竞赛辅导专题之七—化学反应速率和化学平衡

合集下载

化学反应速率及平衡计算(带答案)

化学反应速率及平衡计算(带答案)

化学反应速率及平衡计算一、化学反应速率有关计算1.根据化学反应速率的定义计算公式:V=△C/t2.根据化学计量数之比,计算反应速率:在同一个反应中,各物质的反应速率之比等于方程式中的系数比。

3.温度对化学反应速率的影响计算:【练1】某一化学反应的反应速率在每升高10度时就增大到原来的3倍,若此反应的温度从20度升高到50度时,则其反应速率是原来的()A.6倍B.9倍C.18倍D.27倍解析:温度每升高10度时就增大到原来的3倍,则v末=v初×3(T末-T初)/10=3(50-20)/10=33=27.答案:D4、根据已知的浓度、温度等条件,比较反应速率的大小【练2】把下列四种X溶液分别加入四个盛有10mL 2mol/L盐酸的烧杯中,均加水稀释到50mL,此时,X和盐酸缓慢地进行反应,其中反应最快的是()A. 10℃20mL 3mol/L的X溶液B. 20℃30mL 2mol/L的X溶液C. 20℃10mL 4mol/L的X溶液D. 10℃10mL 2mol/L的X溶液解析:在化学反应中,当其它条件不变时,浓度越大,反应速率越快;温度越高,反应速率越快。

在本题中要综合考虑浓度和温度的影响。

先比较浓度的大小,这里的浓度应该是混合以后的浓度,由于混合后各烧杯中盐酸的浓度相等,因此只要比较X的浓度,X 浓度越大,反应速率越快。

因为反应后溶液的体积均为50mL,所以X的物质的量最大,浓度就最大。

通过观察可知,混合后A、B选项中X的浓度相等,且最大,但B中温度更高,因此B的反应速率最快。

答案:B5、利用参加反应的各物质物质的量浓度的变化或物质的量的变化数值或相关图像,确定化学反应方程式:6、综合计算【练3】将26H mol 和CO mol 3充入容积为L 5.0的密闭容器中,进行如下反应:)()(22气气CO H)(3气OH CH ,6秒末时容器内压强为开始时的0.6倍。

试计算:2H 的反应速率是多少?【练4】在一定条件下,发生反应:2X(g)+Y(g)2Z(g) ΔH =-197 kJ · mol -1,若将2 mol X 和1 mol Y 充入2 L 的恒容密闭容器中,反应10 min ,测得X 的物质的量为1.4 mol ,下列说法正确的是( )A .10 min 内,反应放出的热量为197 kJ 热量B .10 min 内,X 的平均反应速率为0.06 mol ·L -1·min -1C .第10 min 时,Y 的反应速率小于0.015 mol ·L -1·min -1(假如体系温度不变) D .第10 min 时,Z 浓度为0.6 mol ·L -17、化学反应速率的测定实验和计算:测定反应速率的方式和途径:化学反应的速率是通过实验测定的。

(完整版)化学反应速率与化学平衡知识点归纳

(完整版)化学反应速率与化学平衡知识点归纳

•一、化学反应速率• 1. 化学反应速率(v)•⑴定义:用来衡量化学反应的快慢,单位时间内反应物或生成物的物质的量的变化•⑵表示方法:单位时间内反应浓度的减少或生成物浓度的增加来表示•⑶计算公式:v=Δc/Δt(υ:平均速率,Δc:浓度变化,Δt:时间)单位:mol/(L·s)•⑷影响因素:•①决定因素(内因):反应物的性质(决定因素)•②条件因素(外因):反应所处的条件• 2.※注意:(1)、参加反应的物质为固体和液体,由于压强的变化对浓度几乎无影响,可以认为反应速率不变(2)、惰性气体对于速率的影响①恒温恒容时:充入惰性气体→总压增大,但是各分压不变,各物质浓度不变→反应速率不变②恒温恒体时:充入惰性气体→体积增大→各反应物浓度减小→反应速率减慢二、化学平衡(一)1.定义:化学平衡状态:一定条件下,当一个可逆反应进行到正逆反应速率相等时,更组成成分浓度不再改变,达到表面上静止的一种“平衡”,这就是这个反应所能达到的限度即化学平衡状态。

2、化学平衡的特征逆(研究前提是可逆反应)等(同一物质的正逆反应速率相等)动(动态平衡)定(各物质的浓度与质量分数恒定)变(条件改变,平衡发生变化)3、判断平衡的依据(二)影响化学平衡移动的因素1、浓度对化学平衡移动的影响(1)影响规律:在其他条件不变的情况下,增大反应物的浓度或减少生成物的浓度,都可以使平衡向正方向移动;增大生成物的浓度或减小反应物的浓度,都可以使平衡向逆方向移动(2)增加固体或纯液体的量,由于浓度不变,所以平衡_不移动_(3)在溶液中进行的反应,如果稀释溶液,反应物浓度__减小__,生成物浓度也_减小_, V正_减小__,V逆也_减小__,但是减小的程度不同,总的结果是化学平衡向反应方程式中化学计量数之和_大_的方向移动。

2、温度对化学平衡移动的影响影响规律:在其他条件不变的情况下,温度升高会使化学平衡向着___吸热反应______方向移动,温度降低会使化学平衡向着_放热反应__方向移动。

化学反应速率与化学平衡复习(ppt)

化学反应速率与化学平衡复习(ppt)
知可逆反应CO + H2O(g) 已知可逆反应CO 平衡时, 平衡时,
CO2 + H2,达到
830K 若起始时: mol/L, (1)830K时,若起始时:c (CO) = 2 mol/L, c (H2O) = 3 mol/L , 平衡时 CO 的转化率为 60% , mol/L, 平衡时CO 的转化率为60 CO的转化率为 60% 水蒸气的转化率为 ;K值 为 。
化学反应速率与化学平衡复习
• • • • 掌握三部分内容: 一、化学反应速率 二、化学平衡 三、化学反应进行的方向
一、化学反应速率
1、定义:用单位时间内反应物或生成物 定义: 的物质的量变化来表示。 的物质的量变化来表示。 2、数学表达式: V == △C/ △ t 数学表达式: 数学表达式
mol/( min min) 3、单位:mol/(L·s) 或 mol/(L·min) 单位:mol/( s mol/( h 或 mol/(L·h) 简单计算: 4、简单计算:公式法 化学计量数之比法
5、影响因素
• 内因: 内因: 反应物本身的性质 • 外因: 浓度越大, 浓度越大,速率越大 浓度: 压强越大, 压强: 压强越大,速率越大 温度: 温度越高,速率越大 温度越高, 催化剂: 其他因素:
二、化学平衡
• 定义:一定条件下,可逆反应里,正反应速 一定条件下,可逆反应里,
率和逆反应速率相等, 率和逆反应速率相等,反应混合物中各组分的 浓度保持不变的状态 化学平衡的特征: 化学平衡的特征: 可逆反应( 可逆反应 或可逆过程) 逆 ——可逆反应(或可逆过程) 不同的平衡对应不同的速率) 等 ——V正 =V逆(不同的平衡对应不同的速率) 动态平衡。 动态平衡 达平衡后, 动 ——动态平衡。达平衡后,正逆反应仍在进行 (V正=V逆≠0) ) 平衡时, 平衡时 各组分浓度、含量保持不变(恒定) 定 ——平衡时,各组分浓度、含量保持不变(恒定) 条件改变, 条件改变 变——条件改变,平衡发生改变

