高中物理高三物理PPT课件光的折射和全反射

合集下载

第十三章第1讲光的折射全反射-2025年高考物理一轮复习PPT课件

第十三章第1讲光的折射全反射-2025年高考物理一轮复习PPT课件
高考一轮总复习•物理
第1页
第十三章 光 电磁波 相对论
第1讲 光的折射 全反射
高考一轮总复习•物理
第2页
素养目标 1.了解光的折射和全反射现象.(物理观念) 2.了解折射率的概念和折射定 律.(物理观念) 3.知道光的色散的成因及各种色光的比较.(物理观念) 4.分析光的折射和 全反射问题的一般思路.(科学思维)
高考一轮总复习•物理
第30页
解析:(1)光在透明体中反射两次后垂直于 B 端面射出时,光路图如图甲所示,根据对 称性,光每次反射的入射角相同,都为 θ=45°.光传播的路程为 4Rcos θ,光在介质中的速度 v=nc,可以求出光在透明体中的运动时间 t=2 2cnR.
高考一轮总复习•物理
第31页
高考一轮总复习•物理
解析:由题意作出光路图如图所示
第19页
光线垂直于 BC 方向射入,根据几何关系可知入射角为 45°,由于棱镜折射率为 2,根 据 n=ssiinn ri,有 sin r=12,则折射角为 30°
∠BMO=60°,因为∠B=45°,所以光在 BC 面的入射角为 θ=90°-(180°-60°-45°) =15°
高考一轮总复习•物理
第26页
典例 2 (2023·湖南卷)(多选)一位潜水爱好者在水下活动时,利用激光器向岸上救援 人员发射激光信号,设激光光束与水面的夹角为 α,如图 所示.他发现只有当 α 大于 41°时,岸上救援人员才能收 到他发出的激光光束,下列说法正确的是( )
A.水的折射率为sin141° B.水的折射率为sin149° C.当他以 α=60°向水面发射激光时,岸上救援人员接收激光光束的方向与水面夹角 小于 60° D.当他以 α=60°向水面发射激光时,岸上救援人员接收激光光束的方向与水面夹角 大于 60°

高中物理【光的折射 全反射】课件

高中物理【光的折射 全反射】课件
栏目 导引
第二章 光
3.折射率 (1)定义:光从真空射入某种介质发生折 射时,入射角的正弦与折射角的正弦之 比,叫做这种介质的绝对折射率,简称 折射率.
sinθ1 (2)表达式:n=____si_n_θ_2______.
栏目 导引
第二章 光
(3)物理意义 折射率是表示光线从一种介质进入另一 种介质时,发生_偏__折___程度的物理量, 与入射角θ1及折射角θ2大小__无__关.
图2-1-11
栏目 导引
第二章 光
【解析】 设入射角为 i,折射角为 r, 由折射定律得 ssiinnri=n① 由已知条件及①式得 r=30°②
栏目 导引
第二章 光
如果入射光线在法线的右侧,光路图如
图 2-1-12 所示.设出射点为 F,由
几何关系可得
AF=38a③
图2-1-12
即出射点在 AB 边上离 A 点38a 的位置.
栏目 导引
第二章 光
2.折射率大小不仅反映了介质对光的 折射本领,也反映了光在介质中传播速 度的大小 v=nc.
栏目 导引
第二章 光
3.折射率的大小不仅与介质本身有关, 还与折射光的频率有关:同一种介质, 对频率大的光折射率大,对频率小的光 折射率小. 4.同一种色光,在不同介质中虽然波 速、波长不同,但频率不变.
第二章 光
第一节 光的折射 全反射
栏目 导引
第二章 光
基础梳理自学导引
一、光的折射与折射率 1.折射 光从一种介质斜射进入另一种介质时 传播方向改变的现象.
栏目 导引
2.折射定律(如图2-1-1)
第二章 光
图2-1-1
栏目 导引
第二章 光
(1) 内 容 : 折 射 光 线 与 入 射 光 线 、 法 线 处 在同一平面内,折射光线与入射光线分别 位于法线的两侧;入射角的正弦与折射角 的正弦成___正__比___. (2)表达式:ssiinnθθ12=n12,式中 n12 是比例常数.

高考物理光学ppt课件

高考物理光学ppt课件

折射现象
折射率与光速的关系
不同介质中光速不同,折射率与光速 成反比。
光从一种介质斜射入另一种介质时, 传播方向发生改变的现象,如棱镜分 光、透镜成像等。
2024/1/25
9
全反射与临界角
全反射现象
当光从光密介质射入光疏介质时,如果入射角大于或等于某一特定 角度(临界角),则光线完全反射回原介质,不再进入光疏介质。
2024/1/25
22
06 高考物理光学备考策略
2024/1/25
23
熟悉考纲要求和考试形式
2024/1/25
01
仔细阅读并理解高考物理考纲中 光学部分的要求,明确考试形式 和评分标准。
02
了解历年高考物理光学试题的命 题规律和难易程度,为备考制定 合理的复习计划。
24
系统复习光学基础知识
熟练掌握几何光学的 基本概念和规律,如 光的反射、折射、全 反射等。
27
THANKS FOR WATCHING
感谢您的观看
2024/1/25
28
全反射现象
当光从光密介质射入光疏介质时,如果入射角大于或等于临界角,就会 发生全反射现象。
20
考点二:透镜成像原理及应用
透镜的分类及特点
凸透镜和凹透镜的形状、光学性质及其成像特点 。
透镜成像规律
物体在透镜的不同位置时,成像的位置、大小和 倒正情况。
透镜的应用
了解透镜在日常生活、生产和科研中的应用,如 照相机、投影仪、放大镜等。
2024/1/25
15
光的干涉现象及应用
双缝干涉
光通过两个小缝后,在屏幕上产 生明暗相间的干涉条纹,用于测
量光的波长。
薄膜干涉

