中考数学重难题型专项突破五函数的实际应用
2018年中考数学河北专版专题突破方案课件 专题五 函数的实际应用
专题五┃函数的实际应用
(2)①设购进 B 型手机 n 部,则购进 A 型手机(110-n)部, 则 y=150(110-n)+100n=-50n+16500, 2 其中 110-n≤2n,即 n≥363, 即 n≥37,且 n 为整数. ∴y 关于 n 的函数表达式为 y=-50n+16500(n≥37,且 n 为 整数). ②∵-50<0, ∴y 随 n 的增大而减小. ∵n≥37,且 n 为整数, ∴当 n=37 时,y 取得最大值,最大值为-50× 37+16500= 14650(元),此时 110-n=73. 答:购进 A 型手机 73 部、B 型手机 37 部时,才能使销售总 利润最大.
专题五
函数的实际应用
专题五┃函数的实际应用
函数的实际应用型问题是把题中数量关系抽象为函数
模型,如一次函数、二次函数、反比例函数以及它们的分 段函数,进而应用函数模型进行分析、研究、解决有关问 题.函数的实质是研究两变量之间的对应关系,用函数思 想构建数学模型解决实际问题.
专题五┃函数的实际应用
类型1 一次函数的实际应用[16年24题,15年23题]
例 1 [2017· 河北]一模某手机店销售一部 A 型手机比销售一部 B 型手机获得的利润多 50 元,销售相同数量的 A 型手机和 B 型手机 获得的利润分别为 3000 元和 2000 元. (1)求每部 A 型手机和 B 型手机的销售利润分别为多少元.
解:(1)设每部 A 型手机的销售利润为 x 元,每部 B 型手机 的销售利润为 y 元. x-y=50, x=150, 根据题意,得3000 2000 解得 = , y=100. y x 答:每部 A 型手机的销售利润为 150 元,每部 B 型手机的 销售利润为 100 元.
中考数学中档题突破 专项训练五 实际应用与方案设计
解:(1)设 B 品牌消毒酒精每桶的价格为 x 元, A 品牌消毒酒精每桶的价 格为( x+20 )元,根据题意,得 3 000 1 800 x+20= x ,解得 x=30, 经检验:x=30 是原分式方程的解,且符合题意, ∴x+20=30+20=50. 答:A 品牌消毒酒精每桶的价格是 50 元, B 品牌消毒酒精每桶的价格是 30 元.
解:(1)设参加社会实践活动的老师有 m 人,学生有 n 人,则家长代表有
2m 人,根据题意得
95(3m+n)=6 175, 60×3m+60×0.75n=3 150,
m=5, 解得n=50. 答:参加社会实践活动的老师有 5 人,家长代表有 10 人,学生有 50 人.
(2)由(1)知,所有参与人员共有 65 人,其中学生有 50 人. ①当 50≤x<65 时,最经济的购票方案为 买二等座学生票 50 张,买二等座成人票(x-50)张,买一等座火车票(65 -x)张. ∴单程火车票的总费用 y 与 x 之间的函数关系式为 y=60×0.75×50+ 60(x-50)+95(65-x), 即 y=-35x+5 425(50≤x<65);
解:设每亩山田产粮相当于实田 x 亩,每亩场地产粮相当于实田 y 亩,
3x+6y=4.7, x=190, 根据题意得5x+3y=5.5,解得y=31.
9
1
答:每亩山田产粮相当于实田10亩,每亩场地产粮相当于实田3亩.
2.(2021·玉林)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有 A,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为 100 吨,每焚烧一吨垃圾,A 焚烧炉比 B 焚烧炉多发电 50 度,A,B 焚烧炉每天共发电 55 000 度. (1)求焚烧一吨垃圾,A 焚烧炉和 B 焚烧炉各发电多少度? (2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和 B 焚烧炉的发电量分别增加 a%和 2a%,则 A,B 焚烧炉每天共发电至少增 加(5+a)%,求 a 的最小值.
专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习
专题05 二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验:请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,6m AB 1m ABCD 2m 6m AB ABCD 6m ABCDEF AB DE ∥AB DE 3AB =1AF BC ==,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm ),等腰直角以2cm/s 的速度沿直线l 向正方形移动,直到与重合,当运动时间为x s 时,与正方形重叠部分的面积为y cm 2,下列图象中能反映y 与x 的函数关系的是( )90A B ∠=∠=︒135C F ∠=∠=︒MH H G GN MH MNGH ABC V AB AC =:3:4AF BF =G H F AB AC BC BCDE BE IJ MN CD ∥∥∥BF x =BE y =y x x x EFG V EF BC EFG V ABCD. .. ..如图,一个边长为的菱形,过点作直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线部分面积为,则与直线之间的函数图象大致为( )A . . ..的边长为,点O 为正方形的中心,出发沿运动,连接的运动速度为260︒A l AB ⊥AB l y y l 2cm BC 2cm/s....销售利润问题.某公司经销一种绿茶,每千克成本为元,市场调查发现,在一段时间内,销售量(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在(1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为投球问题水平距离竖直高度(1)根据题意,填空:________________;(1)某运动员第一次发球时,测得水平距离与竖直高度水平距离竖直高度①根据上述数据,求抛物线解析式;增长率问题(m)x 0123(m)y 0 3.567.5=a x /mx 02461112/m y 2.38 2.62 2.7 2.62 1.721.4213.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A. B . C . D . 14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .B .C .D .15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y 与之间的函数关系式为( )A .B .C .D .16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A 、B 两种类型口罩进行销售,A 型口罩进价m 元每盒,B 型口罩进价30元每盒,若各购进m 盒,成本为1375元.(1)求A 型口罩的进价为多少元?(2)设两种口罩的售价均为x 元,当A 型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B 型口罩的销量y (盒)与售价x 之间的关系为;若B 型口罩的销售量不低于A 型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:GDP GDP y GDP x y x ()2.412y x =+()22.41y x =-()22.41y x =+()()2.4 2.41 2.41y x x =++++()21801461x -=()21801461x +=()24611180x -=()24611180x +=x y a x ()12y a x =-()21y a x =-()21y a x =-()21y a x =-3005y x =-2310.X m参考答案:,,米,四边形是平行四边形,又,90A B ∠=∠=︒Q AF BC ∴P 1AF BC ==Q ∴ABCF 90A B ∠=∠=︒Q重叠部分为三角形,面积如图,当时,重叠部分为梯形,面积∴图象为两段二次函数图象,第一段开口向上,第二段开口向下,函数的最大值为纵观各选项,只有C 选项符合.y =510x <≤12y =⨯,图象开口向上的抛物线的一部分;②当时,如图,③当时,如图,故选:.【点睛】此题考查了动点图象问题,涉及到解直角三角形等知识,解题的关键是不同取值范围内,图象和图形的对应关系,进而求解.6.D21332y x x x =⨯=12x <≤()1133132y x =⨯⨯+-=23x <≤()23323322y x =⨯--=-A∴,由题得,,∴,∵,由题得,∴.故选D .【点睛】本题考查了动点问题的函数图象的应用,求出分段函数的解析式是解题的关键.PE AD ⊥cm BQ t =cm AE PE t ==2cm QE AB ==cm BP BQ t ==212s t =(3)根据,即可作答.【详解】(1)解:设y 与x 的函数关系式为:,把,代入解析式得:,解得,∴y 与x 的函数关系式为;(2)根据题意,得;当时,,解得:,,∵这种商品的销售价不得高于90元/千克,∴,∴应将销售价定为70元/千克;(3),∵,∴当销售单价时,销售利润w 的值最大,最大值为2450元.【点睛】本题考查了二次函数的应用,属于常考题型,正确理解题意、得出二次函数的关系式是解题的关键.8.(1)(2)第18天的日销售利润最大为450元(3),1500元【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,故可利用待定系数法可求解;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围,进而求解即可.()222340120002852450w x x x =-+-=--+()0y kx b k =+≠()50,140()80,80501408080k b k b +=⎧⎨+=⎩2240k b =-⎧⎨=⎩2240y x =-+()()()250502240234012000w x y x x x x =-⋅=--+=-+-2000w =22340120002000x x -+-=170x =2100x =70x =()222340120002852450w x x x =-+-=--+20-<85x =296m x =-+1a =②不能.当时,,该运动员第一次发球能过网,故答案为:不能;(2)判断:没有出界.第二次发球:,令,则,,解得舍,,,该运动员此次发球没有出界.【点睛】本题考查二次函数的应用,解题关键是正确求出函数解析式.13.C【分析】根据平均每个季度增长的百分率为,第二季度季度总值约为元,第三季度总值为元,则函数解析式即可求得.【详解】解:根据题意得:关于的函数表达式是:,故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.14.B【分析】利用4月份该厂家口罩产量月份该厂家口罩产量从2月份到4月份该厂家口罩产量的平均月增长率,即可得出关于x 的一元二次方程,此题得解.【详解】解:根据题意得,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9x =()20.0294 2.7 2.2 2.24y =--+=<∴20.02(5) 2.88y x =--+0y =20.02(4) 2.880x --+=17(x =-)217x =21718x =<Q ∴GDP x GDP ()2.41x +GDP ()22.41x +y x ()22.41y x =+2=(1⨯+2)()21801461x +=。
中考数学专项突破之实践操作与探究 课件
∵∠AEC=∠B'ED,∠ACB'=∠CAD,
∴∠ADB'=∠DAC.∴B'D∥AC.
若选择②证明:如图④,设展开后点E的对应点为F,
∵四边形ABCD是平行四边形,
∴CF∥AE,∴∠DAC=∠ACF.
由折叠可得∠ACE=∠ACF,CE=CF,
∴∠DAC=∠ACE.∴AE=CE,∴AE=CF,∴四边形AECF是菱形.
∶1.∴小红折叠的矩形纸片的长、宽之比为1∶1或 ∶1.
(4)如图⑦,∠AB'D=90°时,∠B'AD=30°,B'A=4 ,则BC=AD=
AB'=8.
如图⑧,∠B'AD=90°时,∠B'DA=30°,
BC=AD= AB'=12.
如图⑨,∠B'AD=90°时,∠AB'D=30°,
BC=AD=
所得结论.操作性问题是让学生按题目要求进行操作,考查学生的动手能力、想象
能力和概括能力.
方法点拨
解决这类问题,注意运用分类讨论、类比猜想、验证归纳等数学思想方法,灵
活地解决问题.在平时的学习中,要注重操作类习题的解题训练,提高思维的开放性,
培养创新能力.
解题技巧
此类问题解决一般有这样的几个步骤:
第一步:审清题意,找准解题的切入点.
图①
问题探究
(2)如图②,☉O的半径为13,弦AB=24,M是AB的中点,P是☉O上一动点,求PM的最
大值;
(2)当PM⊥AB时,此时PM最大,
连接OA,如图②,
由垂径定理可知AM= AB=12.
