《一元一次不等式组的应用》典型例题
一元一次不等式(组)的应用经典题目分类总结
类型一利用一元一次不等式解决简单的实际问题1.七年级一班在创意市场中共售出了20件作品,其中售出的男生的作品不比女生的作品多.男生的作品的平均售价为20元/件,女生的作品的平均售价为30元/件,总售价少于510元,则售出了件男生的作品.2.有3人携带会议材料乘坐电梯,这3人的体重共210 kg,每捆材料重20 kg,电梯的最大负荷为1 050 kg,则该电梯在此3人乘坐的情况下,最多还能搭载捆材料.3.某种品牌毛巾原零售价为每条8元,凡一次性购买3条以上(含3条),可享受商家推出的两种优惠销售办法中的任意一种,第一种:其中三条按原价,其余按7折优惠;第二种:全部按原价的8折优惠.若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买条毛巾.4.某人上午8时以每小时100km的速度自驾从甲地出发赶往乙地,(中途休息、用餐共1小时)到达乙地时已超过当天下午2时45分,但不到3时,则甲、乙两地的距离x 的范围是.5.某射击运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的纪录,那么他第7次射击不能少于( )A. 6环B. 7环C. 8环D. 9环6.某人要在18min内通过一段2.1 km长的路程,已知他每分钟走90m.若跑步每分钟可跑210m,则此人通过这段路程时,至少要跑( )A.-3 minB. 4 minC. 4.5 minD. 5 min7.某市自来水公司的收费标准:若每户每月用水不超过5立方米,则每立方米收费2. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费3元.小颖家每月水费都不少于29元,小颖家每月的用水量至少是( )A.11立方米B. 10立方米C. 9立方米D. 5立方米8.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x 名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本类型二:分段计费1.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从今年4月起,居民生活用水按阶梯式计算水价,水价计算方式如下表所示,每吨水还需另加污水处理费0.80元.已知小张家今年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(友情提示:水费=水价+污水处理费)(1)求m、n的值;(2)随着夏天的到来,用水量将激增.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?类型三决策性问题1.某游泳馆今年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元; 方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数一为x(x为正整数),方式一的总费用为y元,方式二的总1费用为y元.2(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?x>时,小明选择哪种付费方式更合算?(3)当202.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张办公桌送三把椅子;乙厂家:办公桌和椅子全部按原价8折优惠,现某公司要购买3张办公桌和若干把椅子,若x≥).购买的椅子为x把(9(1)分别用含x的式子表示到甲、乙两个广家购买桌椅所需的金额.(2)该公司到哪个厂家购买更划算?3.为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?4.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?类型四方案选择问题1.银杏树具有观赏、经济、药用等价值,深受人们喜爱.在银杏种植基地有A、B个品种的树苗出售,已知A种树苗的单价比B种树苗高20元,买1株A种树苗和2株B种树苗共需200元.(1) A、B两种树苗的单价分别为多少元?(2)为扩大种植,某农户准备购买A、B两种银杏树苗共36株,且A种树苗的数量不少于B种树苗数量的一半,请求出费用最省的购买方案.2.为绿化校园,我区某学校计划购进甲、乙两种树苗共36棵,已知甲种树苗每棵50元,乙种树苗每棵40元.(1)若购进甲、乙两种树苗刚好用去1640元,问购进甲、乙两种树苗各多少棵?(2)若购买甲种树苗的数量不少于乙种树苗的数量2倍,请你选出一种费用最省的方案,并求出该方案所需费用.3.甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.4.某童装厂现有甲种布料38米,乙种布料26米。
《一元一次不等式的应用》练习题
《一元一次不等式的应用》1.小明借到一本有87页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里平均每天至少要读多少页才能读完?设以后几天里平均每天要读x页,所列不等式为() A.2+10x≥87B.2+10x≤87C.10+8x≤87D.10+8x≥872.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个3.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是()A.11B.8C.7D.54.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有() A.103块B.104块C.105块D.106块5.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13B.14C.15D.16 6.某人要在18分钟内完成2.1千米的路程,已知他每分钟走90米,每分钟跑210米.问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为()A.210x+90(18-x)≥2100B.90x+210(18-x)>2100C.210x+90(18-x)≥2.1D.210x+90(18-x)>2.17.九(2)班的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数至少为人.8.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件,后改进了工作方式,结果提前一天完成了加工任务,两天后马师傅每天至少加工个零件.9.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打折.10.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为cm.11.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,那么孔明最多可以买多少副球拍?12.已知导火线的燃烧速度是0.7cm/s,爆破员点燃后跑开的速度是5m/s,为了点火后跑到130m及以外的安全地带,则导火线至少长多少厘米?13.2020年的5月20日是第31个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息:信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他.2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克蛋白质.14.学校在“我和我的祖国”快闪拍摄活动中为学生化妆.其中5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(1)求每名男生和女生的化妆费分别为多少元;(2)如果学校提供的化妆总费用为2000元,根据活动需要至少应有42名女生化妆,那么男生最多有多少人化妆?15.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A,B两种款型的单车共100辆,总价值36800元,试问本次试点投放A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开,按照试点投放中A,B两种车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?。
