹣(x﹣m)2+m+3,当m>0时,m≤x≤m,∴当x=m时,函数有最大值m+3,∴m+3=4,∴m=1;当m<0时,﹣m≤x≤﹣m,∴当x=﹣m时,函数有最大值,∴4=﹣(﹣m﹣m)2+m+3,解得m=﹣;综上所述:m的值为1或﹣;(3)∵A(0,3)、B(2m,3)、C(m,m+3),∴AB=|2m|,AC=|m|,BC=|m|,∴△ABC是等腰直角三角形,且∠ACB=90°,∴过点A、B、C的圆是以AB的中点M为圆心,AB为半径,如图1,当m>0时,∵⊙M与x轴相切,∴MN=AM=|m|=3,∴m=3,∴C(3,6);如图2,当m<0时,∵⊙M与x轴相切,∴CM=AM=3=|m|,∴m=﹣3,∴C(﹣3,0);综上所述:该二次函数的图象的顶点坐标为(3,6)或(﹣3,0).3.(2022•荷塘区校级模拟)已知二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B (x2,0)两点,且(x1<0<x2),交y轴于点C,顶点为D.(1)a=﹣1,b=2,c=4,①求该二次函数的对称轴方程及顶点坐标;②定义:若点P在某函数图象上,且点P的横纵坐标互为相反数,则称点P为这个函数的“零和点”,求证:此二次函数有两个不同的“零和点”;(2)如图,过D、C两点的直线交x轴于点E,满足∠ACE=∠CBE,求ac的值.【分析】(1)①运用配方法将二次函数解析式化为顶点式,即可得出答案;②由y=﹣x与y=ax2+bx+c联立可得x2﹣3x﹣4=0,运用根的判别式可得Δ>0,即可得出结论;(2)如图,连接AC,先求出直线CD的解析式为y=x+c,可得E(﹣,0),再利用求根公式可得:A(,0),B(,0),再证明△EAC∽△ECB,可得CE2=AE•BE,即c2+=(+)(+),化简即可得出答案.【解答】解:(1)①当a=﹣1,b=2,c=4时,抛物线解析式为y=﹣x2+2x+4,∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴抛物线的对称轴为直线x=1,顶点为D(1,5);②当y=﹣x时,﹣x2+2x+4=﹣x,整理得:x2﹣3x﹣4=0,∵Δ=(﹣3)2﹣4×1×(﹣4)=25>0,∴二次函数y=﹣x2+2x+4有两个不同的“零和点”;(2)如图,连接AC,∵y=ax2+bx+c,∴C(0,c),顶点D(﹣,),设直线CD的解析式为y=kx+n,则,解得:,∴直线CD的解析式为y=x+c,∴E(﹣,0),∵A(,0),B(,0),∴AE=﹣(﹣)=+,BE=﹣(﹣)=+,∵∠ACE=∠CBE,∠AEC=∠CEB,∴△EAC∽△ECB,∴=,∴CE2=AE•BE,在Rt△CEO中,CE2=OC2+OE2=c2+()2=c2+,∴c2+=(+)(+),化简得:ac=﹣1,故ac的值为﹣1.4.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.【分析】(1)首先利用待定系数法确定函数解析式,然后利用对称轴方程求解;(2)根据平移的性质求得B(2,3),然后由“二次函数的图象与线段AB有公共点”得到4a﹣4a﹣3a≤3,通过解该不等式求得答案.【解答】解:(1)∵二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0),∴把(3,0)代入y=ax2+bx﹣3a,得9a+3b﹣3a=0,化简,得b=﹣2a,∴二次函数的对称轴为:.(2)∵点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,∴B(2,3),∵a<0,开口向下,∴二次函数图象与线段AB有交点时,4a﹣4a﹣3a≤3,解得a≥﹣1,故a的取值范围是:﹣1≤a<0.5.(2022•兴化市二模)已知一次函数y=kx+m的图象过点(2,3),A(k,y1)、B(k+1,y2)是二次函数y=x2﹣(m﹣2)x+2m图象上的两点.(1)若该二次函数图象的对称轴是直线x=1,分别求出一次函数和二次函数的表达式;(2)当点A、B在二次函数的图象上运动时,满足|y1﹣y2|=1,求m的值;(3)点A、B的位置随着k的变化而变化,设点A、B的运动路线分别与直线x=n交于点P、Q,当PQ=2时,求n的值.【分析】(1)利用对称轴为1求出m的值,可得二次函数的解析式,将点(2,3)和m=4代入一次函数y=kx+m,可得一次函数的解析式;(2)将A(k,y1)、B(k+1,y2)两点分别代入y=x2﹣(m﹣2)x+2m,求出|y1﹣y2|=1,再利用y=kx+m过点(2,3),得出m=3﹣2k,代入①式,最后得出结果;(3)将A,B坐标代入分别表示出y P和y Q,再由m=3﹣2k,得出y P=k2﹣(m﹣2)k+2m,y Q=(k+1)2﹣(m﹣2)(k+1)+2m,再将k=n,k+1=n代入,得出用n表示的y P和y Q,,进而得出|y P﹣y Q|=|2n﹣4|=2,求解即可.【解答】解:(1)∵对称轴为x=1,∴,∴,解得m=4,∴二次函数的表达式为:y=x2﹣(4﹣2)x+2x4=x2﹣2x+8,将点(2,3)和m=4代入一次函数y=kx+m,得到3=2k+4,解得:k=﹣,∴一次函数的表达式为y=﹣x+4;∴一次函数表达式:,二次函数的表达式:y=x2﹣2x+8;(2)将A(k,y1)、B(k+1,y2)两点分别代入y=x2﹣(m﹣2)x+2m,得到y1=k2﹣(m﹣2)k+2m,y2=(k+1)2﹣(m﹣2)(k+1)+2m,∵|y1﹣y2|=1,∴y1﹣y2=±1,∴k2﹣(m﹣2)k+2m﹣[(k+1)2﹣(m﹣2)(k+1)+2m]=±1,整理得:m﹣2k﹣3=±1①,∵y=kx+m过点(2,3),代入得:m=3﹣2k,将m=3﹣2k代入①式得:k=±,即k=或k=﹣,当k=时,m=3﹣2×=;当k=﹣时,m=3﹣2×(﹣)=,综上所述,m=或m=.(3)解:将A(k,)B(k+1,y2)代入二次函数y=x2﹣(m﹣2)x+2m,得y P=k2﹣(m﹣2)k+2m,y Q=(k+1)2﹣(m﹣2)(k+1)+2m,又∵一次函数y=kx+m过点(2,3),代入得:m=3﹣2k,∴y P=3k2﹣5k+6,y Q=3k2﹣k+6,∵k=n,k+1=n,把k=n代入得y P=3n2﹣5n+6,把k=n﹣1代入y Q=3(n﹣1)2﹣(n﹣1)+6,∴|y P﹣y Q|=|2n﹣4|=2,解得n=1或3.6.(2022•三门峡一模)已知二次函数y=ax2﹣2ax+2a(a≠0).(1)该二次函数图象的对称轴是直线x=1;(2)若该二次函数的图象开口向上,当﹣1≤x≤4时,y的最大值是5,求抛物线的解析式;(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当x2取大于3的任何实数时,均满足y1<y2,请结合图象,直接写出x1的取值范围.【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)结合图象,分两种情况讨论,当x2取大于3的任何实数时,均满足y1<y2,推出当抛物线开口向上,当﹣1≤x1≤3时,满足条件,由此即可解决问题.【解答】解:(1)对称轴x=﹣=1.故答案为1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,且当﹣1≤x≤4时,y的最大值是5,∴当x=4时,y的最大值为5,∴16a﹣8a+2a=5,∴a=,∴抛物线的解析式为y=x2﹣x+1;(3)如图,∵对称轴为直线x=1,∴x=﹣1与x=3时的y值相等,∵x2>3时,均满足y1<y2,②当a<0时,抛物线开口向下,如图1,不成立;②当a>0时,抛物线开口向上,如图2,当x2取大于3的任何实数时,均满足y1<y2,此时,x1的取值范围是:﹣1≤x1≤3;∴由①②知:当a>0时,抛物线开口向上.当x2取大于3的任何实数时,均满足y1<y2,此时,x1的取值范围是:﹣1≤x1≤3.7.(2022•无锡二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN 相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.【分析】(1)先求得点C的坐标,设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入求得a的值,从而得到抛物线的解析式;(2)①当点C、D、N为顶点的三角形与△FEN相似时分两种情况:△CDN∽△FEN和△CDN∽△NEF,列比例式可解答;②如图2所示:过点A作GH∥y轴,过点M作MG⊥GH于G,过点A作AE⊥AM,交MP于点E,证明△AEM是等腰直角三角形,得AM=AE,计算点M的坐标,证明△MGA ≌△AHE(AAS),则EH=AG=6,AH=GM=2,利用待定系数法可得直线EA的解析式为y=−2x+8,与二次函数解析式联立方程,解出可得结论;(3)分T在x轴上,x轴上方和下方三种情况:根据符合条件的Q恰好有2个正确画图可得结论.【解答】解:(1)y=ax2+bx+4,当x=0时,y=4,∴C(0,4),设抛物线的解析式为y=a(x+1)(x−4),将点C的坐标代入得:−4a=4,解得a=−1,∴抛物线的解析式为y=−x2+3x+4;(2)①如图1,抛物线的对称轴是:x=−=,∴CD=,EF=+==,设点N的坐标为(,a)则ND=4−a,NE=a,当△CDN∽△FEN时,=,即=,解得a=,∴点N的坐标为(,);当△CDN∽△NEF时,=,即=,解得:a1=a2=2,∴点N的坐标为(,2),综上所述,点N的坐标为(,)或(,2);②如图2所示:过点A作GH∥y轴,过点M作MG⊥GH于G,过点A作AE⊥AM,交MP于点E,∵∠AMP=45°,∠MAE=90°,∴△AEM是等腰直角三角形,∴AM=AE,将x=1代入抛物线的解析式得:y=6,∴点M的坐标为(1,6),∴MG=2,AG=6,∵∠GAM+∠EAH=90°,∠EAH+∠AEH=90°,∴∠GAM=∠AEH,∵∠G=∠H=90°,。
2024年九年级中考数学压轴题-圆中的新定义问题(解析版)
圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。
全国各地中考数学压轴题精选(含详细答案)
12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系 ,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点, 动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒. (1)求直线BC的解析式; (2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的 ; (3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S 与t的函数关系式,并指出自变量t的取值范围;
8
点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐 标原点O.(如图2) ①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时, S的值恰好等于梯形OEFG面积的 ;
②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM 是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在, 请说明理由.(利用图3进行探索)
(完整)中考数学压轴题精选含答案
一、解答题1.如图,ABC 为O 的内接三角形,AB 为O 的直径,过点A 作O 的切线交BC 的延长线干点D .(1)求证:ABC ∽;(2)若E 为AD 上一点,使得,连接OE ,求证:OE 平分;(3)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且,2AB =,求CG的长.2.如图,在Rt △AOD 中,∠AOD =90°,以点O 为圆心、OA 为半径作⊙O .延长AD 、OD ,分别交⊙O 于点C 、E ,点B 是OD 延长线上一点,且有BC =BD .(1)求证:BC 是⊙O 的切线;(2)若∠OAD =30°,CD =3,求弧CE 长. (3)若OD =3,DE =1,求BE .3.如图①,直线:24l y x =-+分别交x 轴和y 轴于点A 和点B ,将AOB 绕点O 逆时针旋转90︒得到COD △.抛物线2:4h y ax bx =++经过A 、B 、D 三点.(1)求抛物线h的表达式;(2)若与y轴平行的直线m以1秒钟一个单位长的速度从y轴向左平移,交线段CD于点M、交抛物线h于点N,求线段MN的最大值;(3)如图②,点E为抛物线h的顶点,点P是抛物线h在第二象限的上一动点(不与点D、B重合),连接PE,以PE为边作图示一侧的正方形PEFG.随着点P的运动,正方形的大小、位置也随之改变,当顶点G恰好落在y轴的负半轴时,试求出此时点P的坐标.4.已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足()2a c++-=.250a______,b=______,c=______;(1)填空:=(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①当AC长为6时,求t的值;②当点A在点C左侧时(不考虑点A与B,C重合的情况),是否存在一个常数m使得+⋅的值在某段运动过程中不随t的改变而改变?若存在,求出m的值;若不存2AC m AB在,请说明理由.5.如图,抛物线2=-++与x轴相交于A B、两点,与y轴交于点C,顶点为D,抛y x2x3物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求线段DE的长.(2)联结OE,若点G在抛物线的对称轴上,且BEG与COE相似,请直接写出点G的坐标.(3)设点P为x轴上的一点,且tan4,时,求点P的坐∠+∠=∠=DAO DPOαα标.6.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围7.已知二次函数y =﹣x 2+2x +m +1. (1)当m =2时. ①求函数顶点坐标;②当n ≤x ≤n +1时,该函数的最大值为3,求n 的值.(2)当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2,求m 的取值范围. (3)已知点P 为二次函数上一点,点P 的横坐标为﹣3m +2,点M 的坐标为(2m ,m ),以PM 为对角线构造矩形PQMN ,矩形的各边与坐标轴垂直,当抛物线在矩形PQMN 内部的函数部分y 随着x 的增大而增大时,直接写出m 的取值范围.8.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4.点P 从点A 出发,在线段AB 上以每秒1个单位长度的速度向终点B 运动,连接CP .设点P 运动的时间为t 秒. (1)填空:AB = ;(2)当t 为何值时,CP 平分∠ACB ; (3)当t 为何值时,△BCP 为等腰三角形.9.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标; (3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.10.在平面直角坐标系xOy 中,已知抛物线y =x 2﹣2x ﹣3与x 轴交于A 、B 两点,与y 轴交于C 点,D 为抛物线顶点.(1)连接AD ,交y 轴于点E ,P 是抛物线上的一个动点.①如图一,点P 是第一象限的抛物线上的一点,连接PD 交x 轴于F ,连接,若,求点P 的坐标.②如图二,点P 在第四象限的抛物线上,连接AP 、BE 交于点G ,若,则w 有最大值还是最小值?w 的最值是多少?(2)如图三,点P 是第四象限抛物线上的一点,过A 、B 、P 三点作圆N ,过点P 作PM x ⊥轴,垂足为I ,交圆N 于点M ,点P 在运动过程中,线段是否变化?若有变化,求出MI 的取值范围;若不变,求出其定值.(3)点Q 是抛物线对称轴上一动点,连接OQ 、AQ ,设AOQ 外接圆圆心为H ,当的值最大时,请直接写出点H 的坐标.11.已知,E 为正方形ABCD 中CD 边上一点,连接BE ,过点C 作CF ⊥BE 交AD 于F ,垂足为G .(1)如图1,求证:CE =DF ;(2)如图2,连接AG 、BF ,交于点H ,求证:∠ABF =∠AGF ; (3)如图3,在(2)的条件下,若AG =AB =11,求线段GH 的长.12.如图1,在平面直角坐标系中,直线4y x =+与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,并且与x 轴交于另一点C (点C 在点A 的右侧),点P 是抛物线上一动点.(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的一个动点,过点P 作PD ∥y 轴交AB 于点D ,点E 为线段DB 上一点,且DE =,过点E 作EF ∥PD 交抛物线于点F ,当点P 运动到什么位置时,四边形PDEF 的面积最大?并求出此时点P 的坐标;(3)如图2,点F 为AO 的中点,连接BF ,点G 为y 轴负半轴上一点,且GO =2,沿x 轴向右平移直线AG ,记平移过程的直线为,直线交x 轴于点M ,交直线AB 于点N .是否存在点M ,使得△FMN 为等腰三角形,若存在,直接写出....平移后点M 的坐标;若不存在,请说明理由.13.如图,在正方形OABC 中,AB =4,点E 是线段OA (不含端点)边上一动点,作△ABE 的外接圆交AC 于点D .抛物线y =ax 2﹣x +c 过点O ,E .(1)求证:∠BDE =90°;(2)如图1,若抛物线恰好经过点B ,求此时点D 的坐标; (3)如图2,AC 与BE 交于点F .①请问点E 在运动的过程中,CF ⋅AD 是定值吗?如果是,请求出这个值,如果不是,请说明理由; ②若,求点E 坐标及a 的值.14.(1)[感知]如图1,在正△ABC 的外角∠CAH 内引射线AM ,作点C 关于AM 的对称点E (点E 在∠CAH 内),连接BE ,BE 、CE 分别交AM 于点F 、G .求∠FEG 的度数.(2)[探究]把(1)中的“正△ABC ”改为“正方形ABDC ,其余条件不变,如图2,类比探究,可得: ①∠FEG = °;②猜想线段BF 、AF 、FG 之间的数量关系,并说明理由.(3)[拓展]如图3,点A 在射线BH 上,AB =AC ,∠BAC =α(0°<α<180°),在∠CAH 内引射线AM ,作点C 关于AM 的对称点E (点E 在∠CAH 内),连接BE ,BE 、CE 分别交AM 于点F .G .则线段BF 、AF 、GF 之间的数量关系为 .15.定义:在平面直角坐标系中,对于任意两点()11,A x y ,()22,B x y ,如果点(),M x y 满足122x x x -=,122y y y -=,那么称点M 是点A 、B 的“双减点”. 例如:()4,5A -,()6,1B -、当点(),T x y 满足4652x --==-,()5132y --==,则称点()5,3M -是点A 、B 的“双减点”.(1)写出点()1,3A -,()1,4B -的“双减点”C 的坐标;(2)点()6,4E -,点4,43F m m --⎛⎫⎪⎝⎭,点(),M x y 是点E 、F 的“双减点”.求y 与x 之间的函数关系式;(3)在(2)的条件下,y 与x 之间的函数图象与y 轴、x 轴分别交于点A 、C 两点,B 点坐标为3,0,若点E 在平面直角坐标系内,在直线AC 上是否存在点F ,使以A 、B 、E 、F 为顶点的四边形为菱形?若存在,请求出F 点的坐标;若不存在,请说明理由. 16.如图,在平面直角坐标系中,已知AOB CDA △△≌,且1OA =,()0,2B ,抛物线24y ax ax a =+-经过点C .(1)求抛物线的解析式.(2)在抛物线(对称轴的右侧)上是否存在一点P ,使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若x 轴上有一点E 的横坐标为2a ,过点E 作y 轴的平行线交抛物线于点F ,抛物线对称轴与x 轴交于点G ,Q 为抛物线(对称轴的左侧)上一动点,是否存在点Q 使GF 为EFQ ∠的平分线?若存在,求出点Q 的坐标;若不存在,请说明理由.17.已知抛物线y =﹣x 2+bx +c 与x 轴交于点A (m ﹣2,0)和B (2m +1,0)(点A 在点B 的左侧),与y 轴相交于点C ,顶点为P ,对称轴为l :x =1.(1)求抛物线解析式;(2)直线y =kx +2(k ≠0)与抛物线相交于两点M (x 1,y 1),N (x 2,y 2)(x 1<x 2),当|x 1﹣x 2|最小时,求抛物线与直线的交点M 和N 的坐标;(3)首尾顺次连接点O 、B 、P 、C 构成多边形的周长为L ,若线段OB 在x 轴上移动,求L 最小值时点O 、B 移动后的坐标及L 的最小值.18.已知AB 、CD 为O 的两条弦,//AB CD .(1)如图1,求证弧AC =弧BD ;(2)如图2,连接AC 、BC 、OA 、BD ,弦BC 与半径OA 相交于点G ,延长AO 交CD 于点E ,连接BE ,使BE BD =,若OA BC ⊥,求证:四边形ABEC 为菱形;(3)在(2)的条件下,CH 与O 相切于点C ,连接CO 并延长交BE 于点F ,延长BE 交CH 于点H ,11OF =,24sin 25BDC ∠=,求CH 长. 19.如图,圆心M (3,0),半径为5的⊙M 交x 轴于A 、B 两点,交y 轴于C 点,抛物线2y ax bx c =++经过A 、B 、C 三点.(1)求抛物线的解析式.(2)求圆M 上一动点P 到该抛物线的顶点Q 的距离的最小值?并求出此时P 点的坐标. (3)若OC 的中点为F ,请问抛物线上是否存在一点G ,使得∠FBG =45°,若存在,求出点G 的坐标,若不存在,请说明理由.20.如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx -4(a ≠0)经过点A (-2,0)和点B (4,0).(1)求这条抛物线所对应的函数表达式;(2)点P为抛物线上第一象限内一点,若S△ABC=2S△PBC,求点P的坐标;(3)如图2,点D是第二象限内抛物线上一点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【参考答案】**科目模拟测试一、解答题1.(1)见解析(2)见解析(3)【解析】【分析】(1)由圆周角定理和切线的性质可知,又因为,即可证明;(2)连接OE交圆于点H,连接OC,由,利用等腰三角形的性质和判定可证,从而得出OE是AC的垂直平分线,从而解决问题;(3)过点G作于K,由点F在半圆的中点,得,得,,得,可求出,从而解决问题.(1)解:证明:为O的直径,,过点A作O的切线交BC的延长线于点D,,,又,;(2)证明:如图,连接OE交圆于点H,连接OC,,,,,,,OC是O的半径,,垂直平分AC,∴,平分;(3)如图,在中,,2AB=,,过点G作于K,,,点F为直径AB下方半圆的中点,,,,,在Rt ABC∆中,,,由勾股定理得,,,,,,,在中,,.【点睛】本题是圆的综合题,主要考查了圆的切线的性质,圆周角定理,相似三角形的判定与性质,勾股定理,三角函数等知识,根据得出线段之间的数量关系是解题的关键.2.(1)见详解;(2)12π;(3)16【解析】【分析】(1)连接CO,先证∠BCD=∠ADO,由∠A+∠ADO=90°,可得∠OCA+∠BCD=90°,进而即可得到结论;(2)先证BCD△是等边三角形,∠BOC=30°,求出OC=3,利用弧长公式即可求解;(3)过点O作ON⊥AD,过点B作BM⊥CD,利用勾股定理和面积法求出ON=125,AN=165,结合垂径定理和等腰三角形的性质得DM=710,最后利用锐角三家函数即可求解.【详解】解:(1)连接CO,∵BC=BD,∴∠BDC=∠BCD,∵∠BDC=∠ADO,∴∠BCD=∠ADO,∵OA=OC,∴∠A=∠OCA,∵∠AOD=90°,∴∠A+∠ADO=90°,∴∠OCA+∠BCD=90°,即OC⊥BC,∴BC是⊙O的切线;(2)∵∠OAD=30°,∴∠OCA=∠OAD=30°,∠AOC=180°-30°-30°=120°,∠ADO=∠BDC=90°-30°=60°,∴∠BOC=120°-90°=30°,又∵BC=BD,∴BCD△是等边三角形,∴CB=CD=3,∵OC⊥BC,∴OC=3×3=3,∴30311802CEππ⨯==;(3)过点O作ON⊥AD,过点B作BM⊥CD,∵OD=3,DE=1,∴AO=EO=3+1=4,∴AD22345+=,∴ON=125 OD OAAD⨯=,∴AN221216455⎛⎫-=⎪⎝⎭,∴AC=2AN=325,∴CD=325-5=75,∵BD=BC,∴DM=75÷2=710,∵∠BDM=∠ADO,∴cos∠BDM=cos∠ADO,即:35 DM ODBD AB==,∴BD =53DM =710×53=76,∴BE =76-1=16. 【点睛】本题主要考查圆和三角形的综合,掌握勾股定理,切线的判定定理,垂径定理,锐角三角函数的定义是解题的关键.3.(1)2142y x x =--+;(2)258;(3)P 点的坐标为552222⎛-- ⎝ 【解析】 【分析】(1)先由直线l 的解析式得出A 、B 的坐标,再根据旋转的性质得出D 点坐标,然后用待定系数法求出抛物线解析式;(2)设出N 点横坐标,纵坐标用横坐示表示,同时表示出M 点坐标,而MN 的长度为N 点与M 点的纵坐标之差,得出MN 的长度是N 点横坐标的二次函数,利用配方法求出最值;(3)作PH y ⊥轴于H ,交抛物线对称轴于K ,可得到PKE GHP △≌△,从而得到PK GH =,EK PH =,利用配方法可得到顶点91,2E ⎛⎫- ⎪⎝⎭,然后设21,42P m m m ⎛⎫--+ ⎪⎝⎭,则有21122EK m m =++,PH m =-,可得到关于m 的方程,解出即可.【详解】解:(1)直线:24l y x =-+交x 轴于点A 、交y 轴于点B , (2,0)A ∴,(0,4)B ,将AOB 绕点O 逆时针旋转90︒得到COD △, (4,0)D ∴-,(0,2)C ,设过点A ,B ,D 的抛物线h 的解析式为:(4)(2)y a x x =+-,将B 点坐标代入可得:4(04)(02)a =+-,解得12a =-∴抛物线h 的解析式为2142y x x =--+;(2)由(4,0)D -,(0,2)C , 则直线CD 的解析式为122y x =+, 设N 点坐标为21,42n n n ⎛⎫--+ ⎪⎝⎭,则M 点坐标为1,22n n ⎛⎫+ ⎪⎝⎭,222111313254222222228MN n n n n n n ⎛⎫⎛⎫∴=--+-+=--+=-++ ⎪ ⎪⎝⎭⎝⎭,∴当32n =-时,MN 最大,最大值为258; (3)若G 点在y 轴上,如图,作PH y ⊥轴于H ,交抛物线对称轴于K ,正方形,PEFG90,EPK GPH GPH PGH,EPKPGH同理:,PEK GPH在PKE △和GHP △中,EPKPGHPE GP PEK GPH,PKE GHP ∴△≌△, PK GH ∴=,EK PH =对2142y x x =--+,配方得219(1)22y x =-++,则顶点91,2E ⎛⎫- ⎪⎝⎭,设21,42P m m m ⎛⎫--+ ⎪⎝⎭,则有22911142222EK m m m m =++-=++,PH m =-, 21122m m m ∴-=++,解得23m =-P ∴点的坐标为5523,323,322⎛-- ⎝. 【点睛】本题是二次函数综合题,主要考查了一次函数图象上坐标点的特征,待定系数法求二次函数解析式,利用纵坐标之差表示竖直方向线段的长度,利用配方法求二次函数最值,正方形的性质、全等三角形的判定与性质、解一元二次方程等众多知识点,综合性强,难度较大.对于(3)问,根据正方形的性质巧妙构造出全等三角形,从而得出线段相等而列出方程是解答的关键和要点.4.(1)2,1,5-;(2)①13或133;②存在,m 的值为2-或2.【解析】 【分析】(1)根据正整数的定义、绝对值的非负性、偶次方的非负性分别可求出,,b a c 的值; (2)①先求出运动t 秒后,点,A C 所表示的数,再分点A 在点C 左侧和点A 在点C 右侧两种情况,然后根据数轴的定义建立方程,解方程即可得;②先求出运动t 秒后,点,,A B C 所表示的数,从而可得AC 的长,再分点A 在点B 左侧和点A 在点B 右侧两种情况,分别求出AB 的值,代入化简,然后根据整式的无关型问题求解即可得. 【详解】解:(1)b 是最小的正整数,1b ∴=,()2250a c ++-=, 20,50a c ∴+=-=,解得2,5a c =-=, 故答案为:2,1,5-;(2)①由题意,运动t 后,点A 所表示的数是42t -,点C 所表示的数是5t +, 当点A 在点C 左侧时,5(42)6AC t t =+--=,解得13t =, 当点A 在点C 右侧时,42(5)6AC t t =--+=,解得133t =, 综上,t 的值为13或133;②由题意,运动t 后,点A 所表示的数是42t -,点B 所表示的数是1t +,点C 所表示的数是5t +,当421t t -=+时,13t =, 当425t t -=+时,73t =, 因为点A 在点C 左侧, 所以5(42)73AC t t t =+--=-,当点A 在点B 左侧,即01t <<时,1(42)33AB t t t =+--=-, 则22(73)(33)314(36)AC m AB t m t m m t +⋅=-+-=+-+, 由360m +=得:2m =-,即在01t <<运动时间内,当2m =-时,2AC m AB +⋅的值不随t 的改变而改变; 当点A 在点B 右侧,即713t <<时,42(1)33AB t t t =--+=-,则22(73)(33)143(36)AC m AB t m t m m t +⋅=-+-=-+-, 由360m -=得:2m =, 即在713t <<运动时间内,当2m =时,2AC m AB +⋅的值不随t 的改变而改变; 综上,存在一个常数m 使得2AC m AB +⋅的值在某段运动过程中不随t 的改变而改变,m 的值为2-或2. 【点睛】本题考查了数轴、一元一次方程的应用、绝对值和偶次方的非负性、整式等知识点,较难的是题(2)②,正确分两种情况讨论是解题关键.5.(1)2;(2)(1,4)-或21,3⎛⎫⎪⎝⎭;(3)(19,0)或(17,0)-【解析】 【分析】(1)根据抛物线的解析式可求得与坐标轴的坐标及顶点坐标,从而易得OB =OC ,由EF ⊥OB 即可求得EF 的长,从而求得DE 的长;(2)设点G 的坐标为(1,x ),分两种情况考虑:△COE ∽△EGB 和△COE ∽△EBG ,根据相似三角形的性质即可求得x 的值,从而可求得点G 的坐标;(3)分两种情况考虑:点P 在点A 的右侧和点P 在点A 的左侧;当点P 在点A 的右侧时,由D (1,4),则tan 4DOF ∠=,得出∠α =∠DOF ,然后根据三角形外角的性质可求得∠DPO =∠ADO ,进而可得△ADP ∽△AOD ,由相似三角形的性质可求得OP 的长,从而求得P 点的坐标;当点P 在点A 的左侧时, 作点P 关于抛物线对称轴的对称点P ',则点P '也满足题意. 【详解】(1)当2y x x =-++23=0时,解方程得:1213x x =-=, ∴抛物线2y x x =-++23与x 轴的交点坐标分别为A (-1,0)、B (3,0) ∴OB =3∵在2y x x =-++23中,当x =0时,3y = ∴抛物线与y 轴的交点C 的坐标为(0,3) ∴OC =3∵2223(1)4y x x x =-++=--+ ∴抛物线的顶点坐标为D (1,4) ∴DF =4,OF =1 ∵OB =OC =3,OC ⊥OB ∴∠OCB =∠OBC =45° ∵EF ⊥OB∴∠FEB =∠OBC =45° ∴EF =BF =OB -OF =3-1=2∴DE =DF -EF =4-2=2 (2)设点G 的坐标为(1,x )在Rt △OBC 及Rt △FBE 中,由勾股定理得:BC =BE ===∴CE BE BE =-==①若△COE ∽△EGB 则有OC EGCE BE=,∠GEB =∠OCE =45° 即OC ∙BE =CE ∙EG ∴点G 只能在点E 下方∵由(1)可得点E 的坐标为(1,2) ∴EG =2-x∴3)x ⨯=- 解得:x =-4即点G 的坐标为(1,-4) ②若△COE ∽△EBG 则有OC BECE EG=,∠BEG =∠OCE =45° 即OC ∙EG =CE ∙BE ∴点G 只能在点E 下方 ∴EG =2-x∴3(2)x ⨯-=解得:23x =即点G 的坐标为21,3⎛⎫⎪⎝⎭综上所述,满足条件的点G 的坐标为(1,4)-或21,3⎛⎫⎪⎝⎭(3)①如图,当点P 在点A 的左侧时,连接DP 、DA 、DO ∵tan 4DFDOF OF∠==,tan 4α= ∴∠DOF =∠α=∠DAO +∠DPO ,∠DOF =∠PDO +∠DPO ∴∠DAO =∠PDO ∴△OAD ∽△ODP ∴OA ODOD OP=,即2OD OA OP = ∵22211617OD OF DF =+=+= ∵OA =1 ∴OP =17∴点P 的坐标为(-17,0)②当点P 在点A 的右侧时,作点P (-17,0)关于抛物线的对称轴的对称点P ',则DP O DPO '∠=∠∴DAO DP O α'∠+∠=∠此时点P '满足题意,且其坐标为(19,0)综上所述,满足条件的点P 的坐标为(19,0)或(17,0)- 【点睛】本题考查了求二次函数与x 轴的交点、顶点坐标,相似三角形的判定与性质,勾股定理等知识,求得三角形相似是关键.注意分类讨论.6.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k ≠0或56<k <43【解析】 【分析】(1)把A (−3,0),B (1,0),52,2C ⎛⎫ ⎪⎝⎭代入y =ax 2+bx +c ,解方程组即可;(2)把C 点坐标代入直线CD ,得2k +b =52,分两种情况:①若AB 为平行四边形的边时,②若AB 为平行四边形的对角线时,得关于k 、b 的方程组,解方程组即可求解; (3)分两种情况:①当E 点在x 轴上方时,②E 点在x 轴下方时,根据当α=β时,列方程,可求出k 的值,进而求出k 的取值范围. 【详解】解:(1)设抛物线的解析式为y =ax 2+bx +c , ∵抛物线经过A (−3,0),B (1,0),C (2,52)三点, ∴93005422a b c a b c a b c ⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132a b c ⎧⎪⎪⎨⎪⎪-⎩===, ∴抛物线的解析式为y =12x 2+x −32; (2)如图1所示,将C 点坐标代入直线CD ,得2k +b =52, 当x =−1时,y =−k +b ,即E (−1,−k +b ).