化学第七章 化学反应速率和化学平衡 微专题 24 含答案

化学第七章 化学反应速率和化学平衡 微专题 24 含答案

微专题化学反应原理在物质制备中的调控作用1.化学反应方向的判定(1)自发反应在一定条件下无需外界帮助就能自发进行的反应称为自发反应.(2)熵和熵变的含义①熵的含义熵是衡量一个体系混乱度的物理量。

用符号S表示.同一条件下,不同物质有不同的熵值,同一物质在不同状态下熵值也不同,一般规律是S(g)>S(l)〉S(s)。

②熵变的含义熵变是反应前后体系熵的变化,用ΔS表示,化学反应的ΔS越大,越有利于反应自发进行。

(3)判断化学反应方向的判据ΔG=ΔH-TΔSΔG<0时,反应能自发进行;ΔG=0时,反应达到平衡状态;ΔG>0时,反应不能自发进行。

2.化工生产适宜条件选择的一般原则(1)从化学反应速率分析,既不能过快,又不能太慢。

(2)从化学平衡移动分析,既要注意外界条件对速率和平衡影响的一致性,又要注意二者影响的矛盾性。

(3)从原料的利用率分析,增加易得廉价原料,提高难得高价原料的利用率,从而降低生产成本。

(4)从实际生产能力分析,如设备承受高温、高压能力等.(5)注意催化剂的活性对温度的限制。

3.平衡类问题需综合考虑的几个方面(1)原料的来源、除杂,尤其考虑杂质对平衡的影响。

(2)原料的循环利用。

(3)产物的污染处理。

(4)产物的酸碱性对反应的影响.(5)气体产物的压强对平衡造成的影响。

(6)改变外界条件对多平衡体系的影响。

专题训练1.(2017·四川资阳诊断)无机盐储氢是目前科学家正在研究的储氢新技术,其原理如下:NaHCO3(s)+H2(g),Pd或PdO70 ℃,0.1 MPa HCOONa(s)+H2O(l)在2 L恒容密闭容器中加入足量碳酸氢钠固体并充入一定量的H2(g),在上述条件下发生反应,体系中H2的物质的量与反应时间的关系如表所示:下列推断正确的是()A.当容器内气体的相对分子质量不再变化时,反应达到平衡状态B.0~4 min内H2的平均反应速率v(H2)=0。

高中化学奥林匹克竞赛辅导讲座 第7讲 化学反应速率与化学平衡-典型例题与知能训练

高中化学奥林匹克竞赛辅导讲座 第7讲 化学反应速率与化学平衡-典型例题与知能训练

高中化学奥林匹克竞赛辅导讲座 第7讲 化学反应速率与化学平衡【竞赛要求】反应速率基本概念。

反应级数。

用实验数据推求反应级数。

一级反应积分式及有关计算(速率常数、半衰期、碳-14法推断年代等等)。

阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度对速率常数影响的计算等)。

活化能与反应热的关系。

反应机理一般概念。

推求速率方程。

催化剂对反应影响的本质。

标准自由能与标准平衡常数。

平衡常数与温度的关系。

平衡常数与转化率。

利用平衡常数的计算。

热力学分解温度(标态与非标态)。

克拉贝龙方程及其应用(不要求微积分)。

【典型例题】例1、把6 mol A 气和5 mol B 气混合后放入4 L 密闭容器中,在一定条件下发生反应: 3 A(g) + B(g)2C(g) + x D(g),经5 min 生成C 为2 mol ,测定D 的平均速率为0.1 mol ·L -1min -1。

求:(1)A 的平均反应速率; (2)此时A 的浓度;(3)温度不变,体积不变,容器内压强与开始时压强比值; (4)B 的转化率。

分析:不同物质表示同一反应的反应速率,其比值等于方程式中各物质的化学计量数之比。

同温、同体积时,气体的压强之比等于气体的物质的量之比。

转化率则为转化的量与起始量之比值。

解:经5 min 生成D 的物质的量:n (D) = 0.1 mol ·L -1min -1×4 L ×5min = 2 mol, 3 A(g) + B(g)2C(g) + x D(g)起始物质的量/mol 6 5 0 0 转化物质的量/mol 3 1 2 2 5 min 后物质的量/mol 3 4 2 2 (1)υ(A) = min 5·43L mol= 0.15 mol ·L -1·min -1(2)C(A) =Lmol43 = 0.75mol ·L -1 (3)容器内压强p 1与开始压强p 0之比为:01p p = mol mol )56()2243(++++ = 11(4)B 的转化率 =%10051⨯molmol= 20% 例2、N 2O 5分解反应的实验数据如下:时间/min 0 1 2 3 4 浓度/mol ·L -10.1600.1130.0800.0560.040(1)计算1 min 到3 min 的平均速率;(2)用浓度对时间作图,求2 min 时的瞬时速率。