物理高考复习第1讲-光的折射-全反射课件

物理高考复习第1讲-光的折射-全反射课件
3.临界角:折射角等于90°时的入射角。若光从光密介质(折射率为n)射向真空或 1
空气时,发生全反射的临界角为C,则sin C=__n__。介质的折射率越大,发生
全反射的临界角越_小___。
4.光导纤维 光导纤维的原理是利用光的_全__反__射___,如图3所示。
图3
【自测2】 (多选)光从介质a射向介质b,如果要在a、b介质的分界面上发生全反
【例 1】 [2019·全国卷Ⅰ,34(2)]如图 4,一艘帆船静止在湖面上,帆船的竖 直桅杆顶端高出水面 3 m。距水面 4 m 的湖底 P 点发出的激光束,从水面 出射后恰好照射到桅杆顶端,该出射光束与竖直方向的夹角为 53°(取 sin 53° =0.8)。已知水的折射率为43。 (ⅰ)求桅杆到P点的水平距离; (ⅱ)船向左行驶一段距离后停止,调整由P点发出的激光束 图4 方向,当其与竖直方向夹角为45°时,从水面射出后仍照射 在桅杆顶端,求船行驶的距离。
解析 (1)画出光路如图 由几何关系可知,光线在 P 点的入射角 i=60°,折射角为 r=30°,则折射率 n=ssiinn ri=ssiinn 3600°°= 3。
(3)在光的折射现象中,光路是_可__逆___的。
图1
2.折射率
(1)折射率是一个反映介质的_光__学__性__质___的物理量。
(2)定义式:n=ssiinn θθ21。 (3)计算公式:n=vc,因为 v<c,所以任何介质的折射率都__大__于__1__。 (4)当光从真空(或空气)斜射入某种介质时,入射角_大__于___折射角;当光
x=7 m。⑤
【变式1】 (2021·1月江苏新高考适应性考试,2)如图5所示,一 束激光照射在横截面为正方形的透明玻璃柱上,光线与横截面

高中物理精品课件:光的折射、全反射

高中物理精品课件:光的折射、全反射

重难突破 栏目索引
2-2 (多选)如图所示是一玻璃球体,其半径为R,O为球心,AB为水平直 径。M点是玻璃球的最高点,来自B点的光线BD从D点射出,出射光线平 行于AB,已知∠ABD=30°,光在真空中的传播速度为c,则 ( )
A.此玻璃的折射率为 3 B.光线从B到D需用时 3R
c
C.该玻璃球的临界角应小于45° D.若增大∠ABD,光线不可能在DM段发生全反射现象
D正确。
重难突破 栏目索引
1-2 如图所示,某透明材料制成的半球形光学元件直立放置,其直径与 水平光屏垂直接触于M点,球心O与M间的距离为10 3 cm。一束激光与 该元件的直径成30°角射向圆心O,结果在光屏上出现间距为d=40 cm的 两个光斑,请完成光路图并求该透明材料的折射率。
重难突破 栏目索引
重难突破 栏目索引
3-2 (多选)如图,一束光沿半径方向射向一块半圆柱形玻璃砖,在玻璃 砖底面上的入射角为θ,经折射后射出a、b两束光线。则 ( )
A.在玻璃中,a光的传播速度小于b光的传播速度 B.在真空中,a光的波长小于b光的波长 C.玻璃砖对a光的折射率小于对b光的折射率 D.若改变光束的入射方向使θ角逐渐变大,则折射光线a首先消失
重难突破 栏目索引
3-1 一束白光从顶角为θ的玻璃三棱镜的一边以较大的入射角i射入并 通过三棱镜后,在屏P上可得到彩色光带,如图所示,在入射角i 逐渐减小 到零的过程中,假如屏上的彩色光带先后全部消失,则 ( )
A.红光最先消失,紫光最后消失 B.紫光最先消失,红光最后消失 C.紫光最先消失,黄光最后消失 D.红光最先消失,黄光最后消失
重难突破 栏目索引
答案 ABD
解析 从光路图看,入射角相同,a光的折射角较大,所以玻璃砖对a光的

全国通用高三物理一轮复习:14-3 光的折射与全反射-教学PPT课件

全国通用高三物理一轮复习:14-3 光的折射与全反射-教学PPT课件

第14页
高三总复习 ·物理
(2017· 课标全国Ⅱ)一直桶状容器的高 为 2l,底面是边长为 l 的正方形;容器内装满某 种透明液体,过容器中心轴 DD′、垂直于左右 两侧面的剖面图如图所示. 容器右侧内壁涂有反 光材料, 其他内壁涂有吸光材料. 在剖面的左下角处有一点光源, 已知由液体上表面的 D 点射出的两束光线相互垂直, 求该液体的 折射率.
第 3页
高三总复习 ·物理
折射率 (1)定义:光从真空射入某种介质发生折射时,入射角的正弦 与折射角的正弦之比. sinθ 1 (2)定义式:n= . sinθ 2 (3)物理意义:反映介质的光学特性,折射率越大,光从真空 射入到该介质时偏折越大. c (4)折射率与光速的关系式:n= ,因 v<c,故任何介质的折 v 射率总大于 1.
第 4页
高三总复习 ·物理
二、全反射 定义 光从光密介质射入光疏介质,当入射角增大到某一角度时, 折射光线将消失,只剩下反射光线的现象. 条件 ①光从光密介质射向光疏介质.②入射角大于等于临界角. 临界角 折射角等于 90°时的入射角 C.当光从光密介质射向真空时, 1 sinC= . n
第 5页
光线的会聚角 α 是 30°. D 2 2 设入射角为 i.由几何关系得:sini= = , R 2
【解析】
解得:i=45° sini 由折射定律有:n= , sinr 解得折射角为:r=30° α 且由几何关系有:i=r+ , 2 解得:α=30°
第11页
高三总复习 ·物理
(2017· 课标全国Ⅰ)如图,一玻璃工件的上 半部是半径为 R 的半球体,O 点为球心;下半部是 半径为 R、高为 2R 的圆柱体,圆柱体底面镀有反射 膜.有一平行于中心轴 OC 的光线从半球面射入, 该光线与 OC 之间的距离为 0.6R.已知最后从半球面射出的光线 恰好与入射光线平行(不考虑多次反射).求该玻璃的折射率.

