八年级下学期期末数学试卷+参考答案与试题解析(浙教版)

合集下载

浙教版八年级下册数学期末试卷及答案

浙教版八年级下册数学期末试卷及答案

浙教版八年级下册数学期末试卷及答案风儿静静的吹动,凤凰花吐露着嫣红,祝你八年级数学期末考试顺利!小编整理了关于浙教版八年级下册数学期末试卷,希望对大家有帮助!浙教版八年级下册数学期末试题一、选择题(本大题共有6小题,每小题3分,共18分)1. 以下问题,不适合用全面调查的是(▲)A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2. 下列各等式中成立的是 ( )A.-B.- =-0.6C. =-13D. =±63.下列说法不正确的是 ( )A.了解玉米新品种“农大108”的产量情况适合作抽样调查B.了解本校八年级(2)班学生业余爱好适合作普查C.明天的天气一定是晴天是随机事件D.为了解A市20000名学生的中考成绩,抽查了500名学生的成绩进行统计分析,样本容量是500名4.对于反比例函数,下列说法不正确的是( )A.点(-2,2)在它的图像上B.它的图像在第二、四象限C.当时,随的增大而减小D.当时,随的增大而增大5.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C•顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为 ( )A.10°B.15°C.18°D.20°6.某市举行“一日捐”活动,甲、乙两单位各捐款30000元,已知“…”,设乙单位有x人,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补( )A.甲单位比乙单位人均多捐20元,且乙单位的人数比甲单位的人数多20%B.甲单位比乙单位人均多捐20元,且甲单位的人数比乙单位的人数多20%C.乙单位比甲单位人均多捐20元,且甲单位的人数比乙单位的人数多20%D.乙单位比甲单位人均多捐20元,且乙单位的人数比甲单位的人数多20%二、填空题(本大题共有10小题,每小题3分,共30分)7. 的最简公分母是 .8.当a= 时,最简二次根式与是同类二次根式.9.如果方程有一个根为1,该方程的另一个根为 .10.在●○●○○●○○○●○○○○●○○○○○中,空心圈出现的频率是 .11.小明要把一篇24 000字的社会调查报告录入电脑.完成录入的时间t(分)与录入文字的速度v(字/分)的函数关系可以表示为 .12.如果 + =0,则 + = .13.已知关于的方程无解,则m的值为 .14.近年来某市为发展教育事业,加大了对教育经费的投入,2011年投入3000万元,2013年投入3630万元.则2011年至2013年某市投入教育经费的年平均增长率为 .15.如图,在△ABC中,点D、E、F分别在边BC、AB、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF 是正方形.其中,正确的有个.16.如图,点A是双曲线 (x>0)上的一动点,过A作AC⊥y轴,垂足为点C,作AC的垂直平分线交双曲线于点B,交x轴于点D.当点A 在双曲线上从左到右运动时,对四边形ABCD的面积的变化情况,小明列举了四种可能:①逐渐变小;②由大变小再由小变大;③由小变大再由大变小; ④不变. 你认为正确的是 .(填序号)三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分) 计算:(1) ; (2) .18.(本题满分8分)解下列方程:(1) ; (2) .19.(本题满分8分)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).20.(本题满分8分)如图,已知△ABC的三个顶点的坐标分别为A(-6,0)、B(-2,3)、C(-1,0) .(1)请直接写出与点B关于坐标原点O的对称点 B1的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形,直接写出点A的对应点A′的坐标;(3)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.21.(本题满分10分)4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计图表.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率卡通画 a 0.45时文杂志 b 0.16武侠小说 100 c文学名著 d e(1)这次随机调查了名学生,统计表中d= ,请补全统计图;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是 ;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?22.(本题满分10分)已知关于x的一元二次方程 .(1)若方程有两个相等的实数根,求a的值及此时方程的根;(2)若方程有两个不相等的实数根,求a的取值范围.23.(本题满分10分)如图,点E、F为线段BD的两个三等分点,四边形AECF是菱形.(1)试判断四边形ABCD的形状,并加以证明;(2)若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积.24.(本题满分10分)某商店进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就将减少100件.如果商店销售这批服装要获利润12000元,那么这种服装售价应定为多少元?该商店应进这种服装多少件?25.(本题满分12分)如图,一次函数y=k1x+b与x轴交于点A,与反比例函数y= 相交于B、C两点,过点C作CD垂直于x轴,垂足为D,若点C的横坐标为2,OA=OD,△COD的面积为4.(1)求反比例函数和一次函数的关系式;(2)根据所给条件,请直接写出不等式k1x+b≤ 的解集;(3)若点P( , ),Q( ,2)是函数图象上两点,且 > ,求的取值范围(直接写出结果).26.(本题满分14分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M,FH的中点是P.(1)如图1,点A、C、E在同一条直线上,根据图形填空:①△BMF是三角形;②MP与FH的位置关系是,MP与FH的数量关系是 ;(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,解答下列问题:① 证明:△BMF是等腰三角形;②(1)中得到的MP与FH的位置关系与数量关系的结论是否仍然成立?证明你的结论;(3)将图2中的CE缩短到图3的情况,(2)中的三个结论还成立吗?(成立的不需要说明理由,不成立的需要说明理由)浙教版八年级下册数学期末试卷参考答案一、选择题(本大题共有6小题,每小题3分,共18分)1.D;2.A;3.D;4.C;5.B;6.C.二、填空题(本大题共有10小题,每小题3分,共30分)7. ;8. 5;9.2;10. 0.75;11. ;12. 1+ ;13.-4;14. 10﹪;15. 3;16. ④.三、解答题(共10题,102分.下列答案仅供参考,有其它答案或解法,参照标准给分.)17. (本题满分12分) (1)原式== - (4分)=- (6分);(2)原式= (2分) = (4分)= (6分).18.(本题满分8分) (1) ,(2分) (3分),检验:当时,x-2≠0,是原方程的解(4分);(2) , (2分),, (4分).19.(本题满分8分) (1)a=4÷20%=20 (3分);(2)∵ , (5分), (7分)∴可能性从小到大排序为:①③② (8分,若直接写出正确结论不扣分).20.(本题满分8分) (1)B1(2,-3)(2分);(2)作图略(4分),A′((0,-6)(6分);(3)(3, -5).21.(本题满分10分)(1)400(2分),56(4分),补图(略6分);(2)直角(或填90°)(8分);(3)最喜欢文学名著类书籍有1500×0.14=210(名)(10分).22.(本题满分10分) (1)∵关于x的一元二次方程有两个相等的实数根,∴ 且 (2分),∴ (3分),方程为-4x2-4x-1=0,解得 (6分);(2)∵关于x的一元二次方程有两个不相等的实数根,∴ 且 (8分),∴ 且 (10分).23.(本题满分10分)(1)四边形ABCD为菱形.连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF.又点E、F 为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形(4分),∵AC⊥BD,∴四边形AECF为菱形(6分);(2)∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD=24,∴EF=8,,AO=3,AC=6(8分), (10分).24.(本题满分10分)设销售单价为x元(1分),根据题意得: (4分),解得,(7分).当单价为70元时,应进600件;当单价为80元时,应进400件(9分),答:(略)(10分).25.(本题满分12分)(1)由△COD的面积为4,得C的坐标为(2,-4),∴ ,∴ (2分); ∵OA=OD,OD=2,∴AO=2,∴A点坐标为(-2,0),∴ ,∴ ,∴y=-x-2 (4分);(2)过点B作BE⊥x轴于点E,则AE=BE,设AE=m,则B(-2-m,m),有m(2+m)=8,解得m=2,所以B(-4,2).或令,∴ ,,∴B点的坐标为(-4,2)(6分),观察图象可知,不等式k1x+b≤ 的解集为-4≤x<0或x≥2(8分);(3)y1>2或y1<0 (12分,两个范围各2分).26.(本题满分14分)(1)①等腰直角;②MP⊥FH,MP= FH;(3分)(2)①∵B、D、M分别是AC、CE、AE的中点,∴MB∥CD,且MB=CD=BC = BF,∴△BMF是等腰三角形(5分);② 仍然成立.证明:如图,连接MH、MD,设FM与AC交于点Q.由①可知MB∥CD,MB=CD,∴四边形BCDM是平行四边形(6分),∴ ∠CBM =∠CDM.又∵∠FBQ =∠HDC,∴∠FBM =∠MDH,∴△FBM ≌ △MDH(7分 ),∴FM = MH,且∠MFB =∠HMD,∴∠FMH =∠FMD-∠HMD =∠AQM-∠MFB =∠FBP = 90°,∴△FMH是等腰直角三角形(9分 ).∵P是FH的中点,∴MP⊥FH,MP= FH(10分 );(3)△BMF不是等腰三角形(11分),理由:MB=CD≠BC = BF且∠FBM>90°(12分,必须同时正确才能得1分);MP⊥FH仍然成立(13分 ),MP= FH仍然成立(14分 ).。

浙教版八年级下学期期末数学试卷及答案

浙教版八年级下学期期末数学试卷及答案

浙教版八年级下学期期末数学试卷及答案一、仔细选-选(本题有10个小题,每小题3分,共30分每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案.)1.在直角坐标系中,点A(﹣7,)关于原点对称的点的坐标是()A.(7,)B.(﹣7,﹣)C.(﹣,7)D.(7,﹣)2.=()A.﹣4B.±4C.4D.23.十边形的内角和为()A.360°B.1440°C.1800°D.2160°4.用配方法解方程2x2+4x﹣3=0时,配方结果正确的是()A.(x+1)2=4B.(x+1)2=2C.(x+1)2=D.(x+1)2=5.某校田径队六名运动员进行了100米跑的测试,他们的成绩各不相同.在统计时,将第五名选手的成绩多写0.1秒,则计算结果不受影响的是()A.平均数B.方差C.标准差D.中位数6.用反证法证明“四边形至少有一个角是钝角或直角”时,应先假设()A.四边形中每个角都是锐角B.四边形中每个角都是钝角或直角C.四边形中有三个角是锐角D.四边形中有三个角是钝角或直角7.已知反比例函数y=﹣,则()A.y随x的增大而增大B.当x>﹣3且x≠0时,y>4C.图象位于一、三象限D.当y<﹣3时,0<x<48.一个菱形的边长为5,两条对角线的长度之和为14,则此菱形的面积为()A.20B.24C.28D.329.若方程ax2+bx+c=0(a≠0)的两个根分别是﹣,5,则方程a(x﹣1)2+bx=b﹣2c的两根为()A.﹣,6B.﹣3,10C.﹣2,11D.﹣5,2110.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙、无重叠的四边形EFGH.若AB=4,BC =6,且AH<DH,则AH的长为()A.3﹣B.4﹣C.2﹣2D.6﹣3二、认真填一填(本题有6个小题,每小题4分,共24分.注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.)11.二次根式中字母x 的取值范围是.12.▱ABCD中,∠A=50°,则∠D=.13.已知关于x的一元二次方程x2+mx+n=0的一个根是﹣2,则n﹣2m﹣5的值为.14.某学校八年级有四个绿化小组,在植树节这天种下柏树的棵数如下:10,10,x,8.若这组数据的的众数和平均数相等,则x=,这组数据的方差是.15.如图,在△ABC中,∠ACB=90°,点D在边AB上(不与点A,B重合),DE⊥AC于点E,DF⊥BC于点F,连接EF.若AC=3,BC=2,则EF的最小值为.16.一次函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象的一个交点是M(﹣3,2),若y2<y1<5,则x的取值范围是.三、全面答一答(本题有7个小题,共66分:解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以)17.(6分)计算:(1)+﹣;(2)(+1)2+2(﹣1).18.(8分)解方程:(1)x2﹣8x+3=0;(2)(x﹣2)(2x﹣3)=6.19.(8分)某商贸公司10名销售员上月完成的销售额情况如表:34567816销售额(万元)销售员人1132111数(1)求销售额的中位数、众数,以及平均每人完成的销售额;(2)若要从平均数,中位数,众数中选一个作为每月定额任务指标,你认为选哪一个统计量比较合适?请说明理由.20.(10分)把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t﹣5t2.(1)经过多少秒后足球回到地面?(2)圆圆说足球的高度能达到21米,方方说足球的高度能达到20米.你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在▱ABCD中,点G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形;(2)连接BD交AC于点O,若BD=10,AE+CF=EF,求EG的长.22.(12分)某气球内充满一定质量的气体,当温度不变时,气球内气体的压强p(kPa)与气体的体积V(m3)成反比例.当气体的体积V=0.8m3时,气球内气体的压强p=112.5kPa.当气球内气体的压强大于150kPa时,气球就会爆炸.(1)求p关于V的函数表达式;(2)当气球内气体的体积从1.2m3增加至1.8m3(含1.2m3和1.8m3)时,求气体压强的范围;(3)若气球内气体的体积为0.55m3,气球会不会爆炸?请说明理由.23.(12分)如图1,在正方形ABCD中,点E在边CD上(不与点C,D重合),AE交对角线BD于点G,GF⊥AE交BC于点F.(1)求证:AG=FG.(2)若AB=10,BF=4,求BG的长.(3)如图2,连接AF,EF,若AF=AE,求正方形ABCD与△CEF的面积之比.参考答案与试题解析一、仔细选-选(本题有10个小题,每小题3分,共30分每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案.)1.解:点A(﹣7,)关于原点对称的点的坐标是:(7,﹣).故选:D.2.解:=4,故选:C.3.解:十边形的内角和等于:(10﹣2)×180°=1440°.故选:B.4.解:2x2+4x﹣3=0,2x2+4x=3,x2+2x=,x2+2x+1=+1,(x+1)2=,故选:C.5.解:这组数据的中位数第3、4个数据的平均数,∴将第五名选手的成绩多写0.1秒,不影响数据的中位数,故选:D.6.解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中每个角都是锐角.故选:A.7.解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,故选项A错误;该函数图象位于第二、四象限,故选项C错误;当﹣3<x<0时,y>4,当x>0时,y<0,故选项B错误;当y<﹣3时,0<x<4,故选项D正确;故选:D.8.解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵AC+BD=14,∴OD+AO=7①,∵∠AOB=90°,∴OD2+OA2=25②,由①②两式可得49﹣2OD•OA=25,解得:OD•OA=12,∴BD•AC=2OD•2OA=4OD•OA,∴菱形面积=BD•AC=2OD•OA=24.故选:B.9.解:∵方程ax2+bx+c=0(a≠0)的两个根分别是﹣,5,∴=﹣,,∴,,解方程a(x﹣1)2+bx=b﹣2c得,(x﹣1)2+(x﹣1)+=0,∴(x﹣1)2﹣7(x﹣1)﹣30=0,(x﹣1+3)(x﹣1﹣10)=0,∴x1=﹣2,x2=11,故选:C.10.解:由折叠的性质可得∠HEJ=∠AEH,∠BEF=∠FEJ,AH=HJ,∴∠HEF=∠HEJ+∠FEJ=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,BF=JF,∴四边形EFGH为矩形,∴EH=FG,∵四边形ABCD是矩形,∴∠A=∠B=∠D=∠C=90°,∴∠AEH+∠AHE=∠AHE+∠DHG=∠DHG+∠DGH=∠DGH+∠CGF=90°,∴∠AEH=∠CGF,∴△AEH≌△CGF(AAS),∴CF=AH,∵HF=HJ+JF=AH+BF=AH+6﹣CF=6,由折叠的性质的,AE=EJ=BE=AB=2,∵HF2=EH2+EF2,∴36=AH2+4+4+(6﹣AH)2,∴AH=3±,∵AH<DH,∴AH=3﹣,故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分.注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.)11.解:要使二次根式有意义,必须﹣5x≥0,解得:x≤0,故答案为:x≤0.12.解:在▱ABCD中,∠A=50°,∠A+∠D=180°∴∠D=130°故答案为130°.13.解:把x=﹣2代入方程x2+mx+n=0得4﹣2m+n=0,整理得:n﹣2m=﹣4,所以n﹣2m﹣5=﹣4﹣5=﹣9.故答案为:﹣9.14.解:∵众数为10,平均数等于众数,∴=10,解得x=12,∴数据按从小到大排列为:8,10,10,12.∴这组数据的方差为×[(8﹣10)2+2×(10﹣10)2+(12﹣10)2]=2,故答案为:12,2.15.解:连接CD,如图所示:∵∠ACB=90°,AC=3,BC=2,∴AB===,∵DE⊥AC,DF⊥BC,∠ACB=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×2×3=××CD,解得:CD=,∴EF=,故答案为:.16.解:如图,一次函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象相交于点M、N,∴M、N点关于原点对称,∴N(3,﹣2),把M(﹣3,2)代入y1=k1x得﹣3k1=2,解得k1=﹣,∴一次函数解析式为y1=﹣x,当y=5时,﹣x=5,解得x=﹣,∴若y2<y1<5,则x的取值范围是﹣<x<﹣3或0<x<3.故答案为﹣<x<﹣3或0<x<3.三、全面答一答(本题有7个小题,共66分:解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以)17.解:(1)原式=3+﹣2=;(2)原式=2+2+1+4﹣2=7.18.解:(1)∵a=1,b=﹣8,c=3,∴△=(﹣8)2﹣4×1×3=52>0,∴x==4,即x1=4+,x2=4﹣;(2)方程整理为一般式,得:2x2﹣7x=0,则x(2x﹣7)=0,∴x=0或2x﹣7=0,解得x1=0,x2=3.5.19.解:(1)∵共有10人,∴中位数应该是排序后第5和第6人的平均数,∴平均数为(万元);销售额为5万的有3人,最多,所以销售额的众数为5万元;平均销售额为:(3+4+3×5+6×2+7+8+16)=6.5(万元);(2)如果以销售额的中位数作为每月定额任务指标,那么没有完成定额任务的销售员有5人;如果以销售额的众数作为每月定额任务指标,那么没有完成定额任务的销售员有2人.如果以销售额的平均数作为每月定额任务指标,那么没有完成定额任务的销售员有7人,所以选择中位数比较合适.20.解:(1)当h=0时,20t﹣5t2=0,解得:t=0或t=4,答:经4秒后足球回到地面;(2)方方的说法对,理由:将h=21代入公式得:21=20t﹣5t25t2﹣20t+21=0,由判别式计算可知:△=(﹣20)2﹣4×5×21=﹣20<0,方程无解,将h=20代入公式得:20=20t﹣5t25t2﹣20t+20=0,解得:t=2(负值舍去),所以足球确实无法到达21米的高度,能达到20米,故方方的说法对.21.解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠GAE=∠HCF,∵点G,H分别是AB,CD的中点,∴AG=CH,∵AE=CF,∴△AGE≌△CHF(SAS),∴GE=HF,∠AEG=∠CFH,∴∠GEF=∠HFE,∴GE∥HF,又∵GE=HF,∴四边形EGFH是平行四边形;(2)连接BD交AC于点O,如图:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BD=10,∴OB=OD=5,∵AE=CF,OA=OC,∴OE=OF,∵AE+CF=EF,∴2AE=EF=2OE,∴AE=OE,又∵点G是AB的中点,∴EG是△ABO的中位线,∴EG=OB=2.5.∴EG的长为2.5.22.解:∵度不变时,气球内气体的压强p(kPa)与气体的体积V(m3)成反比例,∴设解析式为:p=,∵当气体的体积V=0.8m3时,气球内气体的压强p=112.5kPa,∴k=0.8×112.5=90,∴p关于V的函数表达式为p=;(2)当V=1.2时,p=75kPa,当V=1.8时,p=50kPa,∴当气球内气体的体积从1.2m3增加至1.8m3(含1.2m3和1.8m3)时,气体压强的范围为50~75kPa;(3)当V=0.55m3时,p=≈163.6>150kPa,所以会爆炸.23.证明:(1)连接GC,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∠ABD=∠CBD=45°,又∵BG=BG,∴△ABG≌△CBG(SAS),∴AG=CG,∠BAG=∠BCG,∵∠ABC+∠BAG+∠AGF+∠BFG=360°,且∠ABC=∠AGF=90°,∴∠BAG+∠BFG=180°,∴∠BCG+∠BFG=180°,∵∠BFG+∠GFC=180°,∴∠BCG=∠GFC,∴GC=GF,∴AG=FG;(2)如图2,过点G作GH⊥BC于H,∵AB=10,BF=4,∴AF2=AB2+BF2=AG2+GF2,∴GF2=58,∵∠DBC=45°,GH⊥BC,∴BH=GH,BG=GH,∵GF2=GH2+FH2,∴58=GH2+(GH﹣4)2,∴GH=7,(负值舍去),∴BG=7;(3)如图,在AB上截取BF=BN,连接NF,∵AG=GF,AG⊥GF,∴∠EAF=45°,∵AE=AF,AB=AD,∴Rt△ABF≌Rt△ADE(HL),∴∠BAF=∠DAE=22.5°,BF=DE,∴CF=CE,∵BF=BN,∠ABC=90°,∴NF=BF,∠BNF=∠BFN=45°,∴∠BAF=∠AFN=22.5°,∴AN=NF=BF,∵AB=BC,∴BN+AN=BF+FC,∴FC=BF,∴BC=(+1)BF,∴正方形ABCD与△CEF的面积之比=BC2:FC2=3+2.。