化学反应速率与化学平衡

化学反应速率与化学平衡

化学反应速率与化学平衡化学反应速率与化学平衡是化学领域中的重要概念。

本文将从理论角度探讨化学反应速率与化学平衡之间的关系,并结合实际例子加以说明。

一、化学反应速率化学反应速率指的是反应物消耗或生成的速度,通常用物质浓度的变化率来表示。

反应速率的公式可表示为:速率= ΔC/Δt其中,ΔC表示反应物浓度的变化量,Δt表示时间的变化量。

化学反应速率受到多种因素的影响,如温度、浓度、表面积、催化剂等。

一般来说,温度越高,反应速率越快;浓度越高,反应速率越快;表面积越大,反应速率越快;催化剂的存在能够降低反应活化能,从而加快反应速率。

二、化学平衡化学平衡是指在封闭系统中,反应物和生成物浓度保持一定比例的状态。

在化学平衡中,正反应和逆反应同时发生,且速率相等,达到动态平衡。

根据勒夏特列亲和定律,一个化学平衡的反应可以用如下公式表示:aA + bB ⇌ cC + dD其中,A、B为反应物,C、D为生成物,a、b、c、d为化学计量数。

化学平衡的条件包括温度、压力和浓度。

根据利奥·恩希斯的法则,当某一条件发生变化时,系统会自动调整以维持化学平衡。

温度升高会使平衡位置移动到吸热反应的方向,而当温度降低时,则向放热反应方向移动。

三、化学反应速率与化学平衡的关系化学反应速率和化学平衡是反应动力学和反应热力学两个方面的研究对象。

它们之间存在密切的联系。

在反应初期,反应物浓度较高,反应速率也较快。

但随着时间的推移,反应物浓度逐渐降低,反应速率也减慢,最终趋于稳定。

这种情况下,反应尚未达到化学平衡。

在化学平衡时,正反应和逆反应达到动态平衡,速率相等。

这并不意味着反应速率为零,而是表示反应物和生成物的浓度保持稳定,反应速率呈稳定状态。

实际上,反应速率和平衡浓度之间存在着一种动态的关系。

当反应物浓度偏离平衡浓度时,反应势必要重新调整以恢复平衡,从而使反应速率发生变化。

例如,当反应物浓度增加时,反应速率会相应增加,以达到新的平衡状态。

化学反应速率与化学平衡知识点归纳

化学反应速率与化学平衡知识点归纳

1. 化学反应速率:⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间Δt和反应物浓度的变化Δc有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的;但这些数值所表示的都是同一个反应速率;因此,表示反应速率时,必须说明用哪种物质作为标准;用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比;如:化学反应mAg + nBg pCg + qDg 的:vA∶vB∶vC∶vD = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢;因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率;⑵. 影响化学反应速率的因素:I. 决定因素内因:反应物本身的性质;Ⅱ.条件因素外因也是我们研究的对象:①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率;值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快;值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率;③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率;④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率;⑤. 其他因素;如固体反应物的表面积颗粒大小、光、不同溶剂、超声波等;2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应;⑵. 化学平衡的概念略;⑶. 化学平衡的特征:动:动态平衡;平衡时v正==v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定不是相等;变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡;⑷. 化学平衡的标志:处于化学平衡时:①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化;例1在一定温度下,反应A2g + B2g 2ABg达到平衡的标志是 CA. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B2⑸. 化学平衡状态的判断:举例反应 mAg + nBg pCg + qDg混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定其他条件一定平衡②m+n=p+q时,总压力一定其他条件一定不一定平衡混合气体的平均分子量①一定时,只有当m+n≠p+q时,平衡②一定,但m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡3.化学平衡移动:⑴勒沙持列原理:如果改变影响平衡的一个条件如浓度、压强和温度等,平衡就向着能够减弱这种改变的方向移动;其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况即温度或压强或一种物质的浓度,当多项条件同时发生变化时,情况比较复杂;③平衡移动的结果:只能减弱不可能抵消外界条件的变化;⑵、平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程;一定条件下的平衡体系,条件改变后,可能发生平衡移动;即总结如下:⑶、平衡移动与转化率的关系:不要把平衡向正反应方向移动与反应物转化率的增大等同起来;⑷、影响化学平衡移动的条件:化学平衡移动:强调一个“变”字①浓度、温度的改变,都能引起化学平衡移动;而改变压强则不一定能引起化学平衡移动;强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动;催化剂不影响化学平衡;②速率与平衡移动的关系:I. v正== v逆,平衡不移动;Ⅱ. v正 > v逆,平衡向正反应方向移动;Ⅲ. v正 < v逆,平衡向逆反应方向移动;③平衡移动原理:勒沙特列原理:④分析化学平衡移动的一般思路:速率不变:如容积不变时充入惰性气体强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动;⑸、反应物用量的改变对化学平衡影响的一般规律:Ⅰ、若反应物只有一种:aAg=bBg + cCg,在不改变其他条件时,增加A的量平衡向正反应方向移动,但是A的转化率与气体物质的计量数有关:可用等效平衡的方法分析;①若a = b + c :A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c A的转化率减小;Ⅱ、若反应物不只一种:aAg + bBg=cCg + dDg,①在不改变其他条件时,只增加A的量,平衡向正反应方向移动,但是A的转化率减小,而B的转化率增大;②若按原比例同倍数地增加A和B,平衡向正反应方向移动,但是反应物的转化率与气体物质的计量数有关:如a+b = c + d,A、B的转化率都不变;如a+ b>c+ d,A、B的转化率都增大;如a + b < c + d,A、B的转化率都减小;4、等效平衡问题的解题思路:⑴、概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡;⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡;②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡;③等温且△n=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡;5、速率和平衡图像分析:⑴分析反应速度图像:①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点;②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应;升高温度时,△V 吸热>△V放热;③看终点:分清消耗浓度和增生浓度;反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比;④对于时间——速度图像,看清曲线是连续的,还是跳跃的;分清“渐变”和“突变”、“大变”和“小变”;增大反应物浓度V正突变,V逆渐变;升高温度,V吸热大增,V放热小增;⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向;②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点;③先拐先平:对于可逆反应mAg + nBg pCg + qDg ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡;它所代表的温度高、压强大;这时如果转化率也较高,则反应中m+n>p+q;若转化率降低,则表示m+n<p+q;④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系; 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示;通常用单位时间内反应物浓度的减小或生成物浓度的减小或生成物浓度的增加来表示;表达式:△vA=△cA/△t单位:mol/L·s或mol/L·min影响化学反应速率的因素:温度,浓度,压强,催化剂;另外,x射线,γ射线,固体物质的表面积也会影响化学反应速率化学反应的计算公式:例对于下列反应:mA+nB=pC+qD有vA:vB:vC:vD=m:n:p:q对于没有达到化学平衡状态的可逆反应:v正≠v逆影响化学反应速率的因素:压强:对于有气体参与的化学反应,其他条件不变时除体积,增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小;若体积不变,加压加入不参加此化学反应的气体反应速率就不变;因为浓度不变,单位体积内活化分子数就不变;但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加;温度:只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大主要原因;当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快次要原因催化剂:使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之;浓度:当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 ;其他因素:增大一定量固体的表面积如粉碎,可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响;溶剂对反应速度的影响在均相反应中,溶液的反应远比气相反应多得多有人粗略估计有90%以上均相反应是在溶液中进行的;但研究溶液中反应的动力学要考虑溶剂分子所起的物理的或化学的影响,另外在溶液中有离子参加的反应常常是瞬间完成的,这也造成了观测动力学数据的困难;最简单的情况是溶剂仅引起介质作用的情况;在溶液中起反应的分子要通过扩散穿周围的溶剂分子之后,才能彼此接触,反应后生成物分子也要穿国周围的溶剂分子通过扩散而离开;扩散——就是对周围溶剂分子的反复挤撞,从微观角度,可以把周围溶剂分子看成是形成了一个笼,而反应分子则处于笼中;分子在笼中持续时间比气体分子互相碰撞的持续时间大10-100倍,这相当于它在笼中可以经历反复的多次碰撞;笼效应——就是指反应分子在溶剂分子形成的笼中进行多次的碰撞或振动;这种连续反复碰撞则称为一次偶遇,所以溶剂分子的存在虽然限制了反应分子作远距离的移动,减少了与远距离分子的碰撞机会,但却增加了近距离分子的重复碰撞;总的碰撞频率并未减低;据粗略估计,在水溶液中,对于一对无相互作用的分子,在依次偶遇中它们在笼中的时间约为10-12-10-11s,在这段时间内大约要进行100-1000次的碰撞;然后偶尔有机会跃出这个笼子,扩散到别处,又进入另一个笼中;可见溶液中分子的碰撞与气体中分子的碰撞不同,后者的碰撞是连续进行的,而前者则是分批进行的,一次偶遇相当于一批碰撞,它包含着多次的碰撞;而就单位时间内的总碰撞次数而论,大致相同,不会有商量级上的变化;所以溶剂的存在不会使活化分子减少;A和B发生反应必须通过扩散进入同一笼中,反应物分子通过溶剂分子所构成的笼所需要的活化能一般不会超过20kJ·mol-1,而分子碰撞进行反应的活化能一般子40 -400kJ·mol-1之间;由于扩散作用的活化能小得多,所以扩散作用一般不会影响反应的速率;但也有不少反应它的活化能很小,例如自由基的复合反应,水溶液中的离子反应等;则反应速率取决于分子的扩散速度,即与它在笼中时间成正比;从以上的讨论可以看出,如果溶剂分子与反应分子没有显着的作用,则一般说来碰撞理论对溶液中的反应也是适用的,并且对于同一反应无论在气相中或在溶液中进行,其概率因素P和活化能都大体具有同样的数量级,因而反应速率也大体相同;但是也有一些反应,溶剂对反应有显着的影响;例如某些平行反应,常可借助溶剂的选择使得其中一种反应的速率变得较快,使某种产品的数量增多;溶剂对反应速率的影响是一个极其复杂的问题,一般说来:1溶剂的介电常数对于有离子参加的反应有影响;因为溶剂的介电常数越大,离子间的引力越弱,所以介电常数比较大的溶剂常不利与离子间的化合反应;2溶剂的极性对反应速率的影响;如果生成物的极性比反应物大,则在极性溶剂中反应速率比较大;反之,如反应物的极性比生成物大,则在极性溶剂中的反应速率必变小;3溶剂化的影响,一般说来;作用物与生成物在溶液中都能或多或少的形成溶剂化物;这些溶剂化物若与任一种反应分子生成不稳定的中间化合物而使活化能降低,则可以使反应速率加快;如果溶剂分子与作用物生成比较稳定的化合物,则一般常能使活化能增高,而减慢反应速率;如果活化络合物溶剂化后的能量降低,因而降低了活化能,就会使反应速率加快;4离子强度的影响也称为原盐效应;在稀溶液中如果作用物都是电介质,则反应的速率与溶液的离子强度有关;也就是说第三种电解质的存在对于反应速率有影响.。