高中物理高考 第1讲 光的折射、全反射 课件

高中物理高考 第1讲 光的折射、全反射 课件

(4)应用:①光导纤维;②全反射棱镜。
2.光的色散 (1)光的色散现象:含有多种颜色的光被分解为单色光的现象。 (2)色散规律:白光是由红、橙、黄、绿、青、蓝、紫七种色光组成的, 折射率依次增大,红光的最小,紫光的最大,当一束白光入射到棱镜界面 时,七种色光以相同的入射角射到棱镜界面,各种色光的折射角不同,红 光偏折得最小,紫光偏折得最大;当它们从另一个界面射出时,仍然是 05 _紫__ 光的偏折最大, 06 _红__光的偏折最小。
第十三章 光 电磁波
高考对光的知识的考查主要以选择题、实验题和计算题为主,试 考情 题的难度中等。高考对电磁波的考查以识记和理解为主,题型多 分析 以选择题形式出现,试题难度不大。
重要 考点
1.光的折射定律(Ⅱ) 2.折射率(Ⅰ) 3.全反射、光导纤维(Ⅰ) 4.光的干涉、衍射和偏振现象(Ⅰ) 5.电磁波的产生(Ⅰ) 6.电磁波的发射、传播和接收(Ⅰ) 7.电磁波谱(Ⅰ) 实验十四:测量玻璃的折射率
(3)在光的折射现象中,光路是 06 _可__逆___的。
3.折射率 (1)定义:光从真空射入某种介质发生折射时,07 __入__射__角___的正弦与 08 __折__射__角___的正弦之比,叫作这种介质的绝对折射率,简称折射率,用符号 n 表示。 (2)物理意义:折射率仅反映介质的 09 _光__学___特性,折射率大,说明光 线以相同入射角从真空斜射入该介质时偏折的角度大,反之偏折的角度小。 (3)定义式:n=ssiinnθθ12,不能说 n 与 sinθ1 成正比、与 sinθ2 成反比,对于 确定的某种介质而言,入射角的正弦与折射角的正弦成正比。折射率由介 质本身的光学性质和光的频率决定。
(3)光的色散现象说明 ①白光为复色光; ②同一介质对不同色光的折射率不同,频率越大的色光折射率 07 _越__大___; ③不同色光在同一介质中的传播速度不同,根据 n=vc,频率越大,折 射率越大,则波速 08 _越__小___。 (4)光的色散的种类 除光的折射时的色散,还有光的干涉时的色散、光的衍射时的色散, 详情见下一讲内容。

