八年级下学期数学期末测试题

合集下载

2024—2025学年最新人教新版八年级下学期数学期末考试试卷(含答题卡和参考答案)

2024—2025学年最新人教新版八年级下学期数学期末考试试卷(含答题卡和参考答案)

2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、已知△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2=b2﹣c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=3:4:52、下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等且互相平分的四边形是菱形C.对角线垂直且互相平分的四边形是矩形D.对角线垂直、相等且互相平分的四边形是正方形3、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 4、直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣15、一次函数y=﹣2x﹣4的图象上有两点A(﹣3,y1)、B(1,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定6、演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数7、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺8、一次函数y=ax+b的自变量和函数值的部分对应值如下表所示:x05y35则关于x的不等式ax+b>x的解集是()A.x<5B.x>5C.x<0D.x>09、如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN若MN=2,则OM=()A.3B.4C.5D.610、如图,矩形ABCD被直线OE分成面积相等的两部分,BC=2CD,CD=11DE,若线段OB,BC的长是正整数,则矩形ABCD面积的最小值是()A.B.81C.D.121二、填空题(每小题3分,满分18分)11、要使式子有意义,则a的取值范围是.12、已知一次函数y=(2﹣m)x﹣3m+9的图象经过第一、二、四象限,则m的取值范围为.13、如图,将矩形纸片ABCD沿AE折叠,顶点B落在CD边上点F处,若AB =3,BC=2,则DF=.14、如图是“赵爽弦图”,其中△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,AH=6,那么EF等于.15、已知四边形ABCD是菱形,周长是40,如果AC=16,那么菱形ABCD的面积为.16、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:()﹣1+|2﹣|﹣(﹣1)2024.18、主题演讲比赛,比赛的成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,校团委随机抽取部分学生的比赛成绩,并将结果绘制成如图所示的两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)被抽取的学生共有人,B等级的学生有人;(2)本次演讲成绩的中位数落在等级,扇形图中D组对应扇形的圆心角为度;(3)若该校共有100名同学参加了此次演讲比赛,请估计比赛成绩不低于90分的学生共有多少名?19、如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AB和AC于点D,E,并且BE平分∠ABC.(1)求∠A的度数;(2)若CE=1,求AB的长.20、如图,在Rt△ABC中,∠ABC=90°,AB<BC,D是AC的中点,过点D作DE⊥AC交BC于点E,延长ED至F,使DF=DE,连接AE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BE=1,EC=4,求EF的长.21、如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.22、如图,O为坐标原点,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,半径为2的⊙O经过A、B两点.(1)写出A、B两点的坐标;(2)求此一次函数的解析式;(3)求圆心O到直线AB的距离.23、当排球和足球纳入中招考试体育加试后,这两种球的销量逐步提升.某体育用品商店看准时机,第一次购入30个排球和70个足球共花费4550元.第二次购入60个排球和40个足球共花费4100元.商店将排球和足球以50元/个和70元/个的价格出售,前两次进货很快销售一空.(1)求每个排球和足球的进价.(2)该商店准备第三次购入排球和足球共200个,根据市场需求,排球的购买个数不少于40个且不超过100个.购买时生产厂家对排球进行了优惠,规定购买排球不超过50个时保持原价,超过50个时超过的部分打八折.设第三次进货销售完的总利润为W元(利润=销售额﹣成本),其中购进排球x个.①求W与x的函数关系式.②商店为了回馈顾客,开展促销活动.将其中的m(m为正整数)个排球按30元/个,3m个足球按50元/个进行销售.若第三次进货销售完后,获得的最大利润不能低于3000元,求m的最大值.24、如图,在平面直角坐标系xOy中,四边形OABC的顶点是O(0,0),A(2,2),B(4,2),C(4,0),点P是x轴上一动点,连接OB,AP.(1)求直线OB的解析式;(2)若∠P AO=∠AOB,求点P的坐标;(3)当点P在线段OC(点P不与点C重合)上运动时,设P A与线段OB 相交于点D,以DA,DC为边作平行四边形ADCE,连接BE,求BE的最小值.25、如图,点E是正方形ABCD边BC上一动点(不与B、C重合),CM是外角∠DCN的平分线,点F在射线CM上.(1)当∠CEF=∠BAE时,判断AE与EF是否垂直,并证明结论;(2)若在点E运动过程中,线段CF与BE始终满足关系式CF=BE.①连接AF,证明的值为常量;②设AF与CD的交点为G,△CEG的周长为a,求正方形ABCD的面积.八年级下学期数学期末考试(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟11、a≥﹣112、2<m<3 13、14、2 15、96 16、4.8三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、2+218、(1)20,5 (2)C,72 (3)4019、(1)30°;(2).20、(1)证明略(2)21、(1)m=AB的表达式为y=﹣x+3 (2)22、(1)A(2,0),B(0,2);(2)y=﹣x+2;(3)圆心O到直线AB的距离为.23、(1)排球的进价为每个35元,足球的进价为每个50元;(2)①W=;②m的最大值为10.24、(1)直线OB的解析式为.(2)点P的坐标为(1,0)或(﹣2,0).(3)BE的最小值为.25、(1)AE⊥EF;(2)①=;②.。