浙教版八年级(下)期末数学试卷及答案一

浙教版八年级(下)期末数学试卷及答案一

浙教版八年级(下)期末数学试卷及答案一、选择题(本大题共10小题,共40分)1.下列二次根式中是最简二次根式的是( )A. √0.5B. √3C. √8D. √42.下列四边形中不一定是轴对称图形的是( )A. 平行四边形B. 菱形C. 矩形D. 正方形3.下列长度(单位:cm)的四组线段中,能组成直角三角形的是( )A. 2,2,3B. 2,3,5C. 3,4,5D. 4,5,64.下列二次根式中,能与√3合并的是( )A. √2B. √5C. √18D. √125.下列计算正确的是( )A. 4√5−3√5=1B. √2+√5=√7C. √6÷√3=2D. (−√2)2=26.某商场试销一种新款衬衫,一周内各种尺码衬衫的销售情况如下表:商场经理要确定哪种尺码最畅销,则对她来说,最有意义的统计量是( )A. 众数B. 中位数C. 平均数D. 方差7.下列各图的直线或曲线中,不能表示y是x的函数的是( )A. B.C. D.8.如图,在四边形ABCD中,AB=AD,CB=CD,像这样,经过不相邻两个顶点的两组邻边分别相等的四边形叫做筝形.对于如图的筝形ABCD,可以证明它具有的性质是( )A. 各对邻边分别相等B. 对角线互相平分C. 两组对角分别相等D. 对角线互相垂直9.已知AB=AD,用没有刻度的直尺和圆规作菱形ABCD,下面的作法中正确的是( )A. B.C. D.10.甲车从服务区A出发,一段时间后乙车也从服务区A出发,它们沿着同一段笔直的高速公路同向匀速行驶,速度分别为v甲,v乙(v甲<v乙).乙车在B处超过甲车,再行驶一段路程后到达服务区C.乙车在服务区C停车休息一会儿后,甲车也到达服务区C.设甲车从服务区A出发后行驶时间为x(单位:min),甲、乙两车在这段公路上的距离为y(单位:km),则下面描述这段时间中y随x变化规律的图象中,最为合理的是( )A. B.C. D.二、填空题(本大题共6小题,共30分)第2页,共18页11.√x−2在实数范围内有意义,则x的取值范围是______.12.已知正比例函数y=kx,y随x增大而减少,则k______0.13.木工师傅要做一张长方形的桌面.完成后,量得桌面的长为100cm,宽为80cm,对角线为130cm,则做出的这个桌面______.(填“合格”或“不合格”)14.甲、乙两名队员参加10次射击训练,他们的成绩的折线统计图如图,在这10次射击中,成绩更稳定的是______.(填“甲”或“乙”)15.如图,矩形ABCD中,AC与BD交于点O,若∠COB=120°,AB=6,则对角线BD=______.16.如图,正方形ABCD中,E是对角线AC上的一点,连接DE,过点E作EF⊥DE交边BC于点F.则:(1)则DE______EF(填“>”、“<”或“=”);(2)线段AE和BF的数量关系是______.三、解答题(本大题共8小题,共80分)17.计算:√6×√8−√12.18.如图,直线y=x+1和y=ax+4交于点A(1,m).(1)求m的值.(2)写出不等式x+1<ax+4的解集.19.如图,一架梯子AB长5m,斜靠在一面竖直的墙上.若要使梯子顶端离地面的竖直高度AC为4.8m,求此时梯子底端离墙的距离BC.20.已知一次函数的图象经过点A(−3,4),B(1,−2)两点.(1)求这个一次函数的解析式.(2)当−1≤x≤3时,求y的取值范围.21.如图,在四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.(1)求证:四边形EFGH是平行四边形.(2)若四边形ABCD的对角线互相垂直且它们的乘积为48,求四边形EFGH的面积.22.杨梅销售公司在向果农收购相同品种“东魁”杨梅时,按照杨梅单果质量(单位:g)的整体分布情况,确定整批杨梅的等级,并按照不同的等级确定不同的收购价.果农老张和老王各送来一批杨梅,收购员小李在他们送来的杨梅中分别随机抽检了100颗,秤出质量(单位:g),并把收集到的数据整理成下表:第4页,共18页杨梅单果质量(g)二等(15≤x<20)一等(20≤x<25)优等(25≤x<30)特优(30≤x<35)组中值17.522.527.532.5老张家杨梅数量(个)20322622老王家杨梅数量(个)14263624(1)若用扇形图描述老王家各个等级杨梅的比例,其表示特优杨梅的扇形的圆心角是______°(2)从杨梅单果质量的平均数看,你认为老张家杨梅的收购价与老王家杨梅的收购价应该相同吗?请说明理由.(3)结果,收购员小李给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级,你能用统计知识解释小李这样做的合理性吗?23.小王准备把牛奶加热后饮用,他先在锅中加水,再从冰箱冷藏室中拿出一杯牛奶浸入水中,用煤气灶缓慢加热.在这个过程中,他每隔10s测量一次水温和牛奶温度,获得数据如下表:时间(s)010********…锅中水的温度(℃)101418222630…杯中牛奶的温度(℃)678101214…(1)水在沸腾前,其温度是加热时间的______函数,温度每秒钟升高______℃.(2)求牛奶温度y(单位:℃)与加热时间x(单位:s)之间的函数关系式.(3)标准大气压下,水的沸点是100℃,水沸腾后温度保持不变.①加热时间是多少时,水与牛奶的温度差最大?②温度太高,会造成牛奶中蛋白质等营养成分损失,加热到60℃时饮用最佳,此时,水温是多少?请通过计算说明理由.24.如图,矩形ABCD中,AB=8,BC=4,O是对角线BD的中点.过O点的直线与矩形的一组对边AB,CD分别相交于点F和点E.B′与B关于直线EF对称,连接BE,DB′,EB′,OB′.(1)判断△ODB′的形状,并说明理由.(2)求证:DB′//OE.(3)若四边形OEB′D是平行四边形,求线段EF的长.第6页,共18页答案和解析1.【答案】B【解析】解:A、√0.5=√12=√22,故A不符合题意;B、√3是最简二次根式,故B符合题意;C、√8=2√2,故C不符合题意;D、√4=2,故D不符合题意;故选:B.根据最简二次根式的定义:被开方数不含能开得尽方的因数或因式,被开方数中不含分母,即可解答.本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.2.【答案】A【解析】解:A.平行四边形不是轴对称图形,故此选项符合题意;B.菱形是轴对称图形,故此选项不符合题意;C.矩形是轴对称图形,故此选项不符合题意;D.正方形是轴对称图形,故此选项不符合题意.故选:A.根据轴对称图形的概念逐一判断即可.本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3.【答案】C【解析】解:A、22+22≠32,不符合勾股定理的逆定理,不能组成直角三角形,故本选项不符合题意;B、22+32≠52,不符合勾股定理的逆定理,不能组成直角三角形,故本选项不符合题意;C、32+42=52,符合勾股定理的逆定理,能组成直角三角形,故本选项符合题意;D、42+52≠62,不符合勾股定理的逆定理,不能组成直角三角形,故本选项不符合题意.故选:C.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形,逐一判定即可.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.【答案】D【解析】解:A、√2与√3不能合并,故A不符合题意;B、√5与√3不能合并,故B不符合题意;C、√18=3√2,与√3不能合并,故C不符合题意;D、√12=2√3,与√3能合并,故D符合题意;故选:D.根据同类二次根式的定义:化成最简二次根式后,被开方数相同的是同类二次根式,即可解答.本题考查了同类二次根式,先把每一个二次根式化成最简二次根式是解题的关键.5.【答案】D【解析】解:4√5−3√5=√5,故A错误,不符合题意;√2与√5不是同类二次根式,不能合并,故B错误,不符合题意;√6÷√3=√2,故C错误,不符合题意;(−√2)2=2,故D正确,符合题意;故选:D.由合并同类二次根式的法则,二次根式的乘方,除法法则逐项判断.本题考查二次根式的运算,解题的关键是掌握二次根式相关的运算法则.6.【答案】A【解析】解:根据题意知:对商场经理来说,最有意义的是各种尺码的衬衫的销售数量,即众数.故选:A.商场经理要了解哪种型号最畅销,所最关心的即为众数.本题主要考查数据集中趋势中的平均数、众数、中位数、方差在实际问题中的正确应用.7.【答案】B【解析】解:A选项,对于x的每一个确定的值,y都有唯一的值与其对应,是函数,故该选项不符合题意;B选项,对于x的每一个确定的值,y有可能有2个值与其对应,不是函数,故该选项符合题意;C选项,对于x的每一个确定的值,y都有唯一的值与其对应,是函数,故该选项不符合题意;D选项,对于x的每一个确定的值,y都有唯一的值与其对应,是函数,故该选项不符合题意;故选:B.根据设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的第8页,共18页函数判断即可.本题考查了函数的概念,掌握设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数是解题的关键.8.【答案】D【解析】解:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC垂直平分线段BD.∴筝形的AC⊥BD或AC垂直平分线段BD.故选:D.根据线段的垂直平分线的定义即可判定AC垂直平分线段BD.进而可以解决问题.本题考查等腰三角形的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.9.【答案】C【解析】解:由作图可知,选项C中,四边形ABCD是菱形(理由是对角线互相平分且垂直).故选:C.根据菱形的定义一一判断即可.本题考查作图−复杂作图,菱形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】C【解析】解:甲车从服务区A出发,一段时间后乙车也从服务区A出发,说明开始时两车距离由0开始增加,故选项A、B不合题意;它们沿着同一段笔直的高速公路同向匀速行驶,速度分别为v甲,v乙(v甲<v乙).乙车在B处超过甲车,再行驶一段路程后到达服务区C.乙车在服务区C停车休息一会儿后,甲车也到达服务区C,这个过程中两车距离开始缩小,乙车追上甲车时两车距离为0,接着两车距离开始增加,当乙车到达服务区C后两车距离缩小,直到甲车也到达服务区C时,两车距离为0,故选项C符合题意,选项D不合题意.故选:C.根据题意和各个选项中的函数图象,可以判断哪个函数图象可以表达题目中的运动过程,从而可以解答本题.本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】x≥2【解析】解:∵x−2≥0,∴x≥2.故答案为:x≥2.根据二次根式的被开方数是非负数即可得出答案.本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【答案】<【解析】解:若正比例函数y=kx,y随x增大而减少,则k<0.故答案为:<.根据正比例函数的性质解答即可.本题考查了正比例函数,熟练掌握正比例函数的性质是解题的关键.13.【答案】不合格【解析】解:不合格,理由:∵802+1002=16400≠1302,即:AD2+DC2≠AC2,∴∠D≠90°,∴四边形ABCD不是矩形,∴这个桌面不合格.故答案为:不合格.只要算出桌面的长与宽的平方和是否等于对角线的平方,如果相等可得长、宽、对角线构成的是直角三角形,由此可得到每个角都是直角,根据矩形的判定:有三个角是直角的四边形是矩形,可得此桌面合格.本题考查的是勾股定理逆定理在实际中的应用,以及矩形的判定,关键是熟练掌握勾股定理逆定理与矩形的判定方法;勾股定理逆定理:在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形;矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.14.【答案】乙【解析】解:由折线统计图得甲队员的成绩波动较大,所以S甲2<S乙2.故答案为:乙.第10页,共18页利用折线统计图可判断甲队员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了方差的意义.15.【答案】12【解析】解:∵四边形ABCD是矩形,∴BD=2OB,AC=2OA,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=6,∴BD=2OB=12,故答案为:12.根据矩形性质求出BD=2OB,OA=OB,求出∠AOB=60°,得出等边△AOB,求出OB=AB,即可求出答案.本题考查了等边三角形的性质和判定,矩形性质的应用,注意:矩形的对角线相等且互相平分.16.【答案】=BF=√2AE【解析】解:(1)如图,连接BE,∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠DAE=45°,在△ABE和△ADE中,{AB=AD∠BAE=∠DAE AE=AE,∴△BAE≌△DAE(SAS),∴DE=BE,∠ADE=∠ABE,∵∠ADC=∠ABC=90°,∴∠EBC=∠EDC,∵EF⊥DE,∴∠DEF=∠DCF=90°,∴∠EDC+∠EFC=180°,∵∠EFC+∠EFB=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴BE=EF,∴DE=EF;故答案为:=;(2)如图,过点E作EH⊥BF于H,EG⊥AB于G,∵EH⊥BF,EG⊥AB,∠ABC=90°,∴四边形GEHB是矩形,∴BH=GE,∵BE=EF,EH⊥BF,∴BF=2BH=2GE,∵∠BAC=45°,GE⊥AB,∴∠GAE=∠AEG=45°,∴AG=GE,∴AE=√2GE ,∴BF=√2AE,故答案为:BF=√2AE.(1)由“SAS”可证△BAE≌△DAE,可得DE=BE,∠ADE=∠ABE,由余角的性质和四边形内角和定理可得∠EBF=∠EFB,可得BE=EF=DE;(2)先证四边形GEHB是矩形,可得BH=GE,由等腰三角形的性质BF=2BH=2GE,由等腰直角三角形的性质可得AE=√2GE,即可求解.本题考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是解第12页,共18页题的关键.17.【答案】解:原式=√6×8−2√3=4√3−2√3=2√3.【解析】原式利用二次根式乘法法则变形,化简后合并即可得到结果.此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)把A(1,m)代入y =x +1,得m =1+1=2;(2)由图象得,不等式x +1<ax +4的解集为x <1.【解析】(1)把A(1,m)代入y =x +1,即可求得m 的值;(2)以交点为分界,结合图象写出不等式x +1<ax +4的解集即可.此题主要考查了一次函数与一元一次不等式,数形结合是解题的关键.19.【答案】解:∵△ABC 是直角三角形,∴BC =√AB 2−AC 2=√52−4.82=1.4(m).答:梯子底端离墙的距离BC 为1.4m .【解析】利用勾股定理解答即可.此题主要考查了勾股定理的应用,关键是熟练掌握勾股定理,如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a 2+b 2=c 2;即直角三角形两直角边的平方和等于斜边的平方.20.【答案】解:(1)设一次函数的解析式是y =kx +b(k ≠0),把A 和B 点的坐标代入得:{−3k +b =4k +b =−2, 解得:k =−32,b =−12,所以这个一次函数的解析式是y =−32x −12;(2)∵y =−32x −12中k =−32<0,∴y 随x 的增大而减小,当x =−1时,y =−32×(−1)−12=32−12=1,当x=3时,y=−32×3−12=−92−12=−5,所以y的取值范围是−5≤y≤1.【解析】(1)设一次函数的解析式是y=kx+b(k≠0),把A和B点的坐标代入,再求出k、b即可;(2)根据一次函数的性质得出y随x的增大而减小,把x=−1和x=3分别代入函数的解析式,求出对应的y的值,再得出答案即可.本题考查了用待定系数法求一次函数的解析式,一次函数图=图象上点的坐标特征和一次函数的性质等知识点,能用待定系数法求出一次函数的解析式是解此题的关键.21.【答案】(1)证明:如图,连接BD,∵点E,H分别为边AB,DA的中点,∴EH//BD,EH=12BD,∵点F,G分别为边BC,CD的中点,∴FG//BD,FG=12BD,∴EH//FG,EH=GF,∴中点四边形EFGH是平行四边形;(2)解:如图,连接AC,由(1)知,四边形EFGH是平行四边形.在△ABD中,E、H分别是AD、CD的中点,则EH//AC,同理GH//BD,又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH是矩形,∴四边形EFGH的面积=EH⋅EF=12AC×12BD=14AC⋅BD=12.即四边形EFGH的面积是12.【解析】(1)连接BD,根据三角形中位线定理证明EH//FG,EH=FG,根据平行四边形的判定定理证明即可;(2)先由三角形的中位线定理和矩形的判定定理推知四边形EFGH的形状是矩形,进而利用矩形的面积解答即可.本题考查的是平行四边形的判定和性质、中点四边形,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.22.【答案】86.4第14页,共18页【解析】解:(1)360°×24100=86.4°,故答案为:86.4.(2)老张家杨梅的等级的平均数为x 老张−=17.5×20+22.5×32+27.5×26+32.5×22100=25, 老王家杨梅的等级的平均数为x 老王−=17.5×14+22.5×26+27.5×36+32.5×24100=26,∴收购价应该不相同.(3)∵按照不同的等级确定不同的收购价,25<26,∴给老张家杨梅定的收购价比老王家的杨梅收购价低一个等级是合理的.(1)用360°乘以老王家特优杨梅的频率即可;(2)分别求出两家的平均数,即可比较出来;(3)根据所求数据进行分析即可.本题考查扇形统计图,平均数及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.23.【答案】一次 0.4【解析】解:(1)根据表格可知,水在沸腾前,其温度是加热时间的一次函数,温度每秒升高4÷10=0.4(°C),故答案为:一次,0.4;(2)当0≤x <20时,设y =kx +b ,代入点(0,6)和点(10,7),得{b =610k +b =7, 解得{k =0.1b =6, ∴y =0.1x +6;当x ≥20时,设y =mx +n ,代入(20,8),(30,10),得{20m +n =830m +n =10, 解得{m =0.2n =4, ∴y ={0.1x +6(0≤x <20)0.2x +4(x ≥20); (3)①∵水的温度比牛奶升温快,当水的温度达到100℃时,水与牛奶的温度差最大,∴10+0.4x =100,解得x =225(s),∴加热时间为225s时,水与牛奶的温度差最大;②当y=60℃时,0.2x+4=60,解得x=280,10+0.4×280=122(℃),∵水的沸点为100℃,∴水温是100℃.(1)根据表格即可填空;(2)待定系数法求解析式即可;(3)①根据水的温度比牛奶升温快,当水的温度达到100℃时,水与牛奶的温度差最大,列方程求解即可;②根据加热到牛奶的温度求出时间,再求出水的温度,根据水的沸点为100°C即可确定.本题考查了一次函数的应用,理解题意并用待定系数法求出一次函数解析式是解题的关键.24.【答案】(1)解:△ODB′是等腰三角形,理由如下:∵O是BD的中点,∴OD=OB,∵B′与B关于直线EF对称,∴OB=OB′,∴OD=OB′,∴△ODB′是等腰三角形;(2)证明:如图1,连接BB′交OE于M,∵B′与B关于直线EF对称,∴BB′⊥EF,∴∠OMB=90°,由(1)知:OB=OD=OB′,∴∠ODB′=∠OB′D,∠OBM=∠OB′M,∵∠ODB′+∠DB′B+∠OBM=180°,∴∠DB′B=90°,∴∠DB′B=∠OMB,第16页,共18页∴DB′//OE;(3)解:∵四边形ABCD是矩形,∴∠A=∠C=90°,AD=BC=4,由勾股定理得:BD=√42+82=4√5,∴OD=2√5,∵四边形OEB′D是平行四边形,∴EB′=OD=2√5,由对称得:BE=B′E=2√5,∵BC=4,∴CE=√(2√5)2−42=2,∴DE=8−2=6,过点E作EH⊥AB于H,则BH=CE=2,∵AB//CD,∴∠EDO=∠OBF,∵DO=OB,∠DOE=∠BOF,∴△DOE≌△BOF(ASA),∴BF=DE=6,∴FH=BF−BH=6−2=4,∵EH=BC=4,∠EHF=90°,∴EF=√42+42=4√2.【解析】(1)根据线段中点的定义和对称的性质可知:△ODB′是等腰三角形;(2)如图1,连接BB′交OE于M,根据对称的性质得:BB′⊥EF,根据等腰三角形的性质和三角形的内角和定理可得:∠DB′B=90°,则∠DB′B=∠OMB,可得结论;(3)如图2,作辅助线构建直角三角形EFH,计算EH=FH=4,根据勾股定理可得结论.本题是四边形的综合题,考查了矩形的性质,全等三角形的判定和性质,平行四边形的性质,轴对称的性质,勾股定理的运用,题目的综合性较强,熟练掌握轴对称的性质是解本题的关键.第18页,共18页。