第52讲 光的折射 全反射

第52讲 光的折射 全反射

第52讲光的折射全反射知识点一光的折射定律折射率1.折射现象光从一种介质斜射进入另一种介质时传播方向发生改变的现象,如图所示.2.折射定律(1)内容:折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦值与折射角的正弦值成正比.(2)表达式:sinθ1sinθ2=n12,式中n12是比例常数.3.折射率(1)物理意义:折射率反映介质的光学特征,折射率大,说明光从真空射入到该介质时偏折角大,反之偏折角小.(2)定义式:n=sinθ1sinθ2,不能说n与sinθ1成正比,与sinθ2成反比.折射率由介质本身的光学性质和光的频率决定.(3)计算公式:n=cv,因v<c,故任何介质的折射率总大于1. 知识点二全反射光导纤维1.全反射(1)定义:光从光密介质射入光疏介质,当入射角增大到某一角度时,折射光线消失,只剩下反射光线的现象.(2)条件:①光从光密介质射向光疏介质.②入射角大于等于临界角.(3)临界角:折射角等于90°时的入射角.若光从光密介质(折射率为n)射向真空或空气时,发生全反射的临界角为C,则sin C=1 n.介质的折射率越大,发生全反射的临界角越小.2.光导纤维光导纤维的原理是利用光的全反射(如图).(1)光的传播方向发生改变的现象叫光的折射.(×)(2)折射率跟折射角的正弦成正比.(×)(3)入射角足够大,也不一定能发生全反射.(√)(4)若光从空气中射入水中,它的传播速度一定增大.(×)(5)已知介质对某单色光的临界角为C,则该介质的折射率等于1sin C.(√)1.(多选)一束光从空气射向折射率n=2的某种玻璃的表面,如图所示.i代表入射角,则(BCD)A.当入射角i=0°时不会发生折射现象B.无论入射角i是多大,折射角r都不会超过45°C.欲使折射角r=30°,应以i=45°的角度入射D.当入射角i=arctan2时,反射光线跟折射光线恰好互相垂直E.当入射角大于临界角时,会发生全反射解析:当入射角i=0°时,光能从空气进入玻璃,故发生了折射,解得r=现象,A错误;当入射角是90°时,根据折射定律n=sin isin r45°,所以无论入射角i是多大,折射角r都不会超过45°,B正确;,解得i=45°,故C正确;欲使折射角r=30°,根据折射定律n=sin isin r当i=arctan2,有tan i=2,设入射角为i,折射角为r,根据折射定律n=sin i=tan i,解得sin r=cos i,所以反射光线跟折射光线恰sin r好互相垂直,故D正确;光从空气射入玻璃不会发生全反射,E错误.2.(多选)如图所示是一玻璃球体,其半径为R,O为球心,AB为水平直径,M 点是玻璃球的最高点,来自B 点的光线BD 从D 点射出,出射光线平行于AB .已知∠ABD =30°,光在真空中的传播速度为c ,则( ABE )A .此玻璃的折射率为 3B .光线从B 到D 需用时3R cC .若增大∠ABD ,光线不可能在DM 段发生全反射现象D .若减小∠ABD ,从AD 段射出的光线均平行于ABE .若∠ABD =0°,则光线从A 点射出,传播方向不变,光的传播速度增大解析:由题图可知,光线在D 点的入射角为i =30°,折射角为r =60°,由折射率的定义得n =sin r sin i,故n =3,A 正确;光线在玻璃中的传播速度为v =c n =33c ,由题图知BD =3R ,所以光线从B 到D 需用时t =BD v =3R c ,B 正确;若增大∠ABD ,则光线射向DM段时入射角增大,射向M 点时入射角为45°,而临界角满足sin C =1n =33<22=sin45°,即光线可以在DM 段发生全反射现象,C 错误;要使出射光线平行于AB ,则入射角必为30°,D 错误;入射角为0°时,折射角为0°,光沿直线传播,传播速度增大,E 正确.3.在“测定玻璃的折射率”的实验中,在白纸上放好玻璃砖,aa′和bb′分别是玻璃砖与空气的两个界面,如图所示.在玻璃砖的一侧插上两枚大头针P1和P2,用“+”表示大头针的位置,然后在另一侧透过玻璃砖观察,并依次插上大头针P3和P4.在插P3和P4时,应使(C)A.P3只挡住P1的像B.P4只挡住P2的像C.P3同时挡住P1、P2的像D.P3不需要挡住P1或P2的像解析:由测定玻璃的折射率的实验过程可知,P3应挡住P1和P2的像,P4应挡住P2、P1的像和P3,以此来确定经过P1和P2的光线透过玻璃砖后的折射光线.4.“测定玻璃的折射率”实验中,在玻璃砖的一侧竖直插两个大头针A、B,在另一侧再竖直插两个大头针C、D.在插入第四个大头针D时,要使它挡住A、B的像及C.图所示是在白纸上留下的实验痕迹,其中直线a、a′是描在纸上的玻璃砖的两个边.根据该图可算得玻璃的折射率n=1.8(1.6~1.9均可).(计算结果保留两位有效数字)解析:“测定玻璃的折射率”实验是利用大头针得到入射光线,在另一侧插入大头针挡住前面的A 、B 的像来确定C ,同样插入大头针D 同时挡住A 、B 的像及C ,C 和D 确定了出射光线,利用入射点和出射点的连线来确定折射光线,作出法线FG ,连接OO ′,以O 点为圆心画圆(圆未画出),分别交AB 、OO ′于E 、Q 两点,分别过E 、Q 向GF 作垂线EG 、FQ 并用毫米刻度尺测其长度,如图所示,根据n =sin θ1sin θ2,可得n =EG FQ ≈1.8. 5.Morpho 蝴蝶的翅膀在阳光的照射下呈现出闪亮耀眼的蓝色光芒,这是因为光照射到翅膀的鳞片上发生了干涉.电子显微镜下鳞片结构的示意图如图所示.一束光以入射角i 从a 点入射,经过折射和反射后从b 点出射.设鳞片的折射率为n ,厚度为d ,两片之间空气层厚度为h .取光在空气中的速度为c ,求光从a 到b 所需的时间t .解析:设光在鳞片中的折射角为γ,根据折射定律有sin i=n sinγ在鳞片中传播的路程l1=2dcosγ传播速度v=cn,传播时间t1=l1v解得t1=2n2dc n2-sin2i同理,在空气中的传播时间t2=2hc cos i则t=t1+t2=2n2dc n2-sin2i +2h c cos i.答案:2n2dc n2-sin2i+2hc cos i知识点一折射定律与折射率的应用1.