6.3一元一次不等式组应用题
6.3一元一次不等式组应用题列一元一次不等式组解应用题的一般步骤:(1)审:渗透,分析题目中已知什么,求什么,明确各数量之间的关系(2)设:设适当的未知数(3)找:找出题目中的所有不等关系(4)列:列不等式组(5)解:求出不等式组的解集(6)答:写出符合题意的答案例1.为节约用电,某学校与本学期初制订了详细的用电计划,如果实际每题比计划多用2千瓦时,那么本学期的用电量将会超过2530千瓦时;如果实际比计划节约2千瓦时,那么本学期用电量将会不超过2200千瓦时,若本学期在校时间按110天计算,那么学校每天用电量应控制在什么范围内?例2.将一筐桔子分给若干个儿童,如果每人分4个桔子,则剩下9个桔子,如果每人分6个桔子,则最后一个儿童分得的桔子数少于3个,问共有多少个儿童和多少个桔子?引申题:学生若干个,注宿舍若干间,如果每间住4人,则余19人没有住处;如果每间住6人,则有一间宿舍不空也不满,求有多少间宿舍?多少个学生?例3.乘某城市的一种出租车起价是10元(即行驶路程在5千米以内,都需付费10元)达到或超过5千米后,没增加1千米加价1.2元(不足1千米部分按1千米计)现在某人乘这种出租车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少千米?例4.(方案问题)现计划吧甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车车厢共40节,如果每节A型车厢最多可装载甲种货物35吨和乙种货物15吨,每节B型车厢最多可装载甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?请你设计出来。
达标测试:1.一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7650平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。
一元一次不等式组应用实例及答案
一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。
一元一次不等式组是用来解决不等式问题的数学工具。
它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。
应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。
实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。
现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。
根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。
实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。
已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。
同时,工厂每天总共生产的产品数量不得超过80个。
问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。
根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。
答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。
实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。
历年中考数学“一元一次不等式(组)的应用”
历年中考数学“一元一次不等式(组)的应用”一、选择题1.(2010江苏南京)甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是A. 1℃~3℃B. 3℃~5℃C. 5℃~8℃D. 1℃~8℃【答案】B2.(2010青海西宁)西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数A.至少20户 B.至多20户C.至少21户 D.至多21户【答案】C3.(2010黑龙江绥化)现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.5种D.6种【答案】B二、填空题1.(2010 浙江省温州)某班级从文化用品市场购买了签字笔和圆珠笔共l5支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了支.【答案】8三、解答题1.(2010江苏苏州)解不等式组:【答案】2.(2010安徽蚌埠)青海玉树发生7.1级强震,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风。
刚回营地的两个抢险分队又接到救灾命令:一分队立即出发前往距营地30千米的镇,二分队因疲劳可在营地休息小时再往镇参加救灾。
一分队出发后得知,唯一通往镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路。
已知一分队的行进速度为千米/时,二分队的行进速度为千米/时。
⑴若二分队在营地不休息,问要使二分队在最短时间内赶到A镇,一分队的行进速度至少为多少千米/时?⑵若=4千米/时,二分队和一分队同时赶到A镇,二分队应在营地休息几小时?【答案】⑴一分队的行进速度至少为千米/时。
一元一次不等式组应用题专题
• • • • •
解:依题意,甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有(x﹣10)件,则 (1)W=200x+170(70﹣x)+160(40﹣x)+150(x﹣10)=20x+16800. 解 得10≤x≤40.(2分) 由
• • • • • • • • • • •
(2)由W=20x+16800≥17560, ∴x≥38 . ∵ 10≤x≤40 ∴38≤x≤40,x=38,39,40. ∴有三种不同的分配方案. ①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件; ②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件; ③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件. (3)依题意:W=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10)=(20﹣a) x+16800. ①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达 到最大; ②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样; ③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达 到最大.(8分)
• 3、(2013•湛江)某工厂现有甲种原料280kg, 乙种原料190kg,计划用这两种原料生产A,B 两种产品50件,已知生产一件A产品需甲种原料 7kg、乙种原料3kg,可获利40可获利350 元. • (1)请问工厂有哪几种生产方案? • (2)选择哪种方案可获利最大,最大利润是多 少?