∵OA=13,
∴在Rt△AOM中,由勾股定理可知OM=5,
分段函数在生活实际中的应用(解析版)-2023年中考数学重难点解题大招复习讲义-函数
例题精讲【例1】.某公司专销产品A,第一批产品A上市40天内全部售完、该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(1)中的折线表示的是市场日销售量与上市时间的关系;图(2)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)写出每件产品A的销售利润z与上市时间t的关系式;(3)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?解:(1)由图1可得,当0≤t≤30时,设市场的日销售量y=kt,∵点(30,60)在图象上,∴60=30k,∴k=2,即y=2t;当30<t≤40时,设市场的日销售量y=k1t+b,∵点(30,60)和(40,0)在图象上,∴解得k1=﹣6,b=240.∴y=﹣6t+240.故y=;(2)由图②可得:当0≤t≤20时,每件产品的日销售利润为z=3t;当20<t≤40时,每件产品的日销售利润为z=60;故z=;(3)①当0≤t≤20时,w=3t•2t=6t2.t=20时,w的最大值为2400(万元);②当20<t≤30时,w=2t•60=120t.t=30时,w的最大值为3600(万元);③当30<t≤40时,w=60(﹣6t+240)=﹣360t+14400∵k=﹣360<0,∴w随t的增大而减小.∴w<﹣360×30+14400即w<3600(万元)∴第30天取最大利润3600万元.变式训练【变1-1】.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为30件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?解:(1)∵日销售量y(件)与销售时间x(天)之间的关系式是y=,∴第15天的销售量为2×15=30件,故答案为:30;(2)由销售单价p(元/件)与销售时间x(天)之间的函数图象得:p=,①当0<x≤20时,日销售额=40×2x=80x,∵80>0,∴日销售额随x的增大而增大,∴当x=20时,日销售额最大,最大值为80×20=1600(元);②当20<x≤30时,日销售额=(50﹣x)×2x=﹣x2+100x=﹣(x﹣50)2+2500,∵﹣1<0,∴当x<50时,日销售额随x的增大而增大,∴当x=30时,日销售额最大,最大值为2100(元),综上,当0<x≤30时,日销售额的最大值为2100元;(3)由题意得:当0<x≤30时,2x≥48,解得:24≤x≤30,当30<x≤40时,﹣6x+240≥48,解得:30<x≤32,∴当24≤x≤32时,日销售量不低于48件,∵x为整数,∴x的整数值有9个,∴“火热销售期”共有9天.【变1-2】.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.【例2】.心理学家通过实验发现:初中学生听讲的注意力随时间变化,讲课开始时,学生注意力逐渐增强,中间有一段平稳状态,随后开始分散.学生注意力指标数y随时间表t(分钟)变化的函数图象如下.当0≤t≤10时,图象是抛物线的一部分,当10≤t≤20时和20≤t≤40时,图象是线段.(1)当0≤t≤10时,求注意力指标数y与时间t的函数关系式;(2)一道数学探究题需要讲解24分钟,问老师能否经过恰当安排,使学生在探究这道题时,注意力指标数不低于45?请通过计算说明.解:(1)当0≤t≤10时,设抛物线的函数关系式为y=ax2+bx+c.由于它的图象经过点(0,25),(4,45),(10,60),所以,解得:,所以;(2)当20≤x≤40时,设函数解析式为:y=kx+d,将(20,60),(40,25)代入得:,解得:∴y=﹣x+95,令y=45,有45=﹣x+95,解得:x=28,即讲课后第28分钟时注意力不低于45,当0≤x≤10时,令y=45,有45=﹣x2+6x+25,解得:x1=4,x2=20(舍去),即讲课后第4分钟时,注意力不低于45,所以讲课后注意力不低于45的时间有28﹣4=24(分钟)>24(分钟),所以老师可以经过适当的安排,使学生在探究这道数学题时,注意力指数不低于45.变式训练【变2-1】.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,∴当6≤x≤10时,w随x的增大而增大,即当x=10时,w=18000元,最大值当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28元/kg时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=﹣=28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元,∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.【变2-2】.东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.解:(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,∴y=﹣2t+120.将t=30代入上式,得:y=﹣2×30+120=60.所以在第30天的日销售量是60kg.(2)设第t天的销售利润为w元.当1≤t≤24时,由题意w=(﹣2t+120)(t+30﹣20)=﹣(t﹣10)2+1250,∴t=10时,w最大值为1250元.当25≤t≤48时,w=(﹣2t+120)(﹣t+48﹣20)=t2﹣116t+3360,∵对称轴t=58,a=1>0,∴在对称轴左侧w随t增大而减小,∴t=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元.由题意m=(﹣2t+120)(t+30﹣20)﹣(﹣2t+120)n=﹣t2+(10+2n)t+1200﹣120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∵t为整数,图象是孤立的点,∴﹣>23.5,(见图中提示)∴n>6.75.又∵n<9,∴n的取值范围为6.75<n<9.1.为了节约水资源,自来水公司按分段收费标准收费,如图所示反映的是每月收取水费y (元)与用水量x(吨)之间的函数关系.按照分段收费标准,小颖家三、四月份分别交水费29元和19.8元,则四月份比三月份节约用水()A.2吨B.2.5吨C.3吨D.3.5吨解:当x<10时,设y=mx,将点(10,22)代入可得:22=10k,解得:k=2.2,即可得:y=2.2x,当x≥10时,设y与x的函数关系式为:y=kx+b(k≠0),当x=10时,y=22,当x=20时,y=57,将它们分别代入y=kx+b中得:,解得:,那么y与x的函数关系式为:y=3.5x﹣13,综上可得:y=,当y=29时,知道x>10,将y=29代入得29=3.5x﹣13,解得x=12,当y=19.8时,知道x<10,将y=19.8代入得19.8=2.2x,解得:x=9,即可得四月份比三月份节约用水:12﹣9=3(吨).故选:C.2.某市为鼓励市民节约使用燃气,对燃气进行分段收费,每月使用11立方米以内(包括11立方米)每立方米收费2元,超过部分按每立方米2.4元收取.如果某户使用9立方米燃气,需要燃气费为18元;如果某户的燃气使用量是x立方米(x超过11),那么燃气费用y与x的函数关系式是y=2.4x﹣4.4.解:使用9立方米燃气,需要燃气费为:2×9=18(元);y=2×11+2.4(x﹣11),即所求的函数解析式为y=2.4x﹣4.4(x>11).故答案为:18;y=2.4x﹣4.43.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价2元收费;若每月用水量超过14吨,则超过部分每吨按市场价3.5元收费.小明家2月份用水20吨,交水费49元;3月份用水18吨,交水费42元.(1)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(2)小明家5月份用水30吨,则他家应交水费多少元?解:(1)由题意可得,当0≤x≤14时,y=2x,当x>14时,y=2×14+(x﹣14)×3.5=3.5x﹣21,由上可得,y与x的函数关系式为y=;(2)当x=30时,y=3.5×30﹣21=84,即小明家5月份用水30吨,则他家应交水费84元.4.某市近期公布的居民用天然气阶梯价格听证会方案如下:第一档天然气用量第二档天然气用量第三档天然气用量年用天然气量360立方米及以下,价格为每立方米2.53元年用天然气量超出360立方米,不超600立方米时,超过360立方米部分每立方米价格为2.78元年用天然气量600立方米以上,超过600立方米部分价格为每立方米3.54元例:若某户2019年使用天然气400立方米,按该方案计算,则需缴纳天然气费为:2.53×360+2.78×(400﹣360)=1022(元)(1)若小明家2019年使用天然气300立方米,则需缴纳天然气费为759元(直接写出结果);(2)若小红家2019年使用天然气560立方米,则小红家2019年需缴纳的天然气费为多少元?解:(1)由题意可得,300×2.53=759(元),即小明家2019年使用天然气300立方米,则需缴纳天然气费为759元,故答案为:759;(2)由题意可得,360×2.53+(560﹣360)×2.78=910.8+200×2.78=910.8+556=1466.8(元),答:小红家2019年需缴纳的天然气费1466.8元.5.在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.解:(1)甲开始时的速度为:1000÷4=250(米/分钟),令250x=150(x+),解得,x=0.75,答:当x为0.75分钟时,两人第一次相遇;(2)当x=5时,乙跑的路程为:150×(5+)=825<1000,∴甲乙第二次相遇的时间为:5+=5.5(分钟),则当两人第二次相遇时,甲跑的总路程为:1000+(5.5﹣5)×=1100(米),答:当两人第二次相遇时,甲跑的总路程是1100米.6.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.解:(Ⅰ)10,18;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>10,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.7.电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电60度,则应缴费多少元?若该用户某月缴费125元时,则该用户该月用了多少度电?解:(1)当0≤x≤100时,设关系式为y=kx,把(100,65)代入得:k=0.65,∴y=0.65x(0≤x≤100)当x>100时,设y与x的函数关系式为y=kx+b,把(100,65)(130,89)代入得:,解得:k=0.8,b=﹣15,∴y=0.8x﹣15(x>100)答:当0≤x≤100和x>100时,y与x的函数关系式分别为y=0.65x(0≤x≤100),y=0.8x﹣15(x>100).(2)当0≤x≤100时,每度电收费0.65元,当x>100时,每度电收费0.8元.(3)当x=60时,代入y=0.65x=39元,当y=125时,代入y=0.8x﹣15得:x=175度,答:用电60度,则应缴费39元;月缴费125元时,则该用户该月用了175度电.8.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?解:(1)当50≤x≤60时,y=(x﹣40)(100+60﹣x)=﹣x2+200x﹣6400;当60<x≤80时,y=(x﹣40)(100﹣2x+120)=﹣2x2+300x﹣8800;∴y=﹣x2+200x﹣6400(50≤x≤60且x为整数)y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)当50≤x≤60时,y=﹣(x﹣100)2+3600;∵a=﹣1<0,且x的取值在对称轴的左侧,∴y随x的增大而增大,∴当x=60时,y有最大值2000;当60<x≤80时,y=﹣2(x﹣75)2+2450;∵a=﹣2<0,∴当x=75时,y有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.9.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题.(1)甲,乙两地的距离为720km;慢车的速度为80km/h.(2)求CD段的函数解析式.(不用写自变量的取值范围)(3)求当x为多少时,两车之间的距离为500km,请通过计算求出x的值.解:(1)甲、乙两地的距离为720km,慢车的速度为720÷9=80(km/h),故答案为:720,80;(2)∵快车的速度为﹣80=120(km/h),∴快车到达乙地所用时间为=6(h),此时慢车所行驶的路程是6×80=480(km),∴C(6,480),设CD段的函数解析式为y=kx+b,把C(6,480),D(9,720)代入得:,解得,∴CD段的函数解析式为y=80x;(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km,①相遇前:(80+120)x=720﹣500,解得x=1.1,②相遇后:∵点C(6,480),∴快车到达乙地后,慢车再行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),∴x=1.1h或6.25h,两车之间的距离为500km.10.某水产市场经营一种海产品,其日销售量y(kg)与销售单价x(元/千克)的函数关系如图所示.(1)分别求出当20≤x≤30,30<x≤35时,y与x之间的函数关系式.(2)当单价为32元/千克时,日销售量是多少?(3)当日销售量为80kg时,单价是多少?解:(1)当20≤x≤30时,设y与x之间的函数关系式是y=kx+b,∵点(20,100),(30,50)在该函数图象上,∴,解得,即当20≤x≤30时,y与x之间的函数关系式是y=﹣5x+200;当30<x≤35时,设y与x之间的函数关系式是y=ax+c,∵点(30,50),(35,0)在该函数图象上,∴,解得,即当30<x≤35时,y与x之间的函数关系式是y=﹣10x+350;(2)当x=32时,y=﹣10x+350=﹣10×32+350=30,即当单价为32元/千克时,日销售量是30千克;(3)当y=80时,80=﹣5x+200,解得x=24,即当日销售量为80kg时,单价是24元/千克.11.“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y(km)与出发时间t(h)之间的函数关系式如图1中线段AB所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离x(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE ﹣EF所示.(1)小丽和小明骑车的速度各是多少?(2)求点E的坐标,并解释点E的实际意义.解:(1)由题意可得:小丽速度==16(km/h)设小明速度为xkm/h由题意得:1×(16+x)=36∴x=20答:小明的速度为20km/h,小丽的速度为16km/h.(2)由图象可得:点E表示小明到了甲地,此时小丽没到,∴点E的横坐标==,点E的纵坐标==∴点E(,)12.为加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价.居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式,并写出自变量x的取值范围;(3)某户5月份按照阶梯水价应缴水费108元,其相应用水量为多少立方米?