新人教版八年级数学下册期末测试卷及答案【完整版】

新人教版八年级数学下册期末测试卷及答案【完整版】

新人教版八年级数学下册期末测试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.如图,a,b,c在数轴上的位置如图所示,化简22()a a c c b-++-的结果是()A.2c﹣b B.﹣b C.b D.﹣2a﹣b6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3x 2-x 的取值范围是________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。

数学八年级下册数学期末试卷测试卷附答案

数学八年级下册数学期末试卷测试卷附答案

数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。

aB。

1/a^2C。

-a^2D。

a^2+12.下列数组中,能构成直角三角形的是()A。

1.1.3B。

2.3.5C。

0.2.0.3.0.5D。

1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。

若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。

AE//CFB。

AE=CFC。

BE=DFD。

∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。

全班40名学生成绩的众数是人数。

成绩(分)5.1370.6080.7390.100A。

75B。

70C。

80D。

905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。

AB//DCB。

AC=BDC。

AC⊥BDD。

AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。

则四边形AOED的周长为()A。

9+√23B。

9+√3C。

7+√23D。

87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。

24B。

28C。

20D。

128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。

进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。

根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。

1个B。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

八年级数学下期末试题

八年级数学下期末试题

八年级数学下期末试题八年级数学下期末试题八年级(下)期末考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.下列各图能表示y是x的函数是()2.下列各式中正确的是()A.=±4 B.=2 C.=3 D.=3.在端午节到来之前,学校食堂推举了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以打算最终向哪家店选购,下面的统计量中最值得关注的是()A.方差B.平均数C.众数D.中位数4.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.其次象限C.第三象限D.第四象限5.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.4,5,6 B.2,3,4 C.11,12,13 D.8,15,176.将一次函数y=﹣2x+4的图象平移得到图象的函数关系式为y=﹣2x,则移动方法为()A.向上平移4个单位B.向下平移4个单位C.向左平移4个单位D.向右平移4个单位7.如图,在ABCD中,对角线AC、BD交于点O,点E 是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm8.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=﹣x+3 B.y=-2x+3 C.y=2x﹣3 D.y=-x-39.如图,在数轴上点A表示的数为a,则a的值为()A.B.﹣C.1﹣D.﹣1+10.如图象中所反映的过程是:张强从家跑步去体育场,在那里熬炼了一阵后,又去早餐店吃早餐,然后漫步走回家,其中x表示时间,y表示张强离家的距离.依据图象供应的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场熬炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时11.如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:∠AE=BF;∠∠DEF是等边三角形;∠∠BEF是等腰三角形;∠∠ADE=∠BEF,其中结论正确的个数是()A.3 B.4 C.1 D.212.将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k≠0)与正方形ABCD有公共点,则k的取值范围是()A.k≤2 B.C.D.二、填空题:共8小题,每小题3分,共24分.13.假如有意义,那么字母x的取值范围是.14.点(﹣1,y1)、(2,y2)是直线y=2x+1上的两点,则y1 y2(填“>”或“=”或“<”).15.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.16.已知两条线段的长分别为cm、cm,那么能与它们组成直角三角形的第三条线段的长是.17.如图,∠ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则∠EBF的.周长为cm.18.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:∠k<0;∠a>0;∠关于x的方程kx﹣x=a﹣b的解是x=3;∠当x<3时,y1<y2中.则正确的序号有.19.如图,矩形纸片ABCD中,AD=1,将纸片折叠,使顶点A与CD边上的点E重合,折痕FG分别与AD、AB交于点F、G,若DE= ,则EF的长为.20.在∠ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为.三、解答题:共6小题,共60分.21.(8分)计算:(2 ﹣)2+(+2 )÷ .22.