• • • •
解:(1)60﹣x﹣y; (2)由题意,得900x+1200y+1100(60﹣x﹣y)=61000, 整理得y=2x﹣50. (3)①由题意,得P=1200x+1600y+1300(60﹣x﹣y) ﹣61000﹣1500, • 整理得P=500x+500. • ②购进C型手机部数为:60﹣x﹣y=110﹣3x.根据题意列不等
一元一次不等式组的实际应用
品,按原价销售;若一次性购买超过 5 件,按原价的八折进行销售.小明现有 29 元,则最多可
购买该商品
件.
12、甲乙两队进行篮球对抗赛,比赛规定每队胜一场得 3 分,平一场得 1 分,负一场得 0
分.甲队与乙队一共比赛了 10 场,甲队保持了不败记录,得分不低于 24 分,甲队至少胜了
பைடு நூலகம்
场.
13、某次数学测验中有 18 道选择题,评分办法:答对一道得 6 分,答错一道扣 2 分,不答得 0
33 0 的。
16、解:设打 x 折,根据题意1200x 800 5% 得解得 x≥7.所以最低可打七折. 800
17、解:∵每次钉入木块的钉子长度是前一次的 1 .已知这个铁钉被敲击 3 次后全部进入木块(木 3
块足够厚),且第一次敲击后铁钉进入木块的长度是 acm,根据题意得:敲击 2 次后铁钉进入木
9x 3x
(50 (50
x)4 360 解得:30≤x≤32,∵x x)10 290
为整数,∴x=30,31,32,∴有
3
种生产方案:方案
1,A 产品 30 件,B 产品 20 件;方案 2,A 产品 31 件,B 产品 19 件;方案 3,A 产品 32 件, B 产品 18 件.答案为:3
案是:6.
6、解析:设有 x 名儿童,则有牛奶(5x+18)盒,则若每人分 6 盒,则最后一个人分得的数量是
精心整理
精心整理
(5x+18)-6(x-1).根据题意得:
24 24
x x
3 6
解得:18<x≤21.则这个儿童福利院的儿童最少有
19
人,最多有 21 人.故答案是:19,21.
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
典型的一元一次不等式(组)应用问题
不等式(组)应用问题典例四川 蒋成富列一元一次不等式(组)解实际问题在成本核算、方案设计、合理规划等方面应用广泛,也是近年中考的热点。
解决这类问题主要是将实际问题转化为数学问题,寻找实际问题中的不等关系建立不等式(组),再利用有关不等式(组)知识和方法进行求解。
例1 南宁市是广西最大的罗非鱼养殖产区,被国家农业部列为罗非鱼养殖优势区域。
某养殖场计划下半年养殖无公害标准化罗非鱼和草鱼,要求这两个品种总产量G (吨)满足:1580≤G ≤1600,总产值为1000万元。
已知相关数据如右表所示:问:该养殖场下半年罗非鱼的产量应控制在什么范围?(产值=产量×单价)(广西南宁市中考题)分析:本题是不等式组在养殖产区产量决策中的应用。
只需依据题中已知的不等关系“1580≤G ≤1600”建立符合题意的不等式组即可解决。
解:设该养殖场下半年罗非鱼的产量为x 吨。
由题意得1580≤x+8504501000.x.-≤1600。
解得857.5≤x ≤900。
答:该养殖场下半年罗非鱼的产量应控制在857.5吨至900吨的范围内。
评注:解题关键在于正确理解“1580≤G ≤1600”,寻找变量之间的关系,并建立不等式(组)模型,通过解决数学问题,进而解决实际问题。
例2 双蓉服装店老板到厂家选购A 、B 两种型号的服装,若购进A 种型号的服装9件,B 种型号的服装10件,需要1 810元;若购进A 种型号服装12件,B 种型号服装8件,需要1 880元。
(1)求A 、B 两种型号的服装每件分别为多少元?(2)若销售1件A 型服装可获利18元,销售1件B 型服装可获利30元,根据市场需求,服装店老板决定,购进A 型服装的数量要比购进B 型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货。
(2005年哈尔滨市中考题)分析:此题为购货方案的决策应用题,其数量多、关系复杂,但只要认真审题,将数量关系归类分析,就不难找到相等与不等关系。
一元一次不等式(组)的应用专题
1、某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数2、某移动通讯公司开设了两种通讯业务,“全球通”:使用者先交缴50元月租费,然后每通话1分钟,在付费0.4元;“快捷通”不缴月租费,每通话1分钟付话费0.6元。
若一个月内通话x分钟,两种方式的费用分别为y1元和y2元。
(1)写出y1、y2与x之间的函数关系式;(2)问一个人该选择何种业务,才能使每月的通话费用最合适自己3、2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40 A B盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.⑴某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.⑵若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?4、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡,从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运可使总运费最小?5、某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。