高考化学专题复习——化学反应速率与化学平衡

高考化学专题复习——化学反应速率与化学平衡

化学反应速率化学平衡两个问题:第一、化学反应进行的快慢即化学反应速率问题;第二、化学反应进行的程度即化学平衡问题一、化学反应速率1.表示方法(1)概念:化学反应速率通常用单位时间内反应物浓度的减小或生成物浓度的增加来表示(2)公式:v=△c/△t单位:mol/(L·s)或mol/(L·min)(3)注意事项:①由于反应过程中,随着反应的进行,物质的浓度不断地发生变化(有时温度等也可能变化),因此在不同时间内的反应速率是不同的。

通常我们所指的反应速率是指平均速率而非瞬时速率。

②同一化学反应的速率可以用不同物质浓度的变化来表示,其数值不一定相同,但其意义相同。

其数值之比等于化学计量数之比。

对于反应:m A+n B p C+q DV A∶V B∶V C∶V D=m∶n∶p∶q③一般不能用固体物质表示。

④对于没有达到化学平衡状态的可逆反应:v正≠v逆[例1]某温度时,2L容器中X、Y、Z三种物质的量随时间的变化如图所示。

由图中数据分析,该反应的化学方程式为___3X + Y2Z___;反应开始至2min ,Z的平均反应速率为___0.05 mol/(L·min)__。

[例2]在2A + B = 3C + 4D的反应中, 下列表示该反应的化学反应速率最快的是(B )A. V(A) = 0.5 mol/(L·s)B. V(B) = 0.3 mol/(L·s)C. V(C) = 0.8 mol/(L·s)D. V(D) = 1 mol/(L·s)练习1反应4A(S)+3B(g)==2C(g)+D(g),经2min,B的浓度减少了0.6mol/L.。

此反应速率的表示正确的是()A.用A表示的反应速率是0.4mol/L·minB.用C表示的速率是0.2mol/L·minC.在2 min末的反应速率,用B表示是0.3mol/L·minD.在2 min内用B和C表示的反应速率的值都是逐渐减少的。

【精品整理】化学反应速率与化学平衡

【精品整理】化学反应速率与化学平衡

化学反应速率、化学平衡(一)化学反应速率1.定义:化学反应速率是用来衡量化学反应进行快慢程度的,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示。