①若AB 为平行四边形的边时,则F (-1+4,−k +b )或F (-1-4,−k +b ),即:F (3,−k +b )或F (-5,−k +b ), 把F (3,−k +b )代入y =12x 2+x −32,得−k +b =6, 把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称, ∴F (−1,k -b ), ∴k -b =-2, 又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2); (3)如图2所示,①当E点在x轴上方时,如图2所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,∴∠AEH=∠EGH,∵∠AHF=∠FHG=90°,∴AHF FHG∽,∴AE AH EG EH=,∵A (−3,0),E(−1,−k+b),G(bk-,0),∴()()2222221k bk bbk bk+-+=-+⎛⎫-++-+⎪⎝⎭,∴k2−bk−2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k <56且k ≠0时,α>β;②E 点在x 轴下方时,如图4所示,当α=β时, ∵∠EHA =90°, ∴∠AEC =90°, 根据①可得此时k =43(k =−12舍去),随着E 点向下移动,∠CEH 的度数越来越小,∠EAH 的度数越来越大,因此当56<k <43时,α>β.综上所述可得,当α>β时,k 取值范围为−12<k <56且k ≠0或56<k <43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.7.(1)①()1,4;②2n =或1n =-;(2)1m 或0m =或43m -<≤-;(3)12m ≤ 【解析】 【分析】(1)①根据顶点坐标的计算公式计算即可;②分两种情况讨论,根据二次函数的图象性质计算即可;(2)分三种情况讨论,再根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2,列不等式组即可;(3)根据点P 和点M 横坐标的位置及二次函数的图象性质列不等式组即可; 【详解】(1)当m =2时,函数解析式为2y x 2x 3=-++, ①2122b xa ,24124444ac b y a ---===-,∴顶点坐标是()1,4;②∵2y x 2x 3=-++,10a =-<, ∴开口方向向下,对称轴为:1,x =当1n >时,则x n =时,2233y n n =-++=,此时函数值最大,220,n n ∴-=解得:2n =(0n =舍去), 当11n +<,即0n <时, ∴1x n =+时,3y =最大, ∴()()212133n n -++++=, 解得:1n =-(1n =舍去) 综上:2n =或1n =-; (2)221,y x x m =-+++()()2241148,m m ∴=-⨯-⨯+=+ 当480m +>即2m >-时, 如图,当2x =时,1,y m =+根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2可知,12,m +> 1,m ∴>m ∴的范围是 1.m >当1x =时,22,y m =+= 此时符合题意, 则0,m =当当480m +<即2m <-时,如图,根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2可知,同理可得:2212m m +>-⎧⎨+≤-⎩解得:43,m -<≤-所以m 的范围是:4 3.m -<≤- 综上:1m 或0m =或4 3.m -<≤- (3)2221(1)2y x x m x m =-+++=--++∴抛物线的顶点坐标为(1,2m +),对称轴为直线1x = ∵点P 的横坐标为﹣3m +2,∴点P 的坐标为(﹣3m +2,2971m m -++)∵以PM 为对角线构造矩形PQMN ,矩形的各边与坐标轴垂直,抛物线在矩形PQMN 内部的函数部分y 随着x 的增大而增大, ∴矩形中抛物线为对称轴左侧的部分,即1x ≤ 又点M 的坐标为(2m ,m ),∴2971121m m m m ⎧-++≥+⎨≤⎩ ∴102m ≤< ∵点P 在二次函数的图象上, 当点M 点在点P 的左侧时 ∴232m m <-+ ∴25m <∴232m m <-+∴25 m<∴25 m<当点M点在点P的右侧时∴232m m-+>∴25 m>∴21 52m≤<故当抛物线在矩形PQMN内部的函数部分y随着x的增大而增大时,12 m≤【点睛】本题主要考查了二次函数综合应用,二次函数的图象与性质,不等式组的解法,清晰的分类讨论是解题的关键.8.(1)5;(2)157t=;(3)1t=或52t=【解析】【分析】(1)直接运用勾股定理求解即可;(2)当CP平分∠ACB时,作PM⊥BC于M点,PN⊥AC于N点,作CQ⊥AB于Q点,利用等面积法分别表示△APC和△BPC,进而得出AP ACBP BC=,从而建立分式方程求解并检验即可;(3)根据等腰三角形的性质进行分类讨论,结合勾股定理求解即可.【详解】解:(1)由勾股定理:2222AB AC BC345++=,故答案为:4;(2)当CP平分∠ACB时,如图所示,作PM⊥BC于M点,PN⊥AC于N点,作CQ⊥AB于Q点,则由角平分线的性质得:PM=PN,∵1122APCS AP CQ AC PN==,1122BPCS BP CQ BC PM==,∴11221122APCBPCAP CQ AC PNSS BP CQ BC PM==,即:AP AC BP BC=,由题意,AP t=,则5BP AB AP t=-=-,∴3 54tt=-,解得:157t=,经检验,157t=是上述分式方程的解,∴当157t=时,CP平分∠ACB;(3)①若BC=BP,如图所示,此时,BP=BC=4,AP=AB-BP=1,∴t=1;②若CP=BP,如图所示,此时,作CT⊥AB于T点,∵1122ABCS AC BC AB CT==,∴125 CT=,在Rt△CBT中,2216 5BT BC CT-,∵AP t=,∴5BP t=-,5CP t=-,∴()169555PT BT BP t t =-=--=-, 在Rt △CPT 中,222CP CT PT =+, 即:()222129555t t ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭, 解得:52t =;③若CP =CB ,由于P 在线段AB 上运动,则CP =CB 的情况不成立,故舍去; 综上,当1t =或52t =时,满足△BCP 为等腰三角形. 【点睛】本题考查了勾股定理和等腰三角形的性质,解决本题的关键是正确理解题意,熟练掌握勾股定理,能够根据等腰三角形的性质进行分类讨论解决.9.(1)224233y x x =--+;(2)35(,)22P -(3)存在,12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【解析】 【分析】(1)根据待定系数法求抛物线解析式;(2)设224(,)33P t t --根据(1)的结论求得C 的坐标,进而求得AC 的解析式,过P 作PD ⊥x 轴交AC 于点D ,进而求得PD 的长,根据12APC C A S PD x x =⋅⋅-△求得APCS的表达式,进而根据二次函数的性质求得取得最大值时,t 的值,进而求得P 点的坐标; (3)分情况讨论,①//CM AQ ,②//AC MQ ,根据抛物线的性质以及平行四边形的性质先求得M 的坐标进而求得Q 点的坐标. 【详解】(1)二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,则093202a b a b =-+⎧⎨=++⎩解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为224233y x x =--+(2)抛物线224233y x x =--+与y 轴交于点C ,令0x =,则2y =(0,2)C ∴设直线AC 的解析式为y kx b =+,由(3,0)A -,(0,2)C ,则302k b b -+=⎧⎨=⎩解得232k b ⎧=⎪⎨⎪=⎩∴直线AC 的解析式为223y x =+, 如图,过P 作PD ⊥x 轴交AC 于点D ,设224(,)33P t t --,则2(,2)3D t t +,2224222223333PD t t t t t ⎛⎫∴=--+-+=-- ⎪⎝⎭∴12APCC A S PD x x =⋅⋅-△212(2)323t t =⨯--⨯2239324t t t ⎛⎫=--=-++ ⎪⎝⎭ ∴当32t =-时,APCS取得最大值,此时222423435223332322t t ⎛⎫⎛⎫--+=-⨯--⨯-+= ⎪ ⎪⎝⎭⎝⎭ ∴35(,)22P -(3)存在,理由如下抛物线解析式为224233y x x =--+()228133x =-++∴抛物线的对称轴为直线1x =①如图,当//CM AQ 时,Q 点在x 轴上,//CM x 轴∴,M C 关于抛物线的对称轴直线1x =对称,(0,2)C(2,2)M ∴-2CM ∴=122AQ AQ ∴==(3,0)A -12(1,0),(5,0)Q Q ∴--②当//AC MQ 时,如图,设M 的纵坐标为n ,四边形ACQM 是平行四边形,点A ,Q 在x 轴上,则,AQ MC 的交点也在x 轴上, 202n +∴=解得2n =- 设(,2)M m -, 2242233x x ∴-=--+解得1x =-(12)M ∴--A 点到C 点是横坐标加3,纵坐标加2∴M 点到Q 点也是横坐标加3,纵坐标加2即(13,0)Q -±34(2(2Q Q ∴综上所述,存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为12(1,0),(5,0)Q Q --,34(2(2Q Q .【点睛】本题考查了二次函数综合,待定系数法,二次函数最值,二次函数的图象与性质,平行四边形的性质,综合运用以上知识是解题的关键.10.(1)①,②w 有最小值,w 的最值是(2)不变,(3)或【解析】 【分析】(1)①根据题意先求得各点的坐标,求得AD 的解析式,进而求得点E 的坐标,通过计算可得,进而可得,由可得出,依题意,设,解方程求解即可;②根据已知条件设,求得直线AP 的解析式,直线BE 的解析式,联立即可求得点G 的坐标,根据,令,根据二次函数的性质求得的最大值,即可求得的最小值;(2)根据题意过点N 作,依题意,点N 为ABP △的外心,N 为AB 垂直平分线上的点则点N 在抛物线的对称轴1x =上,设,,()1,0A -,()3,0B ,根据建立方程,解得,进而求得,即可求得;(3)作的外心H ,作轴,则,进而可得H 在AO 的垂直平分线上运动,根据题意当最大转为求当取得最小值时,最大,进而根据点到直线的距离,垂线段最短,即可求得,求得,勾股定理求得,即可求得点H 的坐标,根据对称性求得另一个坐标. (1)抛物线y =x 2﹣2x ﹣3与x 轴交于A 、B 两点,与y 轴交于C 点,D 为抛物线顶点. 令0x =,解得3y =-,则()0,3C - 令0y =,则,解得121,3x x =-=则,则①设直线AD 的解析式为y kx b =+ 则 解得令0x =,则,,依题意,设解得(舍)②点P 在第四象限的抛物线上,AP 、BE 交于点G ,如图,设,()1,0A -设直线AP 的解析式为则解得∴设直线AP 的解析式为设直线BE 的解析式为11y k x b =+∴直线BE 的解析式为联立解得∴=令存在最大值,则存在最小值当时,存在最大值,最大值为则的最小值为∴ w 有最小值,w 的最值是(2) 不变,,理由如下,如图,过点N 作,依题意,点N 为ABP △的外心N 为AB 垂直平分线上的点,即点N 在抛物线的对称轴1x =上, PM x ⊥,,轴,∴设,,()1,0A -,()3,0B ,N 为ABP △的外心,,则即解得即(3) 如图,作的外心H ,作轴,则H在AO的垂直平分线上运动依题意,当最大时,即最大时,是的外心,,即当最大,最大则当取得最小值时,最大,即当HQ⊥直线x=1时,取得最小值时,此时∴在中,.根据对称性,则存在.综上所述,或.【点睛】本题考查了三角形的外心,垂径定理,抛物线与三角形面积计算,二次函数的性质求最值问题,抛物线与圆综合,运用转化思想是解题的关键.11.(1)证明见解析,(2)证明见解析,(3)6 【解析】 【分析】(1)证明△BCE ≌△CDF 即可;(2)取BF 中点O ,连接OA 、OG ,证明A 、B 、G 、F 四点共圆即可;(3)作AK ⊥BG 于K ,HN ⊥AB 于N ,GM ⊥AB 于M ,根据等腰三角形的性质得出12BK AK ,进而得出∠BAG 的正切值,求出AH 长即可. 【详解】(1)证明∵四边形ABCD 是正方形, ∴CB =CD ,∠BCD =90°, ∵CF ⊥BE , ∴∠BGC =90°,∴∠CBE +∠GCB =90°,∠GCB +∠DCF =90°, ∴∠CBE =∠DCF , ∴△CBE ≌△DCF (AAS ), ∴CE =DF ;(2)取BF 中点O ,连接OA 、OG , ∵∠BAF =90°, ∴OA =OF =OB , 同理,OG =OF =OB ,∴A 、B 、G 、F 四点在以O 为圆心,OA 为半径的圆上,如图所示, ∴∠ABF =∠AGF ;(3)作AK ⊥BG 于K ,HN ⊥AB 于N ,GM ⊥AB 于M , ∵四边形ABCD 是正方形, ∴AB =CB ,∠ABC =90°, ∵AK ⊥BG , ∴∠AKB =90°,∴∠BAK +∠ABK =90°,∠ABK +∠CBG =90°, ∴∠BAK =∠CBG , ∴△BAK ≌△CBG (AAS ), ∴AK =BG ; ∵AG =AB =11, ∴1122BK BG AK ==, ∴1tan tan 2BAK CBG ∠=∠=, ∴BC =2EC ,由(1)得,DC =2DF , ∴1tan 2ABF ∠=, ∴12NH BN = ∵MG ∥CB , ∴∠MGB =∠CBG , ∴MG =2MB ,AM =11-MB , 222(11)(2)11MB MB -+=,解得,1225MB =,20MB =(舍去), 335AM =,445MG =, ∴4tan 3MAG ∠=,∴43NH AN =, ∵12NH BN =, ∴32114BN AN NH NH +=+=, 解得,4NH =,则3AN =,225AH AN NH =+=,GH =11-5=6.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形,圆周角定理等知识,解题关键是恰当的作辅助线,熟练运用相关性质进行推理证明.12.(1)(2)点P 的坐标为(−3,4) (3)存在,点M 的坐标为:,,【解析】 【分析】(1)由直线方程可求得A 、B 两点的坐标,代入抛物线解析式可求得b 、c 的值,可求得抛物线解析式,再令y =0可求得C 点坐标;(2)过E 作EH ⊥PD 于H ,可求得EH ,设出P 点坐标,则可表示出D 、E 、F 的坐标,从而可表示出PD 和EF ,利用梯形面积公式可表示出四边形PDEF 的面积,根据二次函数的最值,可求得P 点坐标;(3)可求得直线AG 和A ′G ′的方程,从而可表示出M 、N 点的坐标,从而可表示出MN 、FM 、FN 的长,分MN =FM 、MN =FN 和FM =FN 三种情况分别求解即可.(1)∵直线4y x =+与x 轴、y 轴分别交于A 、B 两点,∴A (−4,0),B (0,4). ∵抛物线2y x bx c =-++经过A 、B 两点,∴.解得.∴抛物线的解析式为.(2)如图,过点E作EH⊥PD于点H,则EH∥OA.∵OA=OB=4,∴∠OAB=45°.∴∠HDE=45°,且DE=.∴HE=HD=2.设点P的坐标为(a,--3a+4),则点D为(a,a+4),点E为(a+2,a+6),点F为(a+2,--7a-6).∴|PD|=-−3a+4-(a+4)=--4a,|EF|=--7a-6-(a+6)=--8a-12.∴S四边形PDEF=HE×(PD+EF)= ×2(--4a--8a-12)=-2-12a-12=-2(a+3)2+6.∴当a=-3时,S四边形PDEF有最大值6.此时点P的坐标为(−3,4).(3)满足条件的点M的坐标为:,,.理由如下:∵OG=2,∴点G的坐标为(0,-2),且A(-4,0).=+,把A、G坐标代入可得,解得.设直线AG的方程为y kx n。
2023年中考数学压轴题专题32 四边形与新定义综合问题【含答案】
专题32四边形与新定义综合问题【例1】(2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【例2】.(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是(填序号);(2)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,且EC=DF,连接EF,AF,求证:四边形ABEF是等角线四边形;(3)如图2,已知在△ABC中,∠ABC=90°,AB=4,BC=3,D为线段AB的垂直平分线上一点,若以点A,B,C,D为顶点的四边形是等角线四边形,求这个等角线四边形的面积.6.(2022春•南浔区期末)定义:我们把一组对边平行另一组对边相等且不平行的四边形叫做等腰梯形.【性质初探】如图1,已知,▱ABCD,∠B=80°,点E是边AD上一点,连结CE,四边形ABCE恰为等腰梯形.求∠BCE的度数;【性质再探】如图2,已知四边形ABCD是矩形,以BC为一边作等腰梯形BCEF,BF=CE,连结BE、CF.求证:BE=CF;【拓展应用】如图3,▱ABCD的对角线AC、BD交于点O,AB=2,∠ABC=45°,过点O作AC的垂线交BC的延长线于点G,连结DG.若∠CDG=90°,求BC的长.7.(2022春•长汀县期末)在平面直角坐标系中,如果点p(a,b)满足a+1>b且b+1>a,则称点p为“自大点”:如果一个图形的边界及其内部的所有点都不是“自大点”,则称这个图形为“自大忘形”.(1)判断下列点中,哪些点是“自大点”,直接写出点名称;p 1(1,0),,.(2)如果点N(2x+3,2)不是“自大点”,求出x的取值范围.(3)如图,正方形ABCD的初始位置是A(0,6),B(0,4),C(2,4),D(2,6),现在正方形开始以每秒1个单位长的速度向下(y轴负方向)平移,设运动时间为t秒(t>0),当正方形成为“自大忘形”时,求t的取值范围.8.(2022春•江北区期末)定义:对于一个四边形,我们把依次连结它的各边中点得到的新四边形叫做原四边形的“中点四边形”.如果原四边形的中点四边形是个正方形,我们把这个原四边形叫做“中方四边形”.概念理解:下列四边形中一定是“中方四边形”的是.A.平行四边形B.矩形C.菱形D.正方形性质探究:如图1,四边形ABCD是“中方四边形”,观察图形,写出关于四边形ABCD的两条结论:;.问题解决:如图2,以锐角△ABC的两边AB,AC为边长,分别向外侧作正方形ABDE和正方形ACFG,连结BE,EG,GC.求证:四边形BCGE是“中方四边形”;拓展应用:如图3,已知四边形ABCD是“中方四边形”,M,N分别是AB,CD的中点,(1)试探索AC与MN的数量关系,并说明理由.(2)若AC=2,求AB+CD的最小值.9.(2022春•铜山区期末)新定义;若四边形的一组对角均为直角,则称该四边形为对直四边形.(1)下列四边形为对直四边形的是(写出所有正确的序号);①平行四边形;②矩形;③菱形,④正方形.(2)如图,在对直四边形ABCD中,已知∠ABC=90°,O为AC的中点.①求证:BD的垂直平分线经过点O;②若AB=6,BC=8,请在备用图中补全四边形ABCD,使四边形ABCD的面积取得最大值,并求此时BD的长度.10.(2022春•盐田区校级期末)给出如下定义:有两个相邻内角互余的四边形称为“邻余四边形”,这两个角的夹边称为“邻余线”.(1)如图1,格点四边形ABCD是“邻余四边形”,指出它的“邻余线”;(2)如图2,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是“邻余四边形”;(3)如图3,四边形ABCD是“邻余四边形”,AB为“邻余线”,E,F分别是AB,CD的中点,连接EF,AD=4,BC=6.求EF的长.11.(2022春•玄武区期末)【概念认识】在四边形ABCD中,∠A=∠B.如果在四边形ABCD内部或边AB上存在一点P,满足∠DPC=∠A,那么称点P是四边形ABCD的“映角点”.【初步思考】(1)如图①,在四边形ABCD中,∠A=∠B,点P在边AB上且是四边形ABCD的“映角点”.若DA∥CP,DP∥CB,则∠DPC的度数为°;(2)如图②,在四边形ABCD中,∠A=∠B,点P在四边形ABCD内部且是四边形ABCD 的“映角点”,延长CP交边AB于点E.求证:∠ADP=∠CEB.【综合运用】在四边形ABCD中,∠A=∠B=α,点P是四边形ABCD的“映角点”,DE、CF分别平分∠ADP、∠BCP,当DE和CF所在直线相交于点Q时,请直接写出∠CQD与α满足的关系及对应α的取值范围.12.(2022春•北仑区期末)定义:对角线相等的四边形称为对美四边形.(1)我们学过的对美四边形有、.(写出两个)(2)如图1,D为等腰△ABC底边AB上的一点,连结CD,过C作CF∥AB,以B为顶点作∠CBE=∠ACD交CF于点E,求证:四边形CDBE为对美四边形.(3)如图2,对美四边形ABCD中,对角线AC、BD交于点O,AC=BD,DC∥AB.①若∠AOB=120°,AB+CD=6,求四边形ABCD的面积.②若AB⋅CD=6,设AD=x,BD=y,试求出y与x的关系式.13.(2022春•玄武区校级期中)如图1,∠A=∠B=∠C=∠D=∠E=∠F=90°,AB、EF、CD为铅直方向的边,AF、DE、BC为水平方向的边,点E在AB、CD之间,且在AF、BC之间,我们称这样的图形为“L图形”,若一条直线将该图形的面积分为面积相等的两部分,则称此直线为该“L图形”的等积线.(1)如图2所示四幅图中,直线L是该“L图形”等积线的是(填写序号).(2)如图3,直线m是该“L图形”的等积线,与边BC、AF分别交于点M、N,过MN 中点O的直线分别交边BC、AF于点P、Q,则直线PQ(填“是”或“不是”)该图形的等积线.(3)在图4所示的“L图形”中,AB=6,BC=10,AF=2.①若CD=2,在图中画出与AB平行的等积线l(在图中标明数据);②在①的条件下,该图形的等积线与水平的两条边DE、BC分别交于P、Q,求PQ的最大值;③如果存在与水平方向的两条边DE、BC相交的等积线,则CD的取值范围为.14.(2022•姑苏区一模)定义:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,则∠B+∠C=°;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,在OA上取点E,使得DE=OE,连接DE并延长交AC于点F,∠AED=3∠EAF.求证:四边形BCFD 是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,OH=2,DH =6.①连接OC,若将扇形OBC围成一个圆锥的侧面,则该圆锥的底面半径为;②求△ABC的面积.15.(2022•江北区开学)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,CD=3BE,QB=6,求邻余线AB的长.16.(2022春•西城区校级期中)平面直角坐标系xOy中,正方形ABCD的四个顶点坐标分别为:A(﹣,),B(﹣,﹣),C(,﹣),D(,),P、Q是这个正方形外两点,且PQ=1.给出如下定义:记线段PQ的中点为T,平移线段PQ得到线段P'Q'(其中P',Q'分别是点P,Q的对应点),记线段P'Q'的中点为T.若点P'和Q'分别落在正方形ABCD的一组邻边上,或线段P'Q'与正方形ABCD的一边重合,则称线段TT'长度的最小值为线段PQ到正方形ABCD的“回归距离”,称此时的点T'为线段PQ到正方形ABCD 的“回归点”.(1)如图1,平移线段PQ,得到正方形ABCD内两条长度为1的线段P1Q1和P2Q2,这两条线段的位置关系为;若T1,T2分别为P1Q1和P2Q2的中点,则点(填T1或T2)为线段PQ到正方形ABCD的“回归点”;(2)若线段PQ的中点T的坐标为(1,1),记线段PQ到正方形ABCD的“回归距离”为d1,请直接写出d1的最小值:,并在图2中画出此时线段PQ到正方形ABCD的“回归点”T'(画出一种情况即可);(3)请在图3中画出所有符合题意的线段PQ到正方形ABCD的“回归点”组成的图形.17.(2022秋•福田区期中)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD 是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=;(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF 对角线的交点,连接BD.①四边形ABCD损矩形(填“是”或“不是”);②当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由;③若∠ACE=60°,AB=4,BD=5,求BC的长.18.(2022春•江阴市校级月考)定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)在题(1)的矩形ABCD中,点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN 的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=4,则DR的最小值=.19.(2022春•柯桥区月考)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(1)阅读与理解:如图1,四边形内接于⊙O,点A为弧BD的中点.四边形ABCD(填“是”或“不是”)等补四边形.(2)探究与运用:①如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;②如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,若CD=10,AF=5,求DF的长.(3)思考与延伸:在等补四边形ABCD中,AB=AD=3,∠BAD=120°,当对角线AC长度最大时,以AC 为斜边作等腰直角三角形ACP,直接写出线段DP的长度.20.(2021秋•荔湾区期末)如图,共顶点的两个三角形△ABC,△AB′C′,若AB=AB',AC=AC',且∠BAC+∠B′AC′=180°,我们称△ABC与△AB′C'互为“顶补三角形”.(1)如图2,△ABC是等腰三角形,△ABE,△ACD是等腰直角三角形,连接DE;求证:△ABC与△ADE互为顶补三角形.(2)在(1)的条件下,BE与CD交于点F,连接AF并延长交BC于点G.判断DE与AG 的数量关系,并证明你的结论.(3)如图3,四边形ABCD中,∠B=40°,∠C=50°.在平面内是否存在点P,使△PAD 与△PBC互为顶补三角形,若存在,请画出图形,并证明;若不存在,请说明理由.【例1】2022•汇川区模拟)定义:有一组对角互补的四边形叫做“对补四边形”,例如:四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.【概念理解】(1)如图1,四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D=90度.②若∠B=90°.且AB=3,AD=2时.则CD2﹣CB2=5.【类比应用】(2)如图2,在四边形ABCD中,AB=CB,BD平分∠ADC.求证:四边形ABCD是“对补四边形”.【分析】(1)①设∠A=3x°,则∠B=2x°,∠C=x°,利用“对补四边形”的定义列出方程,解方程即可求得结论;②连接AC,利用“对补四边形”的定义和勾股定理解答即可得出结论;(2)在DC上截取DE=DA,连接BE,利用全等三角形的判定与性质,等腰三角形的性质和“对补四边形”的定义解答即可.【解答】(1)解:①∵∠A:∠B:∠C=3:2:1,∴设∠A=3x°,则∠B=2x°,∠C=x°,∵四边形ABCD是“对补四边形”,∴∠A+∠C=180°,∴3x+x=180,∴x=45°.∴∠B=2x=90°.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°,∴∠D=90°.故答案为:90;②连接AC,如图,∵∠B=90°,∴AB2+BC2=AC2.∵四边形ABCD是“对补四边形”,∴∠B+∠D=180°.∴∠D=90°.∴AD2+CD2=AC2.∴AB2+BC2=AD2+CD2,∴CD2﹣CB2=AB2﹣AD2,∵AB=3,AD=2,∴CD2﹣CB2=32﹣22=5.故答案为:5;(2)证明:在DC上截取DE=DA,连接BE,如图,∵BD平分∠ADC,∴∠ADB=∠EDB.在△ADB和△EDB中,,∴△ADB≌△EDB(SAS),∴∠A=∠DEB,AB=BE,∵AB=CB,∴BE=BC,∴∠BEC=∠C.∵∠DEB+∠BEC=180°,∴∠DEB+∠C=180°,∴∠A+∠C=180°,∴四边形ABCD是“对补四边形”.【例2】(2022•赣州模拟)我们定义:有一组邻角相等的凸四边形做“等邻角四边形”,例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.(1)定义理解:已知四边形ABCD为等邻角四边形,且∠A=130°,∠B=120°,则∠D =55度.(2)变式应用:如图2,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC.①求证:四边形ABDE为等邻角四边形;②若∠A+∠C+∠E=300°,∠BDC=∠C,请判断△BCD的形状,并明理由.(3)深入探究:如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AB,垂足为E,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,判断PM+PN与CE的数量关系?请说明理由.(4)迁移拓展:如图4,是一个航模的截面示意图.四边形ABCD是等邻角四边形,∠A =∠ABC,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.【分析】(1)由等邻角四边形的定义和四边形内角和定理可求解;(2)①由角平分线的性质和平行线的性质可得∠EDB=∠ABD,可得结论;②由三角形内角和定理和四边形内角和定理可求∠C=60°,即可求解;(3)由面积关系可求解;(4)由直角三角形的性质可得AM=DM=ME,EN=NB=CN,由勾股定理可求DG=1,BG=6,即可求解.【解答】(1)解:∵四边形ABCD为等邻角四边形,∠A=130°,∠B=120°,∴∠C=∠D,∴∠D=55°,故答案为:55;(2)①证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵ED∥BC,∴∠EDB=∠DBC,∴∠EDB=∠ABD,∴四边形ABDE为等邻角四边形;②解:△BDC是等边三角形,理由如下:∵∠BDC=∠C,∴BD=BC,∠DBC=180°﹣2∠C,∵∠A+∠E+∠ABD+∠BDE=360°,∴∠A+∠E=360°﹣2∠ABD,∵∠A+∠C+∠E=300°,∴300°﹣∠C=360°﹣2(180°﹣2∠C),∴∠C=60°,又∵BD=BC,∴△BDC是等边三角形;(3)解:PM+PN=CE,理由如下:如图,延长BA,CD交于点H,连接HP,∵∠B=∠BCD,∴HB=HC,=S△BPH+S△CPH,∵S△BCH∴×BH×CE=×BH×PM+×CH×PN,∴CE=PM+PN;(4)解:如图,延长AD,BC交于点H,过点B作BG⊥AH于G,∵ED⊥AD,EC⊥CB,M、N分别为AE、BE的中点,∴AM=DM=ME,EN=NB=CN,∵AB2=BG2+AG2,BD2=BG2+DG2,∴52﹣(3+DG)2=37﹣DG2,∴DG=1,∴BG==6,由(3)可得DE+EC=BG=6,∴△DEM与△CEN的周长之和=ME+DM+DE+EC+EN+CN=AE+BE+BG=AB+BG=(6+2)dm.【例3】(2022•常州二模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图I,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,已知四边形ABCD是以AB为邻余线的邻余四边形,AB=15,AD=6,BC=3,∠ADC=135°,求CD的长度.【分析】(1)根据邻余四边形的定义证明结论即可;(2)连接AB,在∠A+∠B=90°的基础上选择合适的E点和F点连接作图即可;(3)邻余四边形的定义可得∠H=90°,由勾股定理可求解.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:如图所示(答案不唯一),(3)解:如图3,延长AD,CB交于点H,∵四边形ABCD是以AB为邻余线的邻余四边形,∴∠A+∠B=90°,∵∠ADC=135°,∴∠HDC=45°,∴∠HDC=∠HCD=45°,∴CH=DH,∵AB2=AH2+BH2,∴225=(6+DH)2+(3+DH)2,∴DH=6(负值舍去),∴CD=6.【例4】(2022•工业园区模拟)【理解概念】如果一个矩形的一条边与一个三角形的一条边能够重合,且三角形的这条边所对的顶点恰好落在矩形这条边的对边上,则称这样的矩形为这个三角形的“矩形框”.如图①,矩形ABDE 即为△ABC的“矩形框”.(1)三角形面积等于它的“矩形框”面积的;(2)钝角三角形的“矩形框”有1个;【巩固新知】(3)如图①,△ABC的“矩形框”ABDE的边AB=6cm,AE=2cm,则△ABC周长的最小值为(6+2)cm;(4)如图②,已知△ABC中,∠C=90°,AC=4cm,BC=3cm,求△ABC的“矩形框”的周长;【解决问题】(5)如图③,锐角三角形木板ABC的边AB=14cm,AC=15cm,BC=13cm,求出该木板的“矩形框”周长的最小值.【分析】(1)利用同底等高的面积关系求解即可;(2)根据钝角三角形垂线的特点进行判断即可;(3)作A点关于DE的对称点F,连接BF,则△ABC周长≥AC+BF,求出BF+AC即可求解;(4)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长即可;(5)以三角形三边分别为矩形的一边作“矩形框”,分别求出周长,取最小值即可.