设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元)。
一元一次不等式组应用题汇总
一元一次不等式组应用题汇总1、某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池修建费用(万元/个)可供使用户数(户/个)占地面积(m2/个)A型 3 20 48B型 2 3 6 政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.2、学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖三等奖1盒福娃和1枚徽章1盒福娃1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?3.某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
(1)若该超市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。
4.惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.① 3名驾驶员开甲种货车,6名驾驶员开乙种货车,能否将救灾物资一次性地运往灾区?②要使救灾物资一次性地运往灾区,共有哪几种运货方案?5.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨. 现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1) 将这些货物一次性运到目的地,有几种租用货车的方案?(2) 若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?6. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.7.某超市销售甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.8. 某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
(完整版)《一元一次不等式组的应用》典型例题
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
七年级下一元一次不等式(组)的典型应用题归纳
(归纳)七年级下数学一元一次不等式(组)的典型应用题一.列不等式解应用题类型一例1.小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:练习一:1.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?2.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?类型二例2.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1).若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2).根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?练习二:1.国庆期间两名家长计划带几个孩子去旅游,他们联系了两家旅行社,报价均为每人500元,经协商甲旅行社的优惠条件是:两名家长全额收费,孩子均按7折收费;乙旅行社的条件是:家长和孩子均按8折收费。
假设两名家长带领x名孩子去旅游,他们应选择哪家旅行社?类型三例3.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?练习三:1、某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价元,售价元。
一元一次不等式组典型题型(经典)
进阶练习题2
解不等式组$begin{cases}3(x - 1) < 4(x + 1) frac{x - 1}{2} > x + 1end{cases}$
综合练习题
要点一
综合练习题1
解不等式组$begin{cases}2x - 1 geq (x - 3) + 4 frac{x + 3}{2} > (x + 1) - 3end{cases}$
05
练习题与答案
基础练习题
基础练习题1
解不等式组$begin{cases}5x - 1 > 3x - 5 2x + 1 > 0end{cases}$
基础练习题2
解不等式组$begin{cases}3x - 2 < 4 -2x + 1 > -5end{cases}$
进阶练习题
进阶练习题1
解不等式组$begin{cases}2x - 1 > 3(x - 2) frac{x + 1}{2} > -3end{cases}$
02
典型例题解析
基础题型
01
02
03
基础解法
掌握一元一次不等式组的 解法,包括消元法、数轴 法等,能够准确求解不等 式组。
简单应用