单位:mol/(L·min)或mol/(L·s) v=△c·△t2.规律:同一反应里用不同物质来表示的反应速率数值可以是不同的,但这些数值,都表示同一反应速率。

且不同物质的速率比值等于其化学方程式中的化学计量数之比。

如反应mA+nB=pC+qD 的v(A):v(B):v(C):v(D)=m:n:p:q3.影响反应速率的因素内因:参加反应的物质的结构和性质是影响化学反应速率的决定性因素。

例如H2、F2混合后,黑暗处都发生爆炸反应,化学反应速率极快,是不可逆反应。

而H2、N2在高温、高压和催化剂存在下才能发生反应,化学反应速率较慢,由于是可逆反应,反应不能进行到底。

外因:①浓度:当其他条件不变时,增大反应物的浓度,单位体积发生反应的分子数增加,反应速率加快。

②压强:对于有气体参加的反应,当其他条件不变时,增加压强,气体体积缩小,浓度增大,反应速率加快。

③温度:升高温度时,分子运动速率加快,有效碰撞次数增加,反应速率加快,一般来说,温度每升高10℃反应速率增大到原来的2~4倍。

④催化剂:可以同等程度增大逆反应速率。

⑤其他因素:增大固体表面积(粉碎),光照也可增大某些反应的速率,此外,超声波、电磁波、溶剂也对反应速率有影响。

【注意】:①改变外界条件时,若正反应速率增大,逆反应速率也一定增大,增大的倍数可能不同,但不可能正反应速率增大,逆反应速率减小。

②固体、纯液体浓度视为常数,不能用其表示反应速率,它们的量的变化不会引起反应速率的变化,但其颗粒的大小可影响反应速率。

③增大压强或浓度,是增大了分子之间的碰撞几率,因此增大了化学反应速率;升高温度或使用催化剂,提高了活化分子百分数,增大了有效碰撞次数,使反应速率增大。

(二)化学平衡1.化学平衡状态:指在一定条件下的可逆反应里,正反应和逆反应的速率相等,反应混合物中各组分的浓度不变的状态。

第七章 化学反应速率和化学平衡第三节 化学平衡移动、化学反应的方向

第七章  化学反应速率和化学平衡第三节  化学平衡移动、化学反应的方向



4.反应的________是制约化学反应能 否自发进行的因素之一,除热效应外, 决定化学反应能否自发进行的另一个因 素是________,也就是熵变。熵变和 焓变是影响化学反应能否自发进行的因 素但不是________因素。因此要判断 化学反应能否自发进行要综合考虑这两 个方面的因素。 5.有些条件下,判断反应能否自发进行, 除了要考虑焓变和熵变之外还要考虑 ________。当ΔH<0,ΔS<0或ΔH>0、 ΔS>0,反应能否自发进行要考虑

(2008·江苏南通5月)根据下列有关图像, 说法正确的是 ( )




A.由图Ⅰ知,反应在T1、T3处达到平衡, 且该反应的ΔH<0 B.由图Ⅱ知,反应在t6时刻,NH3体积 分数最大 C.由图Ⅱ知,t3时采取降低反应体系压 强的措施 D.图Ⅲ表示在10 L容器、850°C时的 反应,由图知,到4 min时,反应放出 51.6 kJ的热量

5.(2009·合肥模拟)在密闭容器中通入 A、B两种气体,在一定条件下反应: 2A(g)+B(g)2C(g) ΔH<0;达 到平衡后,改变一个条件(X),下列量(Y) 的变化一定符合图中曲线的是 Y (X ) 再加入 B的转化 A B 率 再加入 A的体积 B C 分数 增大压 A的转化 C

3.结合典型题目的分析解答,掌握典型 题目解题方法思路,平衡图象题的分析 方法思路(看懂图象、联想规律、作出判 断)。



一、影响平衡移动的外界条件 1.浓度:在其他条件不变时, ________或________,平衡正向移 动;________或________,平衡逆 向移动。 2.压强:对于________的可逆反应, 在其他条件不变时,增大压强,平衡向 ________的方向移动;减小压强,平 衡向________的方向移动。 对于________的可逆反应,在其他条

化学平衡与反应速率

化学平衡与反应速率

化学平衡与反应速率在化学反应过程中,平衡态和反应速率是两个重要的概念。

平衡态指的是当化学反应达到动态平衡时,反应物和生成物之间的浓度保持不变。

反应速率则描述了化学反应中物质的转化速度。

本文将分析化学平衡与反应速率的关系,并探究各种因素对反应速率的影响。

一、化学平衡化学反应在达到平衡态时,反应物的浓度和生成物的浓度保持恒定。

平衡态是一个动态的概念,指的是反应物和生成物之间的反应速率相等,且反应物和生成物的浓度相对稳定。

平衡态的建立是由于反应物的生成速率和消失速率之间达到平衡。

平衡反应的特点:1. 反应物和生成物浓度保持不变;2. 正向反应和逆向反应同时存在;3. 正向反应和逆向反应速率相等。

达到平衡态的条件:1. 反应系统关闭,不再有物质的输入或输出;2. 反应处于封闭系统中;3. 温度、浓度和压力保持不变。

二、反应速率反应速率指的是单位时间内发生反应的物质转化量。

反应速率可以通过观察反应物浓度变化的快慢来确定。

反应速率受到以下因素的影响:1. 温度:提高温度会增加反应物的动能,使分子碰撞频率增加,从而增加反应速率;2. 浓度:提高反应物浓度会增加分子碰撞的频率,从而提高反应速率;3. 压力:对于气相反应,增加压力会使分子碰撞的频率增加,从而提高反应速率;4. 催化剂:催化剂可以提供反应物之间的反应路径,降低活化能,从而提高反应速率。