浙教版八年级下数学期末试题及答案解析

浙教版八年级下数学期末试题及答案解析

成功来自与勤奋,智慧不是自然的恩惠,而是勤奋的结果。

只有把握住勤奋的钥匙,才能打开知识宝库的大门。

下面是为您推荐浙教版八年级下数学期末试题及答案解析。

浙教版八年级下数学期末试题一、精心选择,一锤定音(每小题3分共18分)1.下列二次根式中,最简二次根式是()A. B. C. D.2.矩形具有而菱形不具有的性质是()3.三角形的三边长分别为a、b、c,且满足等式:(a b)2﹣c2=2ab,则此三角形是()4.下列函数的图象中,不经过第一象限的是()A.y=x 3B.y=x﹣3C.y=﹣x 1D.y=﹣x﹣15.某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元6.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h 随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A. B. C. D.二、细心填一填(每小题3分共18分)7.函数y=中自变量x的取值范围是.8.若把一次函数y=2x﹣3,向上平移3个单位长度,得到图象解析式是.9.若x<2,化简 |3﹣x|的正确结果是.10.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC BD=24cm,△OAB的周长是18cm,则EF的长为.11.已知一次函数y=ax b的图象如图,根据图中信息请写出不等式axb≥0的解集为.12.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.三、用心做一做13.计算: 2 ﹣(﹣)14.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.15.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.16.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?17.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.四.本大题共四小题(每小题8分,共32分)18.如图,E、F分别是菱形ABCD的边AB、AC的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.19.已知直线y=kx b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx b的解集.20.“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:序号 1 2 3 4 5 6笔试成绩 66 90 86 64 65 84专业技能测试成绩 95 92 93 80 88 92说课成绩 85 78 86 88 94 85(1)笔试成绩的极差是多少?(2)写出说课成绩的中位数、众数;(3)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?21.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两车同时到达B地.两车的速度始终保持不变,设两车出发xh后,甲、乙距离A地的距离分别为y1(km)和y2(km),它们的函数图象分别是折线OPQR和线段OR.(1)求A、C两地之间的距离;(2)甲、乙两车在途中相遇时,距离A地多少千米?五.本大题共二小题(22题10分,23题12分)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上. .思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为 a,2 a、 a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:.探索创新:(3)若△ABC三边的长分别为、、2 (m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:.23.如图,已知四边形ABCD为正方形,AB=2 ,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.浙教版八年级下数学期末试卷参考答案一、精心选择,一锤定音(每小题3分共18分)1.下列二次根式中,最简二次根式是()A. B. C. D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D.=5 ,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.2.矩形具有而菱形不具有的性质是()【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.3.三角形的三边长分别为a、b、c,且满足等式:(a b)2﹣c2=2ab,则此三角形是()【考点】勾股定理的逆定理.【分析】因为a、b、c,为三角形的三边长,可化简:(a b)2﹣c2=2ab,得到结论.【解答】解:∵(a b)2﹣c2=2ab,∴a2 b2=c2.所以为直角三角形.故选B.4.下列函数的图象中,不经过第一象限的是()A.y=x 3B.y=x﹣3C.y=﹣x 1D.y=﹣x﹣1【考点】一次函数图象与系数的关系.【分析】根据k,b的取值范围确定图象在坐标平面内的位置,从而求解.【解答】解:A、y=x 3经过第一、二、三象限,A不正确;B、y=x﹣3经过第一、三、三象限,B不正确;C、y=﹣x 1经过第一、二、四象限,C不正确;D、y=﹣x﹣1经过第二、三、四象限,D正确;故选:D.5.某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元) 2000 2200 2400 2600人数(人) 1 3 4 2A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【考点】众数;中位数.【分析】根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是÷2=2400;故选A.6.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h 随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A. B. C. D.【考点】函数的图象.【分析】根据图象可得水面高度开始增加的慢,后来增加的快,从而可判断容器下面粗,上面细,结合选项即可得出答案.【解答】解:因为水面高度开始增加的慢,后来增加的快,所以容器下面粗,上面细.故选B.二、细心填一填(每小题3分共18分)7.函数y=中自变量x的取值范围是x≤1.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:3﹣2x≥0且x 1≠0,解得:x≤1.5且x≠﹣1.故答案为x≤1.5且x≠﹣1.8.若把一次函数y=2x﹣3,向上平移3个单位长度,得到图象解析式是y=2x .【考点】一次函数图象与几何变换.【分析】根据平移法则上加下减可得出解析式.【解答】解:由题意得:平移后的解析式为:y=2x﹣3 3=2x.故答案为:y=2x.9.若x<2,化简 |3﹣x|的正确结果是5﹣2x .【考点】二次根式的性质与化简;绝对值.【分析】先根据x的取值范围,判断出x﹣2和3﹣x的符号,然后再将原式进行化简.【解答】解:∵x<2,∴x﹣2<0,3﹣x>0;∴ |3﹣x|=﹣(x﹣2)(3﹣x)=﹣x 2 3﹣x=5﹣2x.10.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC BD=24cm,△OAB的周长是18cm,则EF的长为3cm .【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC BD=24厘米,可得出出OA OB=12cm,继而求出AB,判断EF是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC BD=24厘米,∴OA OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3cm.11.已知一次函数y=ax b的图象如图,根据图中信息请写出不等式axb≥0的解集为x≥﹣1 .【考点】一次函数与一元一次不等式.【分析】观察函数图形得到当x≥﹣1时,一次函数y=ax b的函数值不小于0,即ax b≥0.【解答】解:根据题意得当x≥﹣1时,ax b≥0,即不等式ax b≥0的解集为x≥﹣1.故答案为:x≥﹣1.12.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(4,3)(1,3)(9,3).【考点】等腰三角形的判定;坐标与图形性质;矩形的性质.【分析】因为点D是OA的中点,所以OD=5,又因为△ODP是腰长为5的等腰三角形,过P作OD垂线,与OD交于Q点,则分两种情况讨论:OP=5或PD=5,再计算求得结果.【解答】解:由题意得:OD=5∵△ODP是腰长为5的等腰三角形∴OP=5或PD=5过P作OD垂线,与OD交于Q点∴PQ=OC=3∴如果OP=5,那么直角△OPQ的直角边OQ=4,则点P的坐标是(4,3);如果PD=5,那么QD=4,OQ=1,则点P的坐标是(1,3);如果PD=5,那么QD=4,OD=5,OQ=9,则点P的坐标是(9,3).三、用心做一做13.计算: 2 ﹣(﹣)【考点】二次根式的加减法.【分析】分别化简二次根式,进而合并求出即可.【解答】解: 2 ﹣(﹣)=2 2 ﹣3=3 ﹣ .14.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.【考点】作图—复杂作图.【分析】连结AC和BD,它们相交于点O,连结OM、ON,则△OMN为等腰三角形,如图1;连结AN和BM,它们相交于点O,则△OMN为等腰三角形,如图2.【解答】解:如图1、2,△OMN为所作.15.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积直角三角形ACD 的面积,即可求出四边形的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2 AC2=122 52=144 25=169,∴CD2 AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC S△ACD=AB?BC AC?CD=×3×4 ×5×12=36.故四边形ABCD的面积是36.16.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x 增大时y如何变化?【考点】待定系数法求一次函数解析式;一次函数的图象.【分析】(1)设一次函数解析式为y=kx b,将已知两点坐标代入求出k 与b的值,即可确定出解析式;(2)做出函数图象,如图所示,根据增减性即可得到结果.【解答】解:(1)设一次函数解析式为y=kx b,将(1,1)与(﹣1,﹣3)代入得,解得:k=2,b=﹣1,则一次函数解析式为y=2x﹣1;(2)如图所示,y随着x的增大而增大.17.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA,判定△AOE≌△COF,继而证得OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.四.本大题共四小题(每小题8分,共32分)18.如图,E、F分别是菱形ABCD的边AB、AC的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.【考点】菱形的判定与性质;勾股定理.【分析】(1)利用菱形的性质结合勾股定理得出OB的长即可得出DB的长;(2)利用三角形中位线定理进而得出四边形AEOF是平行四边形,再利用菱形的判定方法得出即可.【解答】(1)解:∵四边形ABCD是菱形,∴AC⊥DB,AO=AC,BO=DB,∵AC=6,∴AO=3,∵AB=5,∴OB==4,∴DB=8;(2)证明:∵E,O分别是BA,BD中点,∴OE AD,同理可得:AF AD,∴四边形AEOF是平行四边形,又∵AB=AD,∴AE=AF,∴平行四边形AEOF是菱形.19.已知直线y=kx b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx b的解集.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式;两条直线相交或平行问题.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx b经过点A(5,0),B(1,4),∴ ,。

浙教版八年级下册数学期末测试卷(含答案)

浙教版八年级下册数学期末测试卷(含答案)

2022年八年级下数学期末测试卷一、选择题:(共10个小题,每小题3分,共30分)1.2022年第24届冬季奥运会在中国北京成功举办,使得北京市成为全世界首个双奥之城,下列图形是某几届冬奥会图标,其中是中心对称图形的是()A.B.C.D.2.下列方程中,属于一元二次方程的是()A.x+2y=0B.x2+x=2xC.3(x﹣1)﹣x=1D.x2=2x﹣13.下列运算正确的是()A.3+2=5B.25﹣5=2C.3×5=15D.63=2 4.从六边形的一个顶点出发最多能画对角线的条数为()A.5条B.4条C.3条D.2条5.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°6.一元二次方程x2﹣6x+4=0配方后可化为()A.(x﹣3)2=5B.(x﹣3)2=13C.(x+3)2=5D.(x+3)2=13 7.甲、乙两地相距100km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.B.C.D.8.某汽车厂4月生产新能源电动汽车2万台,计划5,6月份共生产新能源电动汽车4.5万台,设5、6月平均每月增长率为x,下列所列方程正确的是()A.2(1+x)2=4.5B.2(1+x)+2(1+x)2=4.5C.2(1+2x)=4.5D.2+2(1+x)+2(1+x)2=4.59.平行四边形的对角线长为x,y,一边长为14,则x,y的值可能是()A.8和16B.10和14C.18和10D.10和2410.如图,正方形ABCD中,AC,BD相交于点O,E为线段BO上一动点(不包括O,B 两点),DF⊥CE于点F,过点A作AG⊥DF于点G,交BD于点H,连结AE,CH,则下列结论:①∠ADG=∠DCF;②DG=EF;③存在点E,使得EF=GF;④四边形AECH是菱形.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,每小题3分,共18分)114x-x的取值范围是.12.在平行四边形ABCD中,若∠B=42°,则∠D=°.13.关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为.14.一个正多边形的外角与其相邻的内角之比为1:4,那么这个多边形的边数为.15.若a2,b2﹣1,则a2﹣ab+b2=.16.如图所示的曲线是反比例函数10yx=的图象的一支,它与直线y=x交于点A,过图象上另一点B(在点A的右侧)作BC∥AO交x轴于点C,若△OBC的面积为4,则四边形OABC的面积为.三.解答题(共8小题,共52分)17.(6分)计算:(1)6212(21 2423318.(6分)解方程:(1)x2﹣4x+3=0 (2)3x2+2x﹣2=0.19.(6分)已知:如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.20.(6分)如图,在4×6的方格纸中,A,B,C三点都在格点上,连结AB,按要求画一个以A,B,C为其中三个顶点的格点四边形.(1)以AB为边作一个对角线垂直且相等的四边形,在图甲中画出示意图;(2)以AB为对角线作一个有一组邻边垂直且相等的四边形,在图乙中画出示意图.21.(6分)某校为了解八年级学生的体能情况,抽取了部分学生进行一分钟跳绳次数的测试,并将测试成绩整理后绘制成如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值).(1)参加测试的学生一分钟跳绳的平均次数至少是多少?(2)小明的跳绳次数恰好与参加测试学生跳绳次数的中位数相同,请写出小明跳绳次数所在的范围;(3)该年级共有600名学生,试估计一分钟跳绳次数不低于160次的人数.22.(7分)某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件.现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件,设每件衣服降价x元.(1)现在每天卖出件,每件盈利元(用含x的代数式表示);(2)求当x为何值时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(3)要想平均每天盈利2000元,可能吗?请说明理由.23.(7分)已知:如图,在平面直角坐标系中,一次函数y=x+1与反比例函数ayx(a≠0)的图象交于点A(2,m)和点B,与x轴交于点D.(1)求a,m的值及点B的坐标;(2)写出x+1﹣ax≤0时x的取值范围;(3)P是x轴上一点,且满足△P AB的面积等于5.求点P坐标.24.(8分)定义:如果一个凸四边形有三条边相等,那么称这个凸四边形为“准等边四边形”.如正方形就是一个“准等边四边形”.(1)如图,在给定的网格中,找到格点D.使得以A、B、C、D为顶点的四边形是准等边四边形,请按要求画两个且不全等的准等边四边形.(2)如图1,▱ABCD中,对角线CA平分∠BCD,将线段CD绕点C顺时针方向旋转一个角度α(0<α<∠B)至CE,连接AE、DE.①求证:四边形ABCE是准等边四边形;②如图2,连接BE,求证:∠BED=∠ACB;(3)如图3,在准等边四边形ABCD中,AB=BC=CD=2,∠BCD=90°,∠B=150°,请求出∠BAD的大小及该四边形的面积.参考答案与试题解析一.选择题(共10小题)1.解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.2.解:A.是二元一次方程,故本选项不合题意;B.是分式方程,故本选项不合题意;C.是一元一次方程,故本选项不合题意;D.是一元二次方程,故本选项符合题意;故选:D.332不是同类二次根式,不能加减,故选项A错误;555,故选项B错误;3515C错误;632=,故选项D错误.故选:C.4.解:由n边形的一个顶点可以引(n﹣3)条对角线,故过六边形的一个顶点可以画对角线的条数是3,故选:C.5.解:在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角小于60°.故选:A.6.解:∵x2﹣6x+4=0,∴x2﹣6x=﹣4,则x2﹣6x+9=﹣4+9,即(x﹣3)2=5,故选:A.7.解:根据题意可知时间y(小时)与行驶速度x(千米/时)之间的函数关系式为:y=100 x(x>0),所以函数图象大致是B.故选:B.8.解:根据题意得:2(1+x)+2(1+x)2=4.5.故选:B.9.解:A、根据三角形的三边关系可知:4+8=12<14,不能构成三角形,故此选项不符合题意;B、5+7=12<14,不能构成三角形,故此选项错误,不符合题意;C、9+5=14,不能构成三角形,故此选项错误,不符合题意;D、5+12=17>14,能构成三角形,故此选项正确,符合题意.故选:D.10.解:∵四边形ABCD是正方形,DF⊥CE∴∠ADC=90°,∠DFC=90°,∴∠ADG=90°﹣∠FDC=∠DCF,故①正确;在△ADG和△DCF中,,∴△ADG≌△DCF(AAS),∴DG=CF,∵E为动点,∴DE不一定等于DC,∴CF不一定等于EF,∴DG不一定等于EF,故②错误;∵DF⊥CE,AG⊥DF,∴CE//AG,∴∠ECA=∠HAC,∵四边形ABCD是正方形,∴直线BD为正方形ABCD的对称轴,AC⊥BD,OA=OC,∴AH=CH,∴∠HAC=∠HCA,∴∠ECA=∠HCA,∴OE=OH,∴四边形AECH对角线互相垂直平分,∴四边形AECH是菱形,故④正确;∴CE=AH,∴HG=AG﹣AH=AG﹣CE,而△ADG≌△DCF有AG=DF,DG=CF,∴HG=DF﹣CE=(DG+GF)﹣(CF+EF)=GF﹣EF,∵E为线段BO上一动点(不包括O,B两点),∴HG≠0,即GF﹣EF≠0,∴GF≠EF,故③不正确;∴正确的有①④,故选:B.二.填空题(共6小题)11.解:由题意得:x﹣4≥0,解得:x≥4.故答案为:x≥4.12.解:∵在▱ABCD中,∠B=42°,∴∠D=∠B=42°.故答案为:42.13.解:∵关于x的一元二次方程x2+6x+m=0有两个相等的实数根,∴Δ=0,即62﹣4×1×m=0,解得m=9.故答案为:9.14.解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有:x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故答案为:十.15.解:∵a=2+1,b=2﹣1,∴a+b=2+1+2﹣1=22,ab=(2+1)(2﹣1)=2﹣1=1,∴原式=a2+2ab+b2﹣3ab=(a+b)2﹣3ab=(22)2﹣3×1=8﹣3=5.故答案为:5.16.解:由解得或,∴A(10,10),过点A,B分别作x轴的垂线,垂足分别是M,N则AM=OM,BN=CN设点B的纵坐标为n(n>0),则BN=CN=n,∵点B的坐标为(10n,n),∴ON=10n,∴OC=10n﹣n,∵△OBC的面积为4,∴12OC•BN=4,即12×(10n﹣n)•n=4,解得n2,∴B(22,S△BCN=1222=1,∴S四边形OABC=S△AOM+S梯形AMNB﹣S△BCN=12×10+12(1022101=5﹣1=5.故答案为:5.三.解答题(共8小题)17.解:(1)原式=6;(2318.解:(1)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,所以x1=3,x2=1;(2)3x2+2x﹣2=0,a=3,b=2,c=﹣2,Δ=22﹣4×3×(﹣2)=28>0,x===,所以x1=,x2=.19.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D,又∵E,F分别是AB,CD的中点,∴AE=BE=12AB,CF=DF=12CD,∴BE=DF,AE=CF,在△AFD和△CEB中,,∴△AFD≌△CEB(SAS);(2)由(1)知AE=CF,△AFD≌△CEB,∴AF=CE,∴四边形AECF是平行四边形.20.解:(1)如图甲中,四边形ABDC即为所求;(2)如图乙中,四边形ACBD即为所求.21.解:(1)1003120101401516061804200231015642⨯+⨯+⨯+⨯+⨯+⨯+++++=142(次),答:参加测试的学生一分钟跳绳的平均次数至少是142次;(2)∵共抽取人数为3+10+15+6+4+2=40(人),∴将测试成绩整理从小到大排列,中位数是第20,21个数的平均数,∵由频数分布直方图得,第20,21个数都在140~160的范围,∴小明跳绳次数所在的范围是140~160;(3)600×64240++=180(人),答:估计一分钟跳绳次数不低于160次的人数有180人.22.解:(1)由题意得:每天卖出衣服的数量为:(20+2x)件,每件的盈利为:(90﹣x)﹣50=(40﹣x)元,故答案为:(20+2x),(40﹣x);(2)由题意得:(90﹣x﹣50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;(3)不可能,理由如下:依题意得:(90﹣x﹣50)(20+2x)=2000,整理得:x2﹣30x+600=0,Δ=(﹣30)2﹣4×600=900﹣2400=﹣1500<0,则原方程无实数解.则不可能每天盈利2000元.23.解:(1)∵一次函数y=x+1经过点A(2,m),∴m=2+1=3,∴A(2,3),∵点A在反比例函数y=ax(a≠0)的图象上,∴a=2×3=6,∴反比例函数为y=6x,解得或,∴B的坐标为(﹣3,﹣2);(2)观察图象可知:x+1﹣ax≤0时x的取值范围是x≤﹣3或0<x≤2;(3)设点P的坐标为(m,0),在y=x+1中,令y=0,得x=﹣1,∴点D的坐标为(﹣1,0),∵S△P AB=S△P AD+S△PBD=12×|m+1|×3+12|m+1|×2=5,∴|m+1|=2,∴m=1或﹣3,∴点P的坐标为(﹣3,0)或(1,0).24.(1)解:由图可知:AB=AC,∴只要作CD或BD中至少一条与AB相等就可,故作图(1),由四种画法,任选其中两种即可.(2)证明:①∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠BAC,∵AC平分∠BCD,∴∠ACD=∠ACB,∴∠ACB=∠BAC,∴AB=BC,由旋转得:CD=CE,∴AB=BC=CE,∴四边形ABCE是准等边四边形.②延长EC至点H,∵BC=CE=CD,∴∠CBE=∠CEB,∠CDE=∠CED,∴∠DCH=∠CDE+∠CED=2∠CED,∠BCH=∠CBE+∠CEB=2∠CEB,∴∠DCH﹣∠BCH=2∠CED﹣2∠CEB=2∠BED,∴∠BCD=2∠BED,由①得:∠ACB=∠ACD,∴∠BCD=2∠ACB,∴∠BED=∠ACB.(3)如图(3),过点B、点D分别作BC和CD的垂线交于点F,连接AF,∵BF ⊥BC ,DF ⊥CD ,∠C =90°,∴四边形BCDF 是矩形,∵CD =BC ,∴四边形BCDF 是正方形,∴DF =FB =AB =2,∵∠ABC =150°,∠FBC =90°,∴∠ABF =∠ABC ﹣∠FBC =60°,∴△ABF 是等边三角形,∴∠F AB =∠AFB =60°,AF =FB =DF ,∴∠AFD =∠AFB +∠BFD =150°,∠F AD =∠FDA , ∴∠F AD =12(180°﹣150°)=15°, ∴∠DAB =∠F AB ﹣∠F AD =60°﹣15°=45°, 过点A 作AG ⊥CD 于点G ,交BF 于点K , ∴∠KAB =30°,∵AB =2,∴BK =GC =1,∴AK =3,∴AG =AK +KG =3+2,∴GD =CD ﹣GC =2﹣1=1,∴S 四边形ABCD =S △ADG +S △ABK +S 矩形GKBC =()1113213213322⨯⨯++⨯⨯+⨯=+. ∴∠DAB =45°,四边形ABCD 的面积为3+3.。