能够将不等式组应用于简 单的实际问题中,如时间、 速度、距离等问题。
代数运算
能够正确进行代数运算, 包括加减乘除、乘方等, 确保解题过程中不出现计 算错误。
进阶题型
要点二
综合练习题2
解不等式组$begin{cases}3(x + 1) < (x - 5) + 4 frac{x + 1}{2} > x - 3end{cases}$
一元一次不等式典型例题
一元一次不等式典型例题类型一:一元一次不等式的解集问题1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是.2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是.3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______ 类型二:一元一次不等式组无解的情况1.若关于x的一元一次不等式组无解,则a的取值范围是.2.已知不等式组无解,则a的取值范围是3.已知关于x的不等式组无解,则a的取值范围是类型三:明确一元一次不等式组的解集求范围1.若不等式的解集为x>3,则a的取值范围是2.若关于x的不等式的解集为x<2,则a的取值范围是.3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于5.已知不等式组的解集为﹣1<x<2,则(m+n)2008=类型四:一元一次不等式组有解求未知数的范围1.若有解,则a的取值范围是2.若关于x的不等式组有实数解,则a的取值范围是3._______类型五:一元一次不等式组有整数解求范围1.不等式组有3个整数解,则m的取值范围是.2.不等式组有3个整数解,则m的取值范围是.3.已知关于x的不等式组仅有三个整数解,则a的取值范围是.4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.7.已知关于x的不等式组有四个整数解,求实数a的取值范围.类型六:一元一次不等式(组)应用题1.分配问题(1)学校现有若干个房间分配给初三(1)班的男生住宿,已知该班男生不足50人,若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满).那么该班的男生人数是多少人.2.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若每人分4件,则最后一人最多分3件,问小朋友的人数至少有多少人。
列一元一次不等式或不等式组解应用题
列一元一次不等式组解应用题题型一:列关于x的不等式组a<x<b的形式(例如分物品,分房间等问题)关键是找出a和b的值例1 一堆玩具分给若干个小朋友,若每人分3件,则剩余3件,若每人分5件,则每人都分到玩具,但有一个小朋友的玩具不足3件,则共有多少个小朋友?练习:1为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?2、实验学校为初一寄宿学生安排宿舍,若每间4人,则有20人无法安排,若每间8人,则有一间不空也不满,求宿舍间数和寄宿学生人数。
3、小记者团有48人要在某招待所住宿,招待所一楼没住客的客房比二楼少5间,如果全部住一楼,每间住5人,则住不满;每间住4人,则不够住,如果全部住在二楼,每间住4人,则住不满;每间住3人,则不够住。
招待所一楼和二楼各有几间尚未住客的客房?题型二:与二元一次方程组知识结合的题目(一般需要加入x≥0的条件)例2 某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中每种机34万元。
(1(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?练习:1、某公司为了扩大经营,决定购进5台机器用于生产某种活塞。
现有甲、乙两种机器供选择,其中每经过预算,本次购买机器所耗资金不能超过22万元。
(1)按该公司要求可以有几种购买方案?(2)若该公司购进的5台机器的日生产能力不能低于280个,那么为了节约资金应选择哪种方案?2、某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.题型三:有A、B两种物品,列不等式组的依据:以A、B为依据列不等式组。
一元一次不等式组应用题的讲解
一元一次不等式组应用题的讲解一元一次不等式组是数学中常见的问题类型之一,它可以用来解决实际生活中的一些应用问题。
在本文中,我将讲解一些典型的一元一次不等式组应用题,并给出相应的解决方法。
1. 卖苹果问题:小明在果摊上买了一些苹果,每个苹果的重量在100克到200克之间。
已知苹果的总重量不超过1千克,若小明买了x个苹果,请问x的取值范围是多少?解决方法:根据题目可以得出以下不等式组:100x ≤ 1000200x ≥ 1000解这个不等式组,我们可以先解第一个不等式:x ≤ 10然后解第二个不等式:x ≥ 5所以,x的取值范围是5 ≤ x ≤ 10。
2. 银行存款问题:某人将一笔钱存在银行,存款利息为3%。
已知他存款的数额不少于10000元,若存款的时间超过5年,利息总额将超过5000元。
求他存款的最小金额。
解决方法:根据题目可以得出以下不等式组:0.03x ≥ 5000x ≥ 10000解这个不等式组,我们可以解第一个不等式:x ≥ 166666.67所以,他存款的最小金额为166666.67元。