三、平衡与反应速率的关系化学平衡是指反应物和生成物的浓度在一定时间内保持不变,而反应速率则指的是反应物和生成物之间的转化速度。

平衡态的建立是由于反应物和生成物的反应速率相等。

在反应过程中,当反应速率达到最大值时,即平衡态建立。

平衡态的建立是由于正向反应和逆向反应的速率相等,即正向反应和逆向反应同时进行,使得反应物和生成物的浓度保持不变。

化学反应在达到平衡后,并不停止,而是在正向反应和逆向反应之间持续进行。

平衡并不意味着反应停止,而是反应速率达到了动态平衡。

总结:化学平衡与反应速率是相关但又不同的概念。

化学平衡和化学反应速率

化学平衡和化学反应速率

化学平衡和化学反应速率化学平衡和化学反应速率是化学领域中两个重要概念。

化学平衡是指当反应物与生成物之间的物质的摩尔比例达到一个稳定状态时发生的现象。

化学反应速率则描述了化学反应进行的快慢程度。

本文将探讨化学平衡和化学反应速率的定义、影响因素以及它们之间的关系。

一、化学平衡1. 定义化学平衡是指在封闭系统中,反应物与生成物之间的物质的摩尔比例达到稳定状态时发生的现象。

在化学平衡状态下,反应物和生成物之间的摩尔比例不再发生变化,反应速率正反两个方向相等。

2. 影响因素化学平衡的达成受到多种因素的影响,包括温度、压力和浓度。

增加温度会导致化学反应速率加快,但平衡状态的位置不会改变。

提高压力会使平衡位置向摩尔数较少的一侧移动。

浓度的改变也会影响平衡位置,增加反应物浓度会使平衡位置向生成物一侧移动。

3. 平衡常数平衡常数是描述化学平衡状态中反应物和生成物之间的摩尔比例的数值。

它的大小决定了平衡状态向反应物或生成物偏移的程度。

平衡常数越大,表示生成物的浓度越高;平衡常数越小,表示反应物的浓度越高。

平衡常数的计算需要考虑反应方程式中各物质的摩尔系数。

二、化学反应速率1. 定义化学反应速率是指单位时间内发生的化学反应的进程。

它描述了化学反应进行的快慢程度。

2. 影响因素化学反应速率受到多种因素的影响,包括温度、浓度、催化剂和表面积。

增加温度会导致分子的碰撞频率增加,从而提高反应速率。

提高浓度会增加反应物分子之间的碰撞频率,同样会加快反应速率。

催化剂可以降低反应物分子之间的碰撞能量,从而加快反应速率。

增大反应物的表面积可以提高反应物分子之间的碰撞频率,从而加快反应速率。

3. 反应速率表达式化学反应速率可以用反应物浓度的变化情况来表达。

一般情况下,反应速率与反应物浓度之间存在一定的关系,可以用以下公式表示:速率 = k[A]^m[B]^n其中,速率表示反应物消耗或生成的速率,[A]和[B]分别表示反应物A和B的浓度,k表示反应速率常数,m和n表示反应物A和B的反应级数。

高中化学奥林匹克竞赛辅导讲座:第7讲《化学反应速率与化学平衡》.

高中化学奥林匹克竞赛辅导讲座:第7讲《化学反应速率与化学平衡》.

高中化学奥林匹克竞赛辅导讲座第7讲 化学反应速率与化学平衡【竞赛要求】反应速率基本概念。

反应级数。

用实验数据推求反应级数。

一级反应积分式及有关计算(速率常数、半衰期、碳-14法推断年代等等)。

阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度对速率常数影响的计算等)。

活化能与反应热的关系。

反应机理一般概念。

推求速率方程。

催化剂对反应影响的本质。

标准自由能与标准平衡常数。

平衡常数与温度的关系。

平衡常数与转化率。

利用平衡常数的计算。

热力学分解温度(标态与非标态)。

克拉贝龙方程及其应用(不要求微积分)。

【知识梳理】 一、化学反应速率(一)反应速率及其表示方法在化学反应中,某物质的浓度(物质的量浓度)随时间的变化率称反应速率。

反应速率只能为正值,且并非矢量。

1、平均速率用单位时间内,反应物浓度的减少或生成物浓度的增加来表示。

υ= tc∆∆±(7-1) 当△c 为反应物浓度的变化时,取负号;△c 为生成物浓度的变化时,取正号。

如:2 N 2O 5 → 4 NO 2 + O 2反应前浓度/ mol ·dm-3 2.10 0 0100s 后浓度/ mol ·dm-31.95 0.30 0.075浓度变化(△c)/ mol ·dm-3– 0.15 0.30 0.075变化所需时间 (△t)/s 100υ52O N = –t c O N ∆∆52= –10015.0-= 1.5×10-3 mol ·dm -3·s -1υ2NO = t c NO ∆∆2= 10030.0= 3.0×10-3 mol ·dm -3·s -1υ2O = t c O ∆∆2= 100075.0= 7.5×10-4mol ·dm -3·s -1显然,以上计算所得的反应速率是在时间间隔为△t 时的平均速率,他们只能描述在一定时间间隔内反应速率的大致情况。

高考化学大一轮复习 考点07 化学反应速率与化学平衡(含解析,考点定位及命题意图)

高考化学大一轮复习 考点07 化学反应速率与化学平衡(含解析,考点定位及命题意图)

考点7 化学反应速率与化学平衡1.(2013·上海化学·20)某恒温密闭容器中,可逆反应A(s) B+C(g)-Q 达到平衡。

缩小容器体积,重新达到平衡时,C(g)的浓度与缩小体积前的平衡浓度相等。

以下分析正确的是A.产物B 的状态只能为固态或液态B.平衡时,单位时间内n(A)消耗﹕n(C)消耗=1﹕1C.保持体积不变,向平衡体系中加入B ,平衡可能向逆反应方向移动D.若开始时向容器中加入1molB 和1molC ,达到平衡时放出热量Q【答案】AB【解析】若B 是气体,平衡常数K=c(B)·c(C),若B 是非气体,平衡常数K=c(C),由于C(g)的浓度不变,因此B 是非气体,A 正确,C 错误,根据平衡的v (正)=v (逆)可知B 正确(注意,不是浓度消耗相等);由于反应是可逆反应,因此达到平衡时放出热量小于Q ,D 项错误。

【考点定位】本题考查化学平衡、可逆反应的含义。

2.(2013·北京理综·11)下列实验事实不能用平衡移动原理解释的是【答案】C【解析】A 、存在平衡 2242NO N O ,升高温度平衡向生成NO2方向移动,故正确;B 、水的电离是可逆过程,升高温度Kw 增大,促进水的电离,故B 正确;C 、催化剂不能影响平衡移动,故C 错误;D 、弱电解质电离存在平衡,浓度越稀,电离程度越大,促进电离,但离子浓度降低,故氨水的浓度越稀,pH 值越小,故D 正确。

3.(2013·四川理综化学·6)在一定温度下,将气体X 和气体Y 各0.16mol 充入10L 恒容密闭容器中,发生反应X(g)+Y(g) 2Z(g) △H < 0, 一段时间后达到平衡,反应过程中测定的数据如下表:下列说法正确的是A.反应前2min 的平均速率ν(Z)=2.0×10-3mol ·L -1·min -1B.其他条件不变,降低温度,反应达到新平衡前ν(逆)> ν(正)C.该温度下此反应的平衡常数K=1.44D. 其他条件不变,再充入0.2molZ ,平衡时X 的体积分数增大【答案】C解析:A. Y 的反应速率为v(Y)=(0.16-0.12)mol/(10L*2mim)=2.0×10-3 mol ·L -1·min -1,v (Z)=2v (Y)=4.0×10-3 mol ·L -1·min -1。