浙教版八年级数学下册期末试卷及答案

浙教版八年级数学下册期末试卷及答案

浙教版八年级数学(下)期末测试卷一、选择题(本题有10小题,每小题3分,共30分)1.二次根式a+3中,字母a的取值范围是()(A)a>-3 (B)a≥-3 (C)a>3 (D)a≥32.在下列关于平行四边形的各命题中,假命题是()(A)平行四边形的对边相等(B)平行四边形的对角相等(C)平行四边形的对角线互相平分(D)平行四边形的对角线互相垂直3.一元二次方程x2-4x-6=0,经过配方可变形为())(A)(x-2)2=10 (B)(x-2)2=6 (C)(x-4)2=6 (D)(x-2)2=24.在下列图形中,中心对称图形是()(A)等边三角形(B)平行四边形(C)等腰梯形(D)正五边形5若是一个完全平方式。

则的值是:----------------------------()A 6BCD 以上都不对6.下列计算正确的是()(A)3+2= 5 (B)3-2=1 (C)32-8= 2 (D)3+3=3 37.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为()¥(A)正三角形(B)正方形(C)正五边形(D)正六边形8.将50个数据分成五组,编成组号为①~⑤的五个组,频数颁布如下表:组号①②③④⑤:频数8 10 ■14 11那么第③组的频率为()(A)14 (B)7 (C)(D)#9.如图,已知矩形ABCD的对角线AC的长为10cm,连结各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()(A)20cm (B)202cm(C)203cm (D)25cm10.如图,梯形ABCD中,AD∥BC,AB=CD,AD=5,BC=8.将腰DC绕点D逆时针方向旋转90º至DE,连结AE,则△ADE的面积为()(A )4 (B )154(C )152(D )20二、填空题(本题有10小题,每小题3分,共30分) !11.数据10,5,12,7的极差为__________. 12.五边形的内角和等于__________. 13.方程2x 2=6的解是__________.14.如图,四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点B 的坐标为__________.15.在□ABCD 中,若给出四个条件:①AB =BC ,②∠BAD =90º,③AC ⊥BD ,④AC =BD .其中选择两个可推出四边形ABCD 是正方形,你认为这两个条件是__________.(填序号,只需填一组) 16.写出命题“矩形的对角线互相平分且相等”的逆命题______________________________. 17.数a 、b 在数轴上的位置如图: 则a2-(a -b)2=__________.18.如图,□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC边于点E ,则线段EC 的长度为__________.19.已知关于x 的一元二次方程(m +2)x 2+mx +m 2-4=0有一个根是0,则m =__________.20.设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为__________.!三、解答题(本题有6小题,共40分) 21.(6分)(1)解方程:x 2+2x -3=0; (2)计算:27÷3-8×32. >22. (8分)某地区为了增强市民的法制意识, 抽调了一部分市民进行了一次知识竞赛,竞赛 成绩(得分取整数)进行了整理后分5组, 并绘制了频数分布直方图,请结合右图提供 的信息,解答下列问题: ①抽取多少人参加竞赛 ②到这一分数段的频数和 频率分别是多少 ;-2,-10 1 2 3③这次竞赛成绩的中位数落在哪个分数段内④根据频数分布直方图,请你提出一个问题,并回答你所提出的问题。

(完美版)浙教版八年级下册数学期末测试卷及含答案

(完美版)浙教版八年级下册数学期末测试卷及含答案

浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法不正确的是()A.方程x 2=x有一根为0B.方程x 2﹣1=0的两根互为相反数C.方程(x﹣1)2﹣1=0的两根互为相反数D.方程x 2﹣x+2=0无实数根2、对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )A.2-4B.2C.2D.203、等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4、下列根式.是最简二次根式的是()A. B. C. D. (n是正整数)5、下列图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.6、已知O是矩形ABCD的对角线的交点,AB=6,BC=8,则点O到AB、BC的距离分别是()A.3、5B.4、5C.3、4D.4、37、下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3 D.同圆中的两条平行弦所夹的弧相等8、下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.两组对角分别相等的四边形是平行四边形9、如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为()A. B. C. D.10、用配方法解方程x2-6x-8=0时,配方结果正确的是()A.(x-3) 2=17B.(x-3) 2=14C.(x-3) 2=1D.(x-6) 2=4411、下列四幅图片,是中心对称图形的是()A. B. C. D.12、为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量4 5 6 9(吨)户数 3 4 2 1则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨B.极差是3吨C.平均数是5.3吨D.众数是5吨13、已知关于x的一元二次方程(k﹣1)x2﹣x+ =0有实数根,则k的取值范围是()A.k为任意实数B.k≠1C.k≥0D.k≥0且k≠114、如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)15、在反比例函数y=图象的每条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>1B.k>0C.k≥1D.﹣l≤k<1二、填空题(共10题,共计30分)16、在平行四边形ABCD中,对角线AC、BD的交点,AC⊥BC且AB=10厘米,AD=6厘米,则OB=________.17、正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A 1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.18、在矩形ABCD中,AB=4,BC=3,取CD中点E,连接BD、BE,将沿BE翻折成为,过点C作CM⊥BF于M,则CM+FC=________.19、“反证法”证明命题“等腰三角形的底角是锐角”时,是先假设________20、如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为________ cm221、已知,是方程的两根,则________.22、已知平行四边形ABCD中,∠B=4∠A,则∠C=________23、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为________.24、若方程的两根,则的值为________.25、如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且,.关于下列结论:①当△PAN是等腰三角形时,P点有6个;②当△PMN是等边三角形时,P点有4个;③DM+DN的最小值等于6.其中,一定正确的结论的序号是________.三、解答题(共5题,共计25分)26、计算: ÷- .27、已知实数a、b、c在数轴上对应点的位置如图,化简.28、如图,D是△ABC边BC上的点,连接AD,∠BAD=∠CAD,BD=CD.用两种不同方法证明AB=AC.29、如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.30、请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、D6、D7、D8、D9、B10、A12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。

浙教版数学八年级下册期末测试卷(含解析)

浙教版数学八年级下册期末测试卷(含解析)

浙教版数学八年级下册期末测试卷一、选择题(共10题;共30分)1.(3分)下列方程中,一定是关于x 的一元二次方程的是( )A .x 2=0B .1x 2+1x−2=0C .a x 2+bx +c =0D .x 2+2x =x 2−12.(3分)下列图标中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .3.(3分)下列运算错误的是( )A .2+3=5B .2⋅3=6C .6÷2=3D .(−2)2=24.(3分)用配方法解一元二次方程x 2−2x =3,配方后得到的方程是( )A .(x−1)2=4B .(x +1)2=4C .(x +2)2=1D .(x−2)2=15.(3分)若用反证法证明命题“四边形中至少有一个角是钝角或直角”时,则首先应该假设这个四边形中( )A . 至少有一个角是钝角或直角B .没有一个角是锐角C .每一个角都是钝角或直角D .每一个角是锐角6.(3分) 体育委员小聪要帮体育老师分析本班的跳远成绩,将各统计量计算好后却发现由于场地布置失误,导致每位同学的成绩都少记录了3cm ,则实际成绩与记录成绩相比( )A .众数改变,方差改变B .众数不变,平均数改变C .中位数改变,方差不变D .中位数不变,平均数不变7.(3分)读诗词,列方程:大江东去浪淘尽,千古风流人物;而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符.(诗词大意:周瑜英年早逝,逝世时的年龄是一个两位数,十位数字比个位数字小3,个位数字的平方刚好是周瑜逝世时的年龄),设周瑜逝世时的年龄的个位数字为x ,则列出的方程正确的是( )A .10x +(x−3)=x 2B .10(x−3)+x =(x−3)2C .10x +(x−3)=(x−3)2D .10(x−3)+x =x 28.(3分)已知反比例函数y =k x的图象与函数y =16x 的图象没有交点.若点(−32,y 1)、(−67,y 2)、(13,y 3)在这个反比例函数y=kx的图象上,则下列结论中正确的是( )A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1 9.(3分)如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长为( )A.35B.352C.95D.95210.(3分)如图,在边长为10的正方形ABCD对角线上有E,F两个动点,且AB=2EF,点P是BC中点,连接AE,PF,则AE+PF最小值为( )A.55B.105C.52D.10二、填空题(共6题;共18分)11.(3分)若式子2−x在实数范围内有意义,则x的取值范围是 .12.(3分)射击小组6位同学在一次组内测试的成绩(单位:环)分别为86,82,85,83,85,93.关于这组数据的中位数为 .13.(3分)已知反比例函数y=2k−3x的图像位于第二、四象限,则k的取值范围是 . 14.(3分)对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{(x+1)2,x2}=4,则x= .15.(3分)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=6,则AE的长为 .16.(3分)数学兴趣小组的同学拿出如图所示的矩形纸片ABCD,其中ABBC =712,他们将纸片对折使AD、BC重合,展开后得折痕MN,又沿BM折叠使点C落在C′处,展开后又得到折痕BM,再沿BE折叠使点A落在BM上的A′处,大家发现了很多有趣的结论.就这个图形,请你探究DEAE的值为 .三、解答题(共7题;共52分)17.(4分)计算:(1)(2分)18−32;(2)(2分)(3−1)2−(2+3)(3−2).18.(6分)解方程:(1)(3分)2x﹣6=(x﹣3)2(2)(3分)x2﹣4x﹣7=019.(7分)广大青少年的身体和心理健康已经成为社会关注的话题,而学生的身体和心理健康教育需要学校和家庭共同承担.某校在八、九年级家长中进行了“青少年身心健康知识”调查活动,并将调查结果用计算机折合成分数(百分制),从八、九年级的家长调查卷中各随机抽取了10名家长的折合分数,分数用x 表示,共分成四组,数据整理如下:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100八年级10名家长的分数是:80,85,88,89,89,100,98,98,98,95.九年级10名家长的分数在C组中的数据是:90,91,93.抽取的八、九年级家长分数统计表:年级平均数中位数众数方差八年级9292b40.8九年级92c10039.1根据以上信息,解答下列问题:(1)(3分)直接写出上述a ,b ,c 的值:a =  ,b =  ,c =  ;(2)(2分)该校八、九年级分别有500名、400名家长参加了此次调查活动,请估计两个年级分数低于90分的家长总人数;(3)(2分)根据以上数据,你认为该校八、九年级哪个年级家长对“青少年身心健康知识”了解得更好?请说明理由(写出一条理由即可).20.(6分)如图,矩形AEBO 的对角线AB 、OE 交于点F ,延长AO 到点C ,使OC =OA ,延长BO 到点D ,使OD =OB ,连接AD 、DC 、BC .(1)(3分)求证:四边形ABCD 是菱形.(2)(3分)若OE =20,∠BCD =60°,则菱形ABCD 的面积为  .21.(9分)如图,一次函数y=-x+4的图象与反比例函数y=k x(k≠0)在第一象限的图象交于A(1,a)和B(b ,1)两点,与x 轴交于点C ,与y 轴交于点D .(1)(3分)求点B 的坐标和反比例函数的表达式;(2)(3分)直接写出当x>0时,不等式-x+4-k x>0的解集;(3)(3分)若点P 在y 轴上,且△APB 的面积为3,求点P 的坐标.22.(10分) 小华在学完了八下教材《一元二次方程根与系数的关系(韦达定理)》一节内容后,对一元三次方程根与系数的关系产生了浓厚兴趣,决定一探究竟.下面是他收集的素材,汇总如下,请根据素材帮助他完成相应任务:探究一元三次方程根与系数的关系素材一元三次方程的定义我们把两边都是整式,只含有一个未知数,并且未知数的最高次数是3次的方程叫做一元三次方程,它的一般形式为a x 3+b x 2+cx +d =01(b、c、d为常数,且a≠0).素材2一元三次方程的解法若一元三次方程a x3+b x2+cx+d=0(a≠0)的左边在实数范围内可因式分解为a(x−p)(x−q)(x−r)(p、q、r为实数),即原方程化为:a(x−p)(x−q)(x−r)=0,则得方程的根为x1=p,x2=q,x3=r.素材3一元二次方程根与系数的关系的探究过程设一元二次方程a x2+bx+c=0(a≠0)有两个根x1,x2,则方程可化为a(x−x1)(x−x2)=0,即a x2−a(x1+x2)x+a x1x2=0,与原方程系数进行比较,可得根与系数的等量关系为:x1+x2=−ba,x1x2=ca.问题解决任务1感受新知若关于x的三次方程a x3+b x2+cx+d=0(a、b、c、d为常数)的左边可分解为a(x−1)(x+2)(x−3),则方程a x3+b x2+cx+d=0的三个根分别为x1=▲,x2=▲,x3=▲.任务2探索新知若关于x的三次方程a x3+b x2+cx+d=0的三个根为x1,x2,x3,请探究x1+x2+x3,x1⋅x2⋅x3与系数a、b、c、d之间的等量关系.任务3应用新知利用上一任务的结论解决:若方程2x3+x2−7x−6=0的三个根为α、β、γ,求1αβ+1βγ+1αγ的值.23.(10分)对于一个四边形给出如下定义:有一组对角相等且有一组邻边相等,则称这个四边形为奇特四边形.(1)(2分)判断命题“另一组邻边也相等的奇特四边形为正方形”是真命题还是假命题?(2)(4分)如图,在正方形ABCD中,E是AB边上一点,F是AD延长线一点,BE=DF,连接EF,EC,FC,取EF的中点G,连接CG并延长交AD于点H.探究:四边形BCGE是否是奇特四边形,如果是证明你的结论,如果不是请说明理由.(3)(4分)在(2)的条件下,若四边形BCGE的面积为16,则BC+BE的值是多少?答案解析部分1.【答案】A2.【答案】B3.【答案】A【解析】【解答】解:A、2与3不是同类二次根式,不能直接合并,故本选项符合题意;B、2× 3= 6,计算符合题意,故本选项不符合题意;C、6÷ 2= 3,计算符合题意,故本选项不符合题意;D、(- 2)2=2,计算符合题意,故本选项不符合题意;故答案为:A.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.4.【答案】A5.【答案】D【解析】【解答】解:利用反证法证明"四边形中至少有一个角是钝角或直角"时应该假设结论不成立:四边形里没有一个角是钝角或直角.故答案为:D.【分析】在反证法的步骤中,第一步是假设结论不成立,即至少有一个角是钝角或直角,否定为没有一个角是钝角或直角.6.【答案】C【解析】【解答】解:∵每位同学的成绩都少记录了3cm,∴实际成绩与记录成绩相比,众数增加3cm,方差不变,平均数增加3cm,中位数增加3cm,故答案为:C.【分析】根据众数,方差,中位数和平均数所表示的意义进行判断即可.7.【答案】D【解析】【解答】解:设周瑜逝世时的年龄的个位数字为x,可得瑜逝世时的年龄的十位数字为x-3,结合题意可得:10(x-3)+x=x2,故答案为:D.【分析】设周瑜逝世时的年龄的个位数字为x,可得瑜逝世时的年龄的十位数字为x-3,最后根据“个位数字的平方刚好是周瑜逝世时的年龄”,列出方程,即可得出答案.8.【答案】B9.【答案】D【解析】【解答】解:如图,取CE的中点F,连结DF,∵AD 是△ABC 的中线,∴BD =CD ,∴DF 是△BEC 的中位线,∴DF =12BE ,DF ∥BE ,∵AD =BE =6,AD ⊥BE ,∴DF =3,DF ⊥AD .由勾股定理,得AF =AD 2+DF 2=62+32=35.∵BE 平分∠ABC ,BE ⊥AD ,∴∠ABH =∠DBH ,∠BAD =90°−∠ABH ,∠BDA =90°−∠DBH ,∴∠BAD =∠BDA ,∴AB =DB .根据等腰三角形“三线合一”,得AH =DH .∵BE ∥DF ,∴AH HD =AEEF=1∴E 是AF 的中点,∴HE 是△ADF 的中位线,∴AE =EF =12AF =352,∵CE 的中点F ,∴FC =EF =352,∴AC =CF +EF +AE =952.故答案为:D .【分析】取CE 的中点F ,连结DF ,先利用中位线的性质求出DF =3,DF ⊥AD ,利用勾股定理求出AF 的长,再证出HE 是△ADF 的中位线,求出AE =EF =12AF =352,再结合CE 的中点F ,求出FC =EF =352,最后利用线段的和差求出AC =CF +EF +AE =952即可.10.【答案】A【解析】【解答】解:如图,取CD 的中点为Q ,连结PQ ,QE.∵P 、Q 分别为CB 、CD 的中点∴PQ 为△CDB 的中位线∴PQ ∥BD ,且PQ =12BD∵正方形边长为10∴BD =102∴PQ =52又∵EF =52∴PQ=EF∴四边形PQEF 为平行四边形∴PF=QE ∴AE+PF=AE+QE当AE 和QE 在同一直线上是,AE+QE 最小,即为线段AQ ∴AQ =AD 2+DQ 2=102+52=125=55故答案为:A.【分析】求两条线段和的最小值,常见于“将军饮马”模型,图形基本特征是两定(点)和一动(点).因此首先需要将图中的两条线段AE 和PF 连结起来,方法是通过作CD 的中点Q ,形成中位线PQ ,计算发现PQ 和EF 的位置关系平行,数量关系相等,因此四边形EFPQ 为平行四边形,所以PF=QE ,即将PF 转化为QE 线段.此时,AE+PF 转化为AE+QE ,AE+QE 即满足了两定(点)和一动(点)的特征,当Q 、E 、A 共线时,求Rt △QDA 的斜边AQ 的值,即为AE+PF 的最小值.11.【答案】x ≤2【解析】【解答】解:∵式子2−x 在实数范围内有意义,∴2-x≥0,解得x≤2,故答案为:x≤2.【分析】根据二次根式的被开方数是非负数求解即可.12.【答案】8513.【答案】k<32【解析】【解答】根据题意得2k-3<0,解得k<32.故答案是:k<32.【分析】根据反比例函数的性质得2k-3<0,然后解不等式即可.14.【答案】2或−315.【答案】19416.【答案】97【解析】【解答】解:如图,BE交MN于点F,作FG⊥BA′于点G,由折叠得点A与点B关于直线MF对称,∴MN垂直平分AB,∴∠BNM=90°,AN=BN,∵四边形ABCD是矩形,∴∠ABC=∠C=90°,AD∥BC,AD=BC,∴四边形BCMN是矩形,∴MN∥BC,MN=BC,∴MN∥AD,MN=AD,∵ABBC=712,∴2BNMN=712,∴BN MN =724,设BN=7m ,则MN=AD=24m ,∴BM =BN 2+MN 2=(7m )2+(24m )2=25m ,∵∠ABE=∠A′BE ,FN ⊥BA ,FG ⊥BA′,∴FN=FG ,∵12BM•FG =12FM•BN =S △BMF ,∴FG FM =BN BM =7m 25m =725,∴FN FM =725,∴FN =77+25MN =732×24m =214m ,∵BF EF =BN AN=1,∴EF=BF ,∴AE =2FN =2×214m =212m ,∴DE =24m−212m =272m ,∴DE AE =272m 212m =97,故答案为:97.【分析】先求得BN 与MN 的比,设BN=7m ,用m 表示出MN ,再根据勾股定理求BM ,由角平分线的性质得FN=FG ,由12BM•FG =12FM•BN =S △BMF ,求得FN 与FM 的比,可得出用m 表示FN ,进而可用m 表示AE 与DE ,就可求得DE 与AE 的比.17.【答案】(1)解:18−32=32−32=0;(2)解:(3−1)2−(2+3)(3−2)=3+1−23−(3−2)=4−23−1=3−23.18.【答案】(1)x1=3,x2=5(2)x1=2+11,x2=2−11 19.【答案】(1)40;98;92(2)解:八年级有500×510=250(人),九年级有400(10%+20%)=120(人),八九年共有250+120=370(人).答:估计两个年级分数低于90 分的家长总人数为320 人;(3)解:九年级家长对“青少年身心健康知识”了解得更好,理由如下:平均数和中位数相同的情况下,九年级测试成绩的众数更高,且方差小于八年级,即九年级家长的分数更稳定且满分更多,所以九年级家长了解的更好.【解析】【解答】解:(1)八年级测试成绩98出现了3次,次数最多,b=98;九年级C类有3人,所以C类占总人数的310×100%=30%,则D类占1-20%-10%-30%=40%,所以a=40,九年级的中位数为:c=91+932=92;故答案为:40,98,92;【分析】(1)观察题中所给的数据,根据中位数和众数的定义求出b,c的值,再由扇形统计图求出a的值即可;(2)利用样本估计总体的思想,先分别用总人数乘以两个年级分数低于90分的百分比求出八、九年级的家长人数,然后相加即可解答;(3)在中位数和平均数相同的情况下,比较方差的大小,方差越小,成绩越稳定即可求解.20.【答案】(1)证明:∵CO=AO,DO=BO,∴四边形ABCD是平行四边形,∵四边形AEBO是矩形,∴∠AOB=90°,∴BD⊥AC,∴四边形ABCD是菱形;(2)2003【解析】【解答】解:(2)∵四边形AEBO是矩形,∴AB=BC=OE=20,∵四边形ABCD是菱形,∠BCD=60°,∴∠BCO =30°,∠AOB =90°,∴OB =12BC =12×20=10,在Rt △BOC 中,由勾股定理得:OC =BC 2−OB 2=202−102=103,∴BD =2OB =2×10=20,AC =2OC =2×103=203,∴S 菱形ABCD =12AC ⋅BD =12×20×203=2003.故答案为:2003.【分析】(1)先证出四边形ABCD 是平行四边形,再结合BD ⊥AC ,即可证出四边形ABCD 是菱形;(2)先利用含30°角的直角三角形的性质求出OB =12BC =12×20=10,利用勾股定理求出OC 的长,再求出对角线BD 和AC 的长,最后利用菱形的面积等于对角线乘积的一半求解即可.21.【答案】(1)解:把点B(b ,1)代人y=-x+4 ,得1=-b+4 ,解得b=3,∴B(3,1).∵反比例函数y=k x(k≠0)的图象经过点B ,∴ k=3×1=3,∴反比例函数的表达式为y=3x.(2)1<x<3(3)解:当x=0时,则y=-x+4=4,∴点D 的坐标为(0,4),设点P 的坐标为(0,y).∵ S △APB =S △BPD -S △APD =12PD·xp-12PD·x=3,∴12×(3-1)PD=3,∴PD=3,∴点P 的坐标为(0,1)或(0,7).【解析】【解答】解:(2)把A(1,a)代人反比例函数y=3x,得a=3,∴点A 的坐标为(1,3) ,由题图可知,当x>0时,不等式-x+4-k x>0的解集为1<x<3.【分析】(1)点在函数图象上,只需要将点的坐标代入解析式中求解;(2)不等式 -x+4-k x >0 ,可以看成是函数y 1=-x+4,y 2=k x,y 1>y 2的问题,通过数形结合的方法确定x 的取值范围;(3)S △APB =S △BPD -S △APD ,根据三角形面积公式列式可求出PD 的长度,从而确定P 点的坐标;22.【答案】解:任务1:x 1=1,x 2=−2,x 3=3.任务2:由题意可知,原方程可化为:a(x−x 1)(x−x 2)(x−x 3)=0,展开整理得:a x 3−a(x 1+x 2+x 3)x 2+a(x 1x 2+x 1x 3+x 2x 3)x−a x 1x 2x 3=0,与原方程a x 3+b x 2+cx +d =0比较可得:x 1+x 2+x 3=−b a ,x 1⋅x 2⋅x 3=−d a⑤任务3:利用上题结论可知:α+β+γ=−12,αβγ=−−62=3,……2分∴1αβ+1βγ+1αγ=α+β+γαβγ=−123=−1623.【答案】(1)解:假命题,如图,∵AB =AC ,∠ABD =∠ACD ,又∵DC =DB ,而四边形ABDC 不是正方形.(2)解:四边形BCGE 是奇特四边形,∵四边形ABCD 是正方形,∴BC =DC ,∠EBC =∠FDC =90°,在△EBC 和△FDC 中,{BC =DC∠EBC =∠FDC BE =DF ,∴△EBC≌△FDC(SAS),∴CE =CF ,∠BCE =∠DCF ,∴∠ECF =90°,∵G 是EF 的中点,∴EG =GC ,∠EGC =90°,∴∠EGC =∠B =90°,∴四边形BCGE 是奇特四边形.(3)解:过点G 作MN ∥AB ,GQ ∥AD ,∴△GQE≌△GMC(AAS),∴GQ =GM ,∴四边形BMGQ 是正方形,∴S四边形BCGE=S正方形BMGQ,∵四边形BCGE的面积为16,∴S正方形BMGQ=16,∴GQ=GM=AN=4,∵G是EF的中点,∴AN=FN=4,∴AF=8,∵BE=DF,BC=AD,∴BE+BC=AF=8.【解析】【分析】(1)假命题,根据命题中条件画出图形验证即可;(2)先根据正方形的性质得到BC=DC,∠EBC=∠FDC=90°,再利用SAS证明△EBC≌△FDC,根据全等三角形的性质得到CE=CF,∠BCE=∠DCF,进而得到∠ECF=90°,然后利用直角三角形中斜边上的中线等于斜边的一半得到EG=GC,∠EGC=90°,再根据奇特四边形的定义即可判断;(3)过点G作MN∥AB,GQ∥AD,利用AAS证明△GQE≌△GMC,则GQ=GM,进而可得四边形BMGQ是正方形,利用等量代换得到S四边形BCGE=S正方形BMGQ=16,得出正方形BMGQ的边长为4,进而得出AF=8,即可得到BC+BE的值.。