解:(1)由图可得,点B的实际意义是当用水25m3时,所交水费为90元;(2)设一级阶梯用水的单价为x元/m3,则二级、三级阶梯的用水单价分别为1.5x元/m3,2x元/m3,设点A的坐标为(a,45),则,解得,即点A的坐标为(15,45),设线段AB所在直线的表达式为y=kx+b,,解得,即线段AB所在直线的表达式为y=4.5x﹣(15<x≤25);(3)∵108>90,∴某户5月份的用水量超过25m3,设该用户5月份用水量为m立方米,90+(m﹣25)×3×2=108,解得m=28,答:其相应用水量为28立方米.13.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20212223身高h(cm)160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)(2)某人身高为196cm,一般情况下他的指距应是多少?解:(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,.解得k=9,b=﹣20,即h=9d﹣20;(2)当h=196时,196=9d﹣20,解得d=24cm.14.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小王4月份上网20小时,他应付多少元的上网费用?(3)若小王5月份上网费用为98元,则他在该月份的上网时间是多少.解:(1)当x≥30时,设y与x之间的函数关系式为y=kx+b,由题意,解得,∴y=x+20.(2)若小王4月份上网20小时,由图象可知,他应付50元的上网费.(3)把y=98代入,y=x+20,解得x=78,∴若小王5月份上网费用为98元,则他在该月份的上网时间是78小时.15.为提高校园绿化率,美化校园,某示范高中准备购买一批樟树和樱花树,一共100棵,其中樟树不少于10棵.园林部门称樟树成活率为70%,樱花树的成活率为90%,学校要求这批树的成活率不低于80%.樟树的单价y1和购买数量x的函数关系以及樱花树的单价y2和购买数量x的函数关系如图所示.(1)写出y1关于x的函数关系式;(2)请你帮学校作个预算,购买这批树最少需要多少钱?解:(1)当0<x≤60时,设y1=k1x+b1(k1≠0),把(0,180),(60,60)代入得,,∴∴y1=﹣2x+180(0<x≤60);当60<x≤100时,y1=60.综上,y1=﹣2x+180(0<x≤60)或y1=60(60<x≤100);(2)设购买樟树x棵,则购买樱花树(100﹣x)棵,由≥80%,得x≤50,∴10≤x≤50.设购树所需费用为W元,当40≤x≤50时,W=(﹣2x+180)x+100(100﹣x)=﹣2(x﹣20)2+10800,W min=﹣2(50﹣20)2+10800=9000(元).当10≤x<40时,W=(﹣2x+180)x+70(100﹣x)=﹣2(x﹣27.5)2+2×27.52+7000,W min=﹣2×(10﹣27.5)2+2×27.52+7000=7900(元),综上所述,购树所需费用最少为7900元.16.A,B两地相距300km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回.如图是两车离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围.(2)若两车行驶5h相遇,求乙车的速度.解:(1)设甲车从A地驶向B地y与x的关系式为y=kx,把(4,300)代入得:300=4k,解得:k=75,∴y=75x(0<x≤4)设甲车从B地返回A地y与x的关系式为y=kx+b,把(4,300)(7,0)代入得:,解得:k=﹣100,b=700,∴y=﹣100x+700(4<x≤7),答:甲车行驶过程中y与x之间的函数解析式为:y=75x(0<x≤4),y=﹣100x+700(4<x≤7),(2)设乙车速度为m千米/小时,则:5m=﹣100×5+700解得:m=40答:乙车的速度为40千米/小时.17.受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”,某水果经销商主动从该种植专业户购进甲、乙两种水果进行销售.水果种植专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按2元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤500和x>500时,y与x之间的函数关系式.(2)若经销商计划一次性购进甲、乙两种水果共1200千克,且甲种水果不少于400千克,但又不超过乙种水果的两倍.问经销商要确保完成收购计划,至少准备多少资金?解:(1)当0≤≤x≤500时,设y=k1x(k1≠0),根据题意得500k1=1500,解得k1=3;∴y=3x;当x>500时,设y=k2x+b(k2≠0),根据题意得,,解得,∴y=2.5x+250,∴y=;(2)购进甲种水果为x千克,则购进乙种水果(1200﹣x)千克,根据题意得:,解得400≤x≤800,当400≤x≤500时,w1=3x+2(1200﹣x)=x+2400.当x=400时.w min=2800元,当500≤x≤800时,w2=2.5x+250+2(1200﹣x)=0.5x+2650.当x=500时,w min=2900元,∵2900>2800,∴当x=400时,总费用最少,最少总费用为2800元.此时乙种水果1200﹣400=800(千克).答:购进甲种水果为400千克,购进乙种水果800千克,才能使经销商付款总金额w(元)最少,至少准备2800元资金.18.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克,接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y微克随时间x小时主变化如图所示,当成人按规定剂是服药后,(1)分别求出x<2和x>2时y与x的函数关系式,(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?解:(1)当x≤2时,设y=k1x,把(2,6)代入上式,得k1=3,∴x≤2时,y=3x;当x>2时,设y=k2x+b,把(2,6),(10,3)代入上式,得k2=﹣,b=.∴x≥2时,y=﹣x+.(2)把y=4代入y=3x,得x1=,把y=4代入y=﹣x+,得x2=.则x2﹣x1=6小时.答:这个有效时间为6小时.19.甲骑电瓶车,乙骑自行车从西山漾公园丝绸小镇门口出发沿同一路线匀速前往太湖龙之梦乐园,设乙行驶的时间为x(h),甲、乙两人距出发点的路程s甲、s乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度25km/h,乙的速度是10km/h;(2)对比图①、图②可知:a=10,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25km/h,乙的速度为:25÷2.5=10km/h,故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,25(b﹣0.5)=10b,得b=,故答案为:10,;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=,即乙出发h或h时,甲、乙两人路程差为7.5km.20.某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)甲步行的速度80米/分,乙出发时甲离小区的距离800米;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,求出当25≤x≤30时s关于x的函数关系式.解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),故答案为:80米/分,800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,∴乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x=25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),此时甲还要1分钟到学校,即甲离学校80米,∴当25≤x≤30时s关于x的函数的大致图象如图:当25≤x≤29时,设s=mx+n,将(25,700),(29,80)代入得:,解得,∴s=﹣155+4575;当29<x≤30时,设s=px+q,将(29,80),(30,0)代入得:,解得,∴s=﹣80x+2400,∴s=.。
中考数学 中档题突破 专项训练二 实际应用与方案设计
类型一:方程(组)与不等式的实际应用
1.(2020·抚顺)某校计划为教师购买甲、乙两种词典.已知购买 1 本 甲种词典和 2 本乙种词典共需 170 元,购买 2 本甲种词典和 3 本乙种词 典共需 290 元. (1)求每本甲种词典和每本乙种词典的价格分别为多少元? (2)学校计划购买甲种词典和乙种词典共 30 本,总费用不超过 1 600 元, 那么最多可购买甲种词典多少本?
(3)(40+20)×3+[40×(1+50%)+20×2]×13= 180+1300=1480(万个)<1480 万个. 答:再满负荷生产 13 天能完成任务.
类型二:函数的实际应用
1.(2021·河池)为庆祝中国共产党成立 100 周年,某校组织九年级全 体师生前往广西农民运动讲习所旧址列宁岩参加“学党史、感党恩,听 党话、跟党走”的主题活动,需要租用甲、乙两种客车共 6 辆,已知甲, 乙两种客车的租金分别为 450 元/辆和 300 元/辆,设租用乙种客车 x 辆, 租车费用为 y 元. (1)求 y 与 x 之间的函数关系式(写出自变量的取值范围); (2)若租用乙种客车的数量少于甲种客车的数量,租用乙种客车多少辆 时,租车费用最少?最少费用是多少元?
1 型消毒液数量的3,请设计出最省钱的购买方案,并求出最少费用.
解:(1)设 A 型消毒液的单价是 x 元,B 型消毒液的单价是 y 元,
4.如图,马大爷在屋侧的菜地上搭建一 抛物线型蔬菜大棚,其中一端固定在离地 面 1.2 米的墙体 A 处,另一端固定在离墙 体 6 米的地面上 B 点处,现以地面和墙体 为 x 轴和 y 轴建立坐标系,已知大棚的高 度 y (米)与地面水平距离 x(米)之间的关 系式用 y=-15x2+bx+c 表示,结合信息请回答:
中考数学核心考点强化突破函数的实际应用问题含解析
中考数学核心考点强化突破:函数的实际应用问题类型1 方案与最值问题1.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解析:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:⎩⎪⎨⎪⎧x +3y =1.42x +5y =2.5,解得:⎩⎪⎨⎪⎧x =0.5y =0.3.答:略. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台,根据题意得:w =300×2m+200×2(10-m)=200m +4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴⎩⎪⎨⎪⎧2×0.5m+2×0.3(10-m )≥8200m +4000≤5400解得:5≤m≤7,∴有三种不同方案.∵w=200m +4000中,200>0,∴w 值随m 值的增大而增大,∴当m =5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.2.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室长为x(m ),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25 m 时,占地面积y 最大;(2)∵y =x ·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26 m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.3.(2017·河南)学校“百变魔方”社团准备购买A,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:⎩⎪⎨⎪⎧2x +6y =1303x =4y ,解得:⎩⎪⎨⎪⎧x =20y =15. 答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(0≤m≤50),总价格为w 元,则购进B 种魔方(100-m)个,根据题意得:w 活动一=20m×0.8+15(100-m)×0.4=10m +600;w 活动二=20m +15(100-m -m)=-10m +1500.当w 活动一<w 活动二时,有10m +600<-10m +1500,解得:m <45;当w 活动一=w 活动二时,解得:m =45;当w 活动一>w 活动二时,解得:45<m≤50.综上所述:当45<m≤50时,选择活动一购买魔方更实惠;当m =45时,选择两种活动费用相同;当m >45时,选择活动二购买魔方更实惠.类型2 建立函数模型问题4.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12 c m ,洗手盆及水龙头的相关数据如图2所示,现用高10.2 cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E,则点E 到洗手盆内侧的距离EH 为__24-82__cm .解:建立如图的直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ =MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12-8=4,由BQ∥CG可得,△ABQ∽△ACG,∴BQCG=AQAG,即4CG=1236,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=-320x2+95x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=-320x2+95x+24,解得x1=6+82,x2=6-82(舍去),∴点E的横坐标为6+82,又∵ON=30,∴EH=30-(6+82)=24-8 2.5.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000 kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t 天后的质量为m(kg ),销售单价为y 元/ kg .根据以往经验可知:m 与t 的函数关系为m =⎩⎪⎨⎪⎧20000(0≤t≤50)100t +15000(50<t≤100);y 与t 的函数关系如图所示. ①分别求出当0≤t≤50和50<t≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额-总成本)解:(1)由题意,得:⎩⎪⎨⎪⎧10a +b =30.420a +b =30.8,解得⎩⎪⎨⎪⎧a =0.04b =30. (2)①当0≤t≤50时,设y 与t 的函数解析式为y =k 1t +n 1,将(0,15)、(50,25)代入,可求得y 与t 的函数解析式为:y =15t +15;当50<t≤100时,设y 与t 的函数解析式为y =k 2t +n 2,将点(50,25)、(100,20)代入,可求得y 与t 的函数解析式为:y =-110t +30;②由题意,当0≤t≤50时,W =20000(15t +15)-(400t +300000)=3600t,∵3600>0,∴当t =50时,W 最大=180000(元);当50<t≤100时,W =(100t +15000)(-110t +30)-(400t +300000)=-10(t -55)2+180250,∵-10<0,∴当t =55时,W 最大=180250(元).综上所述,放养55天时,W 最大,最大值为180250元.。