=×AB×AE,S矩形ABDE=AB×AE,【解答】解:(1)∵S△ABC=S矩形ABDE,∴S△ABC故答案为:;(2)由定义可知,钝角三角形以钝角所对的边为矩形一边,能够构造出一个“矩形框”,故答案为:1;(3)如图①,作A点关于DE的对称点F,连接BF,∴CF=AC,∴AC+BC≥BF,∴△ABC周长=AB+AC+BC≥AC+BF,∵AB=6cm,AE=2cm,在Rt△ABF中,BF=2,∴△ABC周长的最小值(6+2)cm,故答案为:(6+2);(4)如图②﹣1,以AB边为矩形一边时,作“矩形框”ABDE,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,=×3×4=×5×AE,∵S△ABC∴AE=,∴矩形ABDE的周长=2×(5+)=(cm);如图②﹣2,以BC边为矩形一边时,作“矩形框”BCAF,∴矩形BCAF的周长=2×(3+4)=14(cm);同理,以AB为矩形一边时,“矩形框”的周长为14cm;综上所述:△ABC的“矩形框”的周长为cm或14cm;(5)如图③﹣1,以AB为一边作“矩形框”ABDE,过点C作CG⊥AB交于G,∴CG2=AC2﹣AG2=BC2﹣BG2,AG+BG=AB,又∵AB=14cm,AC=15cm,BC=13cm,∴AG=9cm,BG=5cm,∴CG=12cm,∴“矩形框”ABDE的周长=2×(14+12)=52cm;如图③﹣2,以BC为一边作“矩形框”BCNM,过点A作AH⊥CB交于H,=×CG×AB=×12×14=×AH×BC,∵S△ABC∴AH=cm,∴“矩形框”BCNM的周长=2×(13+)=cm;如图③﹣3,以AC为矩形一边,作“矩形框”ACTS,过点B作BK⊥AC交于点K,=×CG×AB=×12×14=×BK×AC,∵S△ABC∴BK=cm,∴“矩形框”ACTS的周长=2×(15+)=cm;∵<52<,∴该木板的“矩形框”周长的最小值为cm.一.解答题(共20题)1.(2022•罗湖区模拟)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF是(填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,过点B作BE⊥AD于E.①过C作CF⊥BF于点F,试证明:BE=DE,并求BE的长;②若M是AD边上的动点,求△BCM周长的最小值.【分析】(1)由旋转的性质可得∠ABF=∠CBE,BF=BE,根据正方形的性质得∠ABC=∠D=90°,可得出∠EBF=∠D=90°,即可得出答案;(2)①首先证明四边形CDEF是矩形,则DE=CF,EF=CD=2,再证△ABE≌△BCF,根据全等三角形的判定和性质可得BE=CF,AE=BF,等量代换即可得BE=DE;由AE=BF,EF=CD=2可得AE=BE﹣2,设BE=x,根据勾股定理求出x的值即可;②延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,证明△ABE∽△CGH,根据相似三角形的性质求出CH、HG的值,在Rt△BHG中,根据勾股定理求出BG,即可求解.【解答】解:(1)∵将△BCE绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,∴∠ABF=∠CBE,BF=BE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE+∠CBE=90°,∴∠ABE+∠ABF=90°,即∠EBF=∠D=90°,∴∠EBF+∠D=180°,∵∠EBF=90°,BF=BE,∴四边形BEDF是“直等补”四边形.故答案为:是;(2)①证明:∵四边形ABCD是“直等补”四边形,AB=BC=10,CD=2,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BE⊥AD,CF⊥BE,∴∠DEF=90°,∠CFE=90°,∴四边形CDEF是矩形,∴DE=CF,EF=CD=2,∵∠ABE+∠A=90°,∠ABE+∠CBE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵DE=CF,∴BE=DE;∵四边形CDEF是矩形,∴EF=CD=2,∵△ABE≌△BCF,∴AE=BF,∴AE=BE﹣2,设BE=x,则AE=x﹣2,在Rt△ABE中,x2+(x﹣2)2=102,解得:x=8或x=﹣6(舍去),∴BE的长是8;②∵△BCM周长=BC+BM+CM,∴当BM+CM的值最小时,△BCM的周长最小,如图,延长CD到点G,使DG=CD,连接BG交AD于点M′,过点G作GH⊥BC,交BC的延长线于点H,∵∠ADC=90°,∴点C与点G关于AD对称,∴BM+CM=BM+MG≥BG,即BM+CM≥BM′+M′C,∴当点M与M′重合时,BM′+M′C的值最小,即△BCM的周长最小,在Rt△ABE中,AE===6,∵四边形ABCD是“直等补”四边形,∴∠A+∠BCD=180°,∵∠BCD+∠GCH=180°,∴∠A=∠GCH,∵∠AEB=∠H=90°,∴△ABE∽△CGH,∴===,即=,∴GH=,CH=,∴BH=BC+CH=10+=,∴BG===2,∴△BCM周长的最小值为2+10.2.(2022•越秀区校级模拟)有一组对边平行,一个内角是它对角的两倍的四边形叫做倍角梯形.(1)已知四边形ABCD是倍角梯形,AD∥BC,∠A=100°,请直接写出所有满足条件的∠D的度数;(2)如图1,在四边形ABCD中,∠BAD+∠B=180°,BC=AD+CD.求证:四边形ABCD 是倍角梯形;(3)如图2,在(2)的条件下,连结AC,当AB=AC=AD=2时,求BC的长.【分析】(1)由题意得出∠D=2∠B或∠B=2∠D或∠A=2∠C,根据梯形的性质可得出答案;(2)过点D作DE∥AB,交BC于点E,证明四边形ABED为平行四边形,得出AD=BE,∠B=∠DEC=∠ADE,证出∠ADC=2∠B,则可得出结论;(3)过点E作AE∥DC交BC于点E,由等腰三角形的性质求出∠B=∠ACB=36°,证明△ABE∽△CBA,由相似三角形的性质得出,设AE=BE=CD=x,得出方程22=x (x+2),求出x=﹣1,则可得出答案.【解答】解:(1)∵AD∥BC,∴∠A+∠B=180°,∵∠A=100°,∴∠B=80°,∵四边形ABCD是倍角梯形,∴∠D=2∠B或∠B=2∠D或∠A=2∠C,若∠D=2∠B,则∠D=160°;若∠B=2∠D,则∠D=40°,若∠A=2∠C,则∠C=50°,∴∠D=130°,故所有满足条件的∠D的度数为160°或40°或130°;(2)证明:过点D作DE∥AB,交BC于点E,∵∠BAD+∠B=180°,∴AD∥BC,∵DE∥AB,∴四边形ABED为平行四边形,∴AD=BE,∠B=∠DEC=∠ADE,∵BC=BE+CE,∴BC=AD+CE,又∵BC=AD+CD,∴CE=CD,BC>AD,∴∠CDE=∠DEC,∴∠ADC=∠ADE+∠CDE=2∠B,∴四边形ABCD是倍角梯形;(3)过点E作AE∥DC交BC于点E,∵AB=AC,∴∠B=∠ACB,∵AD=AC,∴∠ACD=∠D,∵AD∥BC,∴∠ACB=∠DAC,设∠B=α,则∠D=2α,∵∠DAC+∠D+∠ACD=180°,∴α+2α+2α=180°,∴α=36°,∴∠B=∠ACB=36°,∴∠BAC=∠AEB=108°,∵∠B=∠B,∴△ABE∽△CBA,∴,设AE=BE=CD=x,则BC=2+x,∴22=x(x+2),∴x=﹣1(负值舍去),∴CD=﹣1.∴BC=AD+CD=2+﹣1=+1.3.(2022•嘉祥县一模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)由等腰三角形的三线合一定理先证AD⊥BC,再证∠DAB+∠DBA=90°,由邻余四边形定义即可判定;(2)由等腰三角形的三线合一定理先证BD=CD,推出CE=5BE,再证明△DBQ∽△ECN,推出==,即可求出NC,AC,AB的长度.【解答】(1)证明:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴==,∵QB =3,∴NC =5,∵AN =CN ,∴AC =2CN =10,∴AB =AC =10.4.(2021•任城区校级三模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子:矩形或正方形;(2)问题探究;如图1,在等邻角四边形ABCD 中,∠DAB =∠ABC ,AD ,BC 的中垂线恰好交于AB 边上一点P ,连结AC ,BD ,试探究AC 与BD 的数量关系,并说明理由;(3)应用拓展;如图2,在Rt △ABC 与Rt △ABD 中,∠C =∠D =90°,BC =BD =3,AB =5,将Rt △ABD 绕着点A 顺时针旋转角α(0°<∠α<∠BAC )得到Rt △AB ′D ′(如图3),当凸四边形AD ′BC 为等邻角四边形时,求出它的面积.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)结论:AC =BD ,证明△APC ≌△DPB (SAS );(3)分两种情况考虑:Ⅰ、当∠AD ′B =∠D ′BC 时,延长AD ′,CB 交于点E ,如图1,由S 四边形ACBD ′=S △ACE ﹣S △BED ′,求出四边形ACBD ′面积;Ⅱ、当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图2,由S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′,求出四边形ACBD ′面积即可.【解答】解:(1)矩形或正方形是一个等邻角四边形.故答案为:矩形,正方形;(2)结论:AC=BD,理由:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S △ACE =AC ×EC =×4×(3+4.5)=15;S △BED ′=×BE ×D ′F =××4.5×=,则S 四边形ACBD ′=S △ACE ﹣S △BED ′=15﹣=;(ii )当∠D ′BC =∠ACB =90°时,过点D ′作D ′E ⊥AC 于点E ,如图3(ii )所示,∴四边形ECBD ′是矩形,∴ED ′=BC =3,在Rt △AED ′中,根据勾股定理得:AE ==,∴S △AED ′=×AE ×ED ′=××3=,S 矩形ECBD ′=CE ×CB =(4﹣)×3=12﹣3,则S 四边形ACBD ′=S △AED ′+S 矩形ECBD ′=+12﹣3=12﹣.5.(2022春•曾都区期末)定义:我们把对角线相等的凸四边形叫做“等角线四边形”.(1)在已经学过的“①平行四边形;②矩形;③菱形;④正方形”中,一定是“等角线四边形”的是②④(填序号);(2)如图1,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且EC =DF ,连接EF ,AF ,求证:四边形ABEF 是等角线四边形;(3)如图2,已知在△ABC 中,∠ABC =90°,AB =4,BC =3,D 为线段AB 的垂直平分线上一点,若以点A ,B ,C ,D 为顶点的四边形是等角线四边形,求这个等角线四边形的面积.。
全国各地中考数学压轴题精选及答案(整理版)
全国各地中考数学压轴题精选1、(黄石市2011年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线CB 与⊙1O 交于另一点D 。
(1)如图(8),若AC 是⊙2O 的直径,求证:AC CD =;(2)如图(9),若C 是⊙1O 外一点,求证:1O CAD ⊥;(3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。
2、(黄石市2011年)(本小题满分10分)已知二次函数2248y x mx m =-+-(1)当2x ≤时,函数值y 随x 的增大而减小,求m 的取值范围。
(2)以抛物线2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接正三角形AMN (M ,N 两点在抛物线上),请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线2248y x mx m =-+-与x轴交点的横坐标均为整数,求整数m 的值。
AOCBDxy26题备用图AOCBDxy26题图3、(2011年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0),与x 轴相交于点A (5,0),过点A 的直线AB 与y 轴的正半轴交于点B ,与⊙P 交于点C .(1)已知AC=3,求点B的坐标; (4分)(2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数xky =的图象经过点1O ,求k 的值(用含a 的代数式表示).4、庆市潼南县2011年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D . (1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由.第3题图χyGFE DCBA(第6题)5、苏省宿迁市2011年)(本题满分10分)如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =x 6(x >0)图象上的任意一点,以P 为圆心,PO 为半径的圆与x 、y 轴分别交于点A 、B .(1)判断P 是否在线段AB 上,并说明理由; (2)求△AOB 的面积; (3)Q 是反比例函数y =x6(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO 半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB .求证:AN ∥MB .6、苏省宿迁市2011年)(本题满分12分)如图,在Rt △ABC 中,∠B =90°,AB =1,BC =21,以点C 为圆心,CB 为半径的弧交CA 于点D ;以点A 为圆心,AD 为半径的弧交AB 于点E . (1)求AE 的长度;(2)分别以点A 、E 为圆心,AB 长为半径画弧,两弧交于 点F (F 与C 在AB 两侧),连接AF 、EF ,设EF 交弧DE 所 在的圆于点G ,连接AG ,试猜想∠EAG 的大小,并说明理由.题7图(1)E题7图(2)题7图(3)题8图(1)BHFA (D )GC EC (E )B FA (D )题8图(2)7、(11年广东省)10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.8、{1年广东省)21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2) (1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.AEFPQ 图1 图2C'A'B A DCABCDBCD A (A')C'9、11年凉山州)如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。
2023年中考数学压轴题专题17 二次函数与公共点及交点综合问题【含答案】
专题17二次函数与公共点及交点综合问题【例1】.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y =x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【例2】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【例3】.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【例4】.(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF 的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.一.解答题(共20小题)1.(2022•钟楼区校级模拟)如图,已知二次函数y=x2+mx+m+的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣),P是抛物线在直线AC上方图象上一动点.(1)求二次函数的表达式;(2)求△PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个公共点,请直接写出图象M的顶点横坐标n的取值范围.2.(2022•保定一模)如图,关于x的二次函数y=x2﹣2x+t2+2t﹣5的图象记为L,点P是L 上对称轴右侧的一点,作PQ⊥y轴,与L在对称轴左侧交于点Q;点A,B的坐标分别为(1,0),(1,1),连接AB.(1)若t=1,设点P,Q的横坐标分别为m,n,求n关于m的关系式;(2)若L与线段AB有公共点,求t的取值范围;(3)当2t﹣3<x<2t﹣1时,y的最小值为﹣,直接写出t的值.3.(2022•广陵区校级二模)在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.4.(2022•金华模拟)在平面直角坐标系中,二次函数y=x2﹣2mx+6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.(1)当m=1,求图象G的最低点坐标;(2)平面内有点C(﹣2,2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.①若矩形ABCD为正方形时,求点A坐标;②图象G与矩形ABCD的边有两个公共点时,求m的取值范围.5.(2022•清镇市模拟)在平面直角坐标系中,抛物线y=ax2﹣2a2x+1(a≠0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)抛物线的对称轴为直线x=;(用含字母a的代数式表示)(2)若AB=2,求二次函数的表达式;(3)已知点P(a+4,1),Q(0,2),如果抛物线与线段PQ恰有一个公共点,求a的取值范围.6.(2022•五华区三模)已知抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4).(1)求a的值;(2)若抛物线与y轴的公共点为(0,﹣1),抛物线与x轴是否有公共点,若有,求出公共点的坐标;若没有,请说明理由;(3)当2≤x≤4时,设二次函数y=ax2﹣mx+2m﹣3的最大值为M,最小值为N,若=,求m的值.7.(2022•秦淮区二模)在平面直角坐标系中,一个二次函数的图象的顶点坐标是(2,1),与y轴的交点坐标是(0,5).(1)求该二次函数的表达式;(2)在同一平面直角坐标系中,若该二次函数的图象与一次函数y=x+n(n为常数)的图象有2个公共点,求n的取值范围.8.(2022•盐城二模)若二次函数y=ax2+bx+a+2的图象经过点A(1,0),其中a、b为常数.(1)用含有字母a的代数式表示抛物线顶点的横坐标;(2)点B(﹣,1)、C(2,1)为坐标平面内的两点,连接B、C两点.①若抛物线的顶点在线段BC上,求a的值;②若抛物线与线段BC有且只有一个公共点,求a的取值范围.9.(2022•滑县模拟)如图,已知二次函数y=x2+2x+c与x轴正半轴交于点B(另一个交点为A),与y轴负半轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)设直线AC的解析式为y=kx+b,求点A的坐标,并结合图象写出不等式x2+2x+c≥kx+b的解集;(3)已知点P(﹣3,1),Q(2,2t+1),且线段PQ与抛物线y=x2+2x+c有且只有一个公共点,直接写出t的取值范围.10.(2022春•龙凤区期中)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x 的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a,动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.11.(2022春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.12.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.13.(2022•南京一模)已知二次函数y=a(x﹣1)(x﹣1﹣a)(a为常数,且a≠0).(1)求证:该函数的图象与x轴总有两个公共点;(2)若点(0,y1),(3,y2)在函数图象上,比较y1与y2的大小;(3)当0<x<3时,y<2,直接写出a的取值范围.14.(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.15.(2022•花溪区模拟)已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣2,1),B(2,﹣3)两点(1)求分别以A(﹣2,1),B(2,﹣3)两点为顶点的二次函数表达式;(2)求b的值,判断此二次函数图象与x轴的交点情况,并说明理由;(3)设(m,0)是该函数图象与x轴的一个公共点.当﹣3<m<﹣1时,结合函数图象,写出a的取值范围.16.(2022•无锡模拟)在平面直角坐标系中,A,B两点的坐标分别是(0,﹣3),(0,4),点P(m,0)(m≠0)是x轴上一个动点,过点A作直线AC⊥BP于点D,直线AC与x轴交于点C,过点P作PE∥y轴,交AC于点E.(1)当点P在x轴的正半轴上运动时,是否存在点P,使△OCD与△OBD相似?若存在,请求出m的值;若不存在,请说明理由.(2)小明通过研究发现:当点P在x轴上运动时,点E(x,y)也相应的在二次函数y=ax2+bx+c (a≠0)的图象上运动,为了确定函数解析式小明选取了一些点P的特殊的位置,计算了点E(x,y)的坐标,列表如下:xy请填写表中空格,并根据表中数据求出二次函数的函数解析式;(3)把(2)中所求的抛物线向左平移n个单位长度,把直线y=﹣2x﹣4向下平移n个单位长度,如果平移后的抛物线对称轴右边部分与平移后的直线有公共点,那么请直接写出n 的取值范围.17.(2022•朝阳区校级一模)在平面直角坐标系中,二次函数y=﹣x2+2mx﹣6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.平面内有点C(﹣2,﹣2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.(1)当m=﹣2,求图象G的最高点坐标;(2)若图象G过点(3,﹣9),求出m的取值范围;(3)若矩形ABCD为正方形时,求点A坐标;(4)图象G与矩形ABCD的边有两个公共点时,直接写出m的取值范围.18.(2022•如东县一模)定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=﹣x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.19.(2022•南京模拟)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离”,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,在△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0,直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤2,则b的取值范围是.20.(2022•南京模拟)若一个函数图象上存在横纵坐标互为相反数的点,我们将其称之为“反值点”,例如直线y=x+2的图象上的(﹣1,1)即为反值点.(1)判断反比例函数的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(2)判断关于x的函数(a是常数)的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(3)将二次函数y=x2﹣2x﹣3的图象向上平移m(m为常数,且m>0)个单位后,若在其图象上存在两个反值点,求m的取值范围.【例1】(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y =x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【分析】(1)由二次函数的对称轴直接可求b的值;(2)①求出M(2﹣,0),N(2+,0),再求出MN=2,MN的中点坐标为(2,0),利用直角三角形斜边的中线等于斜边的一半,列出方程即可求解;②求出抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),再求出y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0)当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),结合图像可得﹣1≤x<2﹣或0≤x≤1或3≤x<2+时,﹣4≤y<0;(3)通过画函数的图象,分类讨论求解即可.【解析】(1)∵已知二次函数y=x2+bx+m图象的对称轴为直线x=2,∴b=﹣4;(2)如图1:①令x2+bx+m=0,解得x=2﹣或x=2+,∵M在N的左侧,∴M(2﹣,0),N(2+,0),∴MN=2,MN的中点坐标为(2,0),∵△MNP为直角三角形,∴=,解得m=0(舍)或m=﹣1;②∵m=﹣1,∴y=x2﹣4x﹣1(x≥0),令x2﹣4x﹣1=﹣4,解得x=1或x=3,∴抛物线y=x2﹣4x﹣1(x≥0)与直线y=﹣4的交点为(1,﹣4),(3,﹣4),∵y=x2﹣4x﹣1关于x轴对称的抛物线解析式为y=﹣x2+4x+1(x<0),当﹣x2+4x+1=﹣4时,解得x=5(舍)或x=﹣1,∴抛物线y=﹣x2+4x+1(x<0)与直线y=﹣4的交点为(﹣1,﹣4),∴﹣1≤x<2﹣或0≤x≤1或3≤x<2+时,﹣4≤y<0;(3)y=x2﹣4x+m关于x轴对称的抛物线解析式为y=﹣x2+4x﹣m(x<0),如图2,当y=﹣x2+4x﹣m(x<0)经过点A时,﹣1﹣4﹣m=﹣1,解得m=﹣4,∴y=x2﹣4x﹣4(x≥0),当x=5时,y=1,∴y=x2﹣4x﹣4(x≥0)与线段AB有一个交点,∴m=﹣4时,当线段AB与图象C恰有两个公共点;如图3,当y=x2﹣4x+m(x≥0)经过点(0,﹣1)时,m=﹣1,此时图象C与线段AB有三个公共点,∴﹣4≤m<﹣1时,线段AB与图象C恰有两个公共点;如图4,当y=﹣x2+4x﹣m(x<0)经过点(0,﹣1)时,m=1,此时图象C与线段AB有两个公共点,当y=x2﹣4x+m(x≥0)的顶点在线段AB上时,m﹣4=﹣1,解得m=3,此时图象C与线段AB有一个公共点,∴1≤m<3时,线段AB与图象C恰有两个公共点;综上所述:﹣4≤m<﹣1或1≤m<3时,线段AB与图象C恰有两个公共点.【例2】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【分析】(1)求出A、B、C三点坐标,再用待定系数法求直线AC的解析式即可;(2)分四种情况讨论:①当m>1时,p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,p﹣q=m2﹣2m﹣3+4=2,解得m=+1(舍)或m=﹣+1;(3)分两种情况讨论:①当抛物线向左平移h个单位,则向上平移h个单位,平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,求出直线BA的解析式为y=x﹣5,联立方程组,由Δ=0时,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②当抛物线向右平移k个单位,则向下平移k 个单位,平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点;当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,由此可求解.【解析】(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点A(1,﹣4),令x=0,则y=﹣3,∴C(0,﹣3),∵CB∥x轴,∴B(2,﹣3),设直线AC解析式为y=kx+b,,解得,∴y=﹣x﹣3;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=1,①当m>1时,x=m时,q=m2﹣2m﹣3,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3﹣m2+2m+3=2,解得m=(舍);②当m+2<1,即m<﹣1,x=m时,p=m2﹣2m﹣3,x=m+2时,q=(m+2)2﹣2(m+2)﹣3,∴p﹣q=m2﹣2m﹣3﹣(m+2)2+2(m+2)+3=2,解得m=﹣(舍);③当m≤1≤m+1,即0≤m≤1,x=1时,q=﹣4,x=m+2时,p=(m+2)2﹣2(m+2)﹣3,∴p﹣q=(m+2)2﹣2(m+2)﹣3+4=2,解得m=﹣1或m=﹣﹣1(舍);④当m+1<1≤m+2,即﹣1≤m<0,x=1时,q=﹣4,x=m时,p=m2﹣2m﹣3,∴p﹣q=m2﹣2m﹣3+4=2,解得m=1+(舍)或m=1﹣,综上所述:m的值﹣1或1﹣;(3)设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,①如图1,当抛物线向左平移h个单位,则向上平移h个单位,∴平移后的抛物线解析式为y=(x﹣1+h)2﹣4+h,设直线BA的解析式为y=k'x+b',∴,解得,∴y=x﹣5,联立方程组,整理得x2﹣(3﹣2h)x+h2﹣h+2=0,当Δ=0时,(3﹣2h)2﹣4(h2﹣h+2)=0,解得h=,此时抛物线的顶点为(,﹣),此时平移后的抛物线与射线BA只有一个公共点;②如图2,当抛物线向右平移k个单位,则向下平移k个单位,∴平移后的抛物线解析式为y=(x﹣1﹣k)2﹣4﹣k,当抛物线经过点B时,(2﹣1﹣k)2﹣4﹣k=﹣3,解得k=0(舍)或k=3,此时抛物线的顶点坐标为(4,﹣7),此时平移后的抛物线与射线BA只有一个公共点,当抛物线的顶点为(1,﹣4)时,平移后的抛物线与射线BA有两个公共点,∴综上所述:1<n≤4或n=.【例3】(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【分析】(1)二次函数表达式可设为:y=ax2+bx+3,将A(1,0)、B(4,0)代入y=ax2+bx+3,解方程可得a和b的值,再利用顶点坐标公式可得点D的坐标;(2)根据t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.分两种情形,当△EMN∽△OBC时,得,解得t=;当△EMN∽△OCB时,得,解得t=;(3)首先利用中点坐标公式可得点G的坐标,利用待定系数法求出直线AG和BG的解析式,再根据直线l:y=kx+m与抛物线只有一个公共点,联立两函数解析式,可得Δ=0,再求出点H和k的横坐标,从而解决问题.【解析】(1)设二次函数表达式为:y=ax2+bx+3,将A(1,0)、B(4,0)代入y=ax2+bx+3得:,解得,∴抛物线的函数表达式为:,又∵=,==,∴顶点为D;(2)依题意,t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.①当△EMN∽△OBC时,∴,解得t=;②当△EMN∽△OCB时,∴,解得t=;综上所述,当或时,以M、E、N为顶点的三角形与△BOC相似;(3)∵点关于点D的对称点为点G,∴,∵直线l:y=kx+m与抛物线只有一个公共点,∴只有一个实数解,∴Δ=0,即:,解得:,利用待定系数法可得直线GA的解析式为:,直线GB的解析式为:,联立,结合已知,解得:x H=,同理可得:x K=,则:GH==,GK==×,∴GH+GK=+×=,∴GH+GK的值为.【例4】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF 的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.【分析】(1)运用待定系数法即可求得抛物线解析式和直线AD的解析式;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,根据三角形面积关系可得=,由EM∥FN,可得△BFN∽△BEM,得出===,可求得F(2+t,t2﹣t﹣2),代入直线AD的解析式即可求得点E的坐标;(3)根据题意可得:点C′(0,3),G′(2,4),向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,利用待定系数法可得:直线BC的解析式为y=x﹣3,直线C′G′的解析式为y=x+3,由四边形C′G′QP是平行四边形,分类讨论即可.【解析】(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);(3)∵y=x2﹣x﹣3=(x﹣2)2﹣4,∴顶点坐标为G(2,﹣4),当x=0时,y=3,即点C(0,﹣3),∴点C′(0,3),G′(2,4),∴向上翻折部分的图象解析式为y=﹣(x﹣2)2+4,∴向上翻折部分平移后的函数解析式为y=﹣(x﹣2)2+4﹣n,平移后抛物线剩下部分的解析式为y=(x﹣2)2﹣4﹣n,设直线BC的解析式为y=k′x+d′(k′≠0),把点B(6,0),C(0,﹣3)代入得:,解得:,∴直线BC的解析式为y=x﹣3,同理直线C′G′的解析式为y=x+3,∴BC∥C′G′,设点P的坐标为(s,s﹣3),∵点C′(0,3),G′(2,4),∴点C′向右平移2个单位,再向上平移1个单位得到点G′,∵四边形C′G′QP是平行四边形,∴点Q(s+2,s﹣2),当点P,Q均在向上翻折部分平移后的图象上时,则,解得:(不符合题意,舍去),当点P在向上翻折部分平移后的图象上,点Q在平移后抛物线剩下部分的图象上时,则,解得:或(不合题意,舍去),当点P在平移后抛物线剩下部分的图象上,点Q在向上翻折部分平移后的图象上时,则,解得:或(不合题意,舍去),综上所述,点P的坐标为(1+,)或(1﹣,).一.解答题(共20小题)1.(2022•钟楼区校级模拟)如图,已知二次函数y=x2+mx+m+的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣),P是抛物线在直线AC上方图象上一动点.(1)求二次函数的表达式;(2)求△PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个公共点,请直接写出图象M的顶点横坐标n的取值范围.【分析】(1)利用待定系数法即可求得答案;(2)令y=0,可求得:A(﹣5,0),B(﹣1,0),再运用待定系数法求得直线AC的解析式为y=﹣x﹣,如图1,设P(t,﹣t2﹣3t﹣),过点P作PH∥y轴交直线AC于点H,则PH=﹣t2﹣t,利用S△P AC=S△P AH+S△PCH=﹣(t+)2+,即可运用二次函数求最值的方法求得答案;(3)运用翻折变换的性质可得图象G的函数解析式为:y=(x+3)2﹣2,顶点坐标为(﹣3,﹣2),进而根据平移规律可得:图象M的函数解析式为:y=(x﹣n)2﹣n﹣,顶点坐标为(n,﹣n﹣),当图象M经过点C(0,﹣)时,可求得:n=﹣1或n=2,当图象M的端点B在PC上时,可求得:n=﹣或n=(舍去),就看得出:图象M的顶点横坐标n的取值范围为:﹣≤n≤﹣1或n=2.