浙教版八年级下册数学期末测试卷及含答案

浙教版八年级下册数学期末测试卷及含答案

浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、设三角形ABC 为一等腰直角三角形,角ABC 为直角,D 为AC 中点。

以B 为圆心,AB 为半径作一圆弧AFC ,以D 为中心,AD 为半径,作一半圆AGC ,作正方形BDCE 。

月牙形AGCFA 的面积与正方形BDCE 的面积大小关系( )A.S 月牙=S 正方形B.S 月牙= S 正方形C.S 月牙=S 正方形 D.S月牙=2S 正方形2、下列说法中正确的是( )A.有一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形 3、下列计算正确的是( )A.|﹣2|=﹣2B.a 2•a 3=a 6C.(﹣3) ﹣2=D.=4、如图,函数(k≠0,x<0)的图像L经过点A(-4,2),直线AB 与x轴交于点B(-5,0),经过点C(0,4)作y轴的垂线,分别交L和直线AB于点M,N,则MN=()A.1B.-5C.-1D.55、估算的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6、已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为()A. B. C. D.7、小勇投标训练4次的成绩分别是(单位:环)9,9,x,8.已知这组数据的众数和平均数相等,则这组数据中x是()A.8B.9C.10D.78、在式子:①;②;③﹣;④;⑤;⑥(x>1)中二次根式的个数有()A.1个B.2个C.3个D.4个9、方程的左边配成完全平方后所得方程为 ( )A. B. C. D.以上答案都不对10、已知双曲线,则下列各点中一定在该双曲线上的是()A.(3,2 )B.(-2,-3 )C.(2,3 )D.(3,-2)11、方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3C.x1= ,x2=3 D.x1=﹣,x2=312、在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是A. 晴B. 冰雹C. 雷阵雨D.大雪13、如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P 是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A. B. C. D.14、如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2B.BE=DFC.∠EDF=60°D.AB=AF15、如图,□ABCD的周长为16 cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm二、填空题(共10题,共计30分)16、方程x2-3x-10=0的根为x1=5,x2=-2.此结论是:________的.17、计算(+1)2014×(﹣1)2013的值是________.18、在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩________.19、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________20、请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的每个内角都等于150°,则这个多边形是________边形.B.用计算器计算:sin15°32'________(精确到0.01)21、如图,已知正方形ABCD的边长为4,以点A为圆心,2为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,则线段AF 的长的最小值________.22、方程有两个相等的实数根,且满足,则的值是________.23、如图,∠A=90°,点D、E分别在边AB、AC上,=m.若,则m=________.24、十边形有________ 个顶点,从一个顶点出发可画________ 条对角线,它共有________ 条对角线.25、菱形ABCD的边长为5,对角线交于O点,且AO、BO的长分别是关于x的方程的两个根,则m的值为________三、解答题(共5题,共计25分)26、解方程:2(x﹣3)=3x(3﹣x)27、如图所示,写出这些多边形的名称,并从多边形的一个顶点出发到其他顶点把多边形分割成若干个三角形.28、圆心O到直线L的距离为d,⊙O半径为r,若d、r是方程-6x+m=0的两个根,且直线L与⊙O相切,求m的值.29、如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.30、任意四边形ABCD中,点E、F、G、H分别是AD、BC、BD、AC的中点,当四边形ABCD满足什么条件时,四边形EGFH是菱形.(填一个使结论成立的条件)参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、A5、D7、C8、C9、A10、D11、C12、A13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

【浙教版】八年级数学下期末试卷附答案

【浙教版】八年级数学下期末试卷附答案

一、选择题1.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,222.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A.10 B.23 C.50 D.1003.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁4.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大5.甲、乙两车分别从A地出发匀速行驶到B地,在整个行驶过程中,甲、乙两车离开A城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .46.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =3x+3 B .y =3x+23C .y =﹣3x+3 D .y =﹣3x+23 7.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,1) C .(0,103) D .(0,2)8.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .9.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b10.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOMAOESS=.其中正确结论的个数是( )A .5个B .4个C .3个D .2个11.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠12.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .4二、填空题13.一组数据1,0,2,1的方差S 2=_____.14.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.15.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___. 16.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.17.如图,点E 是长方形纸片DC 上的中点,将C ∠过E 点折起一个角,折痕为EF ,再将D ∠过点E 折起,折痕为GE ,且C ,D 均落在GF 上的一点H 处.若1649'∠=︒,则CEF ∠=_______.18.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.19.如果代数式1x -有意义,那么实数x 的取值范围是____20.已知ABC 为等边三角形,且边长为4,P 为BC 上一动点,且PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E 两点,则PD +PE =______________.三、解答题21.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?22.某公司为了到高校招聘大学生,为此设置了三项测试:笔试、面试、实习.学生的最终成绩由笔试面试、实习依次按3:2:5的比例确定.公司初选了若干名大学生参加笔试,面试,并对他们的两项成绩分别进行了整理和分析.下面给出了部分信息:①公司将笔试成绩(百分制)分成了四组,分别为A组:60≤x<70,B组:70≤x<80,C 组:80≤x<90,D组:90≤x<100;并绘制了如下的笔试成绩频数分布直方图.其中,C组的分数由低到高依次为:80,81,82,83,83,84,84,85,86,88,88,88,89.②这些大学生的笔试、面试成绩的平均数、中位数、众数、最高分如下表:平均数中位数众数最高分笔试成绩81m9297面试成绩80.5848692根据以上信息,回答下列问题:(1)这批大学生中笔试成绩不低于88分的人数所占百分比为.(2)m=分,若甲同学参加了本次招聘,他的笔试、面试成绩都是83分,那么该同学成绩排名靠前的是成绩,理由是.(3)乙同学也参加了本次招聘,笔试成绩虽不是最高分,但也不错,分数在D组;面试成绩为88分,实习成绩为80分由表格中的统计数据可知乙同学的笔试成绩为分;若该公司最终录用的最低分数线为86分,请通过计算说明,该同学最终能否被录用?23.在ABC 中,已知:∠A=60度,∠B=x 度,∠C=y 度,请写出y 关于x 的函数式,并画出函数图象24.如图,已知,四边形ABCD 是平行四边形,AE ∥BD ,交CD 的延长线于点E ,EF BC ⊥交BC 延长线于点F ,求证:四边形ABFD 是等腰梯形.25.先化简,再求值:211(1)a a a -++,其中21a =-. 26.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22. 故选C.2.A解析:A 【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案. 【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元. 故答案为A . 【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.3.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.D解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882+=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.5.B解析:B 【分析】观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题. 【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩ =8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t , 即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确; ④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t , 当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确,综上所述,正确的有①②,共2个,故选:B.【点睛】本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.6.D解析:D【分析】过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,设菱形的边长为t,则OA=AB=t,在Rt△ABH中利用勾股定理得到(3﹣t)2+(3)2=t2,解方程求出t,得到A(2,0),再利用P为OB的中点得到P(32,3),然后利用待定系数法求直线AC的解析式即可.【详解】解:过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P(32,32),设直线AC的解析式为y=kx+b,把A(2,0),P(32,32),代入得:203322k bk b+=⎧⎪⎨+=⎪⎩,解得:323kb⎧=-⎪⎨=⎪⎩,∴直线AC的解析式为y33故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.7.B解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.8.A解析:A【分析】依据函数的定义,x取一个值,y有唯一值对应,可直接得出答案.【详解】解:A、根据图象知给自变量一个值,可能有2个函数值与其对应,故A选项不是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B选项是函数,C、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C选项是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D选项是函数,故选:A.【点睛】此题主要考查了函数概念,任意画一条与x轴垂直的直线,始终与函数图象有一个交点,那么y是x的函数.9.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b=-a-b+a=-b,故选:A.【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.10.C解析:C【分析】证明△OFB≌△CFB,可判断结论①正确;利用菱形的定义,可判断结论②正确;根据OC=OB,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM,故结论④是错误的;证NE∥BM,AN=NO=OM,所以BM=3NE,AO=2OM,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB>OB,∵OB=OC,∴FB>OC,∴③错误,在直角三角形AMB中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM,∴④错误,设ED与AC的交点为N,设AE=OE=2x,则NE=x,BE=4x,∴AB=6x ,∴BM=3x , ∴11::22BOM AOE S SOM BM AO NE =⋅⋅ =3:2OM x OM x ⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.11.D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.12.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC === ∴2222345CD DE EC =+=+= ∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+=∴22224845AC EC AE =+=+=cm ,故②错误; ∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD =∴5BD CD AD ===∵DF AB ⊥∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误;∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】 本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解.二、填空题13.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5【分析】利用方差的计算公式计算即可.【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5.【点睛】 本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 14.155【解析】【分析】将该小组年龄按照从小到大顺序排列找出中位数即可【详解】根据题意排列得:131314141415151515161616161617171717则该小组组员年龄的中位数为(15+解析:15.5【解析】【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【详解】根据题意排列得:13,13,14,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17, 则该小组组员年龄的中位数为12(15+16)=15.5岁, 故答案为15.5【点睛】此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键.15.【分析】先求出y=2x+3与y 轴交点坐标为(03)代入y=3x ﹣2b 即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y 轴交点为(03)将(03)代入y=3x ﹣2b 中得-2b= 解析:32- 【分析】先求出y=2x+3与y 轴交点坐标为(0,3),代入y=3x ﹣2b ,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y 轴交点为(0,3),将(0,3)代入y=3x ﹣2b 中,得-2b=3,解得b=32-, 故答案为:32-. 【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键. 16.【分析】设点P 的坐标为过点B 作轴于点C 由旋转的性质得到再根据角的和差解得继而证明由全等三角形对应边相等解得进一步得到点的坐标为由此知点在直线上运动设直线与x 轴交于点E 与y 轴交于点F 作点O 关于直线的对解析:【分析】设点P 的坐标为()0,m ,过点B 作BC y ⊥轴于点C ,由旋转的性质得到PA PB =,90BPA ∠=︒再根据角的和差解得PBC APO ∠=∠,继而证明(AAS)BPC PAO △≌△,由全等三角形对应边相等解得,BC OP PC AO ==,进一步得到点B 的坐标为(,8)m m +,由此知点B 在直线8y x =+上运动,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',由三角形三边关系可得O B BA '+的最小值为O A ',继而证明四边形O EOF '为正方形,得到O '的坐标为(8,8)-,再利用勾股定理解得O A '的长,即可解题.【详解】解:∵点P 为y 轴上一动点,∴设点P 的坐标为()0,m ,如图所示,过点B 作BC y ⊥轴于点C ,∵线段PA 绕着点P 按逆时针方向旋转90°到PB ,,90PA PB BPA ∴=∠=︒,又BC y ⊥轴,90POA ∠=︒,90BCP POA ∴∠=∠=︒,∴在BCP 中,18090BPC PBC BCP ∠+∠=︒-∠=︒,又18090BPC APO BPA ∠+∠=-∠=︒︒,PBC APO ∴∠=∠, ∴在BPC △和PAO 中,BCP POA PBC APO PB AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BPC PAO ∴△≌△,,BC OP PC AO ∴==,又(0,),(8,0)P m A ,,8BC OP m PC AO ∴====,∴点B 的坐标为(,8)m m +,设,8x m y m ==+,8y x ∴=+,∴点B 在直线8y x =+上运动,如图所示,设直线8y x =+与x 轴交于点E ,与y 轴交于点F ,作点O 关于直线8y x =+的对称点为O ',连接O F ',O E ',O A ',O B ',则O B OB '=,EF 垂直平分OO ',BO BA O B BA '∴+=+,又O B BA O A ''+,O B BA '∴+的最小值为O A ',即BO BA +的最小值为O A ',又8OE OF ==,45FEO ∴∠=︒,∴四边形O EOF '为正方形, ∴O '的坐标为(8,8)-,O A '∴===故BO BA +的最小值为,故答案为【点睛】本题考查轴对称—最短路线问题、坐标与图形变化—旋转、全等三角形的判定与性质、勾股定理、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键. 17.【分析】根据翻折的性质可得∠GEH=∠1∠HEF=∠CEF 从而可求出∠DEH ∠CEF 的度数【详解】解:∵∠GEH=∠1∴∠GEH=∴∠DEH=+=∴∠HEF=∠CEF=×(180°-)=故答案为:【 解析:2551'︒【分析】根据翻折的性质可得∠GEH=∠1,∠HEF=∠CEF ,从而可求出∠DEH ,∠CEF 的度数.【详解】解:∵1649'∠=︒,∠GEH=∠1,∴∠GEH=649'︒,∴∠DEH =649'︒+649'︒=12818'︒,∴∠HEF=∠CEF=12×(180°-12818'︒)=2551'︒, 故答案为:2551'︒.【点睛】本题考查了翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键. 18.【分析】由四边形ABCD 是平行四边形得到∠ABC=∠D=102°再AD=AE=BE 得出∠EAB=∠EBA ∠BEC=∠BCA 继而得到∠ACB=2∠BAC 再根据∠BAC+∠ACB=3∠BAC=180°-解析:26︒【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE ,得出∠EAB=∠EBA ,∠BEC=∠BCA ,继而得到∠ACB=2∠BAC ,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC 求解即可.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,∠ABC=∠D=102°,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠BCA,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠BAC,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.19.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.20.【分析】作出底边上的高AF连接AP分等边三角形为△APB和△APC根据三角形的面积不变可求得PD+PE的值【详解】连接AP作AF⊥BC于点F∵AB =ACAF⊥BC∴CF=BF=2AF=∵∴∴故填:【解析:【分析】作出底边上的高AF,连接AP,分等边三角形为△APB和△APC,根据三角形的面积不变可求得PD+PE的值.【详解】连接AP,作AF⊥BC于点F,∵AB=AC,AF⊥BC,∴CF=BF=2,AF=22AB BF=23-,ABC 11S=BC AF=423=4322⋅⨯⨯,∵ABC ABP ACPS=S+S,∴11AB PD+AC PE=4322⋅⋅,∴PD+PE=23,故填:23.【点睛】本题考查等边三角形的性质,勾股定理,解题的关键是“等面积法”.三、解答题21.(1)60;(2)中位数是3小时,平均数是2.75小时;(3)600.【分析】(1)根据统计图求出2小时人数所占百分比,再根据2小时的人数可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】由扇形统计图知,2小时人数所占的百分比为90360︒⨯︒100%=25%,∴本次共抽取的学生人数为15÷25%=60(人),则3小时的人数为60﹣(10+15+10+5)=20(人),补全条形图如下:故答案为60;(2)这组数据的中位数是332+=3(小时),平均数为1102153204105560⨯+⨯+⨯+⨯+⨯=2.75(小时). 故答案为中位数是3小时.平均数为2.75小时.(3)估计体育锻炼时间为3小时的学生有18002060⨯=600(人). 【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)30%;(2)82.5,笔试,笔试成绩大于中位数82.5分,面试成绩小于中位数84分;(3)92,乙同学不能被录用,理由见解析.【分析】(1)用不低于88分的人数除以总人数即可得;(2)根据中位数的概念可得m 的值,再结合中位数的意义可判断笔试成绩与面试成绩的排名情况;(3)先结合笔试成绩的中位数及88分的个数、最高分可判断出D 组分数的分布情况,再由乙同学不是最高分即可得答案,利用加权平均数的概念求解可得.【详解】(1)这批大学生中笔试成绩不低于88分的人数所占百分比为4530+×100%=30%, 故答案为:30%;(2)∵共有3+9+13+5=30个数据,其中第15、16个数据分别为82,83,∴中位数m =82832+=82.5(分), 该同学成绩排名靠前的是,理由如下:∵其笔试成绩大于中位数82.5分,面试成绩小于中位数84分,∴该同学成绩排名靠前的是笔试成绩,故答案为:82.5,笔试,笔试成绩大于中位数82.5分,面试成绩小于中位数84分. (3)∵笔试成绩的众数为92分,结合C 组中88分的有3个,最高分为97分, ∴D 组的5个数据中4个数92分,1个97分,∴乙同学笔试成绩不是最高分,∴乙同学的笔试成绩为92分, 乙同学的最终得分为923882805325⨯+⨯+⨯++=85.2(分), ∵85.2<86,∴乙同学不能被录用.【点睛】本题主要考查频数分布直方图,解题的关键是根据频数分布直方图得出解题所需数据及众数、中位数的概念.23.120(0120)y x x =-+<<,图象见解析.【分析】先根据三角形的内角和定理可得y 关于x 的函数关系式,再根据0,0x y >>可得自变量x 的取值范围,然后利用描点法画出函数图象即可得.【详解】由三角形的内角和定理得:180A B C ∠+∠+∠=度,60A ∠=度,B x ∠=度,C y ∠=度,60180x y ∴++=,解得120y x =-+,又00x y >⎧⎨>⎩, 01200x x >⎧∴⎨-+>⎩, 解得0120x <<,列表如下: x40 60 y80 60【点睛】本题考查了三角形的内角和定理、画一次函数的图象,熟练掌握函数图象的画法是解题关键.24.见解析.【分析】首先证明四边形ABDE 是平行四边形,即可得AB=DE ,等量代换可得CD=DE ,根据直角三角形斜边中线的性质定理可得DF =CD =DE ,进而可得AB=DF ,再说明线段AB 和DF 不平行即可求证结论.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB CD =.∴AB ∥DE ;又∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB DE =.∴CD DE =.∵EF BC ⊥,∴DF =CD =DE .∴AB DF =.∵CD 、FD 交于点D ,∴线段AB 与线段FD 不平行.∴四边形ABFD 是等腰梯形.【点睛】本题考查平行四边形的判定及其性质、梯形的判定,直角三角形的斜边中线的性质定理,解题的关键是掌握两腰相等的梯形是等腰梯形.25.21(1)a +;12【分析】先进行分式的减法,化简后,代入求值即可.【详解】解: 211(1)a a a -++, 221(1)(1)a a a a +=-++, 21(1)a =+,当1a =时,原式12==. 【点睛】本题考查了分式的化简求值,熟练按照分式减法进行化简,代入后准确计算是解题关键. 26.5【分析】过点C作CE⊥AB于点E,连接AC,根据题意直接得出AE,EC的长,再利用勾股定理得出AC的长,进而求出答案.【详解】如图所示:过点C作CE⊥AB于点E,连接AC,由题意可得:EC=BD=1.2m,AE=AB−BE=AB−DC=1.3−0.8=0.5m,∴AC=2222+=+=m,1.20.5 1.3CE AE∴1.3÷0.2=6.5s,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键.。