中考数学复习题集哪本好
中考数学复习题集哪本好中考是学生学业生涯中的一个重要阶段,对于数学科目的复习,选择合适的复习题集至关重要。
市面上的中考数学复习题集琳琅满目,各有特点,但选择一本适合自己的复习题集,可以事半功倍。
以下是一些选择中考数学复习题集时可以考虑的要点和推荐的书籍。
选择要点1. 内容覆盖面:选择一本内容全面,覆盖中考数学所有知识点的题集。
2. 题目难度:根据个人水平选择难度适中的题集,既要有基础题巩固知识,也要有提高题拓展思维。
3. 解析详细:好的题集应该提供详尽的解题步骤和思路分析,帮助学生理解解题过程。
4. 更新频率:选择最新版的题集,以确保题目和中考大纲同步更新。
5. 口碑评价:参考其他学生和老师的评价,选择口碑好的题集。
6. 出版社:知名出版社出版的题集往往质量有保证。
推荐书籍1. 《中考数学一轮复习》:这本书以中考大纲为蓝本,系统地梳理了中考数学的所有知识点,题目设计合理,难易适中,适合大多数学生使用。
2. 《中考数学强化训练》:这本书注重培养学生的解题能力,题目难度较高,适合基础较好的学生使用,有助于提高解题速度和准确率。
3. 《中考数学历年真题集》:通过历年的中考真题,学生可以了解中考的题型和难度,对自己的复习进行针对性的调整。
4. 《中考数学专项突破》:针对中考数学中的难点和重点进行专项训练,帮助学生攻克难题,提高得分率。
5. 《中考数学名师精编题集》:由经验丰富的数学老师编写,题目设计新颖,解析详尽,适合追求高分的学生使用。
使用方法- 制定计划:根据自己的学习进度和时间安排,制定合理的复习计划。
- 分阶段复习:将复习内容分为几个阶段,如基础知识复习、专项训练、模拟测试等。
- 及时总结:在做题过程中,及时总结自己的错误和不足,针对性地进行改进。
- 模拟考试:定期进行模拟考试,检验自己的复习效果,调整复习策略。
结语选择一本适合自己的中考数学复习题集,是提高复习效率的关键。
希望以上的推荐和建议能帮助学生找到适合自己的复习资料,为中考数学取得优异成绩打下坚实的基础。
2022——2023学年河南省开封市中考数学专项突破仿真模拟卷(3月)含答案
2022-2023学年河南省开封市中考数学专项突破仿真模拟卷(3月)一、选一选(共10小题,满分30分,每小题3分)1.﹣2的相反数是()C.﹣2D.以上都没A.2 B.12有对2.在游戏当中,小明将下面四张扑克牌中的三张旋转了180°,得到的图案和原来的一模一样,小芳看了后,很快知道没有旋转那张扑克牌是()A.黑桃QB.梅花2C.梅花6D.方块93.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图没有可能是()A. B. C. D.4.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×1075.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠EPF=70°,则∠BEP的度数为()A.50°B.55°C.60°D.65°6.下列运算,结果正确的是()A.a3a2=a6B.(2a2)2=24C.(x3)3=x6D.(﹣ab)5÷(﹣ab)2=﹣a3b37.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游D.两个班的分在八(2)班8.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中没有正确的是()A.当m=-3时,函数图象的顶点坐标是1 3 8 3B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象同一个点D.当m<0时,函数在x>14时,y随x的增大而减小9.没有透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同,从中任意摸出一个球,记下颜色后,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是()A.49 B.59 C.12D.2310.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD 的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A. B. C. D.二、填空题(共5小题,满分15分,每小题3分)11.随着数系没有断扩大,我们引进新数i ,新i 满足交换律、律,并规定:i 2=﹣1,那么(2+i )(2﹣i )=________(结果用数字表示).12.关于x 的正比例函数y=(m+2)x ,若y 随x 的增大而减小,则m 的取值范围是_____.13.如图,在 ABCD 中,AM=13AD ,BD 与MC 相交于点O ,则S △MOD ∶S △BOC =_____.14.如图,正方形ABCD 的边长为2,分别以A 、D 为圆心,2为半径画弧BD 、AC ,则图中阴影部分的面积为_____.15.如图,在菱形ABCD 中,10AB =,16AC =,点M 是对角线AC 上的一个动点,过点M 作PQ AC ⊥交AB 于点P ,交AD 于点Q ,将APQ 沿PQ 折叠,点A 落在点E 处,连接BE ,当BCE 是等腰三角形时,AP 的长为________.三、解答题(共8小题,满分75分)16.先化简,再求值:(223x y x y +-﹣222x x y -)÷22x yx y xy+-,其中+1,﹣1.17.全民健身运动已成为一种时尚,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:没有运动.以下是根据结果绘制的统计图表的一部分,运动形式ABCDE人数1230m549请你根据以上信息,回答下列问题:()1接受问卷的共有人,图表中的m =,n =.()2统计图中,A 类所对应的扇形的圆心角的度数是度.()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”,若某社区约有1500人,请你估计一下该社区参加环岛路“暴走团”的人数.18.如图,在△ABC 中,∠BAC=90°,AD 是中线,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F ,连接CF .(1)求证:AD=AF ;(2)当△ABC 满足什么条件时,四边形ADCF 是矩形.并说明理由.19.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果没有存在,说明理由;如果存在,求出满足条件的所有点C的坐标.20.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)21.某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元,购进A种机器人3个和B种机器人2个共需14万元,请解答下列问题:(1)求A、B两种机器人每个的进价;(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种机器人的总个数没有少于28个,且该公司购买的A、B两种机器人的总费用没有超过106万元,那么该公司有哪几种购买?22.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.23.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个没有同的公共点,试求t的取值范围.2022-2023学年河南省开封市中考数学专项突破仿真模拟卷(3月)一、选一选(共10小题,满分30分,每小题3分)1.﹣2的相反数是()C.﹣2D.以上都没A.2 B.12有对【正确答案】A【详解】﹣2的相反数是2,故选:A.2.在游戏当中,小明将下面四张扑克牌中的三张旋转了180°,得到的图案和原来的一模一样,小芳看了后,很快知道没有旋转那张扑克牌是()A.黑桃QB.梅花2C.梅花6D.方块9【正确答案】C【详解】牌黑桃Q、草花2、方块9是对称图形,旋转180度后与原图重合.若得到的图案和原来的一模一样,则需梅花6没有发生变化.故选C.3.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图没有可能是()A. B. C. D.【详解】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图没有相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.4.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×107【正确答案】B【详解】试题分析:510000000=5.1×108.故选B.考点:科学记数法—表示较大的数.5.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠EPF=70°,则∠BEP的度数为()A.50°B.55°C.60°D.65°【正确答案】A【详解】分析:本题只要根据角平分线的性质得出∠EFD的度数,然后根据平行线的性质得出∠BEF的度数,从而得出答案.详解:∵∠PEF=90°,∠EPF=70°,∴∠EFP=20°,∵FP平分∠EFD,∴∠EFD=40°,∵AB∥CD,∴∠BEF=180°-40°=140°,又∵∠PEF=90°,∴∠BEP=50°,故选A.点睛:本题主要考查的就是平行线的性质以及角平分线的性质,属于基础题型.熟记平行线的性质是解决本题的关键.6.下列运算,结果正确的是()A.a3a2=a6B.(2a2)2=24C.(x3)3=x6D.(﹣ab)5÷(﹣ab)2=﹣a3b3【详解】解:A 、原式=5a ,故错误;B 、原式=44a ,故错误;C 、原式=9x ,故错误;D 、原式=()333ab a b -=-,正确,本题故选D .7.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游D.两个班的分在八(2)班【正确答案】D【分析】根据平均数、中位数、众数和方差的性质就可以得出正确答案.【详解】解:根据平均分可知八(1)班的总分为940分,八(2)班的总分为950分,故A 正确;八(2)班的方差小于八(1)班的方差,则八(2)班的成绩比较稳定,故B 正确;根据中位数和平均分可知八(2)班的成绩集中在中上游,故C 正确;分从这张表格上无法显示,故D 错误;故选D .本题主要考查的就是平均数、中位数、方差及众数的作用,属于基础题型.解决本题的关键就是要明白各数据的作用.8.定义[a ,b ,c ]为函数y =ax 2+bx +c 的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的函数的一些结论,其中没有正确的是()A.当m =-3时,函数图象的顶点坐标是1383B.当m >0时,函数图象截x 轴所得的线段长度大于32C.当m ≠0时,函数图象同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【正确答案】D【详解】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是1383;此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0即对任意m,函数图象都点(1,0)那么同样的:当m=0时,函数图象都同一个点(1,0),当m≠0时,函数图象同一个点(1,0),故当m≠0时,函数图象x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=14mm-,在对称轴的右边y随x的增大而减小.因为当m<0时,11114444mm m-=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D.点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.9.没有透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同,从中任意摸出一个球,记下颜色后,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是()A.49 B.59 C.12D.23【正确答案】B【详解】解:画树状图如下:易得共有3×3=9种可能,两次摸到球的颜色相同的有5种,所以概率是5 9.故选B.本题考查列表法与树状图法.10.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD 的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A. B. C. D.【正确答案】C【详解】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为函数,故选C .点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.二、填空题(共5小题,满分15分,每小题3分)11.随着数系没有断扩大,我们引进新数i ,新i 满足交换律、律,并规定:i 2=﹣1,那么(2+i )(2﹣i )=________(结果用数字表示).【正确答案】5【详解】分析:利用平方差公式进行计算,即可得出答案.详解:原式=()222415i -=--=.点睛:本题主要考查的就是平方差公式的应用以及新运算的使用,属于简单题型.解决这个问题的时候理解新定义是解题的关键.12.关于x 的正比例函数y=(m+2)x ,若y 随x 的增大而减小,则m 的取值范围是_____.【正确答案】m <﹣2【详解】分析:根据正比例函数的增减性即可求出m 的取值范围.详解:∵y 随着x 的增大而减小,∴m+2<0,解得:m <-2.点睛:本题主要考查的就是正比例函数的增减性,属于基础题型.对于正比例函数y=kx ,当k >0时,y 随着x 的增大而增大;当k <0时,y 随着x 的增大而减小.13.如图,在 ABCD 中,AM=13AD ,BD 与MC 相交于点O ,则S △MOD ∶S △BOC =_____.【正确答案】4:9【详解】∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵AM =13AD ,∴23DM DM AD BC ==,∵AD ∥BC ,∴△DOM ∽△BOC ,∴DOM BOC S S =(DM BC )2=49,故答案为4:9.14.如图,正方形ABCD 的边长为2,分别以A 、D 为圆心,2为半径画弧BD 、AC ,则图中阴影部分的面积为_____.【正确答案】23π【分析】过点F 作FE ⊥AD 于点E ,则AE=12AD=12AF ,故∠AFE=∠BAF=30°,再根据勾股定理求出EF 的长,由S 弓形AF =S 扇形ADF -S △ADF 可得出其面积,再根据S 阴影=2(S 扇形BAF -S 弓形AF )即可得出结论【详解】如图所示,过点F 作FE ⊥AD 于点E ,∵正方形ABCD 的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴.∴S 弓形AF =S 扇形ADF -S △ADF=60412236023ππ⨯-⨯=-∴S 阴影=2(S 扇形BAF -S 弓形AF)=2×[30423603ππ⨯⎛-- ⎝]=2×(1233ππ-+)=2 3π.本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.15.