对折射率的理解(1)公式n=sinθ1sinθ2中,不论光是从真空射入介质,还是从介质射入真空,θ1总是真空中的光线与法线间的夹角,θ2总是介质中的光线与法线间的夹角.(2)折射率与入射角的大小无关,与介质的密度无关,光密介质不是指密度大的介质.(3)折射率的大小不仅与介质本身有关,还与光的频率有关.同一种介质中,频率越大的色光折射率越大,传播速度越小.(4)同一种色光,在不同介质中虽然波速、波长不同,但频率不变.2.平行玻璃砖、三棱镜和圆柱体(球)对光路的控制典例(2019·济南模拟)如图所示,某透明材料制成的半球形光学元件直立放置,其直径与水平光屏垂直接触于M点,球心O与M间的距离为10 3 cm.一束激光与该元件的直径成30°角射向圆心O,结果在光屏上出现间距为d=40 cm的两个光斑,请完成光路图并求该透明材料的折射率.【解析】光屏上的两个光斑分别是激光经光学元件反射与折射的光线形成,其光路图如图所示:依题意,R=10 3 cm,据反射规律与几何关系知,反射光线形成的光斑P1与M点的距离为:d1=R tan30°激光束的入射角i=60°,设其折射角为γ,由几何关系可知,折射光线形成的光斑P2与M点间距为:d2=R cotγ据题意有:d1+d2=d联立各式并代入数据解得:cotγ=3,即γ=30°折射率:n =sin i sin γ=sin60°sin30°= 3. 【答案】 光路图见解析 3【突破攻略】 解决光的折射问题的思路(1)根据题意画出正确的光路图.(2)利用几何关系确定光路中的边、角关系,要注意入射角、折射角均以法线为标准.(3)利用折射定律、折射率公式求解.(4)注意折射现象中光路的可逆性.1.某同学通过实验测定半圆形玻璃砖的折射率n .如图甲所示,O 是圆心,MN 是法线,AO 、BO 分别表示某次测量时光线在空气和玻璃砖中的传播路径.该同学测得多组入射角i 和折射角r ,作出sin i -sin r 图象如图乙所示.则( B )A .光由A 经O 到B ,n =1.5B .光由B 经O 到A ,n =1.5C .光由A 经O 到B ,n =0.67D .光由B 经O 到A ,n =0.67解析:由sin i -sin r 图象可知,同一光线sin r >sin i ,即r >i ,故r为光线在空气中传播时光线与法线的夹角,则BO 为入射光线,OA为折射光线,即光线由B 经O 到A ,折射率n =sin r sin i =0.90.6=1.5,故选项B 正确,选项A 、C 、D 错误.2.如图所示,一束单色光从空气入射到棱镜的AB 面上,经AB 和AC 两个面折射后从AC 面进入空气.当出射角i ′和入射角i 相等时,出射光线相对于入射光线偏转的角度为θ.已知棱镜顶角为α,则计算棱镜对该色光的折射率表达式为( A )A.sin α+θ2sin α2B.sin α+θ2sin θ2C.sin θsin ⎝ ⎛⎭⎪⎫θ-α2D.sin αsin ⎝ ⎛⎭⎪⎫α-θ2解析:如图所示,设AB 面上的折射角为γ,AC面上的入射角为γ′,由于i ′=i ,由光的折射定律及光路可逆知γ′=γ,又设两法线的夹角为β,则由几何关系得:γ+γ′+β=180°,又由α+β=180°,则解得:γ=α2,又由几何关系得:γ+γ′+θ=i +i ′,解得:i =α+θ2,则棱镜对该色光的折射率n =sin i sin γ=sin α+θ2sin α2,故A 正确. 知识点二 光的全反射1.求解光的折射、全反射问题的四点提醒(1)光密介质和光疏介质是相对而言的.同一种介质,相对于其他不同的介质,可能是光密介质,也可能是光疏介质.(2)如果光线从光疏介质进入光密介质,则无论入射角多大,都不会发生全反射现象.(3)光的反射和全反射现象,均遵循光的反射定律,光路均是可逆的.(4)当光射到两种介质的界面上时,往往同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射.2.求解全反射现象中光的传播时间的注意事项(1)全反射现象中,光在同种均匀介质中的传播速度不发生变化,即v =c n .(2)全反射现象中,光的传播路程应结合光路图与几何关系进行确定.(3)利用t =l v 求解光的传播时间.3.解决全反射问题的一般步骤(1)确定光是从光密介质进入光疏介质.(2)应用sin C=1n确定临界角.(3)根据题设条件,判定光在传播时是否发生全反射.(4)如发生全反射,画出入射角等于临界角时的临界光路图.(5)运用几何关系或三角函数关系以及反射定律等进行分析、判断、运算,解决问题.典例(2016·海南卷)如图,半径为R的半球形玻璃体置于水平桌面上,半球的上表面水平,球面与桌面相切于A点.一细束单色光经球心O从空气中射入玻璃体内(入射面即纸面),入射角为45°,出射光线射在桌面上B点处.测得AB之间的距离为R2.现将入射光束在纸面内向左平移,求射入玻璃体的光线在球面上恰好发生全反射时,光束在上表面的入射点到O点的距离.不考虑光线在玻璃体内的多次反射.【解析】当光线经球心O入射时,光路图如图甲所示.设玻璃的折射率为n,由折射定律有n=sin isin r式中,入射角i=45°,r为折射角.△OAB为直有三角形,因此sin r=ABOA2+AB2发生全反射时,临界角C满足sin C=1n在玻璃体球面上光线恰好发生全反射时,光路图如图乙所示.设此时光线入射点为E,折射光线射到玻璃体球面的D点.由题意有∠EDO=C在△EDO内,根据正弦定理有ODsin(90°-r)=OE sin C联立以上各式并利用题给条件得OE=22R.【答案】2 2R【突破攻略】解答全反射类问题的技巧(1)解答全反射类问题时,要抓住发生全反射的两个条件.①光必须从光密介质射入光疏介质.②入射角大于或等于临界角.(2)利用好光路图中的临界光线,准确地判断出恰好发生全反射的光路图是解题的关键,且在作光路图时尽量与实际相符.3.(2019·黑龙江哈尔滨模拟)(多选)关于全反射下列说法中正确的是(AC)A.光从光密介质射向光疏介质时可能发生全反射B.光从光疏介质射向光密介质时可能发生全反射C.光从折射率大的介质射向折射率小的介质时可能发生全反射D.