【解析】(1)∵抛物线y=﹣x2+mx+m+与y轴交于点C(0,﹣),∴m+=﹣,解得:m=﹣3,∴该抛物线的解析式为:y=﹣x2﹣3x﹣;(2)在y=﹣x2﹣3x﹣中,令y=0,得:﹣x2﹣3x﹣=0,解得:x1=﹣5,x2=﹣1,∴A(﹣5,0),B(﹣1,0),设直线AC的解析式为y=kx+b,∵A(﹣5,0),C(0,﹣),∴,解得:,∴直线AC的解析式为y=﹣x﹣,如图1,设P(t,﹣t2﹣3t﹣),过点P作PH∥y轴交直线AC于点H,则H(t,﹣t﹣),∴PH=﹣t2﹣3t﹣﹣(﹣t﹣)=﹣t2﹣t,=S△P AH+S△PCH∴S△P AC=•PH•(x P﹣x A)+•PH•(x C﹣x P)=•PH•(x C﹣x A)=×(﹣t2﹣t)×[0﹣(﹣5)]=t2﹣t=﹣(t+)2+,取得最大值,∴当t=﹣时,S△P AC此时,点P的坐标为(﹣,);(3)如图2,抛物线y=﹣x2﹣3x﹣在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G,∵y=﹣x2﹣3x﹣=(x+3)2+2,顶点为(﹣3,2),∴图象G的函数解析式为:y=(x+3)2﹣2,顶点坐标为(﹣3,﹣2),∵图象G沿直线AC平移,得到新的图象M,顶点运动的路径为直线y=﹣x﹣,∴图象M的顶点坐标为(n,﹣n﹣),∴图象M的函数解析式为:y=(x﹣n)2﹣n﹣,当图象M经过点C(0,﹣)时,则:﹣=(0﹣n)2﹣n﹣,解得:n=﹣1或n=2,当图象M的端点B在PC上时,∵线段PC的解析式为:y=﹣x﹣(﹣≤x≤0),点B(﹣1,0)运动的路径为直线y =﹣x﹣,∴联立可得:,解得:,将代入y=(x﹣n)2﹣n﹣,可得:(﹣﹣n)2﹣n﹣=,解得:n=﹣或n=(舍去),∴图象M的顶点横坐标n的取值范围为:﹣≤n≤﹣1或n=2.2.(2022•保定一模)如图,关于x的二次函数y=x2﹣2x+t2+2t﹣5的图象记为L,点P是L 上对称轴右侧的一点,作PQ⊥y轴,与L在对称轴左侧交于点Q;点A,B的坐标分别为(1,0),(1,1),连接AB.(1)若t=1,设点P,Q的横坐标分别为m,n,求n关于m的关系式;(2)若L与线段AB有公共点,求t的取值范围;(3)当2t﹣3<x<2t﹣1时,y的最小值为﹣,直接写出t的值.【分析】(1)当t=1时,抛物线为y=x2﹣2x﹣2,可求得它的对称轴为直线x=1,由点P 与点Q关于直线x=1对称得m+n=2,即可求得n关于m的关系式;(2)将y=x2﹣2x+t2+2t﹣5配成顶点式y=(x﹣1)2+t2+2t﹣6,则抛物线的对称轴为直线x=1,顶点坐标为(1,t2+2t﹣6),再说明线段AB在直线x=1上,由L与线段AB有公共点可列不等式组得0≤t2+2t﹣6≤1,解不等式组求出它的解集即可;(3)分三种情况,一是直线x=2t﹣1在抛物线的对称轴的左侧,在2t﹣3<x<2t﹣1范围内图象不存在最低点,因此不存在y的最小值;二是直线x=1在直线x=2t﹣3与直线x=2t﹣1之间时,抛物线的顶点为最低点,可列方程t2+2t﹣6=﹣,解方程求出符合题意的t值;三是直线x=2t﹣3在抛物线的对称轴的右侧,在2t﹣3<x<2t﹣1范围内图象不存在最低点,因此不存在y的最小值.【解析】(1)如图1,当t=1时,L为抛物线y=x2﹣2x﹣2,∵y=x2﹣2x﹣2=(x﹣1)2﹣3,∴该抛物线的对称轴为直线x=1,∵点P、Q分别是对称轴右侧、左侧L上的点,且PQ⊥y轴,∴m+n=2,∴n=﹣m+2(m>1).(2)如图2,L为抛物线y=x2﹣2x+t2+2t﹣5=(x﹣1)2+t2+2t﹣6,∴L的对称轴为直线x=1,顶点坐标为(1,t2+2t﹣6),∵A(1,0),B(1,1),∴线段AB在直线x=1上,∵L与线段AB有公共点,∴0≤t2+2t﹣6≤1,解得﹣1﹣2≤t≤﹣1﹣或﹣1+≤t≤﹣1+2,∴t的取值范围是﹣1﹣2≤t≤﹣1﹣或﹣1+≤t≤﹣1+2.(3)当2t﹣1<1,即t<1时,如图3,∵在2t﹣3<x<2t﹣1范围内图象不存在最低点,∴此时不存在y的最小值;当2t﹣1≥1且2t﹣3≤1,即1≤t≤2时,如图4,∵L的顶点为最低点,∴t2+2t﹣6=﹣,解得t1=,t2=,∵<1,∴t2=不符合题意,舍去;当2t﹣3>1,即t>2时,如图5,∵在2t﹣3<x<2t﹣1范围内图象不存在最低点,∴此时不存在y的最小值,综上所述,t的值为.3.(2022•广陵区校级二模)在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.【分析】(1)联立两函数解析式求出交点坐标,然后根据一次函数的增减性解答;(2)根据一次函数的增减性判断出x≥2,再根据二次函数解析式求出对称轴,然后根据二次函数的增减性可得x<4,从而得解;(3)①若函数y=x2﹣8x+c与y0=﹣x+6只有一个交点,联立两函数解析式整理得到关于x的一元二次方程,利用根的判别式Δ=0求出c的值,然后求出x的值,若在x的取值范围内,则符合;②若函数y=x2﹣8x+c与y0=﹣x+6有两个交点,先利用根的判别式求出c 的取值范围,先求出x=2与x=4时的函数值,然后利用一个解在x的范围内,另一个解不在x的范围内列出不等式组求解即可.【解析】(1)∵,∴,∴函数y1和y2图象交点坐标(2,4);y0关于x的函数关系式为y0=;(2)∵对于函数y0,y0随x的增大而减小,∴y0=﹣x+6(x≥2),又∵函数y=x2﹣8x+c的对称轴为直线x=4,且a=1>0,∴当x<4时,y随x的增大而减小,∴2≤x<4;(3)①若函数y=x2﹣8x+c与y0=﹣x+6只有一个交点,且交点在2<x<4范围内,则x2﹣8x+c=﹣x+6,即x2﹣7x+(c﹣6)=0,∴Δ=(﹣7)2﹣4(c﹣6)=73﹣4c=0,解得c=,此时x1=x2=,符合2<x<4,∴c=;②若函数y=x2﹣8x+c与y0=﹣x+6有两个交点,其中一个在2<x<4范围内,另一个在2<x<4范围外,∴Δ=73﹣4c>0,解得c<,∵对于函数y0,当x=2时,y0=4;当x=4时y0=2,又∵当2<x<4时,y随x的增大而减小,若y=x2﹣8x+c与y0=﹣x+6在2<x<4内有一个交点,则当x=2时y>y0;当x=4时y<y0,即当x=2时,y≥4;当x=4时,y≤2,∴,解得16<c<18,又c<,∴16<c<18,综上所述,c的取值范围是:c=或16<c<18.4.(2022•金华模拟)在平面直角坐标系中,二次函数y=x2﹣2mx+6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.(1)当m=1,求图象G的最低点坐标;(2)平面内有点C(﹣2,2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.①若矩形ABCD为正方形时,求点A坐标;②图象G与矩形ABCD的边有两个公共点时,求m的取值范围.【分析】(1)由m=1代入抛物线解析式,将二次函数解析式化为顶点式求解;(2)①将x=2m代入抛物线解析式求出点A坐标,由正方形的性质即可求解;②分类讨论,数形结合解题,根据A点在图象G上,再在图象G上找一个点可以满足条件,然后根据m的取值范围进行分类讨论进行解题即可.【解析】(1)m=1时,y=x2﹣2x+6=(x﹣1)2+5,∴顶点为(1,5),∵x≤2,∴图象G的最低点坐标为(1,5);(2)①当x=2m时,y=6m,∴A(2m,6m),∵C(﹣2,2),∵正方形ABCD中,AB与x轴平行,BC与y轴平行,∴B(﹣2,6m),同理得D(2m,2),∵AD=CD,∴|6m﹣2|=|2m+2|,∴2m+2=﹣6m+2或2m+2=﹣2+6m,解得m=0或m=1,∴点A的坐标为(0,0)或(2,6);②∵点A在图象G上,∴图象G与矩形ABCD已经有一个公共点A,∵图象G与矩形ABCD的边有两个公共点,∴只需图象G与矩形ABCD的边再由一个公共点即可;。
2024届中考数学压轴题冲刺满分(含答案)
压轴题【题型精讲】题型一:动态几何1(2021·江苏苏州·一模)如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为()A.833π B.83π C.433π D.43π2(2021·山东威海·中考真题)如图,在菱形ABCD 中,AB =2cm ,∠D =60°,点P ,Q 同时从点A 出发,点P 以1cm/s 的速度沿A -C -D 的方向运动,点Q 以2cm/s 的速度沿A -B -C -D 的方向运动,当其中一点到达D 点时,两点停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),则下列图象中能大致反映y 与x 之间函数关系的是()A. B.C. D.3(2021·山东济南·三模)如图1,在Rt △ABC 中,∠A =90°,BC =10cm ,点P ,点Q 同时从点B 出发,点P 以2cm/s 的速度沿B →A →C 运动,终点为C ,点Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图象如图2(曲线OM 和MN 均为抛物线的一部分),给出以下结论:①AC =6cm ;②曲线MN 的解析式为y=-45t2+285t(4≤t≤7);③线段PQ的长度的最大值为6510cm;④若△PQC与△ABC相似,则t=407秒,其中正确的说法是()A.①②④B.②③④C.①③④D.①②③题型二:新定义问题4(2023·重庆·中考真题)在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x-y-|z-m|-n=x-y-z+m-n,x-y-z-m-n=x-y-z-m+n,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.35(2021·广西贺州·中考真题)如M=1,2,x,我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N=x,1,2,我们说M=N.已知集合A=1,0,a,集合B=1a,a ,ba,若A=B,则b-a的值是()A.-1B.0C.1D.26(2021·湖北荆州·中考真题)定义新运算“※”:对于实数m,n,p,q,有m,p※q,n=mn+pq,其中等式右边是通常的加法和乘法运算,如:2,3※4,5=2×5+3×4=22.若关于x的方程x2+1,x※5-2k,k=0有两个实数根,则k的取值范围是()A.k<54且k≠0 B.k≤54C.k≤54且k≠0 D.k≥54题型三:猜想和证明7(2023·四川巴中·中考真题)综合与实践.(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.①∠BOC的度数是.②BD:CE=.(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.①∠AOB的度数是.②AD:BE=.(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N 为BE的中点.①试说明△MND为等腰三角形.②求∠MND的度数.8(2020·河南驻马店·模拟预测)在△ABC中,∠ACB=90°,AC=BC,点D是直线AB上的一动点(不与点A,B重合),连接CD,在CD的右侧以CD为斜边作等腰直角三角形CDE,点H是BD的中点,连接EH.【问题发现】(1)如图(1),当点D是AB的中点时,线段EH与AD的数量关系是,位置关系是.【猜想证明】(2)如图(2),当点D在边AB上且不是AB的中点时,(1)中的结论是否仍然成立?若成立,请仅就图(2)中的情况给出证明;若不成立,请说明理由.【拓展应用】(3)若AC=BC=22,其他条件不变,连接AE,BE.当△BCE是等边三角形时,直接写出△ADE的面积.题型四:阅读理解9(2023·江西新余·一模)定义:在平面直角坐标系中,抛物线y=ax2+bx+c a≠0与y轴的交点坐标为0,c,那么我们把经过点0,c且平行于x轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线y=x2+2x+1的极限分割线与这条抛物线的交点坐标为.【深入探究】(2)经过点A-2,0和B x,0(x>-2)的抛物线y=-14x2+12mx+n与y轴交于点C,它的极限分割线与该抛物线另一个交点为D,请用含m的代数式表示点D的坐标.【拓展运用】(3)在(2)的条件下,设抛物线y =-14x 2+12mx +n 的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当∠CDF =45°时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.10(2023·山东青岛·二模)如图1,AD 是△ABC 的高,点E ,F 分别在边AB 和AC 上,且EF ∥BC .由“相似三角形对应高的比等于对应边的比”可以得到以下结论:AG AD=EFBC .(1)如图2,在△ABC 中,BC =6,BC 边上的高为8,在△ABC 内放一个正方形MNGH ,使其一边GH 在BC 上,点M ,N 分别在AB ,AC 上,则正方形MNGH 的边长=;(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm ,底边长为120cm 的等腰三角形展台.现需将展台用平行于底边的隔板,每间隔10cm 分隔出一层,再将每一层尽可能多的分隔成若干个开口为正方形的长方体格子,要求每个格子内放置一瓶葡萄酒,平面设计图如图3所示,将底边BC 的长度看作是第0层隔板的长度;①在分隔的过程中发现,当隔板厚度忽略不计时,每层平行于底边的隔板长度(单位:cm )随着层数(单位:层)的变化而变化.请完成下表:层数/层0123⋯隔板长度/cm120__________________⋯②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?题型五:开放探究11(2022·安徽滁州·二模)【证明体验】(1)如图1,AD 为△ABC 的角平分线,∠ADC =60°,点E 在线段AB 上,AE =AC ,求证:DE 平分∠ADB ;【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连接FC 交AD 于点G .若FB =FC ,求证:DE 2=BD ⋅DG ;【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分∠BAD ,∠BCA =2∠DCA ,点E 在AC 上,∠EDC =∠ABC ,若BC =5,CD =25,AD =2AE ,求AC 的长.12(2022·浙江杭州·二模)如图,在平面直角坐标系中,点A,B的坐标分别是(-4,0),(0,8),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=3,过点F作MN⊥PE,截取FM=3,FN=1,且点M,N分别在第一、四象限,在运动过程中,当点M,N中,有一点落在四边形ADEC的边上时,直接写出所有满足条件的t的值.题型六:综合应用13(2024·河北邢台·三模)如图1至图3,▱ABCD中,AB=20,BC=15,点P在折线BA-AD上,连接PC,将▱ABCD沿PC向右上方折叠,折叠后得到△PCE或四边形PCEF.探究如图1,若∠A=90°,点P在BA上①当射线PE经过点D时,求证:△PDA≌△DCE;②当点E,A的距离最小时,求BP的长.尝试如图2,若∠A=90°,点P在AD上,当点F在CD的延长线上时,求tan∠PCE的值.延伸如图3,若∠A<90°,tan A=43,EF恰好经过点D时,直接写出AP的长.14(2024·福建宁德·二模)蹦床是一项运动员利用蹦床的反弹在空中表现杂技技巧的竞技运动,有“空中芭蕾”之美称.甲、乙两位蹦床运动员在某次训练过程中同时起跳,甲运动员着落蹦床后便停止运动,乙运动员着落蹦床后继续做放松运动,每次蹦床运动间隔停留时间忽略不计.图1是甲、乙两位运动员的运动高度S(m )与运动时间t (s )的二次函数图象,点A 的坐标为(2,0),点B 的坐标为52,0 ,点D 的坐标为(1,5),且所有二次函数图象开口大小相同.(1)求甲运动员在这次训练中运动的最大高度;(2)图2是教练员观测到乙运动员在这次训练中,每次运动的最高点都在同一视线DE 上,教练员的视线与水平线的夹角为α.①若甲、乙运动员在2.4s 时运动高度相同,求直线DE 的表达式;②当α≤33.5°时,求乙在第二次蹦床运动中最大运动高度的取值范围.sin33.5°≈1120,cos33.5°≈2125,tan33.5°≈2315(2024·山东淄博·二模)如图1,抛物线y =ax 2+bx +3a ≠0 与x 轴交于点A -1,0 ,B 3,0 与y 轴交于点C ,连接AC ,BC .(1)求该抛物线及直线BC的函数表达式;(2)如图2,在BC上方的抛物线上有一动点P(不与B,C重合),过点P作PD∥AC,交BC于点D,过点P作PE∥y轴,交BC于点E.在点P运动的过程中,请求出△PDE周长的最大值及此时点P的坐标;(3)如图3,若点P是该抛物线上一动点,问在点P运动的过程中,坐标平面内是否存在点Q使以B,C,P,Q 为顶点BC为对角线的四边形是矩形,若存在,请求出此时点Q的坐标;若不存在,请说明理由.16(2024·江苏淮安·模拟预测)如图1,二次函数y=-14x2+bx+c与x轴交于A、B两点,与y轴交于点C.点B坐标为(6,0),点C坐标为(0,3),点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为D,PD交直线BC于点E,设点P的横坐标为m.(1)求该二次函数的表达式;(2)如图2,过点P作PF⊥BC,垂足为F,当m为何值时,PF最大?最大值是多少?(3)如图3,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.【专题精练】一、单选题1(2023·四川宜宾·三模)如图,在Rt△ABC中,∠BAC=90°,AB=AC=6,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为3+33;③BP存在最小值为33-3;④点P运动的路径长为22π.其中,正确的是()A.①③④B.①②④C.①②③D.②③④2(2023·湖北十堰·三模)若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点,若在二次函数y=x2 +2mx-m(m为常数)的图象上存在两个二倍点M x1,y1,N x2,y2,且x1<1<x2,则m的取值范围是()A.m<2B.m<1C.m<0D.m>03(2023·黑龙江大庆·一模)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x-3与x轴、y轴分别交于点D、E,则点C到直线DE的最小距离为()A.1B.35C.45D.344(2022·浙江宁波·二模)如图,正六边形ABCDEF中,点P是边AF上的点,记图中各三角形的面积依次为S1,S2,S3,S4,S5,则下列判断正确的是()A.S1+S2=2S3B.S1+S4=S3C.S2+S4=2S3D.S1+S5=S35(2022·山东东营·中考真题)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是3;③当MN最小时S△CMN=18S菱形ABCD;④当OM⊥BC时,OA2=DN⋅AB.A.①②③B.①②④C.①③④D.①②③④6(2022·辽宁抚顺·模拟预测)如图,点E、F分别在正方形ABCD的边CD、AD上,且AB=2CE=3AF,过F作FG⊥BE于P交BC于G,连接DP交BC于H,连BF、EF.下列结论:①△PBF为等腰直角三角形;②H为BC的中点;③∠DEF=2∠PFE;④SΔPHGSΔPDE=23.其中正确的结论()A.只有①②③B.只有①②④C.只有③④D.①②③④7(2020·浙江金华·一模)如图,在等边三角形ABC中,点P,Q分别是AC,BC边上的动点(都不与线段端点重合),且AP=CQ,AQ、BP相交于点O.下列四个结论:①若PC=2AP,则BO=6OP;②若BC=8,BP=7,则PC=5;③AP2=OP⋅AQ;④若AB=3,则OC的最小值为3,其中正确的是()A.①③④B.①②④C.②③④D.①②③8(21-22九年级上·广东深圳·期中)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM =45°,点F在射线AM上,且AF=2,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①CG=3434;②△AEG的周长为8;③△EGF的面积为1710.其中正确的是()A.①②③B.①③C.①②D.②③9(2021·广东深圳·二模)如图,在矩形ABCD中,BC=2AB,E为BC中点,连接AE交BD于点F,连CF,下列结论:①AE⊥BD;②S矩形ABCD=10S△CEF;③DC2=2DO⋅DF;④FCAE=63正确的有( )个.A.1B.2C.3D.410(2020·安徽滁州·模拟预测)在△EFG中,∠G=90°,EG=FG=22,正方形ABCD的边长为1,AD 与EF在一条直线上,点A与点E重合.现将正方形ABCD沿EF方向以每秒1个单位的速度匀速运动,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A. B.C. D.二、填空题11(2024·陕西西安·二模)如图,菱形ABCD中,AB=8,∠B=60°,E为AB的中点,F为BC上一点,连接EF,作∠GEF=60°且△GEF面积为33,则DG的最小值为.12(2023·陕西咸阳·一模)如图,矩形ABCO的顶点A,C分别在x轴、y轴上,点B的坐标为(-8,6),⊙M是△AOC的内切圆,点N,点P分别是⊙M,x轴上的动点,则PB+PN的最小值是.13(2023·天津河西·一模)如图,正方形ABCD的边长为4,E是边CD上一点,DE=3CE,连接BE,与AC 相交于点M ,过点M 作MN ⊥BE ,交AD 于点N ,连接BN ,则点E 到BN 的距离为.14(2021·浙江湖州·二模)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数y =-x 2+1-2≤x ≤t ,t ≥0 的图象向上平移t 个单位,得到的函数的边界值n 满足是94≤n ≤52时,则t 的取值范围是.15(2023·湖北武汉·模拟预测)如图,△ABC 是边长为3的等边三角形,延长AC 至点P ,使得CP =1.点E 在线段AB 上,且AE <12AB ,连接PE ,以PE 为边向右作等边△PEF ,过点E 作EM ∥AP 交FA 的延长线于点M ,点N 是MF 的中点,则四边形AEPN 的面积为.16(2023·浙江宁波·二模)如图,y =-2x +b 与y =k 1x (k 1>0,x >0)交于A 、B 两点,过B 作y 轴的垂线,垂足为C ,交y =k 2x (k 2>0,x >0)于点D ,点D 关于直线AB 的对称点E 恰好落在x 轴上,且AE ⊥x 轴,连接BE ,则k 1k 2=;若△ABE 的面积为15,则k 1的值为.三、解答题17(2024·陕西西安·模拟预测)如图,已知抛物线W 1:y =ax 2+bx -2与x 轴交于A ,D 两点,AD =5,点A 在直线l :y =12x +12上.(1)求抛物线W 1的解析式;(2)将抛物线W 1沿x 轴翻折后得到抛物线W 2,W 2与直线l 交于A ,B 两点,点P 是抛物线W 2上A ,B 之间的一个动点(不与点A 、B 重合),PM ⊥AB 于M ,PN ∥y 轴交AB 于N ,求MN 的最大值.18(2024·福建龙岩·模拟预测)在锐角∠MON 内部取一点A ,过点A 分别作AB ⊥OM 于点B ,作AC ⊥ON 于点C ,以AB 为直径作⊙P ,CA 的延长线与⊙P 交于点D .(1)求证:∠MON +∠ABD =90°;(2)若OB =BD ,点D 在OP 的延长线上,求证:ON 是⊙P 的切线;(3)当tan ∠MON =1时,连接OA ,若CP ⊥OA 于点F ,求PFCF的值.19(2024·广东佛山·模拟预测)四边形ABCD 是⊙O 的内接矩形,点E 是AD上的一动点,连接AE ,BE ,DE ,其中BE 交AD 于点F .(1)如1图,当AB =ED 时,①求证:△AEB ≌△EAD ;②若∠EAD =30°,连接BO ,EO .求证:四边形ABOE 是菱形.(2)如2图,若BC =2AB =2,EFFB=k ,请用含k 的式子表示EA ⋅ED 的值.20(2024·黑龙江哈尔滨·一模)如图,抛物线y =-12x 2+bx 交x 轴正半轴于点A ,过顶点C 作CD ⊥x 轴于点D ,OA =CD .(1)求抛物线的解析式;(2)若-2≤x ≤6时,则函数y 的取值范围是;(3)点P 为CD 右侧第一象限抛物线上一点,过点P 作PH ⊥x 轴于点H ,点Q 为y 轴正半轴上一点,连接AQ 、HQ ,tan ∠OHQ =23,PQ 延长线交x 轴于点B ,点N 在y 轴负半轴上,连接BN 、AN ,若∠BQA =135°,∠ANB =45°求直线AN 的解析式.21(2024·吉林长春·一模)如图,在菱形ABCD 中,BC =10,tan B =43.点E 为线段BA 延长线上一点,且BE =15,动点P 从点B 出发,以每秒1个单位长度的速度沿BE 向终点E 匀速运动.连结PC 、PD ,将△PCD 绕点P 按逆时针方向旋转90°得到△PC D ,设点P 运动的时间是t 秒(t >0).(1)菱形ABCD 的面积是;(2)用含t 的代数式表示线段PA PA >0 的长;(3)当C 、A 、C 三点共线时,求t 的值;(4)当△EC D 是直角三角形时,直接写出t 的值.22(2024·吉林长春·一模)如图,在正方形ABCD 中,动点P 从点A 出发,沿A -B -C 运动到点C 停止.过点C 作DP 的垂线,垂足为点G ,延长CG 到点E ,使EG =CG ,连结DE ,AE ,直线EA 与DP 交于点F .设∠ADP 为α,且0°<α<90°.(1)当α=10°时,∠ADE=°,∠DAE=°;(2)当点P在AB上时,①求sin F的值;②当△DEF为轴对称图形时,求α的大小;(3)若正方形ABCD的面积为4,直接写出△DAF面积的最大值.23(2024·黑龙江哈尔滨·一模)综合实践菱形ABCD中,点E在对角线BD上,点M在直线AB上,将线段ME绕点M顺时针旋转得到线段MF,旋转角∠EMF=∠BAD,连接BF.【问题发现】(1)如图1,当点M与点A重合时,线段BE、BF、BD之间的数量关系为.【类比探究】(2)如图2,当点M在AB边上时,∠EMF=60°时,求证:BM+BF=BE;【拓展延伸】(3)如图3,点M在BA延长线上,H为AD中点,当MH⊥BM,AM=74,BD=20时,设BE=x,BF=y,求y与x之间的数量关系.24(2023·吉林白城·模拟预测)下面是小明同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,已知正方形ABCD中,E,F分别是AB、BC边上的点,且∠EDF=45°.求证:EF=AE+ CF.证明:如图,将△DAE绕点D逆时针旋转90°,得到△DCM,则DE=DM,∠A=∠DCM,∠ADE=∠MDC.∵四边形ABCD是正方形,∴∠A=∠ADC=∠DCB=90°,∴∠EDM=∠EDC+∠MDC=∠EDC+∠ADE=∠ADC=90°.∵∠EDF=45°,∴∠MDF=∠EDF=45°.又∵∠A=∠DCM=∠DCB=90°,∴点B,F,C,M在一条直线上.∵DF=DF,∴△EDF≌,∴EF=MF=CM+CF=+CF.【探究】(1)在图①中,若正方形ABCD的边长为3,AE=1,其他条件不变,求EF的长.压轴题【题型精讲】题型一:动态几何1(2021·江苏苏州·一模)如图,△ABC内接于⊙O,BC=12,∠A=60°,点D为弧BC上一动点,BE⊥直线OD于点E.当点D从点B沿弧BC运动到点C时,点E经过的路径长为()A.833π B.83π C.433π D.43π【答案】A【分析】连接OB,设OB的中点为M,连接ME.作OH⊥BC于H.首先判断出点E在以OB为直径的圆上运动,求出点D与C重合时∠EMB的度数,利用弧长公式计算即可.【详解】解:如图,连接OB,设OB的中点为M,连接ME.作OH⊥BC于H.∵OD⊥BE,∴∠OEB=90°,∴点E在以OB为直径的圆上运动,当点D与C重合时,∵∠BOC=2∠A=120°,∴∠BOE=60°,∴∠EMB=2∠BOE=120°,∵BC=12,OH⊥BC,∴BH=CH=6,∠BOH=∠COH=60°,∴OB=BHsin60°=43,∴点E的运动轨迹的长=240∙π×23180=833π,故选:A.【点睛】本题考查轨迹、弧长公式、三角形的外接圆与外心等知识,解题的关键是学会添加常用辅助线,正确寻找轨迹,属于中考常考题型.2(2021·山东威海·中考真题)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A-C-D的方向运动,点Q以2cm/s的速度沿A-B-C-D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A. B.C. D.【答案】A【分析】先证明∠CAB=∠ACB=∠ACD=60°,再分0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1,当0≤x≤1时,AQ=2x,AP=x,作PE⊥AB于E,∴PE=AP∙sin∠PAE=32x,∴y=12×2x∙32x=32x2,故D选项不正确;如图2,当1<x≤2时,CP=2-x,CQ=4-2x,BQ=2x-2,作PF⊥BC与F,作QH⊥AB于H,∴PF=CP·sin∠PCF=322-x,QH=BQ∙sin∠B=322x-2=3x-1,∴y=34×22-12×2×3x-1-12×4-2x∙322-x=-32x2+3x,故B选项不正确;当2<x≤3时,CP=x-2,CQ=2x-4,∴PQ=x-2,作AG ⊥CD 于G ,∴AG =AC ∙sin ∠ACD =32×2=3,∴y =12×x -2 ∙3=32x -3,故C 不正确.故选:A【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.3(2021·山东济南·三模)如图1,在Rt △ABC 中,∠A =90°,BC =10cm ,点P ,点Q 同时从点B 出发,点P 以2cm/s 的速度沿B →A →C 运动,终点为C ,点Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图象如图2(曲线OM 和MN 均为抛物线的一部分),给出以下结论:①AC =6cm ;②曲线MN 的解析式为y =-45t 2+285t (4≤t ≤7);③线段PQ 的长度的最大值为6510cm ;④若△PQC 与△ABC 相似,则t =407秒,其中正确的说法是()A.①②④B.②③④C.①③④D.①②③【答案】A【分析】①根据图2可知:P 走完AB 用了4秒,得AB =2×4=8cm ,利用勾股定理得AC 的长;②当P 在AC 上时,4≤t ≤7,利用同角的三角函数表示高PD 的长,利用三角形面积公式可得y 与t 的关系式;③当P 与A 重合时,PQ 最大,如图4,此时t =4,求出PQ 的长;④当P 在AC 上时,ΔPQC 与ΔABC ,列比例式可得t 的值.【详解】解:①由图2可知:t =4时,y =485,∴AB =2×4=8cm ,∵∠A =90°,BC =10cm ,∴AC =6cm ,故①正确;②当P 在AC 上时,如图3,过P 作PD ⊥BC 于D ,此时:6+82=7,∴4≤t ≤7,由题意得:AB +AP =2t ,BQ =t ,∴PC =14-2t ,sin ∠C =PD PC =ABBC,∴PD =4(14-2t )5,∴y =S ΔBPQ =12BQ ∙PD =12t ∙4(14-2t )5=-45t 2+285t ,故②正确;③当P 与A 重合时,PQ 最大,如图4,此时t =4,∴BQ =4,过Q 作GH ⊥AB 于H ,sin ∠B =QH BQ =ACBC,∴QH 4=610,∴QH =125,同理:BH =165,∴AH =8-165=245,∴PQ =AH 2+QH 2=245 2+125 2=1255;∴线段PQ 的长度的最大值为1255,故③不正确;④若ΔPQC 与ΔABC 相似,点P 只有在线段AC 上,分两种情况:PC =14-2t ,QC =10-t ,i )当ΔCPQ ∽ΔCBA ,如图5,则PCCB =CQ AC,∴14-2t 10=10-t6,解得t =-8不合题意.ii )当ΔPQC ∽ΔABC 时,如图6,∴PCAC=QC BC ,t =407;∴若ΔPQC 与ΔABC 相似,则t =407秒,故④正确;其中正确的有:①②④,故选:A .【点睛】本题是动点问题的图象问题,此类问题比较复杂,考查了二次函数的关系式、三角形相似的性质和判定、勾股定理、三角函数,解题的关键是学会读懂函数图象信息,并构建直角三角形,利用三角形相似或三角函数列方程解决问题.题型二:新定义问题4(2023·重庆·中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.5(2021·广西贺州·中考真题)如M =1,2,x ,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如x ≠1,x ≠2),无序性(即改变元素的顺序,集合不变).若集合N=x ,1,2 ,我们说M =N .已知集合A =1,0,a ,集合B =1a ,a ,b a ,若A =B ,则b -a 的值是()A.-1 B.0 C.1 D.2【答案】C【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可.【详解】解:∵集合B 的元素1a ,ba,a ,可得,∴a ≠0,∴1a ≠0,ba =0,∴b =0,当1a =1时,a =1,A =1,0,1 ,B =1,1,0 ,不满足互异性,情况不存在,当1a =a 时,a =±1,a =1(舍),a =-1时,A =1,0,-1 ,B =-1,1,0 ,满足题意,此时,b -a =1.故选:C【点睛】本题考查集合的互异性、确定性、无序性。
中考数学压轴题100题含答案解析
中考数学压轴题100题精选【含答案】【001】如图,已知抛物线y a(x 3 3( a z 0)经过点A2 °),抛物线的顶点为D , 过O作射线OM // AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC •(1)求该抛物线的解析式;(2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若0C °B,动点P和动点Q分别从点0和点B同时出发,分别以每秒1个长度单位和2 个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动•设它们的运动的时间为t (s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【002】如图16,在Rt A ABC中,/ C=90 , AC = 3 , AB = 5 .点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1) 当t = 2时,AP = ,点Q到AC的距离是:(2) 在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3) 在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4) 当DE经过点C时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (4, 0)、C ( 8, 0)、D ( 8,8) •抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;(2) 动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒•过点P作PE丄AB交AC于点E,①过点E作EF丄AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△ CEQ是等腰三角形?请直接写出相应的t值。