如图,在菱形ABCD 中,10AB =,16AC =,点M 是对角线AC 上的一个动点,过点M 作PQ AC ⊥交AB 于点P ,交AD 于点Q ,将APQ 沿PQ 折叠,点A 落在点E 处,连接BE ,当BCE 是等腰三角形时,AP 的长为________.【正确答案】154或19532【详解】设BD 与AC 相交于点O ,∵四边形ABCD 是菱形,∴AC BD ⊥,∵PQ AC ⊥,182AO AC ==,∴PQ BD ,∴AMP AOB ∽△△,①当CE CB =时,如解图①,则10CE =,6AE =,3AM =,∵AMP AOB ∽△△,∴AP AMAB AO =,∴3108AP =,∴154AP =;②当BE CE =时,如解图②,点E 是BC 的垂直平分线与AC 的交点,作EF BC ⊥于点F ,则5CF =,∵CEF CBO ∽△△,∴CE CF CB CO =,∴5108CE =,∴254CE =,∴25391644AE =-=,∴398AM =,∵AP AMAB AO =,∴398108AP =,39101958832AP ⨯==⨯;③当BC BE =时,E 与A 重合(舍);综上所述,当BCE 是等腰三角形时,AP 的长为154或19532.三、解答题(共8小题,满分75分)16.先化简,再求值:(223x y x y +-﹣222x x y -)÷22x yx y xy +-,其中+1,﹣1.【正确答案】原式=xy x y +=24【详解】分析:首先将分式进行通分,然后根据除法的计算法则进行约分化简,将x 和y 的值代入化简后的式子进行计算得出答案.详解:解:原式=()()()xy x y 3x y 2x xy·x y x y x y x y -+-=+-++,当+1,﹣11124-==.点睛:本题主要考查的就是分式的化简求值以及二次根式的计算,属于简单题型.在解答这个问题的时候,明确分式的化简法则是基础.17.全民健身运动已成为一种时尚,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:没有运动.以下是根据结果绘制的统计图表的一部分,运动形式ABCDE人数1230m 549请你根据以上信息,回答下列问题:()1接受问卷的共有人,图表中的m =,n =.()2统计图中,A 类所对应的扇形的圆心角的度数是度.()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”,若某社区约有1500人,请你估计一下该社区参加环岛路“暴走团”的人数.【正确答案】(1)150、45、36;(2)28.8°;(3)450人【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得.【详解】解:(1)接受问卷的共有30÷20%=150人,m=150-(12+30+54+9)=45,54%100%36%150n=⨯=∴n=36,故150、45、36;(2)A类所对应的扇形圆心角的度数为12 36028.8150︒︒⨯=故28.8°;(3)45 1500450150⨯=(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从没有同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F,连接CF.(1)求证:AD=AF;(2)当△ABC满足什么条件时,四边形ADCF是矩形.并说明理由.【正确答案】(1)见解析;(2)当AB=AC 时,四边形ADCF 是矩形,理由见解析【分析】(1)由E 是AD 的中点,AF ∥BC ,易证得△AEF ≌△DEB ,即可得AF=BD ,又由在△ABC 中,∠BAC=90°,AD 是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=12BC ,即可证得:AD=AF ;(2)当AB=AC 时,四边形ADCF 是矩形.由AF=BD=DC ,AF ∥BC ,可证得:四边形ADCF 是平行四边形,又由AB=AC ,根据三线合一的性质,可得AD ⊥BC ,AD=DC ,继而可得四边形ADCF 是正方形.【详解】(1)证明:∵AF ∥BC ,∴∠EAF=∠EDB ,∵E 是AD 的中点,∴AE=DE ,在△AEF 和△DEB 中,EAF EDB AE DEAEF DEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△DEB (ASA ),∴AF=BD ,∵在△ABC 中,∠BAC=90°,AD 是中线,∴AD=BD=DC=12BC ,∴AD=AF .(2)当AB=AC 时,四边形ADCF 是矩形.∵AF=BD=DC ,AF ∥BC ,∴四边形ADCF 是平行四边形,∵AB=AC ,AD 是中线,∴AD ⊥BC ,∵AD=AF,∴四边形ADCF是正方形,是的矩形.查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形思想的应用.19.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果没有存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【正确答案】(1)y=6x,y=x﹣1;(2)x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C,点C的坐标为(﹣3,﹣2),4392,(﹣43,﹣92).【分析】(1)设反比例函数解析式为y=kx,将B点坐标代入,求出反比例函数解析式,将A点坐标代入反比例解析式求出m的值,确定出点A的坐标,设直线AB的解析式为y=ax+b,将A与B的坐标代入函数解析式求出a与b的值,即可确定出函数解析式;(2)根据图像写出答案即可;(3)分3中情况求解,延长AO交双曲线于点C1,由点A与点C1关于原点对称,求出点点C1的坐标;如图,过点C1作BO的平行线,交双曲线于点C2,将OB的解析式与C1C2的解析式联立,求出点C2的坐标;A作OB的平行线,交双曲线于点C3,,将AC3的解析式与反比例函数的解析式联立,求出点C3的坐标.【详解】解:(1)设反比例函数解析式为y=k x,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=6 x;把A(3,m)代入y=6x,可得3m=6,即m=2,∴A(3,2),设直线AB的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得2332a ba b=+⎧⎨-=-+⎩,解得11 ab=⎧⎨=-⎩,∴直线AB的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=32x,可设直线C1C2的解析式为y=32x+b',把C1(﹣3,﹣2)代入,可得﹣2=32×(﹣3)+b',解得b'=5 2,∴直线C1C2的解析式为y=32x+52,解方程组63522yxy x⎧=⎪⎪⎨⎪=+⎪⎩,可得C24392;如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=32x+''b,把A(3,2)代入,可得2=32×3+''b,解得''b=﹣5 2,∴直线AC3的解析式为y=32x﹣52,解方程组63522yxy x⎧=⎪⎪⎨⎪=-⎪⎩,可得C3(﹣43,﹣92);综上所述,点C的坐标为(﹣3,﹣2),4392,(﹣43,﹣92).此题考查了反比例函数与函数的综合,涉及的知识有:坐标与图形性质,函数图像的交点与二元方程组的关系,反比例函数与函数的交点问题,利用函数图像解没有等式,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.20.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上).已知AB =80m ,DE =10m ,求障碍物B ,C 两点间的距离.(结果保留根号)【正确答案】(70﹣)m .【分析】过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H .通过解Rt ADF 得到DF 的长度;通过解Rt CDE △得到CE 的长度,则BC BE CE =-.【详解】如图,过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.则DE =BF =CH =10m ,在Rt ADF 中,∵AF =80m −10m =70m ,45ADF ∠= ,∴DF =AF =70m .在Rt CDE △中,∵DE =10m ,30DCE ∠= ,∴)tan3033DE CE m ==,∴(70.BC BE CE m =-=-答:障碍物B ,C两点间的距离为(70.m -21.某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数没有少于28个,且该公司购买的A 、B 两种机器人的总费用没有超过106万元,那么该公司有哪几种购买?【正确答案】(1)A 种机器人每个的进价是2万元,B 种机器人每个的进价是4万元;(2)有如下两种:(1)购买A 种机器人的个数是8个,则购买B 种机器人的个数是20个;(2)购买A 种机器人的个数是9个,则购买B 种机器人的个数是22个.【详解】分析:(1)、首先设A 种机器人每个的进价是x 万元,B 种机器人每个的进价是y 万元,根据题意列出二元方程组,从而得出答案;(2)、设购买A 种机器人的个数是m 个,则购买B 种机器人的个数是(2m+4)个,根据题意列出没有等式组,从而求出没有等式组的解,根据解为整数得出.详解:解:(1)、设A 种机器人每个的进价是x 万元,B 种机器人每个的进价是y 万元,依题意有:23163214x y x y +=⎧⎨+=⎩,解得:24x y =⎧⎨=⎩.故A 种机器人每个的进价是2万元,B 种机器人每个的进价是4万元;(2)、设购买A 种机器人的个数是m 个,则购买B 种机器人的个数是(2m+4)个,依题意有()24282424106m m m m ++≥⎧⎨++≤⎩,解得:8≤m≤9,∵m 是整数,∴m=8或9,故有如下两种:(1):m=8,2m+4=20,即购买A 种机器人的个数是8个,则购买B 种机器人的个数是20个;(2):m=9,2m+4=22,即购买A 种机器人的个数是9个,则购买B 种机器人的个数是22个.点睛:本题主要考查的就是二元方程组和没有等式组的应用问题,属于基础题型.解答这个题目的关键就是要能够根据题意列出方程组和没有等式组.22.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 的中点,连接CF ,DF .(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【正确答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF 至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.23.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个没有同的公共点,试求t 的取值范围.【正确答案】(1)b=﹣2a,顶点D的坐标为(﹣12,﹣94a);(2)2732748aa--;(3)2≤t<94.【分析】(1)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点D 的坐标;(2)把点M (1,0)代入直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,可求得另一交点N 的坐标,根据a <b ,判断a <0,确定D 、M 、N 的位置,画图1,根据面积和可得△DMN 的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个没有同的公共点时t 的取值范围.【详解】解:(1)∵抛物线y=ax 2+ax+b 有一个公共点M (1,0),∴a+a+b=0,即b=-2a ,∴y=ax 2+ax+b=ax 2+ax-2a=a (x+12)2-94a,∴抛物线顶点D 的坐标为(-12,-94a );(2)∵直线y=2x+m 点M (1,0),∴0=2×1+m ,解得m=-2,∴y=2x-2,则2222y x y ax ax a -⎧⎨+-⎩==,得ax 2+(a-2)x-2a+2=0,∴(x-1)(ax+2a-2)=0,解得x=1或x=2a-2,∴N 点坐标为(2a-2,4a -6),∵a <b ,即a <-2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为122a x a =-=-,∴E (-12,-3),∵M (1,0),N (2a-2,4a -6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =12|(2a -2)-1|•|-94a -(-3)|=274−3a −278a ,(3)当a=-1时,抛物线的解析式为:y=-x 2-x+2=-(x+12)2+94,由222y x x y x⎧=--+⎨=-⎩,-x 2-x+2=-2x ,解得:x 1=2,x 2=-1,∴G (-1,2),∵点G 、H 关于原点对称,∴H (1,-2),设直线GH 平移后的解析式为:y=-2x+t ,-x 2-x+2=-2x+t ,x 2-x-2+t=0,△=1-4(t-2)=0,t=94,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=-2x+t,t=2,∴当线段GH与抛物线有两个没有同的公共点,t的取值范围是2≤t<9 4.本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
中考数学 中档题突破 专项训练一 实际应用与方案设计
类型一:分配类问题
1.(2022·郴州)为响应乡村振兴号召,在外地创业成功的大学毕业生小 姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地 蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格 比乙种有机肥每吨的价格多 100 元,购买 2 t 甲种有机肥和 1 t 乙种有 机肥共需 பைடு நூலகம் 700 元. (1)甲、乙两种有机肥每吨各多少元?
2.(2022·抚顺)麦收时节,为确保小麦颗粒归仓,某农场安排 A,B 两 种型号的收割机进行小麦收割作业.已知一台 A 型收割机比一台 B 型收 割机平均每天多收割 2 公顷小麦,一台 A 型收割机收割 15 公顷小麦所用 时间与一台 B 型收割机收割 9 公顷小麦所用时间相同. (1)一台 A 型收割机和一台 B 型收割机平均每天各收割小麦多少公顷?
种类 真丝衬衣 真丝围巾
进价(元/件) a
80
售价(元/件) 300 100
(1)求真丝衬衣的进价 a 的值; 解:(1)根据表格数据可得 50a+25×80=15 000, 解得 a=260.
(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共 300 件,据市场销 售分析,真丝围巾进货件数不低于真丝衬衣件数的 2 倍.如何进货才能 使本次销售获得的利润最大?最大利润是多少元?
(3)求线段 CD 的函数关系式.直接写出货车出发多长时间,与轿车相距
20 km. 设点 D 的横坐标为 x,则
80(x-1.5)+100(x-1.5)=144,
解得 x=2.3,故点 D 的坐标为(2.3,144),
设线段 CD 的函数关系式为 y=kx+b(k≠0), 1.5k+b=0, k=180,
2024河南中考数学微专题复习 函数的实际应用 课件
[答案] 设《周髀算经》的单价是 元,则《孙子算经》的单价是 元.根据题意,得 ,解得 .经检验, 是原方程的解,且符合题意. .答:《周髀算经》的单价是40元,《孙子算经》的单价是30元.