光从其传播速度大的介质射向其传播速度小的介质时可能发生全反射解析:当光从光密介质射向光疏介质时有可能发生全反射;由n=cv可知,光在其中传播速度越大的介质,折射率越小,传播速度越小的介质,折射率越大,故A、C正确.4.(2019·绵阳模拟)如图所示,一束平行光从真空射向一块半圆形的玻璃砖,下列说法不正确的是(A)A.只有圆心两侧一定范围内的光线不能通过玻璃砖B.只有圆心两侧一定范围内的光线能通过玻璃砖C.通过圆心的光线将沿直线穿过而不发生偏折D.圆心两侧一定范围外的光线将在曲面上发生全反射解析:通过圆心的光线将沿直线穿过而不发生偏折,入射角为零.由圆心向外的光线,在半圆曲面上进入真空时的入射角逐渐增大并趋近90°角,入射角一定会大于临界角,所以一定会发生全反射,故只有圆心两侧一定范围内的光线在曲面上不发生全反射,圆心两侧一定范围外的光线将在曲面上发生全反射,A错误.5.(2017·全国卷Ⅲ)如图,一半径为R的玻璃半球,O点是半球的球心,虚线OO′表示光轴(过球心O与半球底面垂直的直线).已知玻璃的折射率为1.5,现有一束平行光垂直入射到半球的底面上,有些光线能从球面射出(不考虑被半球的内表面反射后的光线).求:(1)从球面射出的光线对应的入射光线到光轴距离的最大值;(2)距光轴R3的入射光线经球面折射后与光轴的交点到O点的距离.解析:(1)如图,从底面上A处射入的光线,在球面上发生折射时的入射角为i,当i等于全反射临界角i c时,对应入射光线到光轴的距离最大,设最大距离为l.i=i c①设n是玻璃的折射率,由全反射临界角的定义有n sin i c=1②由几何关系有sin i=lR③联立①②③式并利用题给条件,得l=23R④(2)设与光轴相距R3的光线在球面B点发生折射时的入射角和折射角分别为i 1和r 1,由折射定律有n sin i 1=sin r 1⑤设折射光线与光轴的交点为C ,在△OBC 中,由正弦定理有sin ∠C R =sin (180°-r 1)OC⑥ 由几何关系有∠C =r 1-i 1⑦sin i 1=13⑧ 联立⑤⑥⑦⑧式并结合题给条件,得OC =3(22+3)5R ≈2.74R 答案:(1)23R (2)2.74R 知识点三 光的散射现象1.光的色散现象(1)现象:一束白光通过三棱镜后在屏上会形成彩色光带.(2)成因:棱镜材料对不同色光的折射率不同,对红光的折射率最小,红光通过棱镜后的偏折程度最小,对紫光的折射率最大,紫光通过棱镜后的偏折程度最大,从而产生色散现象.2.不同颜色的比较6.(2017·北京卷)如图所示,一束可见光穿过平行玻璃砖后,变为a、b两束单色光.如果光束b是蓝光,则光束a可能是(D)A.红光B.黄光C.绿光D.紫光解析:作出光在玻璃砖中的光路图如图所示,由图可知,光束a的折射角小,由折射定律知,光束a的折射率大,则光束a的频率大于光束b的频率,故光束a可能是紫光,选项D正确.7.如图,一束光经玻璃三棱镜折射后分为两束单色光a、b,波长分别为λa、λb,该玻璃对单色光a、b的折射率分别为n a、n b,则(B)A.λa<λb,n a>n bB.λa>λb,n a<n bC.λa<λb,n a<n bD.λa>λb,n a>n b解析:由题图可知,b光偏折大,折射率大,频率大,波长小,故选B.8.雨后太阳光入射到水滴中发生色散而形成彩虹.设水滴是球形的,图中的圆代表水滴过球心的截面,入射光线在此截面的平面内,a、b、c、d代表四条不同颜色的出射光线,则它们可能依次是(B)A.紫光、黄光、蓝光和红光B.紫光、蓝光、黄光和红光C.红光、蓝光、黄光和紫光D.红光、黄光、蓝光和紫光解析:四种光线红、黄、蓝、紫的频率为f红<f黄<f蓝<f紫,故其折射率n红<n黄<n蓝<n紫,因折射率大,光在折射时,偏折程度大,故太阳光经水滴折射后,在水中传播,从上到下依次为红光、黄光、蓝光、紫光,再由光的反射定律,结合传播图可知其反射后从上到下顺序颠倒,因此出射光依次为紫光、蓝光、黄光和红光,B正确,A、C、D均错.知识点四实验:测定玻璃的折射率1.实验原理如图所示,当光线AO 1以一定的入射角θ1穿过两面平行的玻璃砖时,通过插针法找出跟入射光线AO 1对应的出射光线O 2B ,从而求出折射光线O 1O 2和折射角θ2,再根据n 12=sin θ1sin θ2或n =PN QN ′算出玻璃的折射率.2.实验步骤(1)如图所示,把白纸铺在木板上.(2)在白纸上画一直线aa ′作为界面,过aa ′上的一点O 画出界面的法线NN ′,并画一条线段AO 作为入射光线.(3)把长方形玻璃砖放在白纸上,并使其长边与aa ′重合,再用直尺画出玻璃砖的另一边bb ′.(4)在线段AO上竖直地插上两枚大头针P1、P2.(5)从玻璃砖bb′一侧透过玻璃砖观察大头针P1、P2的像,调整视线的方向直到P1的像被P2的像挡住.再在bb′一侧插上两枚大头针P3、P4,使P3能挡住P1、P2的像,P4能挡住P3、P1、P2的像.(6)移去玻璃砖,在拔掉P1、P2、P3、P4的同时分别记下它们的位置,过P3、P4作直线O′B交bb′于O′.连接O、O′,OO′就是玻璃砖内折射光线的方向.∠AON为入射角.∠O′ON′为折射角.(7)改变入射角,重复实验.3.数据处理(1)计算法:用量角器测量入射角θ1和折射角θ2,并查出其正弦值sinθ1和sinθ2.算出不同入射角时的sinθ1sinθ2,并取平均值.(2)作sinθ1-sinθ2图象:改变不同的入射角θ1,测出不同的折射角θ2,作sinθ1-sinθ2图象,由n=sinθ1sinθ2可知图象应为直线,如图所示,其斜率就是玻璃折射率.(3)“单位圆法”确定sinθ1、sinθ2,计算折射率n.以入射点O 为圆心,以一定长度R为半径画圆,交入射光线OA于E点,交折射光线OO′于E′点,过E作NN′的垂线EH,过E′作NN′的垂线E′H′.如图所示,sinθ1=EHOE,sinθ2=E′H′OE′,OE=OE′=R,则n=sinθ1sinθ2=EHE′H′.只要用刻度尺测出EH、E′H′的长度就可以求出n.典例在“测定玻璃的折射率”实验中,某同学经正确操作插好了4枚大头针,如图甲所示.(1)在下图中画出完整的光路图.(2)对你画出的光路图进行测量和计算,求得该玻璃砖的折射率n=________.(保留三位有效数字)(3)为了观测光在玻璃砖不同表面的折射现象,某同学做了两次实验,经正确操作插好了8枚大头针,如图乙所示.