浙教版初中数学八年级下册期末测试卷(标准难度)(含答案解析)

浙教版初中数学八年级下册期末测试卷(标准难度)(含答案解析)

浙教版初中数学八年级下册期末测试卷(标准难度)(含答案解析)考试范围:全册; &nbsp;考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.把式子m √−1中根号外的m 移到根号内的是( )mA.−√mB.√−mC.−√−mD.−√m 22.下列计算中,正确的是( )A.(2√5+√2)(√5−√2)=2(√5)2−(√2)2=10−2=8B.(√7−√3)2=7−3=4C.(2√2−3√3)(2√2+3√3)=(2√2)−(3√3)=8−27=−19D.(√7+√3)×√10=√10×√10=103.若关于x 的一元二次方程x 2−2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )22A. B.C. D.4.已知a ,b 是方程x 2+2x −5=0的两个实数根,则a 2−ab +3a +b 的值为( )A.2B.3C.−2D.85.方差是刻画数据波动程度的量.对于一组数据x 1,x 2,x 3,⋯,x n ,可用如下算式计算方差:其中“5”是这组数据的( )s 2=n[(x 1−5)2+(x 2−5)2+(x 3−5)2+⋯+(x n −5)2],1A.最小值B.平均数C.中位数D.众数6.颠球是练习足球球感最基本的招式之一.某校足球队10名球员在一次训练中的颠球测试成绩(以“次”为单位计)为:52,50,46,54,50,56,47,52,53,50.则以下数据中计算错误的是( )A.平均数为51B.方差为8.4C.中位数为53D.众数为507.如图,在ABCD 中,AB =6,BC =4,BE 平分∠ABC ,交CD 于点E ,则DE 的长度是( )A.23 B.2C.25 D.38.有长度分别为6cm ,8cm ,10cm 的铁丝三根,取其中一根作为边,另外两根作为对角线.下列取法中,能搭成一个平行四边形的是( )A.取10cm 长的铁丝为边C.取6cm 长的铁丝为边B.取8cm 长的铁丝为边D.任意取一根铁丝为边均可9.如图,点O 为矩形ABCD 的对称中心,点E 从点A 出发沿AB 向点B 运动,移动到点B 停止,延长EO 交CD 于点F ,则四边形AECF 形状的变化依次为( )A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形10.如图,在正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,CE =CF.若∠BEC =80∘,则∠EFD 的度数为( )A.20∘B.25∘C.35∘D.40∘11.为了建设生态城市,某工厂在一段时间内限产并投入资金进行治污改造,如图描述的是月利润y(万元)关于月份x 之间的变化关系,治污改造完成前是反比例函数图象的一部分,治污改造完成后是一次函数图象的一部分.下列说法错误的是( )A.5月份该厂的月利润最低B.治污改造完成后,每月利润比前一个月增加30万元C.治污改造前后,共有6个月的月利润不超过120万元D.治污改造完成后的第8个月,该厂月利润达到300万元q ,r(p <q <r)时,Q ,当x =p ,对应的函数值分别为P ,12.设反比例函数y =a (a ≠0),xR ,若pqr <0,则必有( )2A.Q >R B.R >P C.P >Q D.P >R第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.已知|2021−a |+√a −2022=a ,则a −20212=_________14.给出一种运算:对于函数y =x n ,规定y′=nx n−1.例如:若函数y =x 4,则有y′=4x 3.已知函数y =x 3,则方程y′=12的解是.15.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填“甲”或“乙”).甲乙学历经验工作态度98 76 5716.如图,A,B两点的坐标分别为(5,0),(1,3),C是平面直角坐标系内一点.若以O,A,B,C四点为顶点的四边形是菱形,则点C的坐标为.三、解答题(本大题共9小题,共72.0分。

浙教版数学八年级下册数学期末考试数学试卷(解析卷)

浙教版数学八年级下册数学期末考试数学试卷(解析卷)

浙教版八年级下册期末考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.=解:A.、没有意义,此选项错误;B.=2a(a>0),此选项错误;C.==5,此选项错误;D.=,此选项正确;故选:D.2.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数 4 5 6 7 8 人数 3 6 5 4 2 每天加工零件数的中位数和众数为()A.6,5 B.6,6 C.5,5 D.5,6解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.3.如图,在平面直角坐标系中,一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,与函数y=(x>0)的图象交于点C.若点A为线段BC的中点,则k的值为()A.1 B.C.2 D.3解:∵一次函数y=kx﹣2的图象分别与x轴、y轴交于A、B两点,∴A(,0),B(0,﹣2).设C(x,),∵点A为线段BC的中点,∴,解得.故选:C.4.下列关于x的方程中一定没有实数解的是()A.x2﹣x﹣1=0 B.4x2﹣4x+2=0 C.x2=﹣x D.x2﹣mx﹣2=0.解:A.x2﹣x﹣1=0中△=(﹣1)2﹣4×1×(﹣1)=5>0,有两个不相等的实数根;B.4x2﹣4x+2=0中△=(﹣4)2﹣4×4×2=﹣16<0,没有实数根;C.x2=﹣x即x2+x=0中△=12﹣4×1×0=1>0,有两个不相等的实数根;D.x2﹣mx﹣2=0中△=(﹣m)2﹣4×1×(﹣2)=m2+8>0,有两个不相等的实数根;故选:B.5.下列说法不正确的是()A.平行四边形对边平行B.两组对边平行的四边形是平行四边形C.平行四边形对角相等D.两组邻角互补的四边形是平行四边形解:平行四边形对边平行,两组对边平行的四边形是平行四边形,平行四边形对角相等,都是平行四边形的基本性质,所以A、B、C都正确,而对于D选项来说,等腰梯形也满足此条件,但它不是平行四边形,所以D选项错误.故选:D.6.某新建火车站站前广场绿化工程中有一块长为20米,宽为12米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为112米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是()A.2米B.米C.2米或米D.3米解:设人行通道的宽度是x米,则两块绿地可合成长为(20﹣3x)米、宽为(12﹣2x)米的矩形,根据题意得:(20﹣3x)(12﹣2x)=112,整理得:x1=2,x2=,∵当x=时,20﹣3x=﹣12,∴x2=舍去.故选:A.7.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.8.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S=1,则k的值为()△AOBA.1 B.﹣1 C.2 D.﹣2解:由于点A在反比例函数y=的图象上,则S△AOB=|k|=1,k=±2;又由于函数的图象在第二象限,故k<0,则k=﹣2.故选:D.9.若M=2(x﹣3)(x﹣5),N=(x﹣2)(x﹣14),则M与N的关系为()A.M>NB.M<NC.M=ND.M与N的大小由x的取值而定解:∵M=2(x﹣3)(x﹣5),N=(x﹣2)(x﹣14),∴M﹣N=2(x﹣3)(x﹣5)﹣(x﹣2)(x﹣14)=2(x2﹣8x+15)﹣(x2﹣16x+28)=2x2﹣16x+30﹣x2+16x﹣28=x2+2>0,则M>N.故选:A.10.如图,在△ABC中,点D、E分别是AB、AC的中点,∠ACB的平分线交DE于点F,若BC=6,DF =1,则AC的长为()A.2 B.3 C.4 D.5解:∵D、E分别是AB、AC的中点,BC=6,∴DE=BC=3,∵DF=1,∴EF=DE﹣DF=3﹣1=2,∵DE∥BC,∴∠EFC=∠FCB,∵CF平分∠ACB,∴∠ACF=∠BCF,∴∠EFC=∠ECF,∴CE=EF=2,∴AC=2EC=4,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.使得代数式有意义的x的取值范围是x>3 .解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.12.一组数据2,x,1,3,5,4,若这组数据的中位数是3,则这组数据的方差是.解:∵按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,∴x=3,∴这组数据的平均数是(1+2+3+3+4+5)÷6=3,∴这组数据的方差是:[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,故答案为:.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10 .解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.14.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为x(x﹣1)=21 .解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.15.如图一次函数的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数的图象于Q,,则Q点的坐标为(2,).解:∵点A是次函数的图象与x轴的交点,∴A(4,0),∵PC是△AOB的中位线,∴点C是线段OA的中点,即C(2,0),∵PC∥y轴,∴QP⊥x轴,∴点Q的横坐标为2,设其纵坐标为y,则OC•y=,即×2y=,解得:y=,∴Q(2,).故答案为:(2,).16.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC =60°,则四边形ABCD的面积等于18cm2.解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,作AE⊥BC于E,AF⊥CD于F,∵∠ABC=60°,∴∠ADF=60°,∵纸条等宽,∴AE=AF,∵∠AEB=∠AFD,∠ABC=∠ADF=60°∴△ABE≌△ADF,∴AB=AD,∵AD=BC∴AB=BC,∴该四边形是菱形,∴BE=3cm,AE=3cm.∴四边形ABCD 的面积=6×3=18cm 2,故答案为:18.三.解答题(共8小题,满分66分) 17.(6分)计算 (1)02)2019()21(9π--+-(2)解方程:x 2+3x ﹣4=0(公式法) 解:(1)原式=3+4﹣1=6; (2)x 2+3x ﹣4=0, ∵△=32+16=25, ∴x ==,∴x 1=4,x 2=﹣1.18.(6分)学校准备从甲乙两位选手中选择一位参加汉字听写大赛,学校对两位选手的表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们的各项成绩(百分制)如表: 选手 表达能力 阅读理解 综合素质 汉字听写 甲 85 78 85 73 乙73808283如果表达能力、阅读理解、综合素质和汉字听写成绩按照2:1:3:4的比确定,请分别计算两名选手的平均成绩,从他们的成绩看,应选派谁? 解:=85×0.2+78×0.1+85×0.3+73×0.4=79.5=73×0.2+80×0.1+82×0.3+83×0.4=80.4 从他们的成绩看,应选派乙.19.(8分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10;(1)求证:四边形ABCD 是平行四边形. (2)求四边形ABCD 的面积.(1)证明∵∠DBC=90°,BE=3,BC=4,∴BC===5,又∵AE=AC﹣CE,且AC=10∴AE=10﹣5=5∴AE=EC,又DE=EB∴四边形ABCD是平行四边形(2)解:S平行四边形ABCD=BC•BD=4×6=24.20.(8分)学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长a=5m,宽b=4m(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?解:(1)长方形土地的面积为:5×4=100≈244.95平方米;(2)∵长方形土地每平方米的造价为180元,∴180×244.9=44082元.答:该长方形土地所需资金为44082元.21.(8分)已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC 于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=10,BF=24,CE=7,求四边形ABCD的面积.(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.22.(10分)如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A开始沿射线AC向点C以2cm/s的速度移动,与此同时,点Q从点C开始沿边CB向点B以1cm/s的速度移动.如果P、Q分别从A、C同时出发,运动的时间为ts,当点Q运动到点B时,两点停止运动.(1)当点P在线段AC上运动时,P、C两点之间的距离(6﹣2t)cm.(用含t的代数式表示)(2)在运动的过程中,是否存在某一时刻,使得△PQC的面积是△ABC面积的.若存在,求t 的值;若不存在,说明理由.解:(1)∵△ABC中,∠C=90°,AB=10cm,BC=8cm,∴Rt△ABC中,AC=6cm,又∵点P从点A开始沿射线AC向点C以2cm/s的速度移动,∴AP=2t,∴当点P在线段AC上运动时,P、C两点之间的距离(6﹣2t)cm;故答案为:(6﹣2t);(2)△ABC的面积为S△ABC=×6×8=24,①当0<t<3时,PC=6﹣2t,QC=t,∴S△PCQ=PC×QC=t(6﹣2t),∴t(6﹣2t)=4,即t2﹣3t+4=0,∵△=b2﹣4ac=﹣7<0,∴该一元二次方程无实数根,∴该范围下不存在;②当3<t≤8时,PC=2t﹣6,QC=t,∴S△PCQ=PC×QC=t(2t﹣6),∴t(2t﹣6)=4,即t2﹣3t﹣4=0,解得t=4或﹣1(舍去),综上所述,存在,当t=4时,△PQC的面积是△ABC面积的.23.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=(x >0)的图象交于A(1,m)、B(n,1)两点.(1)求直线AB的解析式及△OAB面积;(2)根据图象写出当y1<y2时,x的取值范围;(3)若点P在x轴上,求PA+PB的最小值.解:(1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2=,可得m=3,n=3,∴A(1,3)、B(3,1),把A(1,3)、B(3,1)代入一次函数y1=kx+b,可得,解得,∴直线AB的解析式为y=﹣x+4.∴M(0,4),N(4,0).∴S△OAB=S△MON﹣S△AOM﹣S△BON=×4×4﹣×4×1﹣×4×1=××=4.(2)从图象看出0<x<1或x>3时,正比例函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是:0<x<1或x>3.(3)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,过C作x轴的平行线,过B作y轴的平行线,交于点D,则Rt△BCD中,BD=4,CD=2,BC===2∴PA+PB的最小值为2.24.(10分)以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。

浙教版八年级(下)期末数学试卷(附答案)

浙教版八年级(下)期末数学试卷(附答案)

浙教版数学八年级下册期末测试试卷一、细心选一选(本题有10小题,每小题3分,共30分)1.(3分)二次根式在实数范围内有意义,则x应满足的条件是()A.x≥1B.x>1C.x>﹣1D.x≥﹣12.(3分)若一个多边形的内角和为360°,则这个多边形的边数是()A.3B.4C.5D.63.(3分)下列选项中,计算正确的是()A.+=B.÷=2C.5﹣5=D.3=14.(3分)下列各点中,在函数的图象上的点是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)5.(3分)小红连续6次掷骰子得到的点数分别是5、4、4、2、1、6.则这组数据的众数是()A.5B.4C.2D.66.(3分)下列四个手机应用图标中,属于中心对称图形的是()A.B.C.D.7.(3分)下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=2,b=1C.a=﹣3,b=2D.a=﹣2,b=38.(3分)用配方法将方程x2+4x﹣4=0化成(x+m)2=n的形式,则m,n的值是()A.﹣2,0B.2,0C.﹣2,8D.2,89.(3分)欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax =b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是()A.AC B.AD C.AB D.BC10.(3分)如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是()A.13B.C.60D.120二、精心填一填(本题有6小题,每小题3分,共18分)11.(3分)化简:=.12.(3分)写出一个二次项系数为1,解为1与﹣3的一元二次方程:.13.(3分)已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是.14.(3分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为.15.(3分)如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为.16.(3分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是.三、解答题(共4小题,满分27分)17.(7分)解下列方程:(1)x2﹣3x=0.(2)(x﹣3)(x﹣1)=8.18.(6分)在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上且AE=CF,证明:DE =BF.19.(6分)如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形.20.(8分)某校要从小红、小明和小亮三名同学中挑选一名同学参加数学素养大赛,在最近的四次专题测试中,他们三人的成绩如下表所示:学生集合证明PISA问题应用题动点问题专题小红70758085小明80807276小亮75759065(1)请算出小红的平均分为多少?(2)该校根据四次专题考试成绩的重要程度不同而赋予每个专题成绩一个权重,权重比依次为x:1:2:1,最后得出三人的成绩(加权平均数),若从高分到低分排序为小亮、小明、小红,求正整数x的值.四、耐心做一做(本题有3小题,共25分)21.(8分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.(1)若每盆增加x株,平均每株盈利y元,写出y关于x的函数表达式;(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?22.(7分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.(1)若OA=8,求k的值;(2)若CB=BD,求点C的坐标.23.(10分)如图,等腰△ABC中,已知AC=BC=2√10,AB=4,作∠ACB的外角平分线CF,点E从点B沿着射线BA以每秒2个单位的速度运动,过点E作BC的平行线交CF于点F.(1)求证:四边形BCFE是平行四边形;(2)当点E是边AB的中点时,连接AF,试判断四边形AECF的形状,并说明理由;(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为邻边所构造的平行四边形恰好是菱形?不存在的,试说明理由;存在的,请直接写出t的值.答:t=.参考答案与试题解析一、细心选一选(本题有10小题,每小题3分,共30分)1.A 2.B 3.B 4.C 5.B 6.A 7.C 8.D 9.B 10.D.二、精心填一填(本题有6小题,每小题3分,共18分)11.312.x2+2x﹣3=013.314.815.16.三、解答题(共4小题,满分27分)17.解:(1)x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3;(2)(x﹣3)(x﹣1)=8,整理得:x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0,x+1=0,x1=5,x2=﹣1.18.证明:∵连接BE,DF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BEDF是平行四边形,∴DE=BF.19.解:(1)如图1中,平行四边形ABCD即为所求(答案不唯一).(2)如图2中平行四边形ABCD即为所求(大不唯一).20.解:(1)(70+75+80+85)÷4=77.5分,答:小红的平均分为77.5分.(2)由题意得:>>解得:2<x<4,∵x为正整数的值.∴x=3,答:正整数x的值为3.四、耐心做一做(本题有3小题,共25分)21.解:(1)由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,则:y=(x+3)(3﹣0.5x)=﹣0.5x2+1.5x+9;(2)由题意得:(x+3)(3﹣0.5x)=10.化简,整理得x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株.22.解:(1)过C作CM⊥AB,CN⊥y轴,垂足为M、N,∵CA=CB=5,AB=6,∴AM=MB=3=CN,在Rt△ACD中,CD==4,∴AN=4,ON=OA﹣AN=8﹣4=4,∴C(3,4)代入y=得:k=12,答:k的值为12.(2)∵BC=BD=5,∴AD=6﹣5=1,设OA=a,则ON=a﹣4,C(3,a﹣4),D(1,a)∵点C、D在反比例函数的图象上,∴3(a﹣4)=1×a,解得:a=6,∴C(3,2)答:点C的坐标为(3,2)23.(1)证明:如图1,∵AC=BC,∴∠B=∠BAC,∵CF平分∠ACH,∴∠ACF=∠FCH,∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,∴∠FCH=∠B,∴BE∥CF,∵EF∥BC,∴四边形BCFE是平行四边形;(2)解:四边形AECF是矩形,理由是:如图2,∵E是AB的中点,AC=BC,∴CE⊥AB,∴∠AEC=90°,由(1)知:四边形BCFE是平行四边形,∴CF=BE=AE,∵AE∥CF,∴四边形AECF是矩形;(3)解:分三种情况:①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,∴BE=BC,即2t=2,t=;②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图4,过C作CD⊥AB于D,∵AC=BC,AB=4,∴BD=2,由勾股定理得:CD===6,∵EG2=EC2,即(2t)2=62+(2t﹣2)2,t=5;③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图5,CA=AF=BC,此时E 与A重合,∴t=2,综上,t的值为秒或5秒或2秒;故答案为:秒或5秒或2秒.。