(2)为筹备“ 数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.两别
款钥匙扣
款钥匙扣
进货价/(元/件)
20
25
销售价/(元/件)
30
37
(1)网店第一次用1 100元购进 , 两款钥匙扣共50件,求两款钥匙扣分别购进的件数.
[答案] 设购进 款钥匙扣 件, 款钥匙扣 件,依题意,得 解得 答:购进 款钥匙扣30件, 款钥匙扣20件.
[答案] 设购买《周髀算经》 本,则购买《孙子算经》 本.根据题意,得 ,解得 .设购买两种图书的总费用为 元,依题意得 . , 随 的增大而增大, 当 时, 有最小值,此时 .答:当购买《周髀算经》27本、《孙子算经》53本时,购买两种图书的费用最少.
2.[2023洛阳一模] “互联网 ”让我国经济更具活力.牡丹花会期间,某网店直接从工厂购进 , 两款花会纪念钥匙扣进行销售,进货价和销售价如下表:
(3)当 时,选择哪种方案更优惠?请说明理由.
[答案] 选择方案一更优惠.理由:当 时, , . , 选择方案一更优惠.
角度3 图象型问题
5.[2023湖北宜昌] 某食用油的沸点远高于水的沸点.小聪想用刻度不超过 的温度计测算出这种食用油的沸点.在老师的指导下,他在锅中倒入一些这种食用油均匀加热,并每隔 测量一次锅中油温,得到的数据记录如下:
[答案] 方案一: .方案二: .
函数的实际应用--抛物线型问题(专题训练)(解析版)-中考数学重难点题型专题汇总
函数的实际应用-中考数学重难点题型专题汇总抛物线型问题(专题训练)1.现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:10m OE =,该抛物线的顶点P 到OE 的距离为9m .(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到OE 的距离均为6m ,求点A 、B 的坐标.【答案】(1)29(5)925y x =--+(2)(5(5A B +【分析】(1)根据题意,设抛物线的函数表达式为2(5)9y a x =-+,再代入(0,0),求出a 的值即可;(2)根据题意知,A ,B 两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而可解决问题.(1)依题意,顶点(5,9)P ,设抛物线的函数表达式为2(5)9y a x =-+,将(0,0)代入,得20(05)9a =-+.解之,得925a =-.∴抛物线的函数表达式为29(5)925y x =--+.(2)令6y =,得29(5)9625x --+=.解之,得125,5x x +=+.∴(5(5A B +.【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.2.甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y=14-x 2+2x (0≤x≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)【分析】(1)设二次函数的解析式为:y=a(x-8)x ,根据待定系数法,即可求解;(2)把:x =1,代入y=14-x 2+2x ,得到对应的y 值,进而即可得到结论;(3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A(8,0),B(4,4),设二次函数的解析式为:y=a(x-8)x ,把(4,4)代入上式,得:4=a×(4-8)×4,解得:14a =-,∴二次函数的解析式为:y=14-(x-8)x=14-x 2+2x (0≤x≤8);(2)由题意得:x=0.4+1.2÷2=1,代入y=14-x 2+2x ,得y=14-×12+2×1=74>1.68,答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x≤8时,新函数表达式为:y=14x 2-2x ,当x <0或x >8时,新函数表达式为:y=-14x 2+2x ,∴新函数表达式为:2212(08)41(08)4x x x y x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m+8,0),B '(m+4,-4),如图所示,根据图像可知:当m+4≥9且m≤8时,即:5≤m≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.3.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥.【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c=-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解;(3)由抛物线2117C :1126y x x =-++可知坡顶坐标为61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b的取值范围.【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得,2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩,∴抛物线2C 的函数解析式213482y x x =-++;(2)∵运动员与小山坡的竖直距离为1米,∴221317(4)(1)182126x x x x -++--++=,解得:14x =-(不合题意,舍去),212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++,∵抛物线2211761C :1=7)12612y x x x =-++-+,∴坡顶坐标为61(7,12,∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时,∴21617743812y b =-⨯++≥+,解得:3524b ≥.【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题.4.如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且8AB =dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度8OC =dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.【答案】(1)296-;(2)20dm ;(3)能切得半径为3dm 的圆.【分析】(1)先把二次函数解析式求出来,设正方形的边长为2m ,表示在二次函数上点的坐标,代入即可得到关于m (2)如详解2中图所示,设矩形落在AB 上的边DE=2n ,利用函数解析式求解F 点坐标,进而表示出矩形的周长求最大值即可;(3)为了保证尽可能截取圆,应保证圆心H 坐标为(0,3),表示出圆心H 到二次函数上个点之间的距离与半径3进行比较即可.(1)由题目可知A (-4,0),B (4,0),C (0,8)设二次函数解析式为y=ax²+bx+c ,∵对称轴为y 轴,∴b=0,将A 、C 代入得,a=12-,c=8则二次函数解析式为2182y x =-+,如下图所示,正方形MNPQ 即为符合题意得正方形,设其边长为2m ,则P 点坐标可以表示为(m ,2m )代入二次函数解析式得,21822m m -+=,解得122,2m m =-=-(舍去),∴2m=4,()()222496m =-=-则正方形的面积为296-;(2)如下如所示矩形DEFG ,设DE=2n ,则E (n ,0)将x=n 代入二次函数解析式,得2182y n =-+,则EF=2182n -+,矩形DEFG 的周长为:2(DE+EF )=2(2n+2182n -+)=22416(2)20n n n -++=--+,当n=2时,矩形的周长最大,最大周长为20dm ;(3)如下图所示,为了保证尽可能截取圆,应保证圆心H 坐标为(0,3),则圆心H 到二次函数上个点之间的距离为3≥,∴能切得半径为3dm 的圆.【点睛】本题考查了二次函数与几何结合,熟练掌握各图形的性质,能灵活运用坐标与线段长度之间的转换是解题的关键.5.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++.(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h ;②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K点,并说明理由.【答案】(1)66(2)①基准点K的高度h为21m;②b>9 10;(3)他的落地点能超过K点,理由见解析.【分析】(1)根据起跳台的高度OA为66m,即可得c=66;(2)①由a=﹣150,b=910,知y=﹣150x2+910x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;②运动员落地点要超过K点,即是x=75时,y>21,故﹣150×752+75b+66>21,即可解得答案;(3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.(1)解:∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)解:①∵a=﹣150,b=910,∴y=﹣150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=﹣1 50,∴y=﹣150x2+bx+66,∵运动员落地点要超过K点,∴当x=75时,y>21,即﹣150×752+75b+66>21,解得b>9 10,故答案为:b>9 10;(3)解:他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣2 125,∴抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=﹣2125×(75﹣)2+76=36,∵36>21,∴他的落地点能超过K点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.6.根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm 长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m ;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m ;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【答案】任务一:见解析,2120y x =-;任务二:悬挂点的纵坐标的最小值是 1.8-;66x -≤≤;任务三:两种方案,见解析【分析】任务一:根据题意,以拱顶为原点,建立如图1所示的直角坐标系,待定系数法求解析式即可求解;任务二:根据题意,求得悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,进而代入函数解析式即可求得横坐标的范围;任务三:有两种设计方案,分情况讨论,方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼;方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m ,根据题意求得任意一种方案即可求解.【详解】任务一:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且经过点(10,5)-.设该抛物线函数表达式为2(0)y ax a =≠,则5100a -=,∴120a =-,∴该抛物线的函数表达式是2120y x =-.任务二:∵水位再上涨1.8m 1m ,灯笼长0.4m ,∴悬挂点的纵坐标5 1.810.4 1.8y ≥-+++=-,∴悬挂点的纵坐标的最小值是 1.8-.当 1.8y =-时,211.820x -=-,解得16x =或26x =-,∴悬挂点的横坐标的取值范围是66x -≤≤.任务三:有两种设计方案方案一:如图2(坐标系的横轴,图3同),从顶点处开始悬挂灯笼.∵66x -≤≤,相邻两灯笼悬挂点的水平间距均为1.6m ,∴若顶点一侧挂4盏灯笼,则1.646⨯>,⨯<,若顶点一侧挂3盏灯笼,则1.636∴顶点一侧最多可挂3盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂7盏灯笼.-.∴最左边一盏灯笼悬挂点的横坐标是 4.8方案二:如图3,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为0.8m,+⨯->,∵若顶点一侧挂5盏灯笼,则0.8 1.6(51)6+⨯-<,若顶点一侧挂4盏灯笼,则0.8 1.6(41)6∴顶点一侧最多可挂4盏灯笼.∵挂满灯笼后成轴对称分布,∴共可挂8盏灯笼.-.∴最左边一盏灯笼悬挂点的横坐标是 5.6【点睛】本题考查了二次函数的应用,根据题意建立坐标系,掌握二次函数的性质是解题的关键.7.公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?【答案】(1)87.5m ;(2)6秒时两车相距最近,最近距离是2米【分析】(1)根据图像分别求出一次函数和二次函数解析式,令v=9求出t ,代入求出s 即可;(2)分析得出当v=10m/s 时,两车之间距离最小,代入计算即可.【详解】解:(1)由图可知:二次函数图像经过原点,设二次函数表达式为2s at bt =+,一次函数表达式为v kt c =+,∵一次函数经过(0,16),(8,8),则8816k c c =+⎧⎨=⎩,解得:116k c =-⎧⎨=⎩,∴一次函数表达式为16v t =-+,令v=9,则t=7,∴当t=7时,速度为9m/s ,∵二次函数经过(2,30),(4,56),则423016456a b a b +=⎧⎨+=⎩,解得:1216a b ⎧=-⎪⎨⎪=⎩,∴二次函数表达式为21162s t t =-+,令t=7,则s=491672-+⨯=87.5,∴当甲车减速至9m/s 时,它行驶的路程是87.5m ;(2)∵当t=0时,甲车的速度为16m/s ,∴当10<v <16时,两车之间的距离逐渐变小,当0<v <10时,两车之间的距离逐渐变大,∴当v=10m/s 时,两车之间距离最小,将v=10代入16v t =-+中,得t=6,将t=6代入21162s t t =-+中,得78s =,此时两车之间的距离为:10×6+20-78=2m ,∴6秒时两车相距最近,最近距离是2米.【点睛】本题考查了二次函数与一次函数的实际应用,理解题意,读懂函数图像,求出表达式是解题的基本前提.8.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.图2(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以根竹竿,则共需要准备多少根竹竿?【答案】(1)76b =,1c =;(2)7324米;(3)352【分析】(1)根据题意,可直接写出点A 点B 坐标,代入216y x bx c =-++,求出b 、c 即可;(2)根据(1)中函数解析式直接求顶点坐标即可;(3根据2173716624y x x =-++=,先求得大棚内可以搭建支架的土地的宽,再求得需搭建支架的面积,最后根据每平方米需要4根竹竿计算即可.【详解】解:(1)由题意知点A 坐标为(0)1,,点B 坐标为(6)2,,将A 、B 坐标代入216y x bx c =-++得:21=12666c b c ⎧⎪⎨=-⨯++⎪⎩解得:761b c ⎧=⎪⎨⎪=⎩,故76b =,1c =;(2)由221717731666224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,可得当72x =时,y 有最大值7324,即大棚最高处到地面的距离为7324米;(3)由2173716624y x x =-++=,解得112x =,2132x =,又因为06x ≤≤,可知大棚内可以搭建支架的土地的宽为111622-=(米),又大棚的长为16米,故需要搭建支架部分的土地面积为1116882⨯=(平方米)共需要884352⨯=(根)竹竿.【点睛】本题主要考查根据待定系数法求函数解析式,根据函数解析式求顶点坐标,以及根据函数值确定自变量取值范围,掌握此题的关键是熟练掌握二次函数图像的性质.9.如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m ,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱项部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m .①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【答案】(1)6m ;(2)①21'(6)112y x =++;②2m 【分析】(1)设211y a x =,由题意得(6,1.5)F -,求出抛物线图像解析式,求当x=12或x=-12时y 1的值即可;(2)①由题意得右边的抛物线顶点为(6,1),设222(6)1y a x =-+,将点H 代入求值即可;②设彩带长度为h ,则12h y y =-,代入求值即可.【详解】解(1)设211y a x =,由题意得(6,1.5)F -,11.536a ∴-=,1124a ∴=-,21124y x ∴=-,∴当12x =时,21112624y =-⨯=-,∴桥拱顶部离水面高度为6m .(2)①由题意得右边的抛物线顶点为(6,1),∴设222(6)1y a x =-+,(0,4)H ,224(06)1a ∴=-+,2112a ∴=,221(6)112y x ∴=-+,(左边抛物线表达式:21'(6)112y x =++)②设彩带长度为h ,则22221111(6)1()412248h y y x x x x =-=-+--=-+,∴当4x =时,2min h =,答:彩带长度的最小值是2m .【点睛】本题主要考查待定系数法求二次函数的解析式,以及二次函数最值得求解方法,结合题意根据数形结合的思想设出二次函数的顶点式方程是解题的关键.。
中考数学 中档题突破 专项训练五 三角形、四边形中的证明与计算
在Rt△ADE中,
AE= AD2+DE2= 42+82=4 5,∴C△ABE=AB+BE+AE
=5+11+4 5=16+4 5,
1
1
S△ABE=2BE×AD=2×11×4=22.