(8分)某校为了备战2022体育中考,因此在八年级抽取了50名女同学进行“一分钟仰卧起坐”测试,测试的状况绘制成表格如下:个数16 22 25 28 29 30 35 37 40 42 45 46人数2 1 7 18 1 9 5 2 1 1 1 2(1)通过计算算得出这50名女同学进行“一分钟仰卧起坐”的平均数是,请写出这50名女同学进行“一分钟仰卧起坐”的众数和中位数,它们分别是、.(2)学校依据测试数据规定八年级女同学“一分钟仰卧起坐”的合格标准为28次,已知该校五年级有女生250名,试估量该校五年级女生“一分钟仰卧起坐”的合格人数是多少?23.(10分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,且点A(0,2),点C (1,0),BE∠x轴于点E,一次函数y=x+b经过点B,交y轴于点D.(1)求证:∠AOC∠∠CEB;(2)求∠ABD的面积.24.(12分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:∠ABM∠∠DCM;(2)推断四边形MENF是什么特别四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).25.(10分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?26.(12分)如图∠,∠ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在AD、AF上,此时BD=CF,BD∠CF成立.(1)如图∠,i)当∠ABC绕点A逆时针旋转θ(0°<θ<90°)时,线段BD与线段CF的数量关系是;直线BD与直线CF的位置关系是.ii)请利用图∠证明上述结论.(2)如图∠,当∠ABC绕点A逆时针旋转45°时,延长DB 交CF于点H,若AB= ,AD=3时,求线段FC的长.。

人教版八年级下册数学期末测试卷(必刷题)

人教版八年级下册数学期末测试卷(必刷题)

人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2、如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )A. B. C. D.3、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.4、计算的结果是()A.±3B.3C.﹣3D.5、在矩形ABCD中,E,P,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中正确的是()①存在无数个四边形EFGH是平行四边形.②存在无数个四边形EFGH是矩形.③存在且仅有一个四边形EFGH是菱形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.A.①②B.①②③C.①②④D.①③④6、如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.127、以下列各组数为边长,不能构成直角三角形的是()A. B. C. D.8、如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A.2 ﹣πB.4 ﹣πC.4 ﹣πD.29、某射击运动员在训练中射击了10次,成绩分别是:5,8,6,8,9,7,10,9,8,10。

下列结论不正确的是( )A.中位数是8B.众数是8C.平均数是8D.方差是210、已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.=4,则AB的长为()若OC=2,S四边形OACBA.5B.4C.3D.211、两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为()A. B. C.sinα D.112、若式子有意义,则实数x的取值范围是()A. B. 且 C. D. 且13、下列变形正确的是( )A. B. C.D.14、函数y= 中自变量x的取值范围是()A.x≥3B.x≥﹣3C.x≠3D.x>0且x≠315、下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.17、已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于________ .18、A,B两地之间有一条6000米长的直线跑道,小月和小华分别从A,B两地同时出发匀速跑步,相向而行,第一次相遇后,小月将自己的速度提高25%,并匀速跑步到达B点,到达后原地休息;小华匀速跑步到达A点后,立即调头按原速返回B点(调头时间忽略不计),两人距各自出发点的距离之和记为y (米),跑步时间记为x(分钟),已知y(米)与x(分钟)之间的关系如图所示,则小月到达B点后,再经过________分钟小华回到B点.19、最简二次根式与是同类最简二次根式,则b=________.20、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为________.21、如图,矩形OABC在第一象限,OA,OC分别于x轴,y轴重合,面积为6.矩形与双曲线y=(x>0)交BC于M,交BA于N,连接OB,MN,若2OB=3MN,则k=________22、化简=________23、如图,已知线段,P是AB上一动点,分别以AP,BP为斜边在AB 同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为________.24、如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG 的周长是________.25、如图,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O, 若AB=12,EF=13,H为AB的中点,则DG=________.三、解答题(共5题,共计25分)26、计算(结果用根号表示)(+1)(﹣2)+227、已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF 交于点M.求证:AE=BF28、如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高CD (结果精确到0.1米,参考数据:≈1.41,≈1.73).29、如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.30、已知m=﹣,n=+ ,求代数式m2+mn+n2的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、C6、D7、A8、D9、D10、B11、A12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。