3. 体重问题:某人为了减肥,每天进行有氧运动。
已知他每天的运动时间不少于30分钟,且每天消耗的卡路里不少于200卡。
若他连续运动x天,请问x的取值范围是多少?解决方法:根据题目可以得出以下不等式组:30x ≤ 1440200x ≤ 6000解这个不等式组,我们可以先解第一个不等式:x ≤ 48然后解第二个不等式:x ≤ 30所以,x的取值范围是0 ≤ x ≤ 30。
通过以上的例子,我们可以看到一元一次不等式组在实际问题中的应用。
通过建立不等式组,我们可以得到问题的解空间,从而更好地理解和解决实际问题。
在解决一元一次不等式组的过程中,我们需要运用数学推理和计算能力,能够培养我们的逻辑思维和问题解决能力。
一元一次不等式组的应用题
1.6 一元一次不等式组应用题练习A1、我市一山区学校为局部家远的学生安排住宿,将局部教室改造成假设干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?、解:设住房有x 间,住宿的学生有5x +12人,根据题意: 0<〔5x +12〕-8(x -1)<8 4<x <∵x 为整数,∴x =5,62、一玩具厂生产甲、乙两种玩具,造一个甲种玩具需用金属80克,塑料140克,造一个乙种玩具需用金属100克,塑料120克.假设工厂有金属4600克,塑料6440克,方案用两种材料生产甲、乙两种玩具共50件,求甲种玩具件数的取值范围.、解:设甲种玩具为x 件,那么甲种玩具为〔50-x 〕件.根据题意得:⎩⎨⎧≤-+≤-+6440)50(1201404600)50(10080x x x x 解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个2633、现方案把甲种货物1240吨和乙种货物880吨用一列货车运往某地,这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.〔1〕设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.〔2〕如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?4、为了保护环境,某企业决定购置10台污水处理设备,现有A、B两种型号的设备,其中每台的价〔1〕请你设计该企业有几种购置方案;〔2〕假设企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购置方案;〔3〕在第〔2〕问的条件下,假设每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比拟,10年节约资金多少万元?〔注:企业处理污水的费用包括购置设备的资金和消消耗〕5、某厂方案2004年生产一种新产品,下面是2003年底提供的信息,人事部:明年生产工人不多于800人,每人每年可提供2400个工时;市场部:预测明年该产品的销售量是10000~12000件;技术部:该产品平均每件需要120个工时,每件要4个某种主要部件;供给部:2003年低库存某种主要部件6000个.预测明年能采购到这种主要部件60000个.根据上述信息,明年产品至多能生产多少件?6、某宾馆底层客房比二楼少5间,某旅行团有48人.假设全部住底层,每间4人,房间不够;每间住5人,有房间没有住满5人.假设全部安排在二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人.问该宾馆底层有客房多少间?7、〔2007年眉山市〕某县响应“建设环保节约型社会〞的号召,决定资助局部村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,缺乏局部由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.〔1〕用含有x的代数式表示y;〔2〕不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;〔3〕假设平均每户村民集资700元,能否满足所需费用最少的修建方案.8、〔2007年常州市〕学校举办“迎奥运〞知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖 二等奖 三等奖 1盒福娃和1枚徽章1盒福娃1枚徽章用于购置奖品的总费用不少于1000元但不超过1100元,小明在购置“福娃〞和微章前,了解到如下信息:〔1〕求一盒“福娃〞和一枚徽章各多少元?〔2〕假设本次活动设一等奖2名,那么二等奖和三等奖应各设多少名?1.6 一元一次不等式组应用题练习参考答案1、解:设住房有x 间,住宿的学生有5x +12人,根据题意: 0<〔5x +12〕-8(x -1)<8 4<x <∵x 为整数,∴x =5,6答:当有5间房的时候,住宿学生有37人;当有6间房的时候,住宿学生有42人.2632、解:设甲种玩具为x 件,那么甲种玩具为〔50-x 〕件.根据题意得:⎩⎨⎧≤-+≤-+6440)50(1201404600)50(10080x x x x 解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个 3、〔1〕y =32000-2000x〔2〕共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节 4、〔1〕共有三种购置方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台.