3.(2022·怀化)如图,在等边三角形ABC中,点M为AB边上任意一点, 延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.
AD=AD,
∠ADB=∠ADC, BD=CD, ∴△ADB≌△ADC(SAS),∴∠B=∠ACB.
(2)若AB=5,AD=4,求△ABE的周长和面积. 解:在Rt△ADB中,BD= AB2-AD2= 52-42=3,
∴BD=CD=3,AC=AB=CE=5,∴DE=CE+CD=8,
∴BE=2BD+CE=2×3+5=11,
(1)求证:四边形AECF是菱形;
证明:∵点D是AC的中点,∴AD=DC, ∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED, ∴△AFD≌△CED(AAS),∴AF=CE, ∴四边形AECF是平行四边形, ∵EF⊥AC,点D是AC的中点,即EF垂直平分AC, ∴AF=FC, ∴四边形AECF是菱形.
专项训练五 三角形、四 边形中的证明与计算
类型一:三角形中的证明 与计算
1.(2022·杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中 点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ ACE=30°.
(1)求证:CE=CM.
证明:∵∠ACB=90°,点M为边AB的中点, ∴MC=MA=MB,∴∠MCA=∠A,∠MCB=∠B, ∵∠A=50°, ∴∠MCA=50°,∠MCB=∠B=40°, ∴∠EMC=∠MCB+∠B=80°, ∵∠ACE=30°,∴∠MEC=∠A+∠ACE=80°, ∴∠MEC=∠EMC,∴CE=CM.
2023年中考数学专项突破之函数的图象与性质课件 52张PPT
就是含有字母x的二次函数.
返回子目录
例题3
已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴、y轴于点
A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由;
(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+
即为所求;(3)根据反函数的图象和性质,当点P在第一象限时,p>0;当点P在第三象限
时,p≤-2.
解析:(1)把A(2,m),B(n,-2)代入y= 得k2=2m=-2n,即m=-n,则A(2,-n),
如图,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE,BF交于D,
∵A(2,-n),B(n,-2),
方法点拨
解答此类问题需要掌握二次函数的概念、图象和性质,画出草图观察分析,将函数
的平移、最值、增减性等贯穿在草图中,此类问题就会迎刃而解.
解题技巧
解决这类问题一般遵循这样的方法:
(1)求二次函数的图象与x轴的交点坐标,需将二次函数转化为一元二次方
程;
(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶
点入口.两车距学校的路程s(单位:km)和行驶时间t(单位:min)之间的函数关系如
图所示.
请结合图象解决下面问题:
(1)学校到自然保护区的路程为 40 km,大客车途中停留了
5min, a=
;15
(2)在小轿车司机驶过自然保护区入口时,大客车离景点入口还有多远?
(3)小轿车司机到达自然保护区入口时发现本路段限速80 km/h,请你帮助小轿车司
中考数学 专题突破 函数的实际应用
中考数学专题突破函数的实际应用类型一一次函数的实际应用9. 甲、乙两艘轮船分别从A、B两个港口同时出发,沿同一直线匀速航行,甲轮船到达B港后,1小时卸货装货,然后按原航线返回A港,已知乙轮船比甲轮船早1小时到达A港,且在整个过程中,两船均保持匀速行驶,设两船到A港的距离y(海里)与行驶时间t(小时)之间的关系如图所示,且A、B两港的距离为180海里.(1)点E的坐标为________,甲轮船的速度为________海里/时;(2)求线段DE的解析式;(3)两船出发多长时间相距90海里?第9题图10. VR头显是虚拟现实头戴式显示设备,能让用户体验真实的虚拟世界.某商家经营的A型号VR头显2016年4月份的销售总额为3.2万元,今年经过改造升级后A型号VR头显每个的销售价比去年增加400元,若今年4月份与去年4月份卖出的A型号VR头显数量相同,则今年4月份A型号VR头显销售总额将比去年4月份销售总额增加25%.A、B两种型号VR头显今年的进货和销售价格如下表所示:(1)求今年4月份A型号VR头显每个的销售价为多少元;(2)该商家计划5月份新进一批A型号VR头显和B型号VR头显共50个,设购进的A 型号VR头显为x个,获得的总利润为y元,请写出y与x之间的函数关系式;(3)在(2)的条件下,若B型号VR头显的进货数量不超过A型号VR头显数量的两倍,应如何进货才能使这批VR头显获利最大?最大利润是多少?11. 嘉淇同学家的饮水机中原有水的温度为20 ℃,其工作过程如图所示,在一个由20 ℃加热到100 ℃再降温到20 ℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟).加热过程中,y与x满足一次函数关系;水温下降过程中,y与x成反比例,且当x=20时,y =40.(1)写出饮水机水温下降过程中y与x之间的函数关系式,并求出当x为何值时,y=100;(2)求加热过程中y与x之间的函数关系式;(3)求当x为何值时,y=80.问题解决若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计上午九点前回到家中,若嘉淇想喝到不低于50 ℃的水,直接写出外出时间m(分钟)的取值范围.第11题图类型二二次函数的实际应用12. 现计划在距离为20千米的A、B两个镇之间建立一个水厂,向两个小镇供水,其中每月向A镇供水3000吨,向B镇供水9000吨,若经过测算,供应每吨水的费用(元)与供水距离的平方(千米2)成正比,且已知供应1吨水1千米需0.25元,设水厂到A镇的距离为x(千米),每月供水总费用为y(元).(1)求y与x之间的函数关系式;(2)当x为何值时,y最小,最小值是多少?(3)若供水总费用为237000元,求x的值.类型三二次函数与一次函数结合的实际应用13. 某商家独家销售具有地方特色的某种商品,每件进价为40元,经过市场调查,一周(1)求y与x之间的函数关系式;(2)设一周的销售利润为S元,请求出S与x之间的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增长而增长;(3)商家决定将商品一周的销售利润全部寄往某灾区,在商家购进该商品的费用不超过10000元的情况下,请你求出该商家最大捐款数额是多少元?14. 某4A级风景区准备开设游览风光业务,根据市场调查得到每天每辆游览车的班数y(班)与游览车的总辆数x(辆)满足一次函数关系.若准备4辆游览车,则每辆车每天可有16班;若准备7辆游览车,则每辆车每天可有10班.根据以上信息解答下列问题:(1)求y与x之间的函数关系式;(2)每辆游览车载客人数为20人.①设每天运送的游客人数为w(人),求w与x之间的函数关系式;②试问应开设多少辆游览车,才能使运送的游客最多?最多人数是多少?二次函数综合题15. 在同一平面直角坐标系中,如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“梦函数”,如图所示,二次函数y1=-x2-3x-4与y2=-x2+3x-4互为“梦函数”.(1)直接写出图中两个互为“梦函数”的图象所具有的特点;(2)求与二次函数y=2(x+2)2+1互为“梦函数”的二次函数的解析式和与二次函数y=a(x-h)2+k互为“梦函数”的二次函数的解析式;(3)在平面直角坐标系中,记互为“梦函数”的函数图象与y轴的交点为点A,它们的两个顶点分别为点B、C(点B在点C的左侧),且BC=6,顺次连接点A、B、O、C,得到一个面积为24的菱形,求互为“梦函数”的两个二次函数的解析式.第15题图16. 如图,已知点C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.(1)当抛物线F经过点C时,求抛物线F的解析式;(2)抛物线F上有两点M(x1,y1)、N(x2,y2),若-2≤x1<x2,y1<y2,求m的取值范围;(3)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点E(x1,y1)、F(x2,y2),若x1<x2≤-2,比较y1与y2的大小.第16题图17. 在平面直角坐标系中,A 、B 是抛物线y =x 2+2mx +4m 2(m 为常数)上两点,C 是抛物线与y 轴的交点.(1)若抛物线经过原点,求m 的值;(2)若点A (x 1,y 1)和点B (4-x 1,y 1),求点C 的纵坐标;(3)当2m ≤x ≤2m +3时,与其对应的函数值y 的最小值为9,求此时抛物线的解析式.第17题图18. 若抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且△ABC 恰好是直角三角形,则称抛物线y =ax 2+bx +c 是“勾股抛物线”,其中较短直角边所在直线为“勾线”,较长直角边所在直线为“股线”.(1)若“勾股抛物线”y =x 2+mx +n 的“勾线”经过点(1,1),求m 和n 的值;(2)已知“勾股抛物线”y =-12x 2+bx +c 与x 轴的一个交点为(-1,0),其“股线”与反比例函数y =kx的一个交点的横坐标是-2,求反比例函数的解析式;(3)已知“勾股抛物线”y =33x 2+bx -3c (b ≠0)的“勾线”、“股线”及x 轴围成的三角形面积S 的取值范围是23≤S ≤43,设t =-2b 4+4b 2+3,求t 的最大值.几何实践探究19. 问题提出(1)如图①,已知△ABC是边长为2的等边三角形,则△ABC的面积为________;问题探究(2)如图②,在△ABC中,已知∠BAC=120°,BC=63,求△ABC的最大面积;问题解决(3)如图③,某校学生礼堂的平面示意图为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部的情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还要求从点M 出发的观测角∠AMB=45°,请你通过所学知识进行分析,在墙面CD区域上是否存在点M 满足要求?若存在,求出MC的长度;若不存在,请说明理由.第19题图20. 在等边△AOB中,将扇形COD按如图①所示摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α(0°<α≤360°).(1)当OC∥AB时,旋转角α=________°;发现:(2)线段AC与BD有何数量关系,依据图②给出证明;应用:(3)当A、C、D三点共线时,求BD的长;拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.第20题图阅读与理解类型一 展示新定义、新规则型21. 新定义:我们将两组邻边分别相等的四边形称之为筝形. (1)在你学过的特殊四边形中,写出两种筝形的名称;(2)如图①,在矩形ABCD 中,点E 、F 分别是AD 、BC 的中点,点G 、H 分别在AB 、DC 上,∠AEG =∠DEH .求证:四边形EGFH 是筝形;(3)如图②,在筝形ABCD 中,AB =AD =10,BC =DC =17,AC =21,求筝形ABCD 的面积.第21题图22. 定义:我们把与点(1,1),(-1,-1),(2,2)等有共同特征的点,称为“梦幻点”,至少有两个“梦幻点”的直线称为“梦幻直线”,至少有两个“梦幻点”的曲线称为“梦幻曲线”.(1)试说明“梦幻直线”只有一条,并求这条直线的解析式;(2)已知“梦幻双曲线”与“梦幻直线”的两个交点为A 、B ,过点A 作AC ⊥x 轴于点C ,连接BC ,若△ABC 的面积为4,求“梦幻双曲线”的解析式及点A 、B 的坐标;(3)若“梦幻抛物线”y =a (x -m )2+m (a <0)的顶点为D ,与y 轴的交点为M (0,c ),与“梦幻直线”的另一个交点为N ,且OD =ON ,41≤c ≤1,求a 的取值范围.类型二展示新解题方法型23. 请阅读下列材料,并完成相应的任务.卡尔·弗里德里希·高斯(C.F.Gauss,1777年4月30日~1855年2月23日),生于布伦瑞克,德国著名数学家、物理学家、天文学家、大地测量学家.高斯被认为是历史上最重要的、影响最大的数学家之一,素有“数学王子”的美誉,可以和阿基米德、牛顿、欧拉并列.高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、椭圆函数等方面都做出了开创性的贡献,其中有一种函数就是以高斯的名字命名的.设x为任意实数,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,也叫做取整函数.例如:[4.6]=4,[-1.8]=-2.任务:(1)根据对材料内容的理解,计算:[-3.5]+[2.6]=________;(2)若[x-2]=-1,求x的取值范围,并写出求解过程.24. 如图①,已知圆内接四边形ABCD的对角线AC⊥BD,垂足为M,F是AD的中点,连接FM并延长交BC于点E,证明:ME⊥BC.下面给出证明ME⊥BC的部分证明过程:证明:∵AC⊥BD,垂足为M,F是AD的中点,∴∠DMC=90°,DF=FM,∴∠FDM=∠FMD,…(1)请按照上面的证明过程,写出该证明的剩余部分;(2)拓展与延伸:如图②,已知△EAB和△ECD都是等腰直角三角形,且斜边AB和CD 不相等,M是BC的中点,延长ME交AD于点N,若∠ADC=65°,求∠NED的度数.第24题图。