新人教版八年级数学下册期末测试卷及答案【必考题】

新人教版八年级数学下册期末测试卷及答案【必考题】

新人教版八年级数学下册期末测试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.4的平方根是 .4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3=_________度。

八年级下册数学期末测试题四套卷

八年级下册数学期末测试题四套卷

八年级下学期数学期末测试一、选择题(每小题3分,共30分)1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( ) A .2个 B .3个 C .4个 D .5个 2.把0.0000083用科学计算法表示为( )A .8.3×510-B .83×610-C .83×510-D .8.3×610-3.若反比例函数y =4x-的图像经过点(),a a -,则a 的值为( )A .4B .-2C .±2D .±4 4.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是( )A .59,63B .59,61C .59,59D .57,615.如图,在正方形ABCD 内作等边△AED ,则∠EBC 的度数为( ) A .10° B .12.5° C .15° D .20°6.如图,四边形ABCD 中,AB =3,BC =4,CD =4,DA =13,且∠ABC =90°,则四边形ABCD 的面积是( ) A .36 B .84 C .512D .无法确定 7.关于x 的方程21x ax +-=1的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-28.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD , 且A C=12,BD =9,则该梯形的面积是( ) A .108 B .27 C .81 D .549.如图是武汉某公司2009年2~4月份资金投放总额与利润统计示意图,根据图中的信息判断: ①利润最高的是4月份②合计三个月的利润为36.4%③4月份的利润率比2月份的利润率高4. 4个百分点 A .①②③ B .①② C .①③ D .②③10.如图,在梯形ABCD 中,AD ∥BC ,AB =CD =AD ,DE ⊥BC 于点E ,DF ⊥AB 于点F ,则下列结论:①DE =DF ; ②BD ⊥CD ;③ABCD S 梯形=DFBE S 四边形;④∠C =2∠FDA . A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11、计算:()()342a a --⎡⎤--⎢⎥⎣⎦÷11a = ; 12、已知113x y-=,则代数式2323x xy y x xy y +---的值为 13、双曲线xky =过点(-1,3),若A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b2b .14、已知梯形的中位线长10cm ,它被一条对角线分成两段,这两段的差为4cm ,则梯形的两底长分别为 .15、梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B 直线MN 为梯形ABCD 的对称轴,P为MN 上一点,那么PD PC +的最小值 。