图中P1和P2是同一入射光线上的2枚大头针,其对应出射光线上的2枚大头针是P3和________(选填“A”或“B”).【解析】(2)折射率n=sin isin r,sin i与sin r可利用图中的方格进行粗略的计算,或是利用直尺测量计算.(3)光路图如图所示,光线P1P2经两次折射后沿P3A射出,所以填A.【答案】(1)如图所示(2)1.53(1.50~1.56均正确)(3)A9.用三棱镜做测定玻璃折射率的实验.先在白纸上放好三棱镜,在棱镜的一侧插上两枚大头针P1和P2,然后在棱镜的另一侧观察,调整视线使P1的像被P2的像挡住.接着在眼睛所在的一侧插两枚大头针P3、P4,使P3挡住P1、P2的像,P4挡住P3和P1、P2的像,在纸上标出的大头针位置和三棱镜轮廓如图所示.(1)在图上画出所需的光路.(2)为了测出棱镜玻璃的折射率,需要测量的量是________,在图上标出它们.(3)计算折射率的公式是n=________.解析:(1)如图所示,画出通过P 1、P 2的入射光线,交AC 面于O ,画出通过P 3、P 4的出射光线交AB 面于O ′.连接OO ′,则光线OO ′就是入射光线P 1P 2在三棱镜中的折射光线.(2)在所画的图上注明入射角θ1和折射角θ2,并画出虚线部分. 方法1:用量角器量出θ1和θ2.方法2:用直尺测出线段EF 、OE 、GH 、OG 的长度.方法3:以入射点O 为圆心,以适当长R 为半径画圆,交入射光线于I ,交折射光线(或折射光线的延长线)于J ,过I 、J 两点分别向法线NN ′作垂线交法线于I ′、J ′点.用直尺量出II ′和JJ ′的长.(3)方法1:n =sin θ1sin θ2方法2:因为sin θ1=EF OE ,sin θ2=GH OG ,则n =EF OE GH OG=EF ·OG OE ·GH. 方法3:因为sin θ1=II ′R ,sin θ2=JJ ′R ,则n =II ′JJ ′. 答案:见解析10.(2019·河北沧州模拟)两位同学用两面平行的玻璃砖做“测定玻璃的折射率”实验.(1)甲同学在量入射角和折射角时,由于没有量角器,在完成了光路图以后,以O 点为圆心,OA 为半径画圆,交OO ′延长线于C 点,过A 点和C 点作垂直于法线的线段分别交法线于B 点和D 点,如图所示.测量有关线段长度,可得玻璃的折射率n =AB CD .(用图中线段表示)(2)乙同学在画界面时,不小心将两界面ab 和cd 间距画得比玻璃砖宽度大些,下界面与实际相同,如图所示.若操作无误,则他测得的折射率比真实值不变(填“偏大”“偏小”或“不变”).解析:(1)题图甲中AO 为入射光线,OO ′是折射光线,设光线在玻璃砖上表面的入射角为i ,折射角为r ,则由几何知识得到sin i=AB AO ,sin r =CD OC ,又AO =OC ,则折射率n =sin i sin r =AB CD.(2)“测定玻璃砖折射率”的实验原理是折射定律n =sin i sin r,如图所示,右边光线表示实际的光路图,左边光线表示作图光路图,由图可看出,画图时的入射角、折射角与实际的入射角、折射角相等,由折射定律可知,测出的折射率没有变化.11.某同学用大头针、三角板、量角器等器材测半圆形玻璃砖的折射率,开始玻璃砖的位置如图中实线所示,使大头针P1、P2与圆心O在同一直线上,该直线垂直于玻璃砖的直径边,然后使玻璃砖绕圆心O缓慢转动,同时在玻璃砖的直径边一侧观察P1、P2的像,且P2的像挡住P1的像.如此观察,当玻璃砖转到图中虚线位置时,上述现象恰好消失,此时只需测量出玻璃砖直径边绕O点转过的角度θ,即可计算出玻璃砖的折射率,请用你测量的量表示出折射率n=1sinθ.解析:玻璃砖转动时,射在其直径所在平面内的光线的入射角增大,当增大到等于临界角θ时,发生全反射现象.因sinθ=1n,可见只要测出临界角即可求得折射率n,而θ和玻璃砖直径绕O点转过的角度相等,因此只要测出玻璃砖直径边绕O点转过的角度即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 折射率
桥梁,在研究同一介质对不同色光的折射率与光速
及波长(频率)关系时,此公式是重要的理论依据.
sin1 c 是联系几何光学与物理光学的 n sin 2 v
变式训练 2 : 如图 12-1-7 所示,一个三棱 镜的截面为等腰直角△ ABC ,∠ A 为直角.此 截面所在平面内的光线沿平行于BC边的方向射 到 AB 边,进入棱镜后直接射到 AC 边上,并刚 好能发生全反射.该棱镜材料的折射率为 ______.(填入正确选项前的字母)
• 变式训练1:图12-1-5表示两底面平行的玻 璃砖的截面图,一束平行于CD边的单色光 入射到AC界面上,a、b是其中的两条平行 光线.光线a在玻璃砖中的光路已给出.画出 光线b从玻璃砖再次出射的光路图,并标出 出射光线与界面法线夹角的度数.
图12-1-5
解析:通过a光线的光路分析,可知玻璃砖的折射 sin 45 率n 2,临界角为45.光线a、b平行, sin 30 则射入玻璃砖后的折射光线仍然平行.当b光线进 入玻璃砖射到CD面上时,发生全反射,从BD面上 折射进入空气中.光路如下图所示.
图12-1-1
• (3)全反射棱镜:横截面是 等腰直角三角形 .的 棱镜叫全反射棱镜.由于光从玻璃射向空气的 临界角大约为42°,故当光从全反射棱镜的 任一边垂直射入时,都发生全反射,如图121-2(甲)、(乙)所示.
图12-1-2
• (4)光的色散 • 白光经过三棱镜后,透射光线在屏上形 成按 红、橙、黄、绿、蓝、靛、紫 顺 序排列的彩色光谱,这种现象就叫做光 的 色散 ,如图12-1-3所示.
• (3)折射率(绝对折射率n) • 光从真空射入某种介质时入射角正弦与折 射角正弦的比值,叫做这种介质的折射率, sin • 即n= . • (4)在折射现象中光路是
sin 2
1
可逆的 .
光密 • (5)光密介质和光疏介质两种介质相比较, 光疏 折射率大的介质叫 介质,折射率小的 介质叫 介质. • 注意:光密介质和光疏介质是相对的,如 水相对于空气来说是光密介质,水相对于 酒精来说是光疏介质.
第十二章
光 学 相对论简介