2020年数学中考重难点突破之函数的实际应用
函数的实际应用1. 某制笔企业欲将200件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地.(1)①根据信息填表.②若设总运费为y 元,写出y 关于x 的函数关系式;(2)若运往B地的产品数量不超过运往C 地的数量,应怎样安排A ,B ,C 三地的运送数量才能达到运费最少.第1题图解:(1)①根据信息填表:②由题意可得:y=30x+1600-24x+50x=56x+1600.(2)根据题意可得200-3x≤2x,解得x≥40,由总运费y=56x+1600,∵y随x的增大而增大,∴当x=40时,y有最小值为3840,故安排运往A、B、C三地的产品件数分别为40件,80件,80件时,运费最少.2.某公司开发出一款新的节能产品,该产品的成本价为6元/件.该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是______件,日销售利润是_______元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?第2题图解:(1)330,660;【解法提示】从图中可看出线段DE 上存在一点(22,340),由题意,在线段DE 表示的函数关系式中,时间每增加1天,日销售量减少5件,可得到DE 上另一点(23,335),设线段DE 所在直线的解析式为y =kx +b ,则2234022335k b k b +=⎧⎨+=⎩,解得⎩⎨⎧k =-5b =450,∴y =-5x +450,∴当x =24时,y =330,而日销售利润=日单件利润×数量=(8-6)×330=660(元).(2)设线段OD 所表示的y 与x 之间的函数关系式为y =kx .∴函数y =kx 的图象过点(17,340),∴17k =340,解得k =20.∴线段OD 所表示的y 与x 之间的函数关系式为y =20x .根据题意,得线段DE 所表示的y 与x 之间的函数关系式为y =340-5(x -22)=-5x +450.∴D 是线段OD 与线段DE 的交点.联立得:⎩⎨⎧y =20x y =-5x +450,解得⎩⎨⎧x =18y =360. ∴点D 的坐标为(18,360),∴y =20(0)5450(18<)x x x x ⎧⎨-+⎩≤≤18≤30; (3) 当0≤x ≤18时,由题意得(8-6)×20x ≥640,解得x ≥16;当18<x ≤30时,由题意得(8-6)×(-5x +450)≥640,解得x ≤26.∴16≤x≤26.即26-16+1=11(天),∴日销售利润不低于640元共有11天,∴D的坐标为(18,360),∴日最大销售量为360件,(8-6)×360=720(元)∴试销售期间,日销售最大利润为720元.3.某校在学习贯彻十九大精神“我学习,我践行”的活动中,计划组织全校1300名师生到林业部门规划的林区植树,经研究,决定租用当地租车公司提供的A、B两种型号客车共50辆作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量与租金信息:注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式,并直接写出x的取值范围;(2)若要使租车总费用不超过13980元,一共有几种租车方案?哪种租车方案最省钱?解:(1)根据题意得:y=300x+240(50-x)=60x+12000.∴30x+20(50-x)≥1300,∴x≥30,∴y与x的函数解析式为y=60x+12000(x≥30).(2)根据题意得:60x+12000≤13980,解得:x≤33,∴30≤x≤33,∴共有4种租车方案,方案1:租A型号客车30辆,B型号客车20辆;方案2:租A型号客车31辆,B型号客车19辆;方案3:租A型号客车32辆,B型号客车18辆;方案4:租A型号客车33辆,B型号客车17辆.∴60>0,∴y值随x的增大而增大,∴租车方案1最省钱.4.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量是售价的一次函数,且相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(2)求月销量y与售价x的一次函数关系式:(3)设销售该运动服的月利润为W元,那么售价为多少元时,当月的利润最大?最大利润是多少元?解:(1)销售该运动服每件的利润是:(x -60)元,(2)设月销量y 与x 的关系式为y =kx +b ,由题意得,⎩⎨⎧=+=+180110200100b k b k ,解得⎩⎨⎧=-=4002b k . 则y =-2x +400;(3)由题意得,W =(x -60)(-2x +400)=-2x 2+520x -24000=-2(x -130)2+9800,∴当x =130时,利润最大值为9800元,故售价为130元时,当月的利润最大,最大利润是9800元.5.衡阳市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?第5题图解:(1)设y 与x 之间的函数关系式为:y =kx +b ,把(2,120)和(4,140)代入得,⎩⎨⎧=+=+14041202b k b k ,解得⎩⎨⎧==10010b k , ∴y 与x 之间的函数关系式为:y =10x +100;(2)根据题意得,(60-40-x )(10x +100)=2090,解得x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元时,商贸公司获利最大,最大利润是w 元, 根据题意得,w =(60-40-x )(10x +100)=-10x 2+100x +2000,∴w =-10(x -5)2+2250,故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.6.随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出“衡阳市一日游”项目,团队人均报名费用y (元)与团队报名人数x (人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为w (元).(1)直接写出当x ≥20时,y 与x 之间的函数关系式及自变量x 的取值范围;(2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?(3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?第6题图解:(1)当x ≥20时,设y 与x 之间的函数关系式为y =kx +b ,把(20,120)和(32,96)代入得⎩⎨⎧=+=+963212020b k b k ,解得⎩⎨⎧=-=1602b k ,∴ y 与x 之间的函数关系式为:y =-2x +160;∵旅行社规定团队人均报名费用不能低于88元,当y ≥88时,-2x +160≥88,解得x ≤36,∴当x ≥20时,y 与x 之间的函数关系式为:y =-2x +160(20≤x ≤36); (2)20×120=2400<3000,由题意得:w =xy =x (-2x +160)=3000,-2x 2+160x -3000=0,x 2-80x +1500=0,解得x =50或x =30,答:报名旅游的人数是30人;(3)w=xy=x(-2x+160)=-2x2+160x=-2(x-40)2+3200,∵-2<0,∴x<40,w随x的增大而增大,∵x=36时,w有最大值为:-2(36-40)2+3200=3168,∴当一个团队有36人报名时,旅行社收到的总报名费最多,最多总报名费是3168元.7.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示:元;(2)分别写出用会员卡和租书卡租书的金额y1、y2与租书时间x之间的函数关系式;(3)如果租书50天,选择哪种租书方式比较划算?如果花费80元租书,选择哪种租书方式比较划算?第7题图解:(1)0.5;0.3;【解法提示】租书卡每天租书花费:50÷100=0.5(元),设会员卡每天租书花费x元,则20+100x=50,得x =0.3;(2)设用租书卡租书的金额y 1与租书时间x 之间的函数关系式为:y 1=kx , 把(100,50)代入得,100k =50,解得:k =0.5,∴用租书卡租书的金额y 1与租书时间x 之间的函数关系式为:y =0.5x , 设用会员卡租书的金额y 2与租书时间x 之间的函数关系式为:y 2=ax +b , 把(0,20),(100,50)代入得,⎩⎨⎧==+2050100b b a ,解得⎩⎨⎧==203.0b a , ∴用会员卡租书的金额y 2与租书时间x 之间的函数关系式为:y 2=0.3x +20;(3)租书50天,租书卡花费0.5×50=25(元),会员卡花费0.3×50+20=35(元),说明使用租书卡比会员卡划算.花费80元租书,租书卡花费0.5x =80(元),解得:x =160,会员卡花费0.3x +20=80(元),解得:x =200,说明使用会员卡比租书卡划算.8.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)根据题意,填写下表:(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式;(3)当x >70时,顾客在哪家复印店复印花费少?请说明理由. 解:(1)1,3;1.2,3.3;【解法提示】甲复印店:当x =10时,收费为:0.1×10=1(元); 当x =30时,收费为:0.1×30=3(元);乙复印店:当x =10时,收费为:0.12×10=1.2(元);当x =30时,收费为:0.12×20+0.09×(30-20)=3.3(元);(2)由题意得,y 1=0.1x (x ≥0);当0≤x ≤20时,y 2=0.12x ,当x >20时,y 2=0.12×20+0.09(x -20),即y 2=0.09x +0.6,即y 2=⎩⎨⎧>+≤≤)20(6.009.0200(12.0x x x x ); (3)顾客在乙复印店复印花费少,理由如下:当x >70时,y 1=0.1x ,y 2=0.09x +0.6,设y =y 1-y 2,∴y1-y2=0.1x-(0.09x+0.6)=0.01x-0.6,设y=0.01x-0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1,∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.9.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)已知某用户四、五月份共用水40m3.①若该用户这两个月共缴纳水费79.8元,且五月份用水量较大,则该用户五月份用水多少m3?②该用户这两个月共需缴纳水费至少多少元?第9题图解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,把(15,27)代入得15k=27,解得k=1.8,∴当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,把(15,27),(20,39)代入得⎩⎨⎧=+=+39202715b a b a ,解得⎩⎨⎧-==94.2b a , ∴当x >15时,y 与x 的函数关系式为y =2.4x -9.(2)①设四月份用水x m 3,当0≤x ≤15时,1.8x +2.4(40-x )-9=79.8,解得x =12,∴40-x =28,当15<x <20时,∵2.4×40-9=87≠79.8,∴该种情况不存在,答:五月份用水28m 3;②由题意可得,当四月份用水15m 3时,这两个月共需缴纳水费最少,此时水费为:1.8×15+2.4×(40-15)-9=78(元).10.五•一”假期,衡阳火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经k 调查发现,在车站开始检票时,有640人排队检票,5:20检票开始后,仍有旅客继续前来排队检票进站设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a 分钟只开放了两个检票口.某天候车室排队等候检票的人数y (人)与检票时间x (分钟)的关系如图所示.(1)求a 的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第10题图解:(1)根据题意可得:640+16a -2×14a =520,解得:a =10;(2)设当10≤x ≤30时,y 与x 的函数关系式为y =kx +b由题意可得⎩⎨⎧=+=+03052010b k b k ,解得⎩⎨⎧=-=78026b k . ∴函数解析式为y =-26x +780,当x =20时,y =-26×20+780=260,∴检票到第20分钟时,候车室排队等候检票的旅客人数260人;(3)设至少需要同时开放n 个检票口,根据题意得:14n ×15≥640+16×15,∵n为整数,∴n最小值为5,∴至少需要同时开放5个检票口.。