初中数学 中考数学压轴题(含答案)
初中数学中考数学压轴题(含答案)本文介绍了两道中考数学压轴题,分别涉及函数图象中点的存在性问题和抛物线的表达式求解问题。
第一道题目是关于相似三角形的问题。
根据题目所给的条件,可以列出方程求解出t的值。
同时,通过作垂线等方法,可以证明PQ的中点在△ABC的一条中位线上。
第二道题目是关于抛物线的问题。
通过作垂线,可以求出抛物线的表达式。
同时,通过求解∠AOM的大小和点C的坐标,可以得到△ABC与△AOM相似的结论。
需要注意的是,解题过程中需要注意细节,如符号的使用、计算过程的正确性等。
同时,也需要运用多种数学知识和技巧,如相似三角形的性质、直角三角形的性质、坐标系的运用等。
题目分析:这是一道几何题,需要用到抛物线的性质和几何相似的知识。
首先求出抛物线的方程,然后根据条件求出点的坐标,接着找到抛物线的对称轴,并求出使BH+EH最小的点H的坐标。
最后判断是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似。
解题思路:1)将点M(2,2)代入抛物线的方程,解出实数m的值。
2)根据m的值,求出点C和点E的坐标,计算△___的面积。
3)找到抛物线的对称轴,并求出使BH+EH最小的点H的坐标。
4)根据题目要求,判断是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似。
解题步骤:1)将点M(2,2)代入抛物线的方程,解出实数m的值。
已知抛物线的方程为y=-$\dfrac{1}{(x+2)(x-m)}$,将点M(2,2)代入方程,得到:2=-$\dfrac{1}{(2+2)(2-m)}$解得m=4.2)根据m的值,求出点C和点E的坐标,计算△___的面积。
将m=4代入抛物线的方程,得到y=-$\dfrac{1}{(x+2)(x-4)}$。
因为抛物线与x轴交于点B、C,所以当x=4时,y=0,即C(4,0)。
因为抛物线与y轴交于点E,所以当x=0时,y=-$\dfrac{1}{(0+2)(0-4)}$= $\dfrac{1}{4}$,即E(0,$\dfrac{1}{4}$)。
中考数学压轴题 (附答案)
一、中考数学压轴题1.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围. 2.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.3.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.4.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.5.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.6.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.7.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.8.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.9.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.10.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.11.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.13.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.14.(1)探究发现数学活动课上,小明说“若直线21y x =-向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”经过一番讨论,小组成员展示了他们的解答过程:在直线21y x =-上任取点()01A -,, 向左平移3个单位得到点()31,'--A 设向左平移3个单位后所得直线所对应的函数表达式为2y x n =+.因为2y x n =+过点()31,'--A , 所以61n -+=-,所以5n =,填空:所以平移后所得直线所对应函数表达式为(2)类比运用已知直线21y x =-,求它关于x 轴对称的直线所对应的函数表达式;(3)拓展运用将直线21y x =-绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式 .15.已知:菱形 ABCD ,点 E 在线段 BC 上,连接 DE ,点 F 在线段 AB 上,连接 CF 、DF , CF 与 DE 交于点 G ,将菱形 ABCD 沿 DF 翻折,点 A 恰好落在点 G 上.(1)求证:CD=CF ;(2)设∠CED = x ,∠DCF = y ,求 y 与 x 的函数关系式;(不要求写出自变量的取值范围) (3)在(2)的条件下,当 x =45°时,以 CD 为底边作等腰△CDK ,顶角顶点 K 在菱形 ABCD 的内部,连接 GK ,若 GK ∥CD ,CD =4 时,求线段 KG 的长.16.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.17.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.18.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.19.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,13623EBD S ∆=,连接OE ,求线段OE 的长.20.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM =BN ;(2)如图②,点F 为角平分线AN 上一点,且∠CPF =30°,求证:△APF ∽△AMC ; (3)在(2)的条件下,求PF BN的值. 21.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 22.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值; (2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?23.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0xy =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ;(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.24.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数? (2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.25.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEPS=,求sin APB ∠的最大值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)直线x=0;(2)B (0,1a );(3)2-≤a ≤13-或13≤a 2 【解析】 【分析】(1)根据抛物线的表达式直接得出对称轴即可;(2)根据题意得出点A 的坐标,再利用关于x 轴对称的点的坐标规律得出点B 坐标; (3)分a >0和a <0两种情况分别讨论,画图图像,求出a 的范围. 【详解】解:(1)在抛物线21y ax a=-中, 002a-=, ∴对称轴为直线x=0,即y 轴; (2)∵抛物线与y 轴交于点A ,∴A (0,1a-), ∵点A 关于x 轴的对称点为点B ,∴B (0,1a); (3)当a >0时,点A (0,1a-)在y 轴负半轴上, 当点P 恰好在抛物线上时,代入得:11a a a-=,解得:2a=或2-(舍),当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=或13-(舍),∴当13≤a≤2时,抛物线与线段PQ恰有一个公共点;当a<0时,点A(0,1a-)在y轴正半轴上,同理可知:当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=(舍)或2-,当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=(舍)或13-,∴当2-≤a≤13-时,抛物线与线段PQ只有一个公共点;综上:若抛物线与线段PQ恰有一个公共点,a的取值范围是2-≤a≤13 -或13≤a2.【点睛】本题是一道二次函数的综合题目,主要考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,画出相应的函数图象,利用分类讨论的方法和数形结合的思想解答.2.A解析:(1)详见解析;(2)详见解析;(3)15KG AK = 【解析】 【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KGAK的值. 【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,∴90BDC DBE ∠+∠=︒ ∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-, ∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=︒, ∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-, ∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-, ∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k , ∴229=5MF CF CM k -=, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.3.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+,2QN m 4sin QHN QH5∠+===,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴, QHN OCA ∠∠∴=, 1tan QHN 2∠∴=,则sin QHN 5∠=将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--. 【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.4.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】 【分析】(1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论. 【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠, 即HOD EOA ∠=∠, HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x, ∴AF=4-x , ∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+,∴248EF y x x =--+, ∵AM⊥A C , ∴AE∥OB, ∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴()244804x x y x -+≤=<;(3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE , ∵∠EAO=90°, ∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形, 如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴241482x xPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xxx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴24242()xAE ExQ-===,∴43x=,∴BF=2或43.【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.5.C解析:(1)12,16AD CD ==;(2)277和297. 【解析】 【分析】(1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案. 【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒,即有11169622CD AD AD =⨯=,解得12AD =. 所以12,16AD CD ==.(2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-,可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-, 可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函数图象的相关性质,运用数形结合思维分析是解题的关键.6.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤. 【解析】 【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可. 【详解】(1)()1,2D -到线段BC 的距离为2,22(12)(20)1332DC =--+-=<⨯ ∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,22(12)(10)103EC =--+-=>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,22(02)(20)2232FC =-+-=<⨯ ∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点; (2)设直线l 上“倍增点”的横坐标为m , 当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=, 得1131m =+,2131m =- 当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时, T(9,0),此时T 的横坐标为最大值, 当点H(0,1)为T “倍增点”时,则T(63-,0),此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.7.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45° 【解析】 【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解; (2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解; ②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF ∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO 一定要小于90°,注意解得取舍. 【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。
中考数学压轴题100题(附答案)
中考数学压轴题100题(附答案)一、中考压轴题1.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.2.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.3.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数量;(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.4.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.7.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.9.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.10.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.11.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.12.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.13.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.14.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.16.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.【分析】(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x1﹣x2|可知d2=(x1﹣x2)2=(x1+x2)2﹣4 x1•x2=p2,再由(1)中x1+x2=﹣p,x1•x2=q即可得出结论.【解答】证明:(1)∵a=1,b=p,c=q∴△=p2﹣4q∴x=即x1=,x2=∴x1+x2=+=﹣p,x1•x2=•=q;(2)把(﹣1,﹣1)代入y=x2+px+q得1﹣p+q=﹣1,所以,q=p﹣2,设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)∵d=|x1﹣x2|,∴d2=(x1﹣x2)2=(x1+x2)2﹣4x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4当p=2时,d2的最小值是4.【点评】本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q =0的两根时,x1+x2=﹣p,x1x2=q是解答此题的关键.17.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.18.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.20.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而推出所得结论.【解答】解:抛物线开口向下,a<0,图象过点(0,1),c=1,图象过点(1,0),a+b+c=0,∴b=﹣(a+c)=﹣(a+1).由题意知,当x=﹣1时,应有y>0,∴a﹣b+c>0,∴a+(a+1)+1>0,∴a>﹣1,∴实数a的取值范围是﹣1<a<0.【点评】根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=﹣1时,应有y>0.21.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?【分析】(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.【解答】解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.【点评】本题把相似三角形与求二次函数解析式联系起来,在解题过程中,充分运用相似三角形对应边的比相等,建立函数关系式.23.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)【分析】(1)根据“新建商品房的面积与年新房销售面积相等”作为相等关系求x的值即可;(2)分别求算出市场新房均价上涨1千元后的新建商品房面积P,年新房销售面积Q再来求算其变化的量和积压的情况.【解答】解:(1)根据题意得:25x=﹣10,解得x1=2,x2=﹣(舍去),则Q=﹣10=50万平方米,所以市场新房均价为2千元.则年新房销售总额为2000×500000=10亿元.(2)因为Q=﹣10=30万平方米,P=25x=75万平方米,所以市场新房均价上涨1千元则该市年新房销售总额减少了100000﹣30×(2000+1000)=10000万元,年新房积压面积增加了45万平方米.建议:对于新房的销售应订一个合理的价格,不能过高,只有考虑成本与人们的购买力才能使利润最大.【点评】主要考查了函数在实际问题中的应用.解题的关键是理解题意能准确的找到函数中对应的变量的值,根据题意求解.24.已知:如图,在平面直角坐标系中,点P(m,m)(m>0),过点P的直线AB 与x轴正半轴交于点A,与直线y=x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.。
中考数学28道压轴题含答案解析
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
2023年中考数学压轴题专题02 二次函数与直角三角形问题【含答案】
专题2二次函数与直角三角形问题解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1图2图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3,0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341m m-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.对于代数法,可以采用两条直线的斜率之积来解决.【例1】(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【例2】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【例3】.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C 两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【例4】.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.1.(2022•公安县模拟)如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.(1)求抛物线的解析式;的最大值以及此时E点的坐标;(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.2.(2022•高邮市模拟)如图,抛物线y=ax2+bx﹣3经过A(﹣1,0),与y轴交于点C,过点C作BC∥x 轴,交抛物线于点B,连接AC、AB,AB交y轴于点D,若.(1)求点B的坐标;(2)点P为抛物线对称轴上一点,且位于x轴上方,连接PA、PC,若△PAC是以AC为直角边的直角三角形,求点P的坐标.3.(2022•碑林区校级模拟)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点.(1)求b,c的值;(2)点E为抛物线y=﹣x2+bx+c上一点,且点E在x轴上方,连接BE,以点E为直角顶点,BE为直角边,作等直角△BED,使得点D恰好落在直线y=x上,求出满足条件的所有点E的坐标.4.(2022•雁峰区校级模拟)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴交于点C,直线y=x+1与x轴交于点E,与y轴交于点D.(1)求抛物线的解析式;(2)P为抛物线上的点,连接OP交直线DE于Q,当Q是OP中点时,求点P的坐标;(3)M在直线DE上,当△CDM为直角三角形时,求出点M的坐标.5.(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A (﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.6.(2022•太原一模)综合与实践如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.点D在直线AC 下方的抛物线上运动,过点D作y轴的平行线交AC于点E.(1)求直线AC的函数表达式;(2)求线段DE的最大值;(3)当点F在抛物线的对称轴上运动,以点A,C,F为顶点的三角形是直角三角形时,直接写出点F的坐标.7.(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=﹣与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.8.(2022•沈阳模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3).(1)求抛物线的解析式.(2)若点M是抛物线上B,C之间的一个动点,线段MA绕点M逆时针旋转90°得到MN,当点N恰好落在y轴上时,求点M,点N的坐标.(3)如图2,若点E坐标为(2,0),EF⊥x轴交直线BC于点F,将△BEF沿直线BC平移得到△B'E'F',在△B'E'F'移动过程中,是否存在使△ACE'为直角三角形的情况?若存在,请直接写出所有符合条件的点E′的坐标;若不存在,请说明理由.9.(2022•东坡区校级模拟)如图,抛物线y=x2﹣(m+2)x+4的顶点C在x轴的正半轴上,直线y=x+2与抛物线交于A,B两点,且点A在点B的左侧.(1)求m的值;(2)点P是抛物线y=x2﹣(m+2)x+4上一点,当△PAB的面积是△ABC面积的2倍时,求点P的坐标;(3)将直线AB向下平移k(k>0)个单位长度,平移后的直线与抛物线交于D,E两点(点D在点E的左侧),当△DEC为直角三角形时,求k的值.10.(2022•海沧区二模)抛物线y1=ax2﹣2ax+c(a<2且a≠0)与x轴交于A(﹣1,0),B两点,抛物线的对称轴与x轴交于点D,点M(m,n)在该抛物线上,点P是抛物线的最低点.(1)若m=2,n=﹣3,求a的值;(2)记△PMB面积为S,证明:当1<m<3时,S<2;(3)将直线BP向上平移t个单位长度得直线y2=kx+b(k≠0),与y轴交于点C,与抛物线交于点E,当x <﹣1时,总有y1>y2.当﹣1<x<1时,总有y1<y2.是否存在t≥4,使得△CDE是直角三角形,若存在,求t的值;若不存在,请说明理由.11.(2021•葫芦岛模拟)如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B(﹣2,3),已知抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D(﹣2,﹣1)在直线BC上,点E为y轴右侧抛物线上一点,连接BE、AE,DE,若S△BDE=4S△ABE,求E点坐标;(3)如图2,在(2)的条件下,P为射线DB上一点,作PQ⊥直线DE于点Q,连接AP,AQ,PQ,若△APQ为直角三角形,请直接写出P点坐标.12.(2021•和平区一模)如图,抛物线y=ax2+bx﹣,交y轴于点A,交x轴于B(﹣1,0),C(5,0)两点,抛物线的顶点为D,连接AC,CD.(1)求直线AC的函数表达式;(2)求抛物线的函数表达式及顶点D的坐标;(3)过点D作x轴的垂线交AC于点G,点H为线段CD上一动点,连接GH,将△DGH沿GH翻折到△GHR(点R,点G分别位于直线CD的两侧),GR交CD于点K,当△GHK为直角三角形时.①请直接写出线段HK的长为;②将此Rt△GHK绕点H逆时针旋转,旋转角为α(0°<α<180°),得到△MHN,若直线MN分别与直线CD,直线DG交于点P,Q,当△DPQ是以PQ为腰的等腰三角形时,请直接写出点P的纵坐标为﹣或﹣.13.(2021•莱芜区三模)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C (0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B′,E′,当四边形BEB'E'的面积为12时,求t的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x轴的垂线,交抛物线于点P.当以点B、C、P为顶点的三角形是直角三角形时,求所有满足条件的点M的坐标.14.(2021•雁塔区校级模拟)已知二次函数y=x2+bx+c经过A、B两点,BC垂直x轴于点C,且A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)请画出抛物线的图象;(3)点P是抛物线对称轴上一个动点,是否存在这样的点P,使三角形ABP为直角三角形?若存在,求出P点坐标;若不存在,请说明理由.15.(2021•武汉模拟)如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=﹣8,A点的坐标是(2,0),B点的坐标是(6,0);(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P点在直线MN上运动.若恰好存在3个P点使得△PAC为直角三角形,请求出C点坐标,并直接写出P 点的坐标.16.(2021•北碚区校级模拟)如图1,在平面直角坐标系中,抛物线y=﹣x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过点A作AD∥BC交抛物线于D,连接CA,CD,PC,PB,记四边形ACPB的面积为S1,△BCD的面积为S2,当S1﹣S2的值最大时,求P点的坐标和S1﹣S2的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,G为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移过程中的线段记为A'C'(线段A'C'始终在直线l左侧),是否存在以A',C',G为顶点的等腰直角△A'C'G?若存在,请写出满足要求的所有点G的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.17(2021•广东模拟)如图,直线y=x﹣3与x轴,y轴分别交于B、C两点.抛物线y=x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)设点P从点D出发,沿对称轴向上以每秒1个单位长度的速度匀速运动.设运动的时间为t秒.①点P在运动过程中,若∠CBP=15°,求t的值;②当t为何值时,以P,A,C为顶点的三角形是直角三角形?求出所有符合条件的t值.18.(2021•巴中)已知抛物线y=ax2+bx+c与x轴交于A(﹣2,0)、B(6,0)两点,与y轴交于点C(0,﹣3).(1)求抛物线的表达式;(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标及的最大值;(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形,若存在,请直接写出点D的坐标;若不存在,请说明理由.19.(2021•毕节市)如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).(1)填空:点A的坐标为(1,0),点D的坐标为(2,﹣1),抛物线的解析式为y=x2﹣4x+3;(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;(3)P是抛物线对称轴上一动点,是否存在点P,使△PAC是以AC为斜边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.20.(2021•兰溪市模拟)如图,在平面直角坐标系中,已知二次函数y=a(x﹣m)2﹣m+4图象的顶点为C,其中m>0,与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点D,点M的坐标为(0,4).(1)当m=2时,抛物线y=a(x﹣m)2﹣m+4(m>0)经过原点,求a的值;(2)当a=﹣1时,①若点M,点D,点C三点组成的三角形是直角三角形,求此时点D的坐标.②设反比例函数y=﹣(x>0)与抛物线y=a(x﹣m)2﹣m+4(m>0)相交于点E(p,q).当2<p <4时,求m的取值范围.【例1】.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【分析】(1)根据坐标轴上点的特点求出点A,C的坐标,即可求出答案;(2)设出点P的坐标,利用PA=PC建立方程求解,即可求出答案;(3)分三种情况,利用等腰直角三角形的性质求出前两种情况,利用三垂线构造出相似三角形,得出比例式,建立方程求解,即可求出答案.【解析】(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∵点P为该抛物线对称轴上,∴设P(1,p),∴PA==,PC==,∵PA=PC,∴=,∴p=﹣1,∴P(1,﹣1);(3)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M在第四象限时,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m =,∴M(,﹣),Ⅱ、当点M在第三象限时,M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).