光的折射和全反射
• 1.光的折射现象 • (1)光从 一种介质 进入 另一种介质 ,传 播方向发生 改变 的现象称为光的折 射现象. • (2)光的折射定律:折射光线在入射光 线和法线所确定的平面内,折射光线 和入射光线分居于 ,入射角 正弦与折射角 法线两侧 之比为一常数. 正弦
3
图12-1-4

C为临界角;当光线从左侧射入时,由折射 sin 定 n
sin( C ) • 律有 2 7 可
1 sin C , 光线恰好在界面发生全反射时有 n

,联立这两式代入数据
3
• 得 sinα= 点评

.
分析光的全反射、临界角问题要注
意: • (1)画出恰好发生全反射的光路图. • (2)找出临界角,利用几何知识分析线、,该 点评
介质对频率较高的色光折射率大,对频率较低的色 光折射率小.一般来讲,在界面两侧偏折越大的光 线,折射率越大,频率越大,波长越小,临界角越 小,在介质中传播速度越小.根据这一结论,只需 比较水对这两种色光的折射率大小即可判定色光的 频率、波速、波长、临界角大小.
6 A. 2 3 C. 2
B. 2 D. 3
图1217
sin 1 1 解析:由n 与n sin 2 sin C 6 解得n . 2
答案:A

折射率与光速及波长(频率)关 彩虹是在雨后因光 系问题 的色散而形成的,如图 12-1-6所示为太阳光射到 空气中的小水珠发生色 散形成彩虹的光路示意 图,a、b为两种从小水 珠中射出的单色光. 图12-1-6
• • • •
以下说法正确的是( ) A.水对a光的折射率大于水对b光的折射率 B.a光的频率大于b光的频率 C.在水珠中a光的传播速度大于b光的传播 速度 • D.逐渐增大入射角,则b光比a光先发生全 反射
• • • •
光线从光密介质射入光疏介质 (3)全反射条件 入射角大于或等于临界角 ① . ② . 常见的全反射现象有:光导纤维,内窥镜, 海市蜃楼,沙漠蜃景等.
• 3.棱镜 梯形 • (1)横截面为 三角形 或 的透明体 称为棱镜. • (2)棱镜对光线的偏折作用:如图12-11所示,当光线从空气射入玻璃棱镜时, 出射光线向底边偏折,偏折角度θ随棱 增大 镜材料的折射率增大而 .
• 2.全反射 • (1)光从 光密 介质射向 光疏 介质时,当 入射角 超过某一角度 C(临界角)时,折射光 线 ,只剩下反射光线的现象叫 消失 全反射. • (2)临界角C:折射角等于 时的入 90° 射角叫做临界角. • 当光从介质射向真空或空气时有:
1 1 n ,sin C sin C n
图12-1-3
复色光
• 光的色散表明白光是 ;同时, 紫光 棱镜材料对不同颜色的折射率不同,其中 红光 对 的折射率最大,对 的折射率最小.

折射与全反射的综合应用问
题 • 一束单色光由左侧射入盛有清水的薄 壁圆柱形玻璃杯,图12-1-4为过轴线 的截面图,调整入射角α,使光线恰 好在水和空气的界面上发生全反射, 已知水的折射率为 ,求sinα的值. 4

如图,作出入射点的 法线,可知在入射角相同 的情况下,a光的折射角 大于b光的折射角,由公 sin 1 式 n= ,可得折射率 sin na <n b2,A错误;由于 na<nb知频率νa<νb,B错误; 由 可知,C正确; c v=
n
当光从光密介质射向光疏介质时才会发生全反 射,水的折射率比空气大,所以无论入射角多 大都不会发生全反射,D错误.
相关文档
最新文档