高中化学高考总复习 第二部分 化学基本理论 专题七 化学反应速率和化学平衡

高中化学高考总复习 第二部分 化学基本理论 专题七 化学反应速率和化学平衡
高考化学
专题七 化学反应速率和化学平衡
基础知识 一、化学反应速率
考点清单
考点一 化学反应速率
二、影响化学反应速率的因素 (1)内因:反应物本身的性质。 (2)外因:
影响因素 浓度 压强(有气体参加的反应) 温度 使用催化剂
增大反应物的浓度 减小反应物的浓度 增大压强 减小压强 升高温度 降低温度
例1 (2019安徽铜陵一中月考,3)某密闭容器中充入等物质的量的气体A 和B,一定温度下发生反应:A(g)+xB(g) 2C(g),达到平衡后,只改变反应 的一个条件,测得容器中物质的浓度、反应速率随时间变化如图所示。下 列说法中正确的是( )
A.8 min时表示正反应速率等于逆反应速率 B.前20 min A的反应速率为1.00 mol/(L·min ) C.反应方程式中的x=1,30 min时表示增大压强 D.40 min时改变的条件是升高温度,且正反应为放热反应
(3)质量分数—时间图像
特点:表示不同条件下反应速率的快慢以及平衡混合物中D的质量分数大小。 解题方法是“先拐先平数值大”,即曲线先拐的首先达到平衡,反应速率快,以 此判断温度或压强的高低,再依据外界条件对平衡的影响进行分析。 2.一般解题思路——“四看” 一看面:即看清坐标所代表的意义。 二看线:看准线的走向、变化趋势及量的变化(需作辅助线、等温线、等压线 等)。 三看点:弄懂曲线上点的意义,特别是一些特殊点(如起点、交点、转折点、极 值点等)。 四看量:看横坐标和纵坐标所表示的物理量的变化。
特点:表示两个外界条件同时变化时,A的平衡转化率的变化规律。解决这 类图像题,采用“定一议二法”,即把自变量(温度、压强)之一设为恒量,讨 论另外两个变量的关系。
特点:曲线上的点表示平衡状态,而X、Y点未达平衡状态,使反应由X点达到平 衡状态,反应需向B的百分含量减小的方向进行;要使反应由Y点达到平衡状态 ,反应需向B的百分含量增大的方向进行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1高中化学奥林匹克竞赛辅导讲座第7讲 化学反应速率与化学平衡【竞赛要求】反应速率基本概念。

反应级数。

用实验数据推求反应级数。

一级反应积分式及有关计算(速率常数、半衰期、碳-14法推断年代等等)。

阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度对速率常数影响的计算等)。

活化能与反应热的关系。

反应机理一般概念。

推求速率方程。

催化剂对反应影响的本质。

标准自由能与标准平衡常数。

平衡常数与温度的关系。

平衡常数与转化率。

利用平衡常数的计算。

热力学分解温度(标态与非标态)。

克拉贝龙方程及其应用(不要求微积分)。

【知识梳理】 一、化学反应速率(一)反应速率及其表示方法在化学反应中,某物质的浓度(物质的量浓度)随时间的变化率称反应速率。

反应速率只能为正值,且并非矢量。

1、平均速率用单位时间内,反应物浓度的减少或生成物浓度的增加来表示。

υ= tc∆∆±(7-1) 当△c 为反应物浓度的变化时,取负号;△c 为生成物浓度的变化时,取正号。

如: 2 N 2O 5 → 4 NO 2 + O 2反应前浓度/ mol ·dm-3 2.10 0 0 100s 后浓度/ mol ·dm-31.95 0.30 0.075浓度变化(△c)/ mol ·dm-3– 0.15 0.30 0.075变化所需时间 (△t)/s 100υ52O N = –t c O N ∆∆52= –10015.0-= 1.5×10-3 mol ·dm -3·s -1υ2NO =tc NO ∆∆2=10030.0= 3.0×10-3 mol ·dm -3·s -1υ2O =tc O ∆∆2=100075.0= 7.5×10-4mol ·dm -3·s -12时间间隔内反应速率的大致情况。

2、瞬时速率若将观察的时间间隔△t 缩短,它的极限是△t →0,此时的速率即为某一时刻的真实速率—— 瞬时速率:对于下面的反应来说,a A+ b B = g G+ h H 其反应速率可用下列任一表示方法表示:–dt dc A ,– dt dc B ,dt dc G ,dtdcH 注意:这几种速率表示法不全相等,但有下列关系:–a 1·dt dc A = –b 1·dt dc B = g 1·dt dc G = h 1·dtdc H (7-3)瞬时速率可用实验作图法求得。

即将已知浓度的反应物混合,在指定温度下,每隔一定时间,连续取样分析某一物质的浓度,然后以c – t 作图。

求某一时刻时曲线的斜率,即得该时刻的瞬时速率。

(二)反应速率理论简介1、碰撞理论化学反应的发生,总要以反应物之间的接触为前提,即反应物分子之间的碰撞是先决条件。

没有粒子间的碰撞,反应的进行则无从说起。

看如下计算数据。

有反应:2HI (g )→ H 2(g )+ I 2(g ) 反应物浓度:10-3mol ·dm -3(不浓)反应温度:973 K计算结果表明,每s 每dm 3的体积内,碰撞总次数为:3.5×1028次 计算反应速率为:υ= 3.5×1028/6.02×1023 = 5.8×104 mol ·dm -3·s -1实际反应速率为:1.2×10-6mol ·dm -3·s -1相差甚远,原因何在? (1)有效碰撞看来,并非每一次碰撞都发生预期的反应,只有非常少非常少的碰撞是有效的。

首先,分子无限接近时,要克服斥力,这就要求分子具有足够的运动速度,即能量。

具备足够的能量是有效碰撞的必要条件。

一组碰撞的反应物的分子的总能量必须具备一个最低的能量值,这种能量分布符合从前所讲的分布原则。

用 E 表示这种能量限制,则具备 E 和 E 以上的分子组的△t →0 υ瞬时 = lim (±t c ∆∆)= ±dt dc (7-2)3RTE ef -= (7-4)其次,仅具有足够能量尚不充分,分子有构型,所以碰撞方向还会有所不同,如反应: NO 2+ CO = NO + CO 2 的碰撞方式有:显然,(a) 种碰接有利于反应的进行,(b) 种以及许多其它碰撞方式都是无效的。