〔2〕A 、B 两种型号的设备分别1台、9台;〔3〕10年节约资金42.8万元 5、解:设明年可生产产品x 件,根据题意得:⎪⎩⎪⎨⎧+≤≤≤⨯≤600006000412000100002400800120x x x 解得:10000≤x ≤12000 答:明年产品至多能生产12000件.6、解:设宾馆底层有客房x 间,那么二楼有客房〔x+5〕间.根据题意得:⎪⎪⎩⎪⎪⎨⎧>+<+><48)5(448)5(3485484x x x x 解得:9.6<x <11 所以: x = 10答:该宾馆底层有客房x 间.7、解:〔1〕32(20)y x x =+-40x =+ 〔2〕由题意可得203(20)264486(20)708x x x x +-⎧⎨+-⎩≥ ①≤ ②解①得x ≥12 解②得x ≤14∴不等式的解为12≤x ≤14x 是正整数∴x 的取值为12,13,14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个 〔3〕∵y =x +40中,y 随x 的增加而增加,要使费用最少,那么x =12∴最少费用为y =x +40=52〔万元〕村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案 8、解:〔1〕设一盒“福娃〞x 元,一枚徽章y 元,根据题意得23153195x y x y +=⎧⎨+=⎩ 解得15015x y =⎧⎨=⎩ 答:一盒“福娃〞150元,一枚徽章15元. 〔2〕设二等奖m 名,那么三等奖〔10—m 〕名,216515015(10)1000216515015(10)1100m m m m ⨯++-⎧⎨⨯++-⎩≥≤ 解得1041242727m ≤≤. m 是整数,∴m =4,∴10-m =6.(第12题图)图2xb +答:二等奖4名,三等奖6名.B一元一次不等式〔组〕应用题1.直线b x k y l +=11:与直线x k y l 22:=图,那么关于x 的不等式21k x k x b >+2.一次函数y kx b =+〔k b ,是常数,0k ≠如图2所示,那么不等式0kx b +>是 .3. 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?4.〔2021遵义〕(12分)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
解答 设需要A 型车厢x 节,由题意得⎩⎨⎧≥-+≥-+1150)50(35151530)50(2535x x x x 解得3028≤≤x ,因为x 为整数,所以x 取28,29,30,即有3种方案:(1)A 型28节,B 型22节;(2)A 型29节,B 型21节;(3)A 型30节,B 型20节,由题意知,运费403.0)50(8.05.0+-=-+=x x x y ,当30=x 时,y 取最小值,即A 型车厢20节,B 型车厢20节时运费最少.例题2 分析 设有x 个小朋友,则苹果数为83+x .如果每人分5个,因为最后一个小朋友的苹果数不足3个,所以83+x 应在)1(5-x 和3)1(5+-x 之间,可得不等式组.解答 设幼儿园大班共有x 个小朋友,根据题意得⎩⎨⎧+-<++<-)()(2.3)1(5831 ,83)1(5x x x x 由(1)得213,132,8355<<+<-x x x x ; 由(2)得5,102,35583>-<-+-<+x x x x . 所以不等式组的解集为2135<<x . 又因为x 为整数,故6=x .所以,有6个小朋友,共有苹果3×6+8=26(个).例题3 分析 因为每人只获1件奖品,故笔记本和钢笔的数量和是10,总金额不超过70元.根据题意,可列出下列由方程和不等式组成的式子.解答 设购买x 本笔记本,y 支钢笔,依题意可得⎩⎨⎧≤+=+)()(2.7085.31 ,10y x y x 由(1)得y x -=10,(3)将(3)代入(2)得708)10(5.3≤+-y y ,解得970≤y . 又y 是正整数,所以y 的最大值是7,即至多能买7支钢笔.例题4 解答 设底楼有x 间客房,则二楼有(x +5)间客房,根据题意,得⎩⎨⎧<>484485x x , ∴9<x <12.依题意,又可得⎩⎨⎧>+<+48)5(448)5(3x x ,∴ 7<x <11.故 x =10.答:底楼有10间客房.说明 本题是列不等式解应用题,在确定设未知数后,关键是找出不等式关系和列出不等式,为此须认真斟酌关键词语如“不够”和“没住满”的含义.例题5 分析 此问题中有两个未知数,且没有等量关系,有不等关系,因此可考虑用不等式组来解.解答 设小朋友x 人,则有⎩⎨⎧<+->+)2(5593)1()1(5593xx x x解(1),得32<x ,解(2),得5.29>x ,∴ .325.29<<x∵ x 为整数,∴ .31,30=x此时.152,149593=+x 答:幼儿园有小朋友30人,玩具149件;幼儿园有小朋友31人,玩具152件.说明 利用一元一次不等式组解应用题的步骤与列一元二次方程组解应用题大体相同,不同的是后者寻求的是等量关系,列出的是等式,前者寻求的是不等关系,列出的是不等式,并且解不等式组所得结果通常为一解集,需从解集中找出符合题意的答案.