浙教版八年级(下)期末考试数学试题(含答案)

浙教版八年级(下)期末考试数学试题(含答案)

浙教版八年级(下)期末考试数学试题(含答案)浙教版八年级数学第二学期期末统考试题及答案考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2.答题前,必须在答题卡填写校名、班级、姓名和考号。

3.答案都必须做在答题卡标定的位置上,答错位置无效。

一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项。

注意可以用多种不同的方法来选取正确答案。

1.下列图形中,不是中心对称图形的是()。

A.正方形B.矩形C.菱形D.梯形2.二次根式$\frac{1}{2x-1}$中字母$x$的取值范围是()。

A.$x\geq2$B.$x>2$C.$x\geq\frac{1}{1}$D.$x>\frac{2}{2 }$3.用配方法将方程$x^2+6x-11=0$变形,正确的是()。

A.$(x-3)^2=20$B.$(x-3)^2=2$ C.$(x+3)^2=2$ D.$(x+3)^2=20$4.能证明命题“$x$是实数,则$(x-3)>0$”是假命题的反例是()。

A.$x=1$B.$x=2$C.$x=3$D.$x=4$5.一组数据:$x$,2,3,6,8的平均数是6,则这组数据的极差是()。

A.9B.7C.6D.16.在下列命题中,真命题是()。

A.一组对边平行的四边形是平行四边形。

B.有一个角是直角的四边形是矩形。

C.有一组邻边相等的平行四边形是菱形。

D.对角线互相垂直平分的四边形是正方形。

7.已知一元二次方程$x^2-8x+12=0$的两个解恰好是等腰$\triangle ABC$的底边长和腰长,则$\triangle ABC$的周长为()。

A.14B.10C.11D.1或108.用反证法证明命题:“若整系数一元二次方程$ax^2+bx+c=0(a\neq0)$有有理根,那么$a$,$b$,$c$中至少有一个是偶数”时,下列假设正确的是( )。

浙江省2022-2023学年八年级下学期期末数学试卷及参考答案

浙江省2022-2023学年八年级下学期期末数学试卷及参考答案

浙江省2022-2023学年八年级下学期期末数学试卷及参考答案学校:___________姓名:___________班级:___________考号:___________一、单选题1 ) A .3B .-3C .81D .-812.下列四个图形中,是中心对称图形的是( )A .B .C .D .3.用配方法解一元二次方程x 2-4x -7=0,可变形为( ) A .(x -2)2=7B .(x -2)2=11C .(x+2)2=7D .(x+2)2=114.一个多边形的内角和是外角和的2倍,则这个多边形是( ) A .六边形B .五边形C .四边形D .七边形5.某校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班平均得分( )A .9B .6.67C .9.1D .6.746.如图,点B 在反比例函数6y x=(0x >)的图象上,点C 在反比例函数2y x =-(0x >)的图象上,且//BC y 轴,AC BC ⊥,垂足为点C ,交y 轴于点A ,则ABC 的面积为 ( )A .3B .4C .5D .67.用反证法证明命题“在三角形中,至少有一个内角大于或等于60°”时,先假设( ) A .每个内角都小于60° B .每个内角都大于60° C .没有一个内角小于等于60° D .每个内角都等于60°8.如图,函数1y x =+与函数22y x=的图象相交于点()()1,,2,M m N n -.若12y y >,则x 的取值范围是( )A .2x <-或01x <<B .2x <-或1x >C .20x -<<或01x <<D .20x -<<或1x >9.某厂家2020年1~5月份的口罩产量统计如图所示.设2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .368(1﹣x )2=180B .180(1+x )2=461C .461(1﹣x )2=180D .368(1+x )2=44210.将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=E,F分别是边AC,BC上的动点,当四边形DEBF为平行四边形时,该四边形的面积是()A.B.C.814D.81二、填空题11m的取值范围是___.12.某果农随机从甲、乙、丙三个品种的批把树中各选5棵,每棵产量的平均数x(单位:千克)及方差(单位:千克2)如表所示,他准备从这三个品种中选出一种产量既高又稳定的批把树进行种植,则应选的品种是__.13.若y3,则x+y的值为____.14.已知x为实数,且满足222(3)2(3)30x x x x+++-=,那么23x x+=__________ 15.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=kx(x>0)的图象经过A,B两点,若菱形ABCD的面积为k的值为_____.16.在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图l所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是__;(2)A′B+D′B的最小值为__.三、解答题17.计算:(1(218.解方程:(1)3x2-4x+1=0.(2)(y-3)2=(2y-1)(y-3).19.已知关于x的方程:x2﹣(6+m)x+9+3m=0.(1)求证:无论m为何值,方程都有实数根.(2)若该方程的两个实数根恰为斜边为5的直角三角形的两直角边长,求m的值.20.6月4日,我市教育局发布了“珍爱生命,预防溺水”-致全市市民的倡议书.某校为了解全校学生对防溺水措施的熟悉情况,随机抽查了部分学生进行了《防溺水学习手册》10题问答测试,并把答对题数制成统计表和扇形统计图(如图所示).请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值.(2)求本次抽查的学生答对题数的中位数和众数.(3)若该校共有800名学生,根据抽查结果,估计该校学生答对10题的人数.(4)根据该校学生《防溺水学习手册》测试数据分析,请你对该校提出一条建议.21.如图,平行四边形ABCD的对角线交于点O,以OD,CD为邻边作平行四边形DOEC,OE交BC于点F,连结BE.(1)求证:四边形BECO是平行四边形.(2)若OB△AC,OF=4,求平行四边形ABCD的周长.22.有两张长12cm,宽10cm的矩形纸板,分别按照图1与图2两种方式裁去若干小正方形和小矩形,剩余部分(阴影部分)恰好做成无盖和有盖的长方体纸盒各一个.(1)做成有盖长方体纸盒的裁剪方式是(填“图1”或“图2”).(2)已知图1中裁去的小正方形边长为1.5cm,求做成的纸盒的底面积.(3)已知按图2裁剪方式做成纸盒的底面积为24cm2,则剪去的小正方形的边长为多少cm?23.如图,在矩形ABCD中,已知点A(2,1),且AB=4,AD=3,把矩形ABCD的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=kx(x>0)的图象为曲线L.(1)若曲线L过AB的中点.△求k的值.△求该曲线L下方(包括边界)的靓点坐标.(2)若分布在曲线L上方与下方的靓点个数相同,求k的取值范围.24.如图,直线y+11分别交x轴y轴于A,B两点,点D以每秒2个单位的速度从点A出发沿射线AD方向运动,同时点E以每秒1个单位的速度从点B出发沿边BA方向运动,当E到达点A时,点D,E同时停止运动,设运动时间为t秒.(1)求点A的坐标及线段AB的长.(2)如图1,当t=2时,求△AED的度数.(3)如图2,以DE为对角线作正方形DFEG,在运动过程中,是否存在正方形DFEG 的一边恰好落在△ADB的一边上?若存在,请求出所有符合条件的t值;若不存在,请说明理由.参考答案1.A2.B3.B4.A5.C6.B7.A8.D9.B10.C11.m≥1 212.甲13.7 214.315.1216.平行四边形17.(1)11;(218.(1)x1=1,x2=13;(2)y1=-2,y2=3.19.(1)见解析;(2)m的值是1.20.(1)被抽查的学生有100人,m的中是24;(2)本次抽查的学生答对题数的中位数和众数分别是8题和7题;(3)估计该校学生答对10题的有96人;(4)见解析21.(1)见解析;(2)32.22.(1)图2;(2)63cm2;(3)小正方形的边长为2cm.23.(1)△k=4;△(4,1),(3,1),(2,1),(2,2);(2)8<k<9.24.(1)A(0),AB=22;(2)△AED=30°;(3)存在,t或t=44-t或t答案第1页,共1页。