【例2】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【分析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,即可求解;(2)过点D作DG⊥AB交于G,交AC于点H,设D(n,﹣n2﹣3n+4),H(n,n+4),由DH∥OC,可得==,求出D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,证明△MDF≌△NOD(AAS),可得D点纵坐标为2,求出D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,证明△KDF≌△LFO(AAS),得到D点纵坐标为4,求得D(0,4)或(﹣3,4).【解析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).【例3】(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【分析】(1)把点B,C两点坐标代入抛物线的解析式,解方程组,可得结论;(2)存在.如图1中,设D(t,t2+t﹣4),连接OD.构建二次函数,利用二次函数的性质,解决问题;(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4),分三种情形:∠PAB=90°,∠PBA=90°,∠APB=90°,分别求解可得结论.【解析】(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣(t+2)∵S△ABD2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).【例4】.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.【分析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,解二元一次方程组即可得b,c的值,令y=0即可得m的值;(2)设D(x,﹣x2+4x+5),则E(4﹣x,﹣x2+4x+5),表示出四边形DEFG的周长,根据二次函数的最值即可求解;(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,证明△MCH≌△NCK,根据全等三角形的性质得NK=MH=4,CK=CH=2,则N(﹣4,3),利用待定系数法可得直线BN的解析式为y=﹣x+,可得Q(0,),设P(2,p),利用勾股定理表示出PQ2、BP2、BQ2,分两种情况:①当∠BQP=90°时,②当∠QBP=90°时,利用勾股定理即可求解.【解析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,得,解得.∴这个抛物线的解析式为:y=﹣x2+4x+5,令y=0,则﹣x2+4x+5=0,解得x1=5,x2=﹣1,∴B(5,0),∴m=5;(2)∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,设D(x,﹣x2+4x+5),∵DE∥x轴,∴E(4﹣x,﹣x2+4x+5),∵过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,∴四边形DEFG是矩形,∴四边形DEFG的周长=2(﹣x2+4x+5)+2(x﹣4+x)=﹣2x2+12x+2=﹣2(x﹣3)2+20,∴当x=3时,四边形DEFG的周长最大,∴当四边形DEFG的周长最大时,点D的坐标为(3,8);(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,∴∠NKC=∠MHC=90°,由翻折得CN=CM,∠BCN=∠BCM,∵B(5,0),C(0,5).∴OB=OC,∴∠OCB=∠OBC=45°,∵CH⊥对称轴于H,∴CH∥x轴,∴∠BCH=45°,∴∠BCH=∠OCB,∴∠NCK=∠MCH,∴△MCH≌△NCK(AAS),∴NK=MH,CK=CH,∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,M(2,9),∴MH=9﹣5=4,CH=2,∴NK=MH=4,CK=CH=2,∴N(﹣4,3),设直线BN的解析式为y=mx+n,∴,解得,∴直线BN的解析式为y=﹣x+,∴Q(0,),设P(2,p),∴PQ2=22+(p﹣)2=p2﹣p+,BP2=(5﹣2)2p2=9+p2,BQ2=52+()2=25+,分两种情况:①当∠BQP=90°时,BP2=PQ2+BQ2,∴9+p2=p2﹣p++25+,解得p=,∴点P的坐标为(2,);②当∠QBP=90°时,P′Q2=BP′2+BQ2,∴p2﹣p+=9+p2+25+,解得p=﹣9,∴点P′的坐标为(2,﹣9).综上,所有符合条件的点P的坐标为(2,),(2,﹣9).1.(2022•公安县模拟)如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.(1)求抛物线的解析式;的最大值以及此时E点的坐标;(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.【分析】(1)先求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式可得到关于b、c的方程组,从而可求得b、c的值;(2)过点E作EF∥y轴交线段AB于点F,设点E(t,﹣t2+2t+3),则F(t,t+1),则可得到EF与x的函数关系式,利用配方法可求得EF的最大值以及点E的坐标,最后根据EF的最大值可得△ABE的面积;(3)存在,设E(m,﹣m2+2m+3),分三种情况:分别以A,B,E为直角顶点,作出辅助线,构造相似列出方程,解方程即可.【解析】(1)∵点A(﹣1,0),C(2,0),∴AC=3,OC=2,∵AC=BC=3,∴B(2,3),把A(﹣1,0)和B(2,3)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=﹣x2+2x+3;(2)∵直线AB经过点A(﹣1,0),B(2,3),设直线AB的解析式为y=kx+b′,∴,解得:,∴直线AB的解析式为:y=x+1,如图,过点E作EF∥y轴交线段AB于点F,∴设点E(t,﹣t2+2t+3),则F(t,t+1),∴EF=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),最大,S△ABE=•EF•(x B−x A)=××(2+1)=.∴此时S△ABE(3)在问题(2)的条件下,存在点E使得△ABE为直角三角形;设E(m,﹣m2+2m+3),①当点A为直角顶点,过点A作AB的垂线,与AB之间的抛物线无交点,故不可能存在点E使得△ABE为以点A为直角顶点的直角三角形,②当点B为直角顶点,如下图,此时∠EBA=90°,过点E作EG⊥CB,交CB延长线于点G,∵BC⊥x轴于点C,且AC=BC,∴△ABC是等腰直角三角形,∠ABC=45°,∴∠EBG=45°,∴△BEG是等腰直角三角形,EG=BG,∵EG的长为点E与直线BC的距离,即2﹣m,且BG=CG﹣BC=﹣m2+2m+3﹣3=﹣m2+2m,∴2﹣m==﹣m2+2m,解得m=1或m=2(舍),∴E(1,4);③如下图,此时∠AEB=90°,作EM∥x轴,交CB的延长线于点M,过点A作AN⊥x轴交ME的延长线于点N,∴∠BEM+∠AEN=90°,∵在Rt△AEN中,∠EAN+∠AEN=90°,∴∠BEM=∠EAN,∴△AEN∽△BEM,∴BM:EN=EM:AN,∴(﹣m2+2m):(m+1)=(2﹣m):(﹣m2+2m+3),即﹣m(2﹣m)(m+1)(m﹣3)=(2﹣m)(m+1),∵2﹣m≠0,m+1≠0,∴m2﹣3m+1=0,解得m=或m=(舍).∴E(,)综上,根据问题(2)的条件,存在点E(1,4)或(,)使得△ABE为直角三角形.2.(2022•高邮市模拟)如图,抛物线y=ax2+bx﹣3经过A(﹣1,0),与y轴交于点C,过点C作BC∥x 轴,交抛物线于点B,连接AC、AB,AB交y轴于点D,若.(1)求点B的坐标;(2)点P为抛物线对称轴上一点,且位于x轴上方,连接PA、PC,若△PAC是以AC为直角边的直角三角形,求点P的坐标.【分析】(1)根据A(﹣1,0),得到OA=l,对于y=ax2+bx﹣3,令x=0,则y=﹣3,得到C(0,﹣3),OC=3,根据BC∥x轴,得到△AOD∽△BCD,推出,得到BC=2,即可得B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,求得a=1,b=﹣2,得到抛物线解析式并配方为y =x2﹣2x﹣3=(x﹣1)2﹣4,得到抛物线的对称轴是直线x=1,设P(1,m),写出PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.根据△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.得到m2+4+10=(m+3)2+1,求得m=;当∠PCA=90°时,PC2+AC2=AP2,得到(m+3)2+1+10=m2+4,求出m=﹣;即可得点P的坐标.【解析】∵A(﹣1,0),∴OA=l,在y=ax2+bx﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),∴OC=3,∵BC∥x轴,∴△AOD∽△BCD,∴,∴BC=2,∴B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,∴,解得,∴抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴是直线x=1,设P(1,m),∴PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.∵△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.∴m2+4+10=(m+3)2+1,解得m=;当∠PCA=90°时,PC2+AC2=AP2,∴(m+3)2+1+10=m2+4,解得m=﹣(不符合题意,舍去).∴P(1,).3.(2022•碑林区校级模拟)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点.(1)求b,c的值;(2)点E为抛物线y=﹣x2+bx+c上一点,且点E在x轴上方,连接BE,以点E为直角顶点,BE为直角边,作等直角△BED,使得点D恰好落在直线y=x上,求出满足条件的所有点E的坐标.【分析】(1)运用待定系数法即可求得答案;(2)设D(m,m),E(n,﹣n2+2n+8),分两种情况:当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,利用等腰直角三角形性质,添加辅助线构造全等三角形,再利用全等三角形的性质建立方程求解即可得出答案.【解析】(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,∴,解得:,∴b=2,c=8;(2)∵点D在直线y=x上,点E在抛物线解析式为y=﹣x2+2x+8上,∴设D(m,m),E(n,﹣n2+2n+8),当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,如图,过点E1作E1G∥x轴,过点B作BF⊥EG于点F,过点D1作D1G⊥E1G于点G,则∠BFE1=∠E1GD1=90°,BF=﹣n2+2n+8,E1F=4﹣n,E1G=m﹣n,D1G=m﹣(﹣n2+2n+8)=n2﹣2n﹣8+m,∴∠E1BF+∠BE1F=90°,∵∠D1E1G+∠BE1F=90°,∴∠E1BF=∠D1E1G,在△BE1F和△E1D1G中,,∴△BE1F≌△E1D1G(AAS),∴E1F=D1G,BF=E1G,∴,解得:,当n=2时,﹣n2+2n+8=﹣22+2×2+8=8,∴E1(2,8);当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,如图,过点E2作E2H⊥x轴于点H,过点D2作D2K ⊥E2H于点K,则∠BHE2=∠E2KD2=90°,BH=4﹣n,E2H=﹣n2+2n+8,E2K=﹣n2+2n+8﹣m,D2K=n﹣m,同理可得△BE2H≌△E2D2K(AAS),∴E2H=D2K,BH=E2K,∴,解得:或,∴E(1+,2)或(1﹣,2);综上所述,满足条件的所有点E的坐标为(2,8)或(1+,2)或(1﹣,2).4.(2022•雁峰区校级模拟)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴交于点C,直线y=x+1与x轴交于点E,与y轴交于点D.(1)求抛物线的解析式;(2)P为抛物线上的点,连接OP交直线DE于Q,当Q是OP中点时,求点P的坐标;(3)M在直线DE上,当△CDM为直角三角形时,求出点M的坐标.【分析】(1)根据抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,列方程组,于是得到答案;(2)令x=0,则y=x+1=1,求得OD=1,作PH⊥OB,垂足为H,得到∠COA=∠PHO=90°,根据平行线的性质得到∠P=∠DOQ,∠PFQ=∠ODQ,根据全等三角形的性质得到PF=OD=1,设P点横坐标为x,得到方程﹣x2+2x+3﹣(x+1)=1,求得x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y =,于是得到答案;(3)求得CD=OC﹣OD=2,设M(a,a+1),分两种情况①当∠CMD=90°时,②当∠DCM=90°时,根据勾股定理即可得到结论.【解析】(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式是y=﹣x2+2x+3;(2)令x=0,则y=x+1=1,∴OD=1,如图,作PH⊥OB,垂足为H,交ED于F,则∠COA=∠PHO=90°,∴PH∥OC,∴∠OPF=∠DOQ,∠PFQ=∠ODQ,又Q是OP中点,∴PQ=OQ,∴△PFQ≌△ODQ(AAS),∴PF=OD=1设P点横坐标为x,则﹣x2+2x+3﹣(x+1)=1,解得:x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y=,∴点P的坐标是(2,3)或(﹣,);(3)令x=0,则y=﹣x2+2x+3=3,∴OC=3,∴CD=OC﹣OD=2,设M(a,a+1),∴CM2=a2+(3﹣a﹣1)2=a2﹣2a+4,DM2=a2+(a+1﹣1)2=a2,①当∠CMD=90°时,∴CD2=CM2+DM2,∴22=a2﹣2a+4+a2,解得:a1=,a2=0(舍去),当a=时,a+1=,∴M(,);②当∠DCM=90°时,∴CD2+CM2=DM2,∴22+a2﹣2a+4=a2,解得:a=4,当a=4时,a+1=3,∴M(4,3);解法二:∵∠DCM=90°,∴CM∥x轴,∴a+1=3,解得a=4,∴M(4,3);综上所述:点M的坐标为(,)或(4,3).5.(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A (﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)设y=(x﹣2)2+k,用待定系数法可得抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,设P(m,m2﹣4m﹣5),根据∠PAB=45°知AM=PM,即|m2﹣4m﹣5|=m+1,解得m的值,即可得P的坐标是(6,7)或P(4,﹣5);(3)由y=x2﹣4x﹣5求出B(5,0),C(0,﹣5),设Q(2,t),有BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,分三种情况:当BC为斜边时,9+t2+4+(t+5)2=50,当BQ为斜边时,50+4+(t+5)2=9+t2,当CQ 为斜边时,50+9+t2=4+(t+5)2,分别解得t的值,即可求出相应Q的坐标.【解析】(1)设y=(x﹣2)2+k,把A(﹣1,0)代入得:(﹣1﹣2)2+k=0,解得:k=﹣9,∴y=(x﹣2)2﹣9=x2﹣4x﹣5,答:抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,如图:设P(m,m2﹣4m﹣5),则PM=|m2﹣4m﹣5|,∵A(﹣1,0),∴AM=m+1∵∠PAB=45°∴AM=PM,∴|m2﹣4m﹣5|=m+1,即m2﹣4m﹣5=m+1或m2﹣4m﹣5=﹣(m+1),当m2﹣4m﹣5=m+1时,解得:m1=6,m2=﹣1(不合题意,舍去),当m2﹣4m﹣5=﹣(m+1),解得m3=4,m4=﹣1(不合题意,舍去),∴P的坐标是(6,7)或P(4,﹣5);(3)在抛物线的对称轴上存在一点Q,使得△BCQ是直角三角形,理由如下:在y=x2﹣4x﹣5中,令x=0得y=﹣5,令y=0得x=﹣1或x=5,∴B(5,0),C(0,﹣5),由抛物线y=x2﹣4x﹣5的对称轴为直线x=2,设Q(2,t),∴BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,当BC为斜边时,BQ2+CQ2=BC2,∴9+t2+4+(t+5)2=50,解得t=﹣6或t=1,∴此时Q坐标为(2,﹣6)或(2,1);当BQ为斜边时,BC2+CQ2=BQ2,∴50+4+(t+5)2=9+t2,解得t=﹣7,∴此时Q坐标为(2,﹣7);当CQ为斜边时,BC2+BQ2=CQ2,∴50+9+t2=4+(t+5)2,解得t=3,∴此时Q坐标为(2,3);综上所述,Q的坐标为(2,3)或(2,﹣7)或(2,1)或(2,﹣6).6.(2022•太原一模)综合与实践如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.点D在直线AC 下方的抛物线上运动,过点D作y轴的平行线交AC于点E.(1)求直线AC的函数表达式;(2)求线段DE的最大值;(3)当点F在抛物线的对称轴上运动,以点A,C,F为顶点的三角形是直角三角形时,直接写出点F的坐标.【分析】(1)分别令x=0,y=0,求得点C、A的坐标,再运用待定系数法即可求得答案;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),可得DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,运用二次函数的性质即可求得线段DE的最大值;(3)设F(﹣1,n),根据两点间距离公式可得:AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,分三种情况:①当∠AFC=90°时,②当∠CAF=90°时,③当∠ACF=90°时,分别建立方程求解即可.【解析】(1)在y=x2+2x﹣8中,令x=0,得y=﹣8,∴C(0,﹣8),令y=0,得x2+2x﹣8=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0),设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=﹣2x﹣8;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),∵点D在点E的下方,∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,∵﹣1<0,∴当m=﹣2时,线段DE最大值为4;(3)∵y=x2+2x﹣8=(x+1)2﹣9,∴抛物线的对称轴为直线x=﹣1,设F(﹣1,n),又A(﹣4,0),C(0,﹣8),∴AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,①当∠AFC=90°时,∵AF2+CF2=AC2,∴n2+9+n2+16n+65=80,解得:n1=﹣4﹣,n2=﹣4+,∴F(﹣1,﹣4﹣)或(﹣1,﹣4+);②当∠CAF=90°时,∵AF2+AC2=CF2,∴n2+9+80=n2+16n+65,解得:n=,∴F(﹣1,);③当∠ACF=90°时,∵CF2+AC2=AF2,∴n2+16n+65+80=n2+9,解得:n=﹣,∴F(﹣1,﹣);综上所述,点F的坐标为(﹣1,﹣4﹣)或(﹣1,﹣4+)或(﹣1,)或(﹣1,﹣).7.(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=﹣与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.【分析】(1)令x=0,y=0,可分别求出A、B、C三点坐标,在求出函数的对称轴即可求D点坐标,利用待定系数法求直线解析式即可;(2)设E(t,﹣t+2),分三种情况讨论:①当∠CAE=90°时,AC2+AE2=CE2,②当∠ACE=90°时,AC2+CE2=AE2,③当∠AEC=90°时,AE2+CE2=AC2,分别利用勾股定理求解即可.【解析】(1)令y=0,则﹣=0,解得x=﹣2或x=6,∴A(﹣2,0),B(6,0),令x=0,则y=2,∴C(0,2),∵y=﹣=﹣(x﹣2)2+,∴抛物线的对称轴为直线x=2,∴D(2,0),设直线CD的解析式为y=kx+b,。
2024年中考数学高频压轴题训练——圆-动点问题及参考答案
2024年中考数学高频压轴题训练——圆-动点问题1.“同弧或等弧所对的圆周角相等”,利用这个推论可以解决很多数学问题.(1)【知识理解】如图1,圆O 的内接四边形ACBD 中,60ABC ∠=︒,BC AC =,①BDC ∠=;DAB ∠DCB ∠(填“>”,“=”,“<”)②将D 点绕点B 顺时针旋转60︒得到点E ,则线段DB DC DA ,,的数量关系为.(2)【知识应用】如图2,AB 是圆O 的直径,1tan 2ABC ∠=,猜想DA DB DC ,,的数量关系,并证明;(3)【知识拓展】如图3,已知2AB =,A B ,分别是射线DA DB ,上的两个动点,以AB 为边往外构造等边ABC ,点C 在MDN ∠内部,若120D ∠=︒,直接写出四边形ADBC 面积S 的取值范围.2.如图1,对于PMN 的顶点P 及其对边MN 上的一点Q ,给出如下定义:以P 为圆心,PQ 为半径的圆与直线MN 的公共点都在线段MN 上,则称点Q 为PMN 关于点P 的内联点.在平面直角坐标系xOy 中:(1)如图2,已知点(70)A ,,点B 在直线1y x =+上.①若点(34)B ,,点(30)C ,,则在点O ,C ,A 中,点是AOB 关于点B 的内联点;②若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围;(2)已知点(20)D ,,点(42)E ,,将点D 绕原点O 旋转得到点F .若EOF 关于点E 的内联点存在,直接写出点F 横坐标m 的取值范围.3.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(B C '',分别是B C ,的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233A B C B C B C ,,,,,,的横、纵坐标都是整数.在线段112233B C B C B C ,,中,O 的以点A 为中心的“关联线段”是;(2)ABC 是边长为1的等边三角形,点()0A t ,,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,12AB AC ==,.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.已知:点C 为⊙O 的直径AB 上一动点,过点C 作CD ⊥AB ,交⊙O 于点D 和点E ,连接AD 、BD ,∠DBA 的角平分线交⊙O 于点F .(1)若DF =BD ,求证:GD =GB ;(2)若AB =2cm ,在(1)的条件下,求DG 的值;(3)若∠ADB 的角平分线DM 交⊙O 于点M ,交AB 于点N .当点C 与点O 重合时,AD BD DM+=;据此猜想,当点C 在AB (不含端点)运动过程中,AD BD DM +的值是否发生改变?若不变,请求其值;若改变,请说明理由.5.在平面直角坐标系xOy 中,O 的半径为1,对于ABC 和直线l 给出如下定义:若ABC 的一条边关于直线l 的对称线段PQ 是O 的弦,则称ABC 是O 的关于直线l 的“关联三角形”,直线l 是“关联轴”.(1)如图1,若ABC 是O 的关于直线l 的“关联三角形”,请画出ABC 与O 的“关联轴”(至少画两条);(2)若ABC 中,点A 坐标为(23),,点B 坐标为(41),,点C 在直线3y x =-+的图像上,存在“关联轴l ”使ABC 是O 的关联三角形,求点C 横坐标的取值范围;(3)已知A ,将点A 向上平移2个单位得到点M ,以M 为圆心MA 为半径画圆,B ,C 为M 上的两点,且2AB =(点B 在点A 右侧),若ABC 与O 的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC 最大时AC 的长.6.如图,在⊙O 中,AB 为弦,CD 为直径,且AB ⊥CD ,垂足为E ,P 为 AC 上的动点(不与端点重合),连接PD .(1)求证:∠APD =∠BPD ;(2)利用尺规在PD 上找到点I ,使得I 到AB 、AP 的距离相等,连接AD (保留作图痕迹,不写作法).求证:∠AIP+∠DAI =180°;(3)在(2)的条件下,连接IC 、IE ,若∠APB =60°,试问:在P 点的移动过程中,IC IE 是否为定值?若是,请求出这个值;若不是,请说明理由.7.在平面直角坐标系xOy 中,已知线段AB 和点P ,给出如下定义:若PA PB =且点P 不在线段AB 上,则称点P 是线段AB 的等腰顶点.特别地,当90APB ∠≥︒时,则称点P 是线段AB 的非锐角等腰顶点.(1)已知点(20)A ,,(42)B ,.①在点(40)C ,,(31)D ,,(15)E -,,(05)F ,中,是线段AB 的等腰顶点的是▲;②若点P 在直线3(0)y kx k =+≠上,且点P 是线段AB 的非锐角等腰顶点,求k 的取值范围;(2)直线33y x =-+与x 轴交于点M ,与y 轴交于点N .⊙P 的圆心为(0)P t ,,半径为,若⊙P 上存在线段MN 的等腰顶点,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CPOQ的值.9.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B '落在MN 上,折痕为EC ,连接DB ',如图2.①点B '在以点E 为圆心,的长为半径的圆上;②B M '=;③DB C ' 为三角形,请证明你的结论.(2)拓展延伸当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点B )折叠后,点B 的对应点B '落在正方形ABCD 内部或边上.①ABB ' 面积的最大值为;②连接AB ',点P 为AE 的中点,点Q 在AB '上,连接PQ AQP AB E ∠=∠',,则2B C PQ '+的最小值为.10.在平面直角坐标系xOy 中,过⊙T (半径为r )外一点P 引它的一条切线,切点为Q ,若0<PQ≤2r ,则称点P 为⊙T 的伴随点.(1)当⊙O 的半径为1时,①在点A(4,0),B(0,),C(1,)中,⊙O 的伴随点是▲;②点D 在直线y =x+3上,且点D 是⊙O 的伴随点,求点D 的横坐标d 的取值范围;(2)⊙M 的圆心为M(m ,0),半径为2,直线y =2x ﹣2与x 轴,y 轴分别交于点E ,F .若线段EF 上的所有点都是⊙M 的伴随点,直接写出m 的取值范围.11.定义:在平面直角坐标系xOy 中,点P 为图形M 上一点,点Q 为图形N 上一点.若存在OP OQ =,则称图形M 与图形N 关于原点O “平衡”.(1)如图,已知⊙A 是以()1,0为圆心,2为半径的圆,点()1,0C -,()2,1D -,()3,2E .①在点C ,D ,E 中,与⊙A 关于原点O “平衡”的点是;②点H 为直线y x =-上一点,若点H 与⊙A 关于原点O “平衡”,点H 的横坐标的取值范围为:;(2)如图,已知图形G 是以原点O 为中心,边长为2的正方形.⊙K 的圆心在x 轴上,半径为2.若⊙K 与图形G 关于原点O “平衡”,请直接写出圆心K 的横坐标的取值范围.12.阅读下列材料,并按要求解答相关问题:【思考发现】根据直径所对的圆周角是直角,我们可以推出“如果一条定边所对的角始终为直角,那么所有满足条件的直角顶点组成的图形是以定边为直径的圆或圆弧(直径的两个端点除外)”这一正确的结论.如图1,若AB 是一条定线段,且90APB ∠=︒,则所有满足条件的直角顶点P 组成的图形是定边AB 为直径的O (直径两端点A 、B 除外)(1)已知:如图2,四边形ABCD 是边长为8的正方形,点E 从点B 出发向点C 运动,同时点F 从点C 出发以相同的速度向点D 运动,连接AE ,BF 相交于点P .①当点E 从点B 运动到点C 的过程中,APB ∠的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请直接写出APB ∠的度数.②当点E 从点B 运动到点C 的过程中,点P 运动的路径是()A .线段;B .弧;C .半圆;D .圆③点P 运动的路经长是▲.(2)已知:如图3,在图2的条件下,连接CP ,请直接写出E 、F 运动过程中,CP 的最小值.13.对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.在平面直角坐标系xOy 中,已知点()60A ,,(0B .(1)在()30R ,,()20S ,,(1T 三点中,点A 和点B 的等距点是;(2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为▲;②若直线y a =上存在点A 直线2y =-的等距点,求实数a 的取值范围;(3)记直线AB 为直线1l ,直线2l :33y x =-,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0m ≠,0n ≠),求m n ≠时,求r 的取值范围.14.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.15.如图,在ABC 中,AB BC =,30CAB ∠=︒,8AC =,半径为2的O 从点A 开始(如图1)沿直线AB 向右滚动,滚动时始终与直线AB 相切(切点为D ),当O 与ABC 只有一个公共点时滚动停止,作OG AC ⊥于点G .(1)图1中,O 在AC 边上截得的弦长AE =;(2)当圆心落在AC 上时,如图2,判断BC 与O 的位置关系,并说明理由.(3)在O 滚动过程中,线段OG 的长度随之变化,设AD x =,OG y =,求出y 与x 的函数关系式,并直接写出x 的取值范围.16.在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,称线段PQ 长度的最小值为图形M ,N 的“近距离”,记为d(M ,N),特别地,若图形M ,N 有公共点,规定d(M ,N)=0.已知:如图,点A(2-,0),B(0,.(1)如果⊙O 的半径为2,那么d(A ,⊙O)=,d(B ,⊙O)=.(2)如果⊙O 的半径为r ,且d (⊙O ,线段AB )=0,求r 的取值范围;(3)如果C(m ,0)是x 轴上的动点,⊙C 的半径为1,使d (⊙C ,线段AB )<1,直接写出m 的取值范围.17.在平面直角坐标系xOy 中,对于点()P m n ,,我们称直线y mx n =+为点P 的关联直线.例如,点()24P ,的关联直线为24y x =+.(1)已知点()12A ,.①点A 的关联直线为;②若O 与点A 的关联直线相切,则O 的半径为;(2)已知点()02C ,,点()0.D d ,点M 为直线CD 上的动点.①当2d =时,求点O 到点M 的关联直线的距离的最大值;②以()11T -,为圆心,3为半径作.T 在点M 运动过程中,当点M 的关联直线与T 交于E ,F 两点时,EF 的最小值为4,请直接写出d 的值.18.在平面直角坐标系xOy 中,给定圆C 和点P ,若过点P 最多可以作出k 条不同的直线,且这些直线被圆C 所截得的线段长度为正整数,则称点P 关于圆C 的特征值为.k 已知圆O 的半径为2,(1)若点M 的坐标为()11,,则经过点M 的直线被圆O 截得的弦长的最小值为,点M 关于圆O 的特征值为;(2)直线y x b =+分别与x ,y 轴交于点A ,B ,若线段AB 上总存在关于圆O 的特征值为4的点,求b 的取值范围;(3)点T 是x 轴正半轴上一点,圆T 的半径为1,点R ,S 分别在圆O 与圆T 上,点R 关于圆T 的特征值记为r ,点S 关于圆O 的特征值记为.s 当点T 在x 轴正轴上运动时,若存在点R ,S ,使得3r s +=,直接写出点T 的横坐标t 的取值范围.答案解析部分1.【答案】(1)60︒;=;DC DB DA=+(2)解:在AB 上取一点E ,使ADE BDC ∠=∠,如图所示:∵AB 是圆O 的直径,1tan 2ABC ∠=,∴1tan 2AC ABC BC BC =∠⋅=,∴在Rt ACB 中,52AB BC ==,∵ BD BD =,∴DAB DCB ∠=∠,∵ADE BDC ∠=∠,∴ADE CDB ∽,∴ADAECD CB =,∴AD CB CD AE ⋅=⋅,∵ AD AD =,∴DBA DCA ∠=∠,∵ADE CDE CDB CDE ∠-∠=∠-∠,即ADC BDE ∠=∠,∴BDE CDA ∽,∴BDBECD AC =,∴BD AC CD BE ⋅=⋅,∴()AD CB AC BD CD AE CD BE CD AE BE CD AB⋅+⋅=⋅+⋅=⋅+=⋅,∴AB CD AC DB AD BC ⋅=⋅+⋅,∴122BC CD BC DB AD BC ⋅=⋅+⋅,∴5122CD DB AD ⋅=⋅+,∴5122CD DB AD =+,即2DB AD =+,故答案为:2DB AD =+.(3)解:∵A B ,分别是射线DA DB ,上的两个动点,120D ∠=︒,ABC 是等边三角形,∴四边形ADBC 的两个对角180ADB ACB ∠+∠=︒,∴构造四边形ADBC 的外接圆,∴根据四边形外接圆的性质可得:当点A 和点D 重合时,四边形ADBC 面积S 最小;当CD AB ⊥时,四边形ADBC 面积S 最大,①当点A 和点D 重合时,四边形ADBC 面积S 最小,∵CBD 时等边三角形,且2AB =,∴60CBD ∠=︒,2AB BD BC ===∴1sin 602CBD S BC BD =⋅⋅⋅= ,②当CD AB ⊥时,四边形ADBC 面积S 最大,∵CBD 时等边三角形,且2AB =,∴30ACD ∠=︒,2AC =,∴tan 233AD ACD AC =∠⋅==,∴11232322233ADC S AD DC =⋅⋅=⨯= ,∴23ADC ADBC S S == 四边形;433S <≤.2.