例题6 解答 (1)根据题意,x 满足不等式组:⎩⎨⎧≤-+≤-+290)50(103360)50(49x x x x (2)解不等式组,得 3230≤≤x .因为x 是整数,所以32,31,30=x .因此生产方案有三种:生产A 种产品30件、B 种产品20件;或生产A 种产品31件、B 种产品19件;或生产A 种产品32件、B 种产品18件.例题7 分析 如果设这列火车行驶至DE 这段铁路线上任意一处(不包括E D ,)所经过的时间为x ,那么就能用x 的一次式表示列车所经过的路程.根据这个路程应大于(80+50+70)km ,且小于(80+50+70+60)km ,就可列出不等式组,解出x 的取值范围.再根据列车出发的时间,就能求出列车何时行驶在DE 这段铁路线上.解答 设这列火车行驶至DE 这段铁路线上任意一处(不包括E D ,)所经过的时间为x ,则相应所经过的路程为)2.0(80-x km .依题意,得⎩⎨⎧++>-+++<-)()(2).705080()2.0(801 ),60705080()2.0(80x x 解不等式(1),得45.3<x .解不等式(2),得7.2>x .∴不等式组的解集是45.37.2<<x .7.5+2.7=10.2(时),7.5+3.45=10.95(时).答:这列火车行驶在DE 这段铁路线上的时间是10:12至10:57.说明 列不等式组时,要注意单位的统一,否则会影响表达式的正确性. 例题8 解答 (1)去年备有和今年生产的车轮共有1000+1500×12=28000(只),共可装配自行车的辆数为28000÷2=14000(辆).(2)该厂全年生产自行车的辆数范围是:≤⨯121000全年生产自行车辆数121200⨯≤,即≤12000全年生产自行车辆数14400≤.(3)今年订购自行车14500辆,可知供不应求,以最快生产速度也不能满足社会要求,得扩大生产能力.(4)由上分析可知5001400050012000⨯≤≤⨯a ,∴600(万元)700≤≤a (万元).说明 本例中14400辆是可以生产出,但实际上原料供应只能保证生产14000辆,故计算a 的范围时只能用14000辆参与计算.例题9 分析 讨论某次经济行为是否合算,即要看这种方式与其他方式比较是否花费最少,故本题(2)要转化为用不等式组的知识求解.解答 (1)因为12080<,所以不可能选A 类年票.若选B 类年票,则1026080=-(次); 若选C 类年票,则1334080=-(次); 若不购买年票,则81080=(次). 所以计划用80元花在该园林的门票上时,选择购买C 类年票的方法进入园林的次数最多,为13次.(2)设至少超过x 次时,购买A 类年票比较合算,则有不等式组⎪⎩⎪⎨⎧>>+>+,12010,120340,120260x x x 解得⎪⎪⎩⎪⎪⎨⎧>>>,12,3226,30x x x 其公共解集为30>x .所以,一年中进入该园林至少超过30次时,购买A 类年票比较合算.说明 本例展示的是生活中的一件小事,但暗示我们,生活中无处不存在数学的身影,渗透在生活中的一个个细节中.例题10 分析 此例中的未知量较多(如两学生前四次的平均分数,第五次测验的分数等),且没有足够的等量关系,难以列方程组求解.但题中蕴含两个不等关系:平均分低于90分;满分100分,即测验分数不超过100分.于是考虑利用不等式的有关知识求解.解答 设其中某个学生前4次的平均分为x 分,第5次测验的成绩为y 分,依题意有9054=+y x ,即x y 4450-=. 由第5次测验的成绩高于90分,而又不大于100分,得100445090≤-<x , 解得905.87<≤x ,因为x 为整数,故88=x 或89.又已知两个学生平均分数不等,故前4次的平均分一个为88分,另一个为89分,第5次测验一个学生的成绩为98分,另一个的成绩为94分.说明 利用不等式(组)解应用题,其步骤与列方程(组)解应用题大体相同.不同的是,后者探求等量关系,列出的是等式,而前者寻求不等关系,列出的是不等式,并且解不等式(组)得到的结果通常为一解集,需从解集中找出符合题意的答案.例题11 分析 问题中有两个未知量,只有一个等量关系,另外还有一个附加条件,这是一个求有条件的不定方程整数解的问题,求不定方程整数解的一种方法是观察系数特征,用试验的办法求解.解答 设大、小盒分别有x 个、y 个,根据题意得:⎩⎨⎧>+=+②①10 9512y x y x 由①知y 为奇数,且③ 1235812599--=-=y y x , ∵x 为自然数,∴).35(12-≤y 通过试验可得3=y 时,7=x ,但10=+y x 与10>+y x 矛盾,故舍去,当15=y 时,2=x ,即⎩⎨⎧==.152y x 也可以用逐步代换的方法(常规方法)求解如下: 由①得12358--=y x , 设υ=-1235y ,则.53225312++=+=υυυy再设υυ=+532,则.2112235-+-=-=υυυυ 再设t =-21υ,得12+=t υ(t 为整数)逐步回代得⎩⎨⎧+=-=.312,57t y t x (t 为整数). 由于x ,y 均为自然数,即⎩⎨⎧>+>-.0312,057t t ∴ .52141<<-t ∴ 0=t 或1. 当1=t 时,3,7==y x ,但与10>+y x 矛盾,舍去.当1=t 时,15,2==y x ,符合题意.说明 不定方程组可以通过消元转化为二元一次不定方程求解,如中国古代“百鸡问题”、“孙子定理”、“鸡兔同笼”等,都属于这一类求解问题.。