【浙教版】初二数学下期末试题附答案

【浙教版】初二数学下期末试题附答案

一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃ B .6.5℃ C .7℃ D .7.5℃ 2.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .03.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数x (厘米) 375 350 375 350 方差2s12.5 13.5 2.45.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是( ) A .甲B .乙C .丙D .丁4.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,305.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .6.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <7.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x < 8.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( ) A .1433m <<B .17m -<<C .703m <<D .1123m <<9.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .410.下列根式与3是同类二次根式的是( ) A .15B . 18C .13D . 1.511.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+12.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A .3.6B .2.4C .4D .3.2二、填空题13.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.14.某班45名同学的数学平均分是80分,其中女生有20名,她们的数学平均分为82分,那么这个班男同学的数学平均分为______分.15.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.16.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.17.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.18.如图,90MON ∠=︒,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当点B 在边ON 上移动时,点A 随之在边OM 上移动,2AB =,1BC =,运动过程中,点D 到点O 的最大距离为______.19.若1122a -=,则1114a a ⎛⎫⎪⎝⎭-+的值为_________. 20.如图,已知圆柱的底面周长为10cm ,高AB 为12cm ,BC 是底面的直径,一只蚂蚁沿着圆柱侧面爬行觅食从点C 爬到点A ,则蚂蚁爬行的最短路线为________cm .三、解答题21.为了解某校九年级学生的理化实验操作情况,随机抽查了 40 名同学实验操作的得分(满分10分).根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是 ;(2)求这个样本的容量和样本数据的平均数;(3)若该校九年级共有 400 名学生,估计该校理化实验操作得满分的学生有多少人. 22.为了了解某校初三学生每周平均阅读时间的情况,随机抽查了该校初三m 名学生,对其每周平均课外阅读时间进行统计,绘制了条形统计图和扇形统计图.根据以上信息回答下列问题: (1)求m 的值;(2)求扇形统计图中阅读时间为3小时的扇形圆心角的度数; (3)求出这组数据的平均数.(精确到0.1)23.如图,已知直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2). (1)求直线AB 的函数表达式.(2)已知直线AB 上一点C 在第一象限,且点C 的坐标为(a ,2),求a 的值及△BOC 的面积.24.用总长度为4a 的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面积较大.小东同学的看法对不对?请你用数学知识进行说理.25.计算:()211824226⨯--.26.已知△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90° (1)若D 为△ACB 内部一点,如图,AE =BD 吗?说明理由 (2)若D 为AB 边上一点,AD =5,BD =12,求DE 的长【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于10天天气,根据数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【详解】解:10天的气温排序为:4,4,5,5,6,7,7,7,7,8,中位数为:6+72=6.5,故选B.【点睛】本题属于基础题,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2.A解析:A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,故选A.3.C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.4.C解析:C 【解析】 【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数. 【详解】解:30元的人数为20人,最多,则众数为30, 中间两个数分别为30和30,则中位数是30, 故选:C . 【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.5.A解析:A 【分析】根据正比例函数的增减性,确定k 的正负,再依据一次函数图象与系数的关系判断即可. 【详解】解:∵函数(0)y kx k =≠中y 随x 的增大而减小, ∴k<0, ∴3k<0,k 2>0,一次函数23y kx k =+的图象经过第二、一、四象限, 故选:A . 【点睛】本题考查了正比例函数图象和一次函数图象的性质,解题关键是判断一次函数的系数的符号,并根据系数的正负判断图象所经过的象限.6.A解析:A 【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可. 【详解】∵当x=-3时,kx+b=2, 且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-, 故选A.本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.7.D解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确; D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误, 故选:D . 【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.8.D解析:D 【分析】 先求出直线1y x 42=-与x 轴、y 轴分别相交于A ,B 坐标,由点()1,2M m m +-在AOB 内部,列出不等式组0184201(1)22m m m m ⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③分别解每一个不等式,在数轴上表示解集,得出不等式组的解集即可. 【详解】解:直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点, 当x=0,y=-4,B(0,-4),当y=0时,=-1x 402,x=8,A (8,0), 点()1,2M m m +-在AOB 内部,满足不等式组0184201(1)22m m m m ⎧⎪<+<⎪-<-<⎨⎪⎪+<-⎩①②③,解不等式①得:-17m <<, 解不等式②得:26m <<, 解不等式③得:113m <, 在数轴上表示不等式①、②、③的解集,不等式组的解集为:1123m <<. 故选择:D . 【点睛】本题考查一次函数,不等式组的解法,掌握一次函数,不等式组的解法,关键是根据点M 在△AOB 内列出不等式组是解题关键.9.B解析:B 【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论. 【详解】 解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO , 又∵BD AC ⊥, ∴//EF BD∴EF 为△ABD 的中位线,∴122EF BD == 故选:B . 【点睛】本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力.10.C解析:C 【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案. 【详解】解:A不是同类二次根式,故本选项不符合题意;B、=C=D、=故选:C . 【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.11.D解析:D 【分析】只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可. 【详解】 解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.12.A解析:A【分析】连接BF ,交AE 于点H ,由折叠可知,BF ⊥AE ,BE=EF ,根据勾股定理可求得AE 的值,运用等面积法可求得BH ,进而可得到BF 的长度;结合题意可知FE=BE=EC ,可证得90BFC ∠=︒,在Rt BFC △中利用勾股定理求出CF 的长度即可.【详解】解:连接BF ,交AE 于点H ,如图:∵AEF 是由AEB △沿AE 折叠得到的,∴BF ⊥AE ,BE=EF ,∵BC=6,点E 为BC 的中点,∴BE=EF=CE=3, ∵在Rt ABE △中,222AB BE AE +=,即:2224+3=AE ,∴AE=5,∵1122ABE S AB BE AE BH =⨯=⨯, 解得:125BH =, ∴245BF =, ∵BE=EF=CE ,∴=EBF EFB ∠∠,=EFC ECF ∠∠,∴90BFC EFB EFC ∠=∠+∠=︒,∴BCF △是直角三角形,∴222+=BF CF BC ,即:22224()65CF +=, ∴解得:18=3.65CF =. 故选:A .【点睛】本题考查矩形性质和折叠问题,灵活运用等面积法和勾股定理是解题关键. 二、填空题13.82【分析】设第三次考试成绩为x 根据三次考试的平均成绩不少于80分列不等式求出x 的取值范围即可得答案【详解】设第三次考试成绩为x ∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少得82分 解析:82【分析】设第三次考试成绩为x ,根据三次考试的平均成绩不少于80分列不等式,求出x 的取值范围即可得答案.【详解】设第三次考试成绩为x ,∵三次考试的平均成绩不少于80分, ∴7286803x ++≥, 解得:82x ≥, ∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.14.784【解析】【分析】设男生的平均分为x 分根据男生总分和女生总分的和是全体学生的总分结合全班45名同学平均分是80分其中女生有20名她们的数学平均分为82分我们可以构造出一个关于x 的方程解方程即可求解析:78.4【解析】【分析】设男生的平均分为x 分,根据男生总分和女生总分的和是全体学生的总分,结合全班45名同学,平均分是80分,其中女生有20名,她们的数学平均分为82分,我们可以构造出一个关于x 的方程,解方程即可求出x 的值.【详解】设男生的平均分为x 分,则2582204580x +⨯=⨯,解得78.4x =.即这个班男同学的数学平均分为78.4分.故答案为78.4.【点睛】本题考查了加权平均数,其中根据男生总分和女生总分的和是全体学生的总分,结合已知条件,构造关于x 的方程是解题的关键.15.【详解】由题意设则将时和时代入得:解得:故与之间的函数关系为故答案为:【点睛】本题考查正比例函数和反比例函数定义的应用熟记函数定义是解题关键 解析:32y x x =-【详解】 由题意设12,b y ax y x ==则b y ax x=+ 将1x =时,1y =-和3x =时,5y =代入得:1353a b b a +=-⎧⎪⎨+=⎪⎩解得:23a b =⎧⎨=-⎩故y 与x 之间的函数关系为32y x x =-. 故答案为:32y x x=-. 【点睛】本题考查正比例函数和反比例函数定义的应用,熟记函数定义是解题关键.16.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160 800153÷=;25分~35分的速度:(800500)1030-÷=;45分~50分的速度:5005100÷=;∵160301003<<,∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.17.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB再以E为圆心EA为半径作圆与正方形的交点即为满足条件的P点分类讨论即可【详解】如图所示在正方形ABCD中∠AEB=105°∵点P在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB,再以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,分类讨论即可.【详解】如图所示,在正方形ABCD中,∠AEB=105°,∵点P在正方形的边上,且AE=EP,∴可以E为圆心,EA为半径作圆,与正方形的交点即为满足条件的P点,①当P在AD上时,如图,AE=EP1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP1=60°,△EAP1为等边三角形,∴此时∠AEP1=60°;②当P在CD上时,如图,AE=EP2,AE=EP3,由①可知∠DEP1=180°-105°-60°=15°,∴此时∠DEP1=∠DEP2=15°,∠CEP2=∠AEP1=60°,∴此时∠AEP2=60°+15°+15°=90°;∠AEP3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.18.【分析】取AB的中点E则OE=1DE=利用三角形原理可确定最大值【详解】如图取AB的中点E连接OEDE∵OE是直角三角形ABO斜边上的中线AB=2∴OE=1在直角三角形DAE中根据勾股定理得DE==解析:21+【分析】取AB的中点E,则OE=1,DE=2,利用三角形原理可确定最大值.【详解】如图,取AB的中点E,连接OE,DE,∵OE是直角三角形ABO斜边上的中线,AB=2,∴OE=1,在直角三角形DAE中,根据勾股定理,得DE=22+=2,DA AE∴当O,D,E三点共线时,DO最大,且最大值为2+1,故应该填21+.【点睛】本题考查了线段的最值,构造斜边上的中线,灵活运用三角形原理是解题的关键.19.【分析】先将变形为再把代入求值即可【详解】解:的值为故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式及其变形是解答此题的关键解析:2【分析】先将1114a a ⎛⎫ ⎪⎝⎭-+变形为2112a ⎛⎫- ⎪⎝⎭,再把112a -= 【详解】解:112a -= 1114a a ⎛⎫ ⎪⎝⎭∴-+ 2114a a =-+ 2112a ⎛=⎫ ⎪⎝⎭- 2= 2=,1114a a ⎛⎫ ⎪⎝⎭∴-+的值为2. 故答案为:2.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式及其变形是解答此题的关键. 20.13【分析】把圆柱沿母线AB 剪开后展开点C 展开后的对应点为C′利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′然后利用勾股定理计算出AC′即可【详解】把圆柱沿母线AB 剪开后展开点C 展开后的对应点解析:13【分析】把圆柱沿母线AB 剪开后展开,点C 展开后的对应点为C′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′,然后利用勾股定理计算出AC′即可.【详解】把圆柱沿母线AB 剪开后展开,点C 展开后的对应点为C′,则蚂蚁爬行的最短路径为AC′,如图,∵AB=12,BC′=5,在Rt△ABC′,AC′2251213+=∴蚂蚁爬行的最短路程为13cm.故答案是:13【点睛】本题考查了平面展开−最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.三、解答题21.(1)36°;(2)40,8.3;(3)70人【分析】(Ⅰ)用1减去7、8、9、10分所占的扇形统计图中的百分比得①所占的百分比,再用360°乘以①所占的百分算即可得解;(2)根据题目信息知样本容量为40,根据平均数的定义求解样本数据的平均数;(3)用九年级总人数乘以满分的人数所占的份数计算即可得解.【详解】解::(Ⅰ)360°×(1-15%-27.5%-30%-17.5%)=360°×10%=36°,故答案为:36°;(2)根据题干信息,“随机抽查了40名同学实验操作的得分”,可知样本容量为40,解样本数据的平均数:46671181297108.340x⨯+⨯+⨯+⨯+⨯==,∴样本数据的平均数为:8.3,故:样本容量为40,样本数据的平均数为8.3;(3)40017.5%70⨯=人,答:估计该校理化实验操作得满分的学生有70人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)m=60;(2)120°;(3)2.8小时.【分析】(1)根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m 的值;(2)先求出课外阅读3小时的人数,再用360°乘以阅读时间为3小时的人数所占的百分比即可;(3)利用平均数的计算公式进行计算即可.【详解】(1)∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为9013604=, ∵课外阅读时间为2小时的有15人,∴m =15÷14=60; (2)课外阅读3小时的人数有:60﹣10﹣15﹣10﹣5=20(人), 所以阅读时间为3小时的扇形圆心角的度数是2060×360°=120°; (3)这组数据的平均数为:1011522031045560⨯+⨯+⨯+⨯+⨯≈2.8小时. 【点睛】此题考查条形统计图与扇形统计图的结合计算,能正确求样本的总数,求部分的数量及圆心角度数,掌握加权平均数的公式是解题的关键.23.(1)y =2x ﹣2;(2)a =2,S △BOC =2.【分析】(1)设函数的关系式,把点A 、B 的坐标代入,即可求出待定系数,确定函数关系式, (2)把C (a ,2)代入y=2x-2,即可求得a 的值,然后根据三角形面积公式△BOC 的面积.【详解】解:(1)设一次函数的关系式为y=kx+b ,把A (1,0),B (0,-2)代入得, 02kx b b +=⎧⎨=-⎩,解得,22k b =⎧⎨=-⎩∴直线AB 的表达式为y=2x-2;;(2)∵点C (a ,2)在直线y =2x ﹣2上,∴2=2a ﹣2,∴a =2,∴C (2,2),∴S △BOC =1222⨯⨯=2. 【点睛】本题考查待定系数法求一次函数的关系式,一次函数图象上点的坐标特征以及三角形的面积,熟练掌握待定系数法是解题的关键.24.对,见解析【分析】设长方形的长为x ,则宽为4222a x a x -=-,由长方形面积公式求得(2)S x a x =-长方形,2S a =正方形,由两者左侧22(2)()0S S a x a x a x -=--=->正方形长方形,即S S >正方形长方形即可.【详解】解:小东同学的看法对,理由如下,设长方形的长为x ,则宽为4222a x a x -=-, 2x a x ≠-,x a ∴≠,长方形面积为:(2)S x a x =-长方形,若铁丝围成正方形,则其边长为a ,2S a =正方形,∴()()2222220S S a x a x a ax x a x -=--=-+=->正方形长方形, 即S S >正方形长方形,所以正方形的面积较大.小东同学认为围成一个正方形的面积较大.小东同学的看法对.【点睛】本题考查周长一定,围成的长方形中,正方形面积最大问题,掌握求长方形与正方形面积公式,作差后利用公式因式分解是解题关键.252.【分析】利用二次根式的乘除法则,再化为最简式并合并同类二次根式即可.【详解】原式2=,2=,2=,2=.【点睛】本题考查二次根式的混合运算.掌握二次根式的乘除法则是解答本题的关键. 26.(1)AE =BD ,见解析;(2)13【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD;(2)由全等三角形的性质可得BD=AE=12,∠CAE=∠CBD=45°,由勾股定理可求DE的长.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴CD=CE,AC=BC,∠ECD=∠ACB=90°,∴∠ACE=∠BCD在△ACE和△BCD中∵EC=CD,∠ACE=∠BCD,AC=BC,∴△ACE≌△BCD(SAS)∴AE=BD;(2)如图,由(1)可知:△ACE≌△BCD,∴BD=AE=12,∠CAE=∠CBD=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,即52+122=ED2∴DE=13;【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证明△ACE≌△BCD是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)期末数学试卷一、选择题(每小题2分,共20分)1.要使二次根式有意义,则下列选择中字母x可以取的是()A.0 B.1 C.2 D.32.下列各图形都由若干个小正方形构成,其中是中心对称图形的是()A.B.C.D.3.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+154.下列二次根式是最简二次根式的是()A. B.C. D.5.下列一元二次方程有两个相等的实数根的是()A.x2+1=0 B.x2+4x﹣4=0 C.x2+x+=0 D.x2﹣x+=06.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm7.如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、AB、CD的中点,E、H分别是PM、PN的中点,则正方形EFGH的面积是()A.2 B.1 C.D.8.用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C9.如图,点E、F是四边形ABCD的边AD、BC上的点,连接EF,将四边形ABFE 沿直线EF折叠,若点A,点B都落在四边形ABCD内部,记∠C+∠D=a,则下列结论一定正确的是()A.∠1+∠2=180°﹣αB.∠1+∠2=360°﹣αC.∠1+∠2=360°﹣2αD.∠1+∠2=540°﹣2α10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共30分)11.﹣()2=.12.已知点A(﹣2,m)是反比例函数y=的图象上的一点,则m的值为.13.若整数x满足|x|≤2,则使为整数的x的值是.14.若关于x的一元二次方程x2+mx+m2﹣4=0有一根为0,则m=.15.为积极响应嵊州市创建国家卫生城市的号召,某校利用双休日组织45名学生上街捡垃圾,他们捡到的垃圾重量如表所示:这些学生捡到的垃圾重量的众数是 千克.16.如图是由射线AB ,BC,CD,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5= .17.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,则原正方形空地的边长为 m .18.如图,点P 是正比例函数y=x 与反比例函数y=在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 .19.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE +FC ,则边BC 的长为 .20.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题21.计算:(1)﹣()2(2)÷﹣.22.解方程:(1)x2=2x(2)x2﹣4x+1=0.23.在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分.方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分.方案3:所有评委给分的中位数.方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?24.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE.(2)若∠DBC=30°,AB=4,求△BED的周长.25.阅读材料:新定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.例如:max{﹣3,x}=2请你阅读以上材料,完成下列各题.(1)max{,3}=.(2)已知y=和y=k2x+b在同一平面直角坐标系中的图象如图所示,当max{,k2x+b}=时,结合图象,直接写出x的取值范围.(3)当max={﹣3x﹣1,﹣2x+3}=x2+x+3时,求x的值.26.已知:如图,直线y=﹣x+3与x轴、y轴交于点A,点B,点O关于直线AB的对称点为点O′,且点O′恰好在反比例函数y=的图象上.(1)求点A与B的坐标;(2)求k的值;(3)若y轴正半轴有点P,过点P作x轴的平行线,且与反比例函数y=的图时,象交于点Q,设A、P、Q、O′四个点所围成的四边形的面积为S.若S=S△OAB求点P的坐标.四、附加题(共20分)27.在平行四边形ABCD中,BC=8,F为AD的中点,点E是边AB上一点,连结CE恰好有CE⊥AB.(1)当∠B=60°时,求CE的长.(2)当AB=4时,求∠AEF:∠EAF:∠EFD.28.如图,在平面直角坐标系中A(﹣2,0)、B(0,1),AB=AC,且∠BAC=90°.(1)求C点坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.要使二次根式有意义,则下列选择中字母x可以取的是()A.0 B.1 C.2 D.3【考点】二次根式有意义的条件.【分析】直接利用二次根式的定义得出x的取值范围,进而得出答案.【解答】解:∵二次根式有意义,∴x﹣3≥0,解得:x≥3,故字母x可以取的是:3.故选:D.2.下列各图形都由若干个小正方形构成,其中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行解答.【解答】解:A、C、D都不是中心对称图形,只有C是中心对称图形.故选:C.3.已知5个数a1、a2、a3、a4、a5的平均数是a,则数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数为()A.a B.a+3 C. a D.a+15【考点】算术平均数.【分析】根据数据a1+1,a2+2,a3+3,a4+4,a5+5比数据a1、a2、a3、a4、a5的和多15,可得数据a1+1,a2+2,a3+3,a4+4,a5+5的平均数比a多3,据此求解即可.【解答】解:a+[(a1+1+a2+2+a3+3+a4+4+a5+5)﹣(a1+a2+a3+a4+a5)]÷5=a+[1+2+3+4+5]÷5=a+15÷5=a+3故选:B.4.下列二次根式是最简二次根式的是()A. B.C. D.【考点】最简二次根式.【分析】根据最简二次根式满足的两个条件进行判断即可.【解答】解:=4,被开方数中含能开得尽方的因数,不是最简二次根式;,被开方数含分母,不是最简二次根式;是最简二次根式;被开方数含分母,不是最简二次根式,故选:C.5.下列一元二次方程有两个相等的实数根的是()A.x2+1=0 B.x2+4x﹣4=0 C.x2+x+=0 D.x2﹣x+=0【考点】根的判别式.【分析】直接利用根的判别式分别分析各选项,即可求得答案.【解答】解:A、∵a=1,b=0,c=1,∴△=b2﹣4ac=02﹣4×1×1=﹣4<0,∴此一元二次方程无实数根;B、∵a=1,b=4,c=﹣4,∴△=b2﹣4ac=42﹣4×1×(﹣4)=32>0,∴此一元二次方程有两个不相等的实数根;C、∵a=1,b=1,c=,∴△=b2﹣4ac=12﹣4×1×=0,∴此一元二次方程有两个相等的实数根;D、∵a=1,b=﹣1,c=,∴△=b2﹣4ac=(﹣1)2﹣4×1×=﹣1<0,∴此一元二次方程无实数根.故选C.6.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.7.如图是一个近似“囧”的图形,若已知四边形ABCD是一个边长为2的正方形,点P,M,N分别是边AD、AB、CD的中点,E、H分别是PM、PN的中点,则正方形EFGH的面积是()A.2 B.1 C.D.【考点】正方形的性质;三角形中位线定理.【分析】连接MN,由三角形中位线定理可求得EH=MN,则可求得正方形EFGH 的面积.【解答】解:连接MN,∵M、N分别是AB、CD的中点,∴MN=AD=2,∵E、H分别是PM、PN的中点,∴EH=MN=1,=EH2=1,∴S正方形EFGH故选B.8.用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A.AB=AC B.AB≠AC C.∠B=∠C D.∠B≠∠C【考点】反证法.【分析】根据反证法的一般步骤解答即可.【解答】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”,第一步应是假设∠B=∠C,故选:C.9.如图,点E、F是四边形ABCD的边AD、BC上的点,连接EF,将四边形ABFE 沿直线EF折叠,若点A,点B都落在四边形ABCD内部,记∠C+∠D=a,则下列结论一定正确的是()A.∠1+∠2=180°﹣αB.∠1+∠2=360°﹣αC.∠1+∠2=360°﹣2αD.∠1+∠2=540°﹣2α【考点】翻折变换(折叠问题).【分析】根据四边形内角和为360°可得∠A+∠B=360°﹣a,进而可得∴∠AEF+∠BFE=a,再根据折叠可得:∠3+∠4=a,再由平角定义可得答案.【解答】解:∵∠A+∠B+∠C+∠D=360°,∠C+∠D=a,∴∠A+∠B=360°﹣a,∵∠A+∠B+∠AEF+∠AFE=360°,∴∠AEF+∠BFE=360°﹣(∠A+∠B)=a,由折叠可得:∠3+∠4=a,∴∠1+∠2=360°﹣2a,故选:C.10.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB ≌△FDA≌△BEC,求得A、B的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a 的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题(每小题3分,共30分)11.﹣()2=﹣3.【考点】实数的运算.【分析】直接根据平方的定义求解即可.【解答】解:∵()2=3,∴﹣()2=﹣3.12.已知点A(﹣2,m)是反比例函数y=的图象上的一点,则m的值为﹣4.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(﹣2,m)代入反比例函数y=,求出m的值即可.【解答】解:∵点A(﹣2,m)是反比例函数y=的图象上的一点,∴m==﹣4.故答案为:﹣4.13.若整数x满足|x|≤2,则使为整数的x的值是﹣2.【考点】实数.【分析】先求出x的取值范围,再根据算术平方根的定义解答.【解答】解:∵|x|≤2,∴﹣2≤x≤2,∴当x=﹣2时,==3,故使为整数的x的值是﹣2.故答案为:﹣2.14.若关于x的一元二次方程x2+mx+m2﹣4=0有一根为0,则m=±2.【考点】一元二次方程的解.【分析】根据关于x的一元二次方程x2+mx+m2﹣4=0有一根为0,将x=0代入即可求得m的值,本题得以解决.【解答】解:∵关于x的一元二次方程x2+mx+m2﹣4=0有一根为0,∴m2﹣4=0,解得,m=±2,故答案为:±2.15.为积极响应嵊州市创建国家卫生城市的号召,某校利用双休日组织45名学生上街捡垃圾,他们捡到的垃圾重量如表所示:这些学生捡到的垃圾重量的众数是6千克.【考点】众数.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图表可知,6千克出现了15次,次数最多,所以众数为6千克.故答案为6.16.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=++++=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.17.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长为7m.【考点】一元二次方程的应用.【分析】本题可设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长.【解答】解:设原正方形的边长为xm,依题意有(x﹣3)(x﹣2)=20,解得:x1=7,x2=﹣2(不合题意,舍去)即:原正方形的边长7m.故答案是:7.18.如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA ⊥OP交x轴于点A,△POA的面积为2,则k的值是2.【考点】反比例函数系数k的几何意义;等腰直角三角形.【分析】过P作PB⊥OA于B,根据一次函数的性质得到∠POA=45°,则△POA=S△POA=×2=1,然后根据反比例为等腰直角三角形,所以OB=AB,于是S△POB函数y=(k≠0)系数k的几何意义即可得到k的值.【解答】解:过P作PB⊥OA于B,如图,∵正比例函数的解析式为y=x,∴∠POA=45°,∵PA⊥OP,∴△POA为等腰直角三角形,∴OB=AB,=S△POA=×2=1,∴S△POB∴k=1,∴k=2.故答案为2.19.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为3.【考点】矩形的性质;菱形的性质.【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以可求出BE,AE,进而可求出BC的长.【解答】解:∵四边形ABCD是矩形,四边形BEDF是菱形,∴∠A=90°,AD=BC,DE=BF,OE=OF,EF⊥BD,∠EBO=FBO,∴AE=FC.又EF=AE+FC,∴EF=2AE=2CF,又EF=2OE=2OF,AE=OE,∴△ABE≌OBE,∴∠ABE=∠OBE,∴∠ABE=∠EBD=∠DBC=30°,∴BE=,∴BF=BE=2,∴CF=AE=,∴BC=BF+CF=3,故答案为:3.20.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题21.计算:(1)﹣()2(2)÷﹣.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算顺序,求出每个算式的值各是多少即可.【解答】解:(1)﹣()2=4﹣5=﹣1(2)÷﹣=2﹣=22.解方程:(1)x2=2x(2)x2﹣4x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)移项然后提公因式可以解答此方程;(2)根据配方法可以解答此方程.【解答】解:(1)x2=2xx2﹣2x=0x(x﹣2)=0∴x=0或x﹣2=0,解得,x1=0,x2=2;(2)x2﹣4x+1=0x2﹣4x=﹣1(x﹣2)2=3x﹣2=,∴.23.在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分.方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分.方案3:所有评委给分的中位数.方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?【考点】众数;加权平均数;中位数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8和8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.24.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE.(2)若∠DBC=30°,AB=4,求△BED的周长.【考点】矩形的性质.【分析】(1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后求出DE,即可得出结果.【解答】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,∵∠DBC=30°,BD=BE,∴CD=BD=×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8,∴△BED的周长=BD+BE+DE=8+8+8=24..25.阅读材料:新定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.例如:max{﹣3,x}=2请你阅读以上材料,完成下列各题.(1)max{,3}=3.(2)已知y=和y=k2x+b在同一平面直角坐标系中的图象如图所示,当max{,k2x+b}=时,结合图象,直接写出x的取值范围.(3)当max={﹣3x﹣1,﹣2x+3}=x2+x+3时,求x的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据新定义运算的法则进行计算即可;(2)根据max{,k2x+b}=,得出≥k2x+b,再结合图象进行判断即可;(3)分两种情况进行讨论:①﹣3x﹣1≥﹣2x+3时;②﹣3x﹣1<﹣2x+3时,分别求得x的值,并检验是否符合题意即可.【解答】解:(1)∵<3,∴max{,3}=3,故答案为:3;(2)∵max{,k2x+b}=,∴≥k2x+b,∴从图象可知,x的取值范围为﹣3≤x<0或x≥2;(3)①当﹣3x﹣1≥﹣2x+3时,解得x≤﹣4,此时,﹣3x﹣1=x2+x+3,解得x1=x2=﹣2(不合题意)②当﹣3x﹣1<﹣2x+3时,解得x>﹣4,此时,﹣2x+3=x2+x+3,解得x1=0,x2=﹣3(符合题意)综上所述,x的值为0或﹣3.26.已知:如图,直线y=﹣x+3与x轴、y轴交于点A,点B,点O关于直线AB的对称点为点O′,且点O′恰好在反比例函数y=的图象上.(1)求点A与B的坐标;(2)求k的值;(3)若y轴正半轴有点P,过点P作x轴的平行线,且与反比例函数y=的图时,象交于点Q,设A、P、Q、O′四个点所围成的四边形的面积为S.若S=S△OAB求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)分别令直线y=﹣x+3中的x=0,y=0即可求得A、B两点的坐标;(2)根据对称点的性质即可;(3)分两种情况:①当点P在点B的上方时,即:m>3,延长AO′于PQ相交于点M,设P(0,m),由面积关系可求;②当点P在点B的上方时,即:0<m <3,方法同上.【解答】解:(1)A(3,0),B(0,3)(2)如图①图①∵点O 与O′关于直线AB 对称,∴由题意可得四边形OAO′B 为正方形,∴O′(3,3)则 k=3×3=9即:k 的值为9(3)设P (0,m ),显然,点P 与点B 不重合①当点P 在点B 的上方时,即:m >3,延长AO′于PQ 相交于点M ,如图②所示:则:Q (,m ),M (3,m )∴PM=3,AM=m ,MO′=m ﹣3,QM=3﹣,∴S=S △PMA ﹣S △QMO′==×=∴﹣(3﹣m )(m +3)=, 解之得:m=6②当点P 在点B 的上方时,即:0<m <3,如图③所示:显然,PQ⊥AO′,∴S=•PQ•AO′=×3×=,∴m=2∴P(0,2)或(0,6)四、附加题(共20分)27.在平行四边形ABCD中,BC=8,F为AD的中点,点E是边AB上一点,连结CE恰好有CE⊥AB.(1)当∠B=60°时,求CE的长.(2)当AB=4时,求∠AEF:∠EAF:∠EFD.【考点】平行四边形的性质.【分析】(1)由已知条件得出∠BEC=90°,∠BCE=30°,得出BE=BC=4,由勾股定理求出CE即可;(2)取BC的中点G,连接FG交CE于O,证出四边形ABGF和四边形CDFG都是菱形,且O为CE的中点,得出∠AEF=∠EFG,∠DFC=∠CFG,OF为CE的中垂线,得出∠EFG=∠CFG,因此∠EFD=3∠AEF,得出∠FAE=∠EFD﹣∠AEF=2∠AEF,即可得出结论.【解答】解:(1)∵CE⊥AB,∴∠BEC=90°,∵∠B=60°,∴∠BCE=30°,∴BE=BC=4,∴CE===4;(2)取BC的中点G,连接FG交CE于O,连接CF,如图所示:∵BC=8,AB=4,四边形ABCD是平行四边形,∴四边形ABGF和四边形CDFG都是菱形,且O为CE的中点,∴∠AEF=∠EFG,∠DFC=∠CFG,OF为CE的中垂线,∴EF=CF,∴∠EFG=∠CFG,∴∠EFD=3∠AEF,∴∠FAE=∠EFD﹣∠AEF=2∠AEF,∴∠AEF:∠EAF:∠EFD=1:2:3.28.如图,在平面直角坐标系中A(﹣2,0)、B(0,1),AB=AC,且∠BAC=90°.(1)求C点坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)作CN⊥x轴于点N,通过角的计算得出∠NAC=∠OBA,结合相等的直角以及AC=AB即可证出Rt△CNA≌Rt△AOB(AAS),进而得出ON和CN的长度,此题得解;(2)设反比例函数解析式为y=,C′(c,2),根据平移的性质结合点B、C的坐标即可得出点B′的坐标,再根据反比例函数图象上点的坐标特征即可得出关于k、c的二元一次方程组,解方程组即可得出k、c值,由此即可得出反比例函数解析式与点B′、C′坐标,根据点B′、C′坐标利用待定系数法即可求出直线B′C′的解析式;(3)假设存在,根据直线B′C′的解析式即可求出点G的坐标,设点M(t,0),根据平行四边形的性质即可得出点P的坐标,再利用反比例函数图象上点的坐标特征即可得出关于t的分式方程,解方程即可得出t值,将t值代入点M、P的坐标即可得出结论.【解答】解:(1)作CN⊥x轴于点N,如图1所示.∵∠BAC=90°,∴∠NAC+∠OAB=90°,∵∠OAB+∠OBA=90°,∴∠NAC=∠OBA.在Rt△CNA和Rt△AOB中,,∴Rt△CNA≌Rt△AOB(AAS),∴AN=BO=1,NO=NA+AO=3,CN=AO=2,∴C点坐标为(﹣3,2).(2)设反比例函数解析式为y=,∵C(﹣3,2),B(0,1),∴设C′(c,2),则B′(c+3,1).∵点B′和C′在反比例函数图象上,∴,解得:,∴反比例函数解析式为y=.∵c=3,∴C′(3,2),B′(6,1),设直线B′C′的解析式为y=mx+n,则,解得:,∴直线B′C′的解析式位y=﹣x+3.(3)假设存在,令y=﹣x+3中x=0,则y=3,∴G(0,3),设点M(t,0),则P(0+3﹣t,3+2﹣0),即(3﹣t,5),∵点P在反比例函数y=的图象上,∴5=,解得:t=,经检验t=是方程5=的解,∴M(,0),P(,5).故存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,点M的坐标为(,0),点P的坐标为(,5).第31 页共31 页。

相关文档
最新文档