【答案】(1)解:①O ,C ②当点B 的坐标为(0,1)时,如图,此时以BO 为半径的B 与线段OA 相切于点O ,∴点O 是OAB 关于点B 的内联点;当点B 移动到在y 轴左侧时,作图发现B 与x 轴有相交,且有一个交点不在线段OA 上,∴不再有OAB 关于点B 的内联点;当点B 的坐标为(7,8)时,以BA 为半径的B 与x 轴相切于点A ,∴点A 是OAB 关于点B 的内联点;当点B 直线x=7的右侧时,以BA 为半径的B 与x 轴相交,且有一个交点不在线段OA 上∴不再有OAB 关于点B 的内联点;综上所述,若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围为18n ≤≤;(2)80m 555m -≤≤≤≤或3.【答案】(1)22B C (2)解:由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C '' 是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D ,连接OB ',易得B C y ''⊥轴,∴12B D DC ''==,∴32OD ==,32==,∴OA =,∴t =;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的OA =,∴t =;(3)当1min OA =时,此时BC =;当2max OA =时,此时2BC =.4.【答案】(1)证明:∵CD ⊥直径AB ,∴ BDBE =,∵DF =BD ,∴ DFBD =,∴ BEDF =,∴∠1=∠2,∴DG =BG(2)解:∠DBA 的角平分线交⊙O 于点F ,∴∠2=∠3,由(1)知,∠1=∠2,∴∠1=∠2=∠3,∵∠BCD =90°,∴∠1+∠2+∠3=90°,∴∠1=∠2=∠3=30°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠4=90°﹣∠2﹣∠3=30°,∵AB =2,∴BD =1,在Rt △BCD 中,∠1=30°,∴BC =12BD =12,在Rt △BCG 中,∠3=30°,∴CG ==6,∴BG =2CG =33,由(1)知,DG =BG =33(3)5.【答案】(1)解:如图1,作BM ⊥x 轴,垂足为M ,根据题意AB=AE=EF=BF=,且∠EFO=∠BFM=45°,∴∠EFB=90°,∴四边形ABFE 是正方形,∴边AE ,BF 的中点所在直线就是ABC 与O 的一条“关联轴”;∵O 的半径为1,∴,且∠EFG=90°,∴四边形EFGH 是正方形,∵∠EFG+∠EFB=180°,∴B 、F 、G 三点共线,∴直线EF 是ABC 与O 的一条“关联轴”.(2)解:如图2,根据A (2,3),B (4,1),C (4,1),计算2=,故AB 不能落在圆的内部;过点A 作AN ⊥y 轴,垂足为N ,则AN=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时0C x =;作点B 关于x 轴的对称点P ,此时BP=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时4C x =,综上所述,点C 横坐标的范围是04C x ≤≤.(3)解:OC 的最小值为2-;OC 最大,根据勾股定理,AC=4.6.【答案】(1)证明:∵直径CD ⊥弦AB ,∴ AD BD=,∴∠APD=∠BPD ;(2)解:如图,作∠BAP 的平分线,交PD 于I ,证:∵AI 平分∠BAP ,∴∠PAI=∠BAI ,∴∠AID=∠APD+∠PAI=∠APD+BAI ,∵ AD BD=,∴∠DAB=∠APD ,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI ,∴∠AID=∠DAI ,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)解:如图2,连接BI ,AC ,OA ,OB ,∵AI 平分∠BAP ,PD 平分∠APB ,∴BI 平分∠ABP ,∠BAI=12∠BAP ,∴∠ABI=12∠ABP ,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP )=60°,∴∠AIB=120°,∴点I 的运动轨迹是 AB ,∴DI=DA ,∵∠AOB=2∠APB=120°,∵AD ⊥AB ,∴ AD BD=,∴∠AOB=∠BOD=60°,∵OA=OD ,∴△AOD 是等边三角形,∴AD=AO ,∵CD 是⊙O 的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.7.【答案】(1)解:①C(4,0),E(-1,5);②(Ⅰ)当点(40),在直线3y kx =+上时,430k +=,34k =-;(Ⅱ)当点(31),在直线3y kx =+上时,331k +=,23k =-;(Ⅲ)当点(22),在直线3y kx =+上时,232k +=,12k =-;结合图象可得3142k -≤≤-且23k ≠-;(2)解:直线333y x =-+与x 轴的交点M 坐标为()30,,与y 轴交点N 的坐标为(03,,∴tan 3NMO ∠=,∴30NMO ∠=︒,如图,作出线段MN 的垂直平分线,如图为两个临界情况:,利用待定系数法求得MN 垂直平分线解析式为y =,∴(0R -,,12230ORQ P RQ ∠=∠=︒,∴1112PR PQ ==,2222P R P Q ==,∴(10P ,(20P -,,∴t -≤<.8.【答案】(1)A 、B 、D(2)解:如图,依题意作⊙O 的“等直三角形”△TQP∴TQ=PQ ,∠TQP=90°过Q 点作MH //x 轴,交y 轴于M 点,过点P 作PH ⊥MH 于H 点∴∠TMQ=∠QHP=90°∴∠TQM+∠MTQ=∠TQM+∠HQP=90°∴∠MTQ=∠HQP∴△TMQ ≌△QHP (AAS )∴TM=QH ,MQ=HP设Q (x ,y )∴HM=MQ+QH=MQ+TM=x+3-y ,PH=MQ=x∴P (x-y+3,x+y )∵C (3,0)∴∵∴CP OQ .9.【答案】(1)BE ;3332-;等边;证明:B′D=BC CD ==,∴△DB'C 为等边三角形(2)310.【答案】(1)B ,C ;解:②如图2中,设点D 的坐标为(3)d d +,当过点D 的切线长为22r =时,OD ==由两点之间的距离公式得:OD =解得1221d d =-=-,结合图象可知,点D 的横坐标d 的取值范围是21d -≤≤-;(2)解:对于22y x =-当0y =时,220x -=,解得1x =,则点E 的坐标为(10)E ,当0x =时,2y =-,则点F 的坐标为(02)F -,⊙M 的半径为2,⊙M 的圆心为(0)M m ,24r ∴=,OM m=由题意,由以下两种情况:如图3-1中,点M 在点E 的右侧设FT 是⊙M 的切线则有两个临界位置:4FT =和点E 对应的切线长为0当4FT =时,则4OM m FT ===当点E 对应的切线长为0,即2EM =12EM m ∴=-=解得3m =结合图象得,当34m <≤时,线段EF 上的所有点都是⊙M 的伴随点②如图3-2和3-3中,点M 在点E 的左侧则有如下两个临界位置:如图3-2,设ET 是⊙M 的切线,连接MT ,则90MTE ∠=︒当4ET =时,2222245EM MT ET =+=+此时15m -=解得15m =-如图3-3,当⊙M 在直线EF 的左侧与EF 相切时,设切点为T ,连接MT∵(10)(02)E F -,,,∴12OE OF ==,∴22125EF =+=∵EF 是切线∴EF MT⊥∴90MTE FOE ∠=∠=︒∵MET FEO∠=∠∴MTE FOE~ ∴EM MTEF OF =,即22=解得EM =,即1m -=解得1m =-结合图象得,当11m -≤<-时,线段EF 上的所有点都是⊙M 的伴随点综上,m 的取值范围是11m -≤<-或34m <≤.11.【答案】(1)点C 、D ;22H x -≤≤-或22H x ≤≤(2)解: 图形G 是以原点O 为中心,边长为2的正方形,∴原点O 到正方形的最短距离是1d =,最长距离是d =,⊙K 与图形G 关于原点O “平衡”,∴原点O 到⊙K 上一点的距离1d ≤≤,⊙K 的圆心在x 轴上,半径为2,∴当⊙K 在x 轴正半轴时,圆心K 的横坐标的取值范围为:22x -≤≤+,当⊙K 在x 轴负半轴时,圆心K 的横坐标的取值范围为:22x --≤≤,综上所述,圆心K 的横坐标的取值范围22x -≤≤+或22x --≤≤.12.【答案】(1)解:①90°;②B ;③2π(2)解:413.【答案】(1)S(2,0)(2)解:①(4,0)或(8,0);②如图,设直线y a =上的点Q 为点A 和直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C .点Q 为点A 和直线2y =-的等距点,QA QC ∴=.22QA QC ∴=.点Q 在直线y a =上,∴可设点Q 的坐标为()Q x a ,.()()22262x a a ∴-+=--⎡⎤⎣⎦.整理得2123240x x a -+-=.由题意得关于x 的方程2123240x x a -+-=有实数根.()()()212413241610a a ∴∆=--⨯⨯-=+≥.解得1a ≥-.(3)解:如图.直线l 1和直线l 2的等距点在直线l 3:33y x =-+上,直线l 1和y 轴的等距点在直线4l y =+:或33y x =+上,点O 与l 4的距离为32,点O 与l 3的距离为,点O 与l 5的距离为3,当r <时,n=0不符合题意,当r=时,m=2,n=0,符合题意,当<r <3时,m=n=2,不符合题意,当r≥3时,m=2,n=3或4,符合题意,综上所述,r=或r≥3.14.【答案】(1)C(2)解:∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1).∴AP =BP ==2,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP=OG=1,OE∥AB,∴PE=AE=,∴OE=12AG=1,∴K1(﹣1﹣,0),k2(1﹣,0),k3(﹣1,0),k4(1+,0),∵点K为点P与线段AB的共圆点,∴﹣1﹣≤x k≤1﹣或﹣1≤x k≤1+(3)解:分两种情况:①如图3,当M在点A的左侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=12x+3相切于点F,连接EF,则EF⊥FH,当x=0时,y=3,当y=0时,y=12x+3=0,x=﹣6,∴ON=3,OH=6,∵tan∠EHF=ON EFOH FH=36=12,设EF=a,则FH=2a,EH=a,∴OE=6﹣a,Rt △OEP 中,OP =1,EP =a ,由勾股定理得:EP 2=OP 2+OE 2,∴2221(6)a =+-,解得:a =2+(舍去)或2,∴QG =2OE =2(6﹣a )=﹣3+2,∴m≤3﹣2;②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =3+2,∴m≥3+2,综上,m 的取值范围是m≤3﹣2或m≥3+215.【答案】(1)2(2)解:BC 与O 相切;理由:如图2,过点O 作OH BC ⊥于H ,连接OD ,∵O 与AB 相切于D ,∴OD AB ⊥,在Rt AOD 中,30BAC ∠=︒,∴24OA OD ==,∵8AC =,∴4OC =,在ABC 中,AB BC =,∴30C BAC ∠=∠=︒,在Rt OHC 中,30C ∠=︒,∴122OH OC OD ===,∴BC 与O 相切,(3)解:①当点O 在AC 的左侧时,连接OD 交AC 于F ,如备用图1,∵O 与AB 相切于D ,∴OD AB ⊥,∵OG AC ⊥,∴30FOG BAC ∠=∠=︒,在Rt FDA 中,tan FD BAC AD ∠=,∴tan 3FD AD BAC x =⋅∠=,∴23OF x =-,在Rt FOG 中,331cos 2322y OG OF FOG ⎛⎫==⋅∠=-⨯-+ ⎪ ⎪⎝⎭,即12y x =-+,此时x 的取值范围为0x ≤≤;②当点O 在AC 的右侧时,连接DO 并延长交AC 于F ,如备用图2,同①的方法得,33FD x =,∴23OF x =-,∵FD AB ⊥,∴90BAC AFD ∠+∠=︒,∴30FOG BAC ∠=∠=︒,在Rt FOG 中,331cos 2322y OG OF FOG x x ⎛⎫==⋅∠=-⨯- ⎪⎪⎝⎭,即12y x =-,此时x 的取值范围为1433x ≤≤.16.【答案】(1)0;2-(2)解:过点O 作OD ⊥AB 于点D ,∵点A(2-,0),B(0,.∴2OA OB ==,,∴4AB ==,∵1122OA OB AB OD ⋅=⋅,∴112422OD ⨯⨯=⨯⨯∴DO =,∵d (⊙O ,线段AB )=0,∴当⊙O 的半径等于OD 时最小,当⊙O 的半径等于OB 时最大,∴r r ≤≤(3)43423m -<<-17.【答案】(1)2y x =+(2)解:①当2d =时,()20D ,,设直线CD 的解析式为:y kx b =+,()02C ,,202k b b +=⎧∴⎨=⎩,解得:12k b =-⎧⎨=⎩,∴直线CD 的解析式为:y x =-+,设点M 的坐标为()2m m -+,,∴点M 的关联直线为:()212y mx m m x =-+=-+,∴点M 的关联直线经过定点()12N ,,如图2,过点O 作直线2y mx m =--+的垂线,垂足为H ,连接ON ,ON OH ∴≥,∴当点H与点N重合时,OH最大,即点O到点M的关联直线的距离最大,∴点O到点M=;2 d=②或2 3-18.【答案】(1);3(2)解:设点G是O的特征值为4的点,∴经过一点G且弦长为4(最长弦)的直线有1条,弦长为3的直线有2条,弦长为2的直线有且只有1条, 经过点G的直线被O截得的弦长的最小值为2,=,∴关于O的特征值为4的所有点都在以O为半径的圆周上,直线y x b=+分别与x,y轴交于点A、B,()0A b∴-,,()B b,,OA OB b∴==,45OBH∴∠=︒,当0b>时,线段AB与以O为半径的圆相切时,点G特征值为4,设切点为为H,连接OH,则OH=,OB∴==,b∴=,设以O 为半径的圆与y 轴正半轴的交点记为1B ,则1OB =,当线段AB 与以O 1B 时,可得b =,b ≤≤同理可求当0b <时,b ≤≤,综上,b b b ≤≤-≤(3)当372122t -≤≤+时,存在点R ,S ,使得3r s +=。
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。
2023年中考数学压轴题专题10 二次函数与圆存在性问题【含答案】
专题10二次函数与圆存在性问题二次函数是初中数学代数部分最重要的概念之一,是中考数学的重难点;而圆是初中几何中综合性最强的知识内容,它与二次函数都在中考中占据及其重要的地位,两者经常作为压轴题综合考查,能够很好的考查学生的数学综合素养以及分析问题、解决问题的能力.圆心与抛物线的关系、圆上的点和抛物线的关系,其本质就是把位置关系向数量化关系转化.二次函数与圆的综合要数形结合,在读题之前要想到圆中的相关概念、性质及定理,比如圆的定义、垂径定理、圆周角、圆心角、内心、外心、切线、四点共圆的、隐藏圆等;对于二次函数,要熟练掌握解析式的求法和表达形式、顶点、最值、与方程之间的关系,线段长与点的坐标之间的数量转化等.【例1】(2022•闵行区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴相交于点A(﹣1,0),B(3,0),与y轴交于点C.将抛物线的对称轴沿x轴的正方向平移,平移后交x轴于点D,交线段BC于点E,交抛物线于点F,过点F作直线BC的垂线,垂足为点G.(1)求抛物线的表达式;(2)以点G为圆心,BG为半径画⊙G;以点E为圆心,EF为半径画⊙E.当⊙G与⊙E内切时.①试证明EF与EB的数量关系;②求点F的坐标.【例2】(2022•福建模拟)如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,点C(2,﹣4)在抛物线上,且△ABC是等腰直角三角形.(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论.【例3】(2022•武汉模拟)已知抛物线y=﹣2x2+bx+c(c>0).(1)如图1,抛物线与直线l相交于点M(﹣1,0),N(2,6).①求抛物线的解析式;②过点N作MN的垂线,交抛物线于点P,求PN的长;(2)如图2,已知抛物线y=﹣2x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A,B,C,D(0,n)四点在同一圆上,求n的值.【例4】(2022•上海模拟)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+2(a<0)交y轴于点A,抛物线的对称轴交x轴于点P,联结PA.(1)求线段PA的长;(2)如果抛物线的顶点到直线PA的距离为3,求a的值;(3)以点P为圆心、PA为半径的⊙P交y轴的负半轴于点B,第一象限内的点Q在⊙P上,且劣弧=2.如果抛物线经过点Q,求a的值.1.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF 相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.2.(2021•张家界)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B (8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E的运动时间t的最小值.3.(2021•宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.4.(2020•雨花区校级一模)如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B 的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.5.(2020•汇川区三模)如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B (3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.6.(2021•开福区模拟)如图,在平面直角坐标系中,抛物线y=x2﹣bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),①求点M的坐标及⊙M的半径;②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.7.(2020•天桥区二模)如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.8.(2020•百色)如图,抛物线的顶点为A(0,2),且经过点B(2,0).以坐标原点O为圆心的圆的半径r=,OC⊥AB于点C.(1)求抛物线的函数解析式.(2)求证:直线AB与⊙O相切.(3)已知P为抛物线上一动点,线段PO交⊙O于点M.当以M,O,A,C为顶点的四边形是平行四边形时,求PM的长.9.(2020•西藏)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;=,求点P的坐标;(2)如图甲,连接AC,PA,PC,若S△P AC(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.10.(2020•宜宾)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.11.(2021•嘉兴二模)定义:平面直角坐标系xOy中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P(2,2),以P为圆心,为半径作圆.请判断⊙P是不是二次函数y=x2﹣4x+3的坐标圆,并说明理由;(2)已知二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,如图1,求△POA周长的最小值;(3)已知二次函数y=ax2﹣4x+4(0<a<1)图象交x轴于点A,B,交y轴于点C,与坐标圆的第四个交点为D,连结PC,PD,如图2.若∠CPD=120°,求a的值.12.(2021•常州二模)如图1:抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)连接BM并延长交y轴于点N,连接AN,OM,若AN∥OM,求m的值.(3)如图2.当m=1时,P是直线l上的点,以P为圆心,PE为半径的圆交直线l于另一点F(点F在x 轴上方),若线段AC上最多存在一个点Q使得∠FQE=90°,求点P纵坐标的取值范围.13.(2021•乐山模拟)如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值14.(2021•河北区二模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+3的对称轴是直线x=2,与x 轴相交于A,B两点(点A在点B的左侧),与y轴交于点C.(Ⅰ)求抛物线的解析式及顶点坐标;(Ⅱ)M为第一象限内抛物线上的一个点,过点M作MN⊥x轴于点N,交BC于点D,连接CM,当线段CM=CD时,求点M的坐标;(Ⅲ)以原点O为圆心,AO长为半径作⊙O,点P为⊙O上的一点,连接BP,CP,求2PC+3PB的最小值.15.(2021•长沙模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点.(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;(2)如图2,延长线段OC至N,使得ON=,若∠OBN=∠ONA,且,求抛物线的解析式;(3)如图3,抛物线y=ax2+bx+c的对称轴为直线,与y轴交于(0,5),经过点C的直线l:y=kx+m (k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,求k的取值范围.16.(2021秋•上城区校级期中)如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C,⊙M是△ABC的外接圆.若抛物线的顶点D的坐标为(1,4).(1)求抛物线的解析式,及A、B、C三点的坐标;(2)求⊙M的半径和圆心M的坐标;(3)如图2,在x轴上有点P(7,0),试在直线BC上找点Q,使B、Q、P三点构成的三角形与△ABC相似.若存在,请直接写出点坐标;若不存在,请说明理由.17.(2021秋•西湖区校级期中)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;(3)点P是“蛋圆”外一点,满足∠BPC=60°,当BP最大时,直接写出点P的坐标.18.(2021•雨花区二模)如图1,已知圆O的圆心为原点,半径为2,与坐标轴交于A,C,D,E四点,B 为OD中点.(1)求过A,B,C三点的抛物线解析式;(2)如图2,连接BC,AC.点P在第一象限且为圆O上一动点,连接BP,交AC于点M,交OC于点N,当MC2=MN•MB时,求M点的坐标;(3)如图3,若抛物线与圆O的另外两个交点分别为H,F,请判断四边形CFEH的形状,并说明理由.19.(2020•东海县二模)如图,△AOB的三个顶点A、O、B分别落在抛物线C1:y=x2+x上,点A的坐标为(﹣4,m),点B的坐标为(n,﹣2).(点A在点B的左侧)(1)则m=,n=.(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线C2:y=ax2+bx+4经过A'、B'两点,延长OB'交抛物线C2于点C,连接A'C.设△OA'C的外接圆为⊙M.①求圆心M的坐标;②试直接写出△OA'C的外接圆⊙M与抛物线C2的交点坐标(A'、C除外).20.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.21.(2022•炎陵县一模)抛物线:y=﹣x2+bx+c与y轴的交点C(0,3),与x轴的交点分别为E、G两点,对称轴方程为x=1.(1)求抛物线的解析式;(2)如图1,过点C作y轴的垂线交抛物线于另一点D,F为抛物线的对称轴与x轴的交点,P为线段OC 上一动点.若PD⊥PF,求点P的坐标.(3)如图1,如果一个圆经过点O、点G、点C三点,并交于抛物线对称轴右侧x轴的上方于点H,求∠OHG的度数;(4)如图2,将抛物线向下平移2个单位长度得到新抛物线L,点B是顶点.直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.与对称轴交于点G,若△BMN的面积等于2,求k的值.22.(2022•杨浦区二模)如图,已知在平面直角坐标系xOy中,抛物线y=﹣+bx+c与x轴相交于点A (4,0),与y轴相交于点B(0,3),在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交线段AB于点N,交抛物线于点P,过P作PM⊥AB,垂足为点M.(1)求这条抛物线的表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,如果,求点P的坐标;(3)如果以N为圆心,NA为半径的圆与以OB为直径的圆内切,求m的值.【例1】(2022•闵行区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴相交于点A(﹣1,0),B(3,0),与y轴交于点C.将抛物线的对称轴沿x轴的正方向平移,平移后交x轴于点D,交线段BC于点E,交抛物线于点F,过点F作直线BC的垂线,垂足为点G.(1)求抛物线的表达式;(2)以点G为圆心,BG为半径画⊙G;以点E为圆心,EF为半径画⊙E.当⊙G与⊙E内切时.①试证明EF与EB的数量关系;②求点F的坐标.【分析】(1)根据点A、B的坐标,设抛物线y=a(x+1)(x﹣3),再将点C代入即可求出a的值,从而得出答案;(2)①分两种情形,当r⊙G>r⊙E时,则GB﹣EF=GE,则EF=EB,当r⊙G<r⊙E时,则EF﹣GB=GE,设EF=5t,FG=3t,GE=4t,则5t﹣GB=4t,则GB=t<GE=4t,从而得出矛盾;②由.设BD=t,则DE=,利用勾股定理得BE=,则F坐标为(3﹣t,3t),代入抛物线解析式,从而解决问题.【解答】解:(1)∵点A坐标为(﹣1,0),点B坐标为(3,0).设抛物线y=a(x+1)(x﹣3)(a≠0),∵抛物线经过点C(0,4),∴4=﹣3a.解得.∴抛物线的表达式是;(2)①由于⊙G与⊙E内切,当r⊙G<r⊙E时,则EF﹣GB=GE,设EF=5t,FG=3t,GE=4t,则5t﹣GB=4t,∴GB=t<GE=4t,∴点E在线段CB的延长线上.又∵已知点E在线段BC上,∴矛盾,因此不存在.当r⊙G>r⊙E时,则GB﹣EF=GE,又∵GE=GB﹣EB,∴EF=EB;②∵OC⊥OB,FD⊥OB,∴∠COB=∠EDB=90°.∴.∴设BD=t,则DE=;在Rt△BED中,由勾股定理得,.∴,∴F坐标为(3﹣t,3t),∵F点在抛物线上,∴,∴解得,t=0(点F与点B重合,舍去).∴F坐标为(,).【例2】(2022•福建模拟)如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,点C(2,﹣4)在抛物线上,且△ABC是等腰直角三角形.(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论.【分析】(1)等腰直角三角形斜边中线等于斜边一半,点的坐标,不难求出A、B两点坐标,把点A、B、C 代入二次函数解析式,解三元一次方程组就可得到函数解析式.(2))通过设过点D(2,0)的直线MN解析式为y=k(x﹣2)=kx﹣2k,得到关于x、关于y的方程,利用跟与系数的关系,再得到圆的解析式,待定系数法确定定点的x、y的值,确定定点的坐标.【解答】解:连接AC、BC,过点C作CP垂直于x轴于点P.在Rt△CAB中,AC=BC,CP⊥AB,点C(2,﹣4),∴CP=AP=PB=4,OP=2,∴OA=AP﹣OP=4﹣2=2,OB=OP+PB=4+2=6,∴点A(﹣2,0),点B(6,0),把点A(﹣2,0),点B(6,0),点C(2,﹣4)代入函数解析式得,解得,∴抛物线的解析式为:y=x2﹣x﹣3.故答案为:y=x2﹣x﹣3.(2)设过点D(2,0)的直线MN解析式为y=k(x﹣2)=kx﹣2k,联立直线与抛物线解析式得关于x的等式:kx﹣2k=x2﹣x﹣3,化简得=0,x N+x M=﹣=4(k+1),x N x M==8k﹣12..........①,联立直线与抛物线解析式得关于y的等式:y=(+2)2﹣(+2)﹣3,化简得y2+(﹣﹣1)y﹣4=0,y M+y N=4k2,y M y N=﹣16k2................②,线段MN的中点就是圆的圆心,∴x O=(x N+x M)=2(K+1),代入直线方程得y O=2k2,∴圆心坐标为(2k+2,2k2),直径MN==,把①、②代入上式化简整理得直径MN=,设圆上某一点(x,y)到圆心的距离等于半径,∴=,化简整理得16k2+12﹣8k=x2﹣4kx﹣4x+y2﹣4k2y=﹣4yk2﹣4kx+x2﹣4x+y2,圆过定点,所以与k值无关,看作是关于k的二次等式,k2、k的系数,常量对应相等,得﹣8=﹣4x,x=2,16=﹣4y,y=﹣4,由以上分析,所以以MN为直径的圆过定点(2,﹣4).故答案为:以线段MN为直径的圆过定点(2,﹣4).【例3】(2022•武汉模拟)已知抛物线y=﹣2x2+bx+c(c>0).(1)如图1,抛物线与直线l相交于点M(﹣1,0),N(2,6).①求抛物线的解析式;②过点N作MN的垂线,交抛物线于点P,求PN的长;(2)如图2,已知抛物线y=﹣2x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A,B,C,D(0,n)四点在同一圆上,求n的值.【分析】(1)①把点M(﹣1,0),N(2,6)代入到y=﹣2x2+bx+c中,可得b和c的值.②设P(a,﹣2a2+4a+6),再利用M(﹣1,0),N(2,6),得到MN、PM、PN的表达式,最后利用勾股定理求得a的值.(2)令C(0,c),当y=0时,代入抛物线得x A x B=﹣,根据两角对应相等,可得△AOC∽△DOB,然后再找到对应线段成比例,即得到n的值.【解答】解:(1)①把M(﹣1,0)N(2,6)代入y=﹣2x2+bx+c,得,解得,∴抛物线的解析式为y=﹣2x2+4x+6;②由①,抛物线解析式为:y=﹣2x2+4x+6,设P(a,﹣2a2+4a+6)∵M(﹣1,0),N(2,6),∴MN==3,∴PM=,PN=,又∵PN⊥MN,则PM2=MN2+PN2,(﹣1﹣a)2+(2a2﹣4a﹣b)2=(3)2+(2﹣a)2+(2a2﹣4a)2.整理得:4a2﹣9a+2=0,∴(a﹣2)(4a﹣1)=0.∴a1=2,a2=.当a=2时,P与N重合,∴a=,PN=.(2)证明:设OA=﹣x A,OB=x B,OD=﹣n当y=0时,﹣2x2+bx+c=0,∴x A x B=﹣,∴OA•OB=﹣x A x B=.∵∠CAO=∠BDO,∠ACO=∠DBO∴△AOC∽△DOB∴=∴OA•OB=OC•OD∴=c•(﹣n).∵c≠0∴n=﹣.【例4】(2022•上海模拟)在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+2(a<0)交y轴于点A,抛物线的对称轴交x轴于点P,联结PA.(1)求线段PA的长;(2)如果抛物线的顶点到直线PA的距离为3,求a的值;(3)以点P为圆心、PA为半径的⊙P交y轴的负半轴于点B,第一象限内的点Q在⊙P上,且劣弧=2.如果抛物线经过点Q,求a的值.【分析】(1)分别求出P(,0),A(0,2),由两点间距离公式可求;=×PM×OP=×AP×3,可得a=﹣;(2)抛物线的顶点为M(,2﹣a),由S△APM(3)连接PQ,BP,AM,设Q(t,at2﹣3at+2),求出M(﹣1,0),由垂径定理可得AM=AQ,=①,PQ=AP,得②,联立①②可得a=.【解答】解:(1)y=ax2﹣3ax+2=a(x﹣)2+2﹣a,∴抛物线的对称轴为x=,∴P(,0),令x=0,则y=2,∴A(0,2),∴PA=;(2)由(1)可知抛物线的顶点为M(,2﹣a),∵a<0,∴2﹣a>0,∴S △APM =×PM ×OP =×AP ×3,∴(2﹣a )×=×3,解得a =﹣;(3)连接PQ ,BP ,AM ,∵MP ⊥AB ,∴=,∵=2,∴=,∴AM =AQ ,设Q (t ,at 2﹣3at +2),∵AP =,P (,0),∴M (﹣1,0),∴=①,∵PQ =AP ,∴②,联立①②可得t =或t =﹣1(舍),将t =代入①,可得a =.1.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF 相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【分析】(1)运用待定系数法即可求出抛物线解析式,再运用配方法求出顶点坐标;(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,运用勾股定理即可求出答案;(3)如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,可得DF=t2﹣2t﹣3,BF=t﹣3,AF=t+1,运用圆内接四边形的性质可得∠DAF=∠BEF,进而证明△AFD∽△EFB,利用=,即可求得答案.【解答】解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4);(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′===,∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为+1;(3)线段EF的长为定值1.如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴=,∴=,∴EF===1,∴线段EF的长为定值1.2.(2021•张家界)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B (8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求点E 的运动时间t的最小值.