数学八年级下学期《期末测试卷》附答案

数学八年级下学期《期末测试卷》附答案

人教版数学八年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3 2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =73.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A .4B .3C .2D .15.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .177.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y 的值随x 的增大而增大,其中正确结论的个数是( ) A .1B .2C .3D .410.如图,点E ,F 是▱A B C D 对角线上两点,在条件①D E =B F ;②∠A D E =∠C B F ;③A F =C E ; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F 是平行四边形,可添加的条件是( )A .①②③B .①②④C .①③④D .②③④11.如图,矩形A B C D 中,A B =1,B C =2,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为.15.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了 件.17.如图,在矩形A B C D 中,B C =20C m ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P 和点Q 的速度分别为3C m /s 和2C m /s ,则最快 s 后,四边形A B PQ 成为矩形.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为 . 三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 成绩人数x部门八年级0 0 1 11 1九年级 1 0 0 7(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 52.1 请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为;(2)可以推断出年级学生的体质健康情况更好一些,理由为.(至少从两个不同的角度说明推断的合理性).22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.23.如图,直线l与x轴交于点A ,与y轴交于点B (0,2).已知点C (﹣1,3)在直线l上,连接OC .(1)求直线l的解析式;(2)P为x轴上一动点,若△A C P的面积是△B OC 的面积的2倍,求点P的坐标.24.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表: x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(1)如图1,在正方形A B C D 中,E是A B 上一点,F是A D 延长线上一点,且D F=B E.求证:C E =C F;(2)如图2,在正方形A B C D 中,E是A B 上一点,G是A D 上一点,如果∠GC E=45°,请你利用(1)的结论证明:GE=B E+GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E是A B上一点,且∠D C E=45°,B E=4,则D E=.②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解析】由题意得,2﹣x≥0且x﹣3≠0,解答x≤2且x≠3,所以,自变量x的取值范围是x≤2.故选:A .2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =7【分析】根据勾股定理的逆定理对各个选项逐一代入计算,看是否符合A 2+B 2=C 2即可.【解析】A 、∵12+22≠32,∴不符合A 2+B 2=C 2.∴不能构成直角三角形.B 、∵A =32,B =42,C =52,∴A =9,B =16.C =25,∵92+162≠252,不符合A 2+B 2=C 2,∴不能构成直角三角形.C 、√22+√32=√52,符合A 2+B 2=C 2,∴能构成直角三角形.D 、52+62≠72,不符合A 2+B 2=C 2,∴不能构成直角三角形.故选:C .3.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人)2566876根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解. 【解析】该班人数为:2+5+6+6+8+7+6=40, 得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:45+452=45,平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425.故错误的为D . 故选:D . 4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个. A .4B .3C .2D .1【分析】根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.【解析】∵四边相等的四边形一定是菱形,∴①正确; ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个.故选:C .5.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .【分析】由直线经过的象限结合四个选项中的图象,即可得出结论. 【解析】∵直线y =kx +B 经过一、二、四象限, ∴k <0,B >0, ∴﹣k >0,∴选项B 中图象符合题意. 故选:B .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .17【分析】根据菱形得出A B =B C ,得出等边三角形A B C ,求出A C 的长,根据正方形的性质得出A F =EF =EC =A C =4,求出即可. 【解析】∵四边形A B C D 是菱形, ∴A B =B C , ∵∠B =60°,∴△A B C 是等边三角形, ∴A C =A B =4,∴正方形A C EF 的周长是A C +C E +EF +A F =4×4=16, 故选:C .7.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.【解析】如图:A B =A C =13C m ,B C =10C m . △A B C 中,A B =A C ,A D ⊥B C ; ∴B D =D C =12B C =5C m ;Rt △A B D 中,A B =13C m ,B D =5C m ; 由勾股定理,得:A D =√AB 2−BD 2=12C m . 故选:A .8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【分析】由题意可知:中间小正方形的边长为:A ﹣B ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:A ﹣B , ∵每一个直角三角形的面积为:12A B =12×8=4, ∴4×12A B +(A ﹣B )2=25, ∴(A ﹣B )2=25﹣16=9, ∴A ﹣B =3, 故选:D .9.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y的值随x的增大而增大,其中正确结论的个数是()A .1B .2C .3D .4【分析】根据一次函数的性质对各小题进行逐一判断即可.【解析】因为函数y=﹣2x+2,所以①当x>1时,y<0,正确;②它的图象经过第二、一、四象限,错误;③它的图象必经过点(﹣2,﹣2),错误;④y的值随x的增大而减小,错误;故选:A .10.如图,点E,F是▱A B C D 对角线上两点,在条件①D E=B F;②∠A D E=∠C B F;③A F=C E; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F是平行四边形,可添加的条件是()A .①②③B .①②④C .①③④D .②③④【分析】若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以.【解析】由平行四边形的判定方法可知:若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以,故选:D .11.如图,矩形A B C D 中,A B =1,B C =2,点P从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解析】由题意知,点P从点B 出发,沿B →C →D 向终点D 匀速运动,则当0<x≤2,s=12 x,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始是直线一部分,最后为水平直线的一部分.故选:C .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)【分析】(方法一)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,结合点C 、D ′的坐标求出直线C D ′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,根据三角形中位线定理即可得出点P为线段C D ′的中点,由此即可得出点P的坐标.【解析】(方法一)作点D 关于x