取向适合的次数占总碰撞次数的分数用 p 表示。

若单位时间内,单位体积中碰撞的总次数为 Z mol ,则反应速率可表示为:υ= Z p f (7-5)其中 ,p 称为取向因子,f 称为能量因子。

或写成:υ = Z p RTE e - (7-6)(2)活化能和活化分子组将具备足够能量(碰撞后足以反应)的反应物分子组,称为活化分子组。

从(7-6)式可以看出,分子组的能量要求越高,活化分子组的数量越少。

这种能量要求称之为活化能,用 Ea 表示。

Ea 在碰撞理论中,认为和温度无关。

Ea 越大,活化分子组数则越少,有效碰撞分数越小,故反应速率越慢。

不同类型的反应,活化能差别很大。

如反应: 2SO 2 + O 2 = 2SO 3 Ea = 251 kJ ·mol -1N 2 + H 2 = 2NH 3 Ea = 175.5 kJ ·mol -1而中和反应:HCl + NaOH = NaCl + H 2O Ea ≈ 20 kJ ·mol -1分子不断碰撞,能量不断转移,因此,分子的能量不断变化,故活化分子组也不是固定不变的。

但只要温度一定,活化分子组的百分数是固定的。

2、过渡状态理论 (1)活化络合物当反应物分子接近到一定程度时,分子的键连关系将发生变化,形成一中间过渡状态,以NO 2+ CO = NO + CO 2 为例:称活化络合物。

活化络合物能量高,不稳定。

它既可以进一步发展,成为产物;也可以变成原来的反应物。

于是,反应速率决定于活化络合物的浓度,活化络合物分解成产物的几率和分解成产物的速率。

过渡态理论,将反应中涉及到的物质的微观结构和反应速率结合起来,这是比碰撞理论先进的一面。

然而,在该理论中,许多反应的活化络合物的结构尚无法从实验上加以确定,加上计算方法过于复杂,致使这一理论的应用受到限制。

(2)反应进程—势能图应用过渡态理论讨论化学反应时,可将反应过程中体系势能变化情况表示在反应进程—势能图上。

NO2 + CO = NO + CO2为例:以A 反应物的平均能量;B 活化络合物的能量;C 产物的平均能量反应进程可概括为:(a)反应物体系能量升高,吸收Ea;(b)反应物分子接近,形成活化络合物;(c)活化络合物分解成产物,释放能量Ea’。

可看作正反应的活化能,是一差值;Ea’为逆反应的活化能。

Ea所以,△r H = △r H1 + △r H2 = Ea-Ea’若Ea > Ea’,△r H> 0,吸热反应;若Ea < Ea’,△r H < 0,放热反应。

△r H是热力学数据,说明反应的可能性;但Ea是决定反应速率的活化能,是现实性问4在过渡态理论中,Ea和温度的关系较为明显,T升高,反应物平均能量升高,差值Ea要变小些。

(三)影响化学反应速率的因素影响化学反应速率的因素很多,除主要取决于反应物的性质外,外界因素也对反应速率有重要作用,如浓度、温度、压力及催化剂等。

1、浓度对反应速率的影响(1)基元反应和非基元反应基元反应:能代表反应机理、由反应物微粒(可以是分子、原子、离子或自由基)一步直接实现的化学反应,称为基元步骤或基元反应。

非基元反应:由反应物微粒经过两步或两步以上才能完成的化学反应,称为非基元反应。

在非基元反应中,由一个以上基元步骤构成的反应称为非基元反应或复杂反应。

如复杂反应H2 + Cl2 = 2HCl由几个基元步骤构成,它代表了该链反应的机理:Cl2 + M →2Cl·+ MCl·+ H2→HCl + H·H·+ Cl2→HCl + Cl·2Cl·+ M →Cl2 + M式中M表示只参加反应物微粒碰撞而不参加反应的其他分子,如器壁,它只起转移能量的作用。

(2)反应分子数在基元步骤中,发生反应所需的最少分子数目称为反应分子数。

根据反应分子数可将反应区分为单分子反应、双分子反应和三分子反应三种,如:单分子反应CH3COCH3 →CH4 + CO + H2双分子反应CH3COOH + C2H5OH →CH3COOC2H5 + H2O三分子反应H2 + 2I·→2HI反应分子数不可能为零或负数、分数,只能为正整数,且只有上面三种数值,从理论上分析,四分子或四分子以上的反应几乎是不可能存在的。

反应分子数是理论上认定的微观量。

(3)速率方程和速率常数大量实验表明,在一定温度下,增大反应物的浓度能够增加反应速率。

那么反应速率与反应物浓度之间存在着何种定量关系呢?人们在总结大量实验结果的基础上,提出了质量作用定律:在恒温下,基元反应的速率与各种反应物浓度以反应分子数为乘幂的乘积成正比。

对于一般反应(这里指基元反应)a A +b B →g G + h H56υ= k ·c a A )(·c b B )( (7-7)称为该反应的速率方程。

式中k 为速率常数,其意义是当各反应物浓度为1 mol ·dm -3时的反应速率。

对于速率常数k ,应注意以下几点:①速率常数k 取决反应的本性。

当其他条件相同时快反应通常有较大的速率常数,k 小的反应在相同的条件下反应速率较慢。

②速率常数k 与浓度无关。

③k 随温度而变化,温度升高,k 值通常增大。

④k 是有单位的量,k 的单位随反应级数的不同而异。

前面提到,可以用任一反应物或产物浓度的变化来表示同一反应的速率。

此时速率常数k 的值不一定相同。

例如:2NO + O 2 = 2NO 2其速率方程可写成:υ)(NO = – dtdc NO )( = k 1·c 2)(NO ·c )(2O υ)(2O = –dt dc O )(2 = k 2·c 2)(NO ·c )(2O υ)(2NO =dtdc NO )(2 = k 3·c 2)(NO ·c )(2O由于 –21dt dc NO )( = dt dc O )(2 = 21dt dc NO )(2 则 21k 1 = k 2 = 21k 3对于一般的化学反应ak A )( =bk B )( =gk G )( =hk H )( (7-8)确定速率方程时必须特别注意,质量作用定律仅适用于一步完成的反应——基元反应,而不适用于几个基元反应组成的总反应——非基元反应。

相关文档
最新文档