【分析】(1)运用待定系数法即可求出答案;(2)运用配方法将抛物线解析式化为顶点式,得出顶点坐标,运用待定系数法求出直线AB的函数表达式;(3)方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),得出△AFO、△AFB均为等腰直角三角形,即可得出答案,方法2:由△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),运用勾股定理及逆定理即可得出答案;(4)以O为圆心,2为半径作圆,则点P在圆周上,根据t=AP+PB=PD+PB,可知当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由t=DB=即可求出答案.【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的图象经过C(2,﹣3),且与x轴交于原点及点B(8,0),∴c=0,二次函数表达式可设为:y=ax2+bx(a≠0),将C(2,﹣3),B(8,0)代入y=ax2+bx得:,解得:,∴二次函数的表达式为;(2)∵=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),设直线AB的函数表达式为y=kx+m,将A(4,﹣4),B(8,0)代入,得:,解得:,∴直线AB的函数表达式为y=x﹣8;(3)△ABO是等腰直角三角形.方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),∴∠AFO=∠AFB=90°,OF=BF=AF=4,∴△AFO、△AFB均为等腰直角三角形,∴OA=AB=4,∠OAF=∠BAF=45°,∴∠OAB=90°,∴△ABO是等腰直角三角形.方法2:∵△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),∴OB=8,OA===,AB===,且满足OB2=OA2+AB2,∴△ABO是等腰直角三角形;(4)如图2,以O为圆心,2为半径作圆,则点P在圆周上,依题意知:动点E的运动时间为t=AP+PB,在OA上取点D,使OD=,连接PD,则在△APO和△PDO中,满足:==2,∠AOP=∠POD,∴△APO∽△PDO,∴==2,从而得:PD=AP,∴t=AP+PB=PD+PB,∴当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由于,且△ABO为等腰直角三角形,则有DG=1,∠DOG=45°∴动点E的运动时间t的最小值为:t=DB===5.3.(2021•宜宾)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.(1)求抛物线的表达式;(2)判断△BCE的形状,并说明理由;(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)运用待定系数法即可求得答案;(2)△BCE是直角三角形.运用勾股定理逆定理即可证明;(3)如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.【解答】解:(1)∵抛物线的顶点坐标为E(2,8),∴设该抛物线的表达式为y=a(x﹣2)2+8,∵与y轴交于点C(0,6),∴把点C(0,6)代入得:a=﹣,∴该抛物线的表达式为y=x2+2x+6;(2)△BCE是直角三角形.理由如下:∵抛物线与x轴分别交于A、B两点,∴令y=0,则﹣(x﹣2)2+8=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∴BC2=62+62=72,CE2=(8﹣6)2+22=8,BE2=(6﹣2)2+82=80,∴BE2=BC2+CE2,∴∠BCE=90°,∴△BCE是直角三角形;(3)⊙C上存在点P,使得BP+EP的值最小且这个最小值为.理由如下:如图,在CE上截取CF=(即CF等于半径的一半),连结BF交⊙C于点P,连结EP,则BF的长即为所求.理由如下:连结CP,∵CP为半径,∴==,又∵∠FCP=∠PCE,∴△FCP∽△PCE,∴==,即FP=EP,∴BF=BP+EP,由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.∵CF=CE,E(2,8),∴由比例性质,易得F(,),∴BF==.4.(2020•雨花区校级一模)如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B 的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.【分析】(1)令y=0,求得抛物线与x轴的交点A、B的坐标,令x=0,用a表示C点的坐标,再由三角函数列出a的方程,便可求得a的值;(2)过M点作MH⊥AB于点H,连接MA、MC,用d表示出M的坐标,根据MA=MC,列出a、d的关系式,再通过关系式求得结果;(3)取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当P 为直线y=x与⊙M的切点时,∠APB达到最大,利用圆圆周角性质和解直角三角形的知识求得结果便可.【解答】解:(1)连接BC,令y=0,得y=ax2﹣12ax+32a=0,解得,x=4或8,∴A(4,0),B(8,0),令x=0,得y=ax2﹣12ax+32a=32a,∴C(0,32a),又∠ABC=30°,∴tan∠ABC=,解得,a=;(2)过M点作MH⊥AB于点H,连接MA、MC,如图2,∴AH=BH==2,∴OH=6,设M(6,d),∵MA=MC,∴4+d2=36+(d﹣32a)2,得2ad=32a2+1,∴d=16a+=,∴当4时,有,即当a=时,有;(3)∵P(t,t),∴点P在直线y=x上,如图3,取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当⊙M与直线y=x相切时,有∠APB=∠AKB>∠AP′B,∴∠APB最大,此时相切点为P,设M(6,d),而T(6,0),∴S(6,6),∴∠PSM=90°﹣∠SOT=45°,又MP=MB=,∴MS==,∵MS+MT=ST=6,∴,解得,d=2(负根舍去),经检验,d=2是原方程的解,也符合题意,∴M(6,2),∴MB=2,∵∠AMB=2∠APB,MT⊥AB,MA=MB,∴∠AMT=∠BMT=∠AMB=∠APB,∴sin∠APB=sin∠BMT=.5.(2020•汇川区三模)如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B (3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.【分析】(1)将三个已知点坐标代入抛物线的解析式中列出方程组求得a、b、c,便可得抛物线的解析式;(2)1°用待定系数法求出直线BC的解析式,再设M的横坐标为t,用t表示MN的距离,再根据二次函数的性质求得MN的最大值;2°分三种情况:当∠PMN=90°时;当∠PNM=90°时;当∠MPN=90°时.分别求出符合条件的P点坐标便可.【解答】解:(1)把A、B、C三点的坐标代入抛物线y=ax2+bx+c(a≠0)中,得,解得,,∴抛物线的解析式为:y=x2﹣4x+3;(2)1°设直线BC的解析式为y=mx+n(m≠0),则,解得,,∴直线BC的解析式为:y=﹣x+3,设M(t,﹣t+3)(0<t<3),则N(t,t2﹣4t+3),∴MN=﹣t2+3t=﹣,∴当t=时,MN的值最大,其最大值为;2°∵△PMN的外接圆圆心Q在△PMN的边上,∴△PMN为直角三角形,由1°知,当MN取最大值时,M(),N(),①当∠PMN=90°时,PM∥x轴,则P点与M点的纵坐标相等,∴P点的纵坐标为,当y=时,y=x2﹣4x+3=,解得,x=,或x=(舍去),∴P();②当∠PNM=90°时,PN∥x轴,则P点与N点的纵坐标相等,∴P点的纵坐标为﹣,当y=﹣时,y=x2﹣4x+3=﹣,解得,x=,或x=(舍去),∴P(,);③当∠MPN=90°时,则MN为△PMN的外接圆的直径,∴△PMN的外接圆的圆心Q为MN的中点,∴Q(),半径为,过Q作QK∥x轴,与在MN右边的抛物线图象交于点K,如图②,令y=,得y=x2﹣4x+3=,解得,x=<(舍),或x=,∴K(,),∴QK=>,即K点在以MN为直径的⊙Q外,设抛物线y=x2﹣4x+3的顶点为点L,则l(2,﹣1),连接LK,如图②,则L到QK的距离为,LK=,设Q点到LK的距离为h,则,∴=,∴直线LK下方的抛物线与⊙Q没有公共点,∵抛物线中NL部分(除N点外)在过N点与x轴平行的直线下方,∴抛物线中NL部分(除N点外)与⊙Q没有公共点,∵抛物线K点右边部分,在过K点与y轴平行的直线的右边,∴抛物线K点右边部分与⊙Q没有公共点,综上,⊙Q与MN右边的抛物线没有交点,∴在线段MN右侧的抛物线上不存在点P,使△PMN的外接圆圆心Q在MN边上;综上,点P的坐标为()或().6.(2021•开福区模拟)如图,在平面直角坐标系中,抛物线y=x2﹣bx+c交x轴于点A,B,点B的坐标为(4,0),与y轴于交于点C(0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D,若点D的横坐标为5,求点D的坐标及∠ADB的度数;(3)在(2)的条件下,设抛物线对称轴l交x轴于点H,△ABD的外接圆圆心为M(如图1),①求点M的坐标及⊙M的半径;②过点B作⊙M的切线交于点P(如图2),设Q为⊙M上一动点,则在点运动过程中的值是否变化?若不变,求出其值;若变化,请说明理由.【分析】(1)c=﹣2,将点B的坐标代入抛物线表达式得:0=﹣4b﹣2,解得:b=﹣,即可求解;。
中考数学压轴题100题精选及答案全3篇
中考数学压轴题100题精选及答案全第一篇:数与代数1.下列各组数中,哪一组数最大?A. \frac{1}{2} ,\frac{2}{3},\frac{3}{4},\frac{4}{5}B. 0.99,0.999,0.9999,0.99999C. \sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7}D. 1,10^2,10^3,10^42. 一个整数,十位数与各位数的和为9,再去掉该整数中的各位数,十位数与剩下的数字的和为40,该整数为__________。
A. 45B. 54C. 63D. 723. 已知 a+b=2, ab=-1,求a^2+b^2的值。
A. 3B. 5C. 7D. 94. 解方程 2x-5=3x+1。
A. x=-3.5B. x=-2C. x=2D. x=3.55. 有两个数,各位数字相同,但顺序颠倒,若它们的和为110,这两个数分别是多少?A. 47,74B. 49,94C. 56,65D. 59,956. 若x-3y=-7,x+4y=1,则y的值为__________。
A. -2B. -1C. 0D. 17. 16÷(a-2)=4,则 a 的值为__________。
A. 6B. 8C. 10D. 128. 若a:b=5:3,b:c=7:4,则a∶b∶c=__________。
A. 35:21:12B. 25:15:12C. 25:21:16D. 35:15:169. 若a+3b=5,3a-5b=7,则 a 的值为__________。
A. -2B. -1C. 0D. 110. 已知x+y=3,xy=2,则y的值为__________。
A. 1B. 2C. 3D. 4第二篇:几何图形11. 已知正方形 ABCD 的边长为6,以 BC 为边,画一个正三角形 BCE,连接 AE,AD,请问△ADE 和正方形 ABCD 的面积之比是多少?A. \frac{2}{9}B. \frac{1}{2}C. \frac{4}{9}D.\frac{5}{6}12. 把一张纸平整地放在桌上,在纸的中央画一个圆形,请问可以用多少个直径为5 厘米的圆去覆盖这个圆形(圆覆盖圆)?A. 1B. 2C. 3D. 413. 已知△ABC 是等腰三角形,AB=AC,E是BC中点,DE∥AC,AE=CD=2,求△ABC 的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国中考数学压轴题精选(十)91.(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m ,抛物线拱高为. (1)在如图所示的平面直角坐标系中,求抛物线的表达式.(2)现需在抛物线AOB 的区域内安装几扇窗户,窗户的底边在AB 上,每扇窗户宽,高,相邻窗户之间的间距均为,左右两边窗户的窗角所在的点到抛物线的水平距离至少为.请计算最多可安装几扇这样的窗户?(08新疆自治区24题解析)24.(10分)解:(1)设抛物线的表达式为2y ax = 1分点(6 5.6)B -,在抛物线的图象上. ∴ 5.636a -=745a =-······················································· 3分 ∴抛物线的表达式为2745y x =- ······································································ 4分 (2)设窗户上边所在直线交抛物线于C 、D 两点,D 点坐标为(k ,t )已知窗户高,∴ 5.6( 1.6)4t =---=- ····························································· 5分125.07 5.07k k -≈,≈(舍去) ···································································· 6分∴ 5.07210.14CD =⨯≈(m ) ······································································ 7分 又设最多可安装n 扇窗户∴1.50.8(1)10.14n n ++≤ ············································································ 9分4.06n ≤.答:最多可安装4扇窗户. ············································································· 10分 (本题不要求学生画出4个表示窗户的小矩形)92.(08四川资阳24题)24.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,连接AC 、BC ,过A 、B 、C 三点作抛物线.(1)求抛物线的解析式; (2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 的解析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD?如果存在,请求出点P 的坐标;如果不存在,请说明理由.(08四川资阳24题解答)(1) ∵以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC ,又∵∠AOC= ∠COB=90°, ∴ΔAOC ∽ ΔCOB , ················································································ 1分∴OA OCOC OB=. 图10图10答案图1又∵A(–1,0),B(9,0), ∴19OCOC =,解得OC=3(负值舍去). ∴C(0,–3), ·········································································································· 3分 设抛物线解析式为y=a(x+1)(x –9),∴–3=a(0+1)(0–9),解得a=13, ∴二次函数的解析式为y=13(x+1)(x –9),即y=13x 2–83x –3. ····························· 4分(2) ∵AB 为O ′的直径,且A(–1,0),B(9,0),∴OO ′=4,O ′(4,0), ········································································· 5分 ∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D , ∴∠BCD=12∠BCE=12×90°=45°, 连结O ′D 交BC 于点M ,则∠BO ′D=2∠BCD=2×45°=90°,OO ′=4,O ′D=12AB=5. ∴D(4,–5). ························································································ 6分 ∴设直线BD 的解析式为y=kx+b (k ≠0) ∴90,4 5.k b k b +=⎧⎨+=-⎩····················································· 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y=x –9. ··································· 8分 (3) 假设在抛物线上存在点P ,使得∠PDB=∠CBD ,解法一:设射线DP 交⊙O ′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O ′(4,0),D(4,–5),B(9,0),C(0,–3). ∴把点C 、D 绕点O ′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q 1重合,因此,点Q 1(7,–4)符合BQ CD =, ∵D(4,–5),Q 1(7,–4),∴用待定系数法可求出直线DQ 1解析式为y=13x –193. ·································· 9分 解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得119412941x y ⎧-=⎪⎪⎨--⎪=⎪⎩229412941x y ⎧+=⎪⎪⎨-+⎪=⎪⎩∴点P 1坐标为(9412,29416-),[坐标为(9412,29416-)不符合题意,舍去]. ·········································································································· 10分②∵Q 1(7,–4),∴点Q 1关于x 轴对称的点的坐标为Q 2(7,4)也符合BQ CD =.∵D(4,–5),Q 2(7,4).∴用待定系数法可求出直线DQ 2解析式为y=3x –17. ····································· 11分解方程组2317183.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P 2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].·········································································································· 12分图10答案图2图10答案图解法二:分两种情况(如答案图2所示):①当DP 1∥CB 时,能使∠PDB=∠CBD . ∵B(9,0),C(0,–3).∴用待定系数法可求出直线BC 解析式为y=13x –3. 又∵DP 1∥CB ,∴设直线DP 1的解析式为y=13x+n .把D(4,–5)代入可求n= –193,∴直线DP 1解析式为y=13x –193.························ 9分解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得119412941x y ⎧-=⎪⎪⎨--⎪=⎪⎩229412941x y ⎧+=⎪⎪⎨-+⎪=⎪⎩∴点P 1坐标为(9412,29416-),[坐标为(9412,29416-)不符合题意,舍去]. ·········································································································· 10分②在线段O ′B 上取一点N ,使BN=DM 时,得ΔNBD ≌ΔMDB(SAS),∴∠NDB=∠CBD .由①知,直线BC 解析式为y=13x –3. 取x=4,得y= –53,∴M(4,–53),∴O ′N=O ′M=53,∴N(173,0),又∵D(4,–5),∴直线DN 解析式为y=3x –17. ································································· 11分解方程组2317183.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P 2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去].·········································································································· 12分 ∴符合条件的点P 有两个:P 1941+2941-+),P 2(14,25). 解法三:分两种情况(如答案图3所示):①求点P 1坐标同解法二. ········································································ 10分 ②过C 点作BD 的平行线,交圆O ′于G, 此时,∠GDB=∠GCB=∠CBD . 由(2)题知直线BD 的解析式为y=x –9, 又∵ C (0,–3)∴可求得CG 的解析式为y=x –3,设G (m,m –3),作GH ⊥x 轴交与x 轴与H ,连结O ′G,在Rt △O ′GH 中,利用勾股定理可得,m=7, 由D (4,–5)与G(7,4)可得, DG 的解析式为317y x =-, ···································································· 11分解方程组2317183.33y x y x x =-⎧⎪⎨=--⎪⎩,得1138x y =⎧⎨=-⎩,;221425.x y =⎧⎨=⎩, ∴点P 2坐标为(14,25),[坐标为(3,–8)不符合题意,舍去]. ·························· 12分说明:本题解法较多,如有不同的正确解法,请按此步骤给分.93.(08福建南平26题)26.(14分)(1)如图1,图2,图3,在ABC △中,分别以AB AC ,为边,向ABC △外作正三角形,正四边形,正五边形,BE CD ,相交于点O .①如图1,求证:ABE ADC △≌△; ②探究:如图1,BOC ∠= ; 如图2,BOC ∠= ; 如图3,BOC ∠= .(2)如图4,已知:AB AD ,是以AB 为边向ABC △外所作正n 边形的一组邻边;AC AE ,是以AC 为边向ABC △外所作正n 边形的一组邻边.BE CD ,的延长相交于点O .①猜想:如图4,BOC ∠= (用含n 的式子表示); ②根据图4证明你的猜想.(08福建南平26题解答)(1)①证法一:ABD △与ACE △均为等边三角形,AD AB ∴=,AC AE = ··············································································· 2分 且60BAD CAE ∠=∠= ·········································· 3分BAD BAC CAE BAC ∴∠+∠=∠+∠,即DAC BAE ∠=∠ ·················································· 4分ABE ADC ∴△≌△. ·············································· 5分 证法二:ABD △与ACE △均为等边三角形,AD AB ∴=,AC AE = ··············································································· 2分 且60BAD CAE ∠=∠= ·············································································· 3分 ADC ∴△可由ABE △绕着点A 按顺时针方向旋转60得到 ·································· 4分 ABE ADC ∴△≌△. ·················································································· 5分 ②120,90,72. ·································································· 8分(每空1分)(2)①360n······························································································ 10分 ②证法一:依题意,知BAD ∠和CAE ∠都是正n 边形的内角,AB AD =,AE AC =,BAD DAE CAE DAE ∴∠-∠=∠-∠,即BAE DAC ∠=∠. ··························· 11分 ABE ADC ∴△≌△. ················································································· 12分 ABE ADC ∴∠=∠,180ADC ODA ∠+∠=,180ABO ODA ∴∠+∠= ······· 13分 360ABO ODA DAB BOC ∠+∠+∠+∠=,180BOC DAB ∴∠+∠=(2)180360180180n BOC DAB n n-∴∠=-∠=-= ···································· 14分证法二:同上可证ABE ADC △≌△. ························································ 12分 ABE ADC ∴∠=∠,如图,延长BA 交CO 于F ,180AFD ABE BOC ∠+∠+∠=,180AFD ADC DAF ∠+∠+∠= ····························· 13分 360180BOC DAF BAD n∴∠=∠=-∠=··············· 14分 证法三:同上可证ABE ADC △≌△. ························································ 12分 ABE ADC ∴∠=∠.180()BOC ABE ABC ACB ACD ∠=-∠+∠+∠+∠180ABC ACB BAC ∠+∠=-∠,180ADC ACD DAC ∠+∠=-∠180(360)BOC BAC DAC ∴∠=--∠-∠ ··················································· 13分即360180BOC BAD n∠=-∠= ································································· 14分 证法四:同上可证ABE ADC △≌△. ························································ 12分 AEB ACD ∴∠=∠.如图,连接CE ,BEC BOC OCE ∠=∠+∠BOC AEC ACE ∴∠=∠+∠. ································ 13分 即360180BOC CAE n∠=-∠=···························· 14分注意:此题还有其它证法,可相应评分. 94.(08广东梅州23题)23.本题满分11分.如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L . (3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)(08广东梅州23题解答)解: (1) DC ∥AB ,AD =DC =CB ,∴ ∠CDB =∠CBD =∠DBA , ············································································· 分 ∠DAB =∠CBA , ∴∠DAB =2∠DBA , ·············· 1分∠DAB +∠DBA =90, ∴∠DAB =60, ················· 分 ∠DBA =30, AB =4, ∴DC =AD =2, ··········· 2分R t ∆AOD ,OA =1,OD =3, ······························· 分∴A (-1,0),D (0, 3),C (2, 3). 4分(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A (-1,0),B (3,0), 故可设所求为 y =a (x +1)( x -3) ························································ 6分 将点D (0,3)的坐标代入上式得, a =33-. 所求抛物线的解析式为y =).3)(1(33-+-x x ········································ 7分 其对称轴L 为直线x =1. ·············································································· 8分 (3)∆PDB 为等腰三角形,有以下三种情况:①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,P 1D =P 1B ,∆P 1DB 为等腰三角形; ·········································································· 9分 ②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P 2、P 3,DB =DP 2,DB =DP 3, ∆P 2DB , ∆P 3DB 为等腰三角形; ③与②同理,L 上也有两个点P 4、P 5,使得 BD =BP 4,BD =BP 5. ························ 10分 由于以上各点互不重合,所以在直线L 上,使∆PDB 为等腰三角形的点P 有5个.95.(08山东聊城25题)25.(本题满分12分)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.(08山东聊城25题解答)(本题满分12分) 解:(1)设正方形的边长为x cm ,则(102)(82)48x x --=. ··············································································· 1分 即2980x x -+=.解得18x =(不合题意,舍去),21x =.∴剪去的正方形的边长为1cm . ········································································ 3分(注:通过观察、验证直接写出正确结果给3分) (2)有侧面积最大的情况.设正方形的边长为x cm ,盒子的侧面积为y cm 2,则y 与x 的函数关系式为:2(102)2(82)y x x x x =-+-.即2836y x x =-+. ····················································································· 5分第25题图改写为2981842y x ⎛⎫=--+ ⎪⎝⎭.∴当 2.25x =时,40.5y =最大.即当剪去的正方形的边长为时,长方体盒子的侧面积最大为. ································· 7分 (3)有侧面积最大的情况.设正方形的边长为x cm ,盒子的侧面积为y cm 2.若按图1所示的方法剪折,则y 与x 的函数关系式为:1022(82)22xy x x x -=-+. 即213169666y x ⎛⎫=--+⎪⎝⎭. ∴当136x =时,1696y =最大. ··························· 9分 若按图2所示的方法剪折,则y 与x 的函数关系式为:822(102)22xy x x x -=-+.即2798633y x ⎛⎫=--+ ⎪⎝⎭.∴当73x =时,983y =最大. ········································································· 11分 比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为73cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为983cm 2. 说明:解答题各小题只给了一种解答及评分说明,其他解法只要步骤合理,解答正确,均应给出相应分数.96.(08广东佛山25题)25.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)...........几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究................................. 例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1) 如图1,在圆O 所在平面上,放置一条..直线m (m 和圆O 分别交于点A 、B ),根据这个图形可以提出的概念或问题有哪些(直接写出两个即可)?(2) 如图2,在圆O 所在平面上,请你放置与圆O 都相交且不同时经过圆心.......的两条..直线m 和n (m 与圆O 分别交于点A 、B ,n 与圆O 分别交于点C 、D ). 请你根据所构造的图形提出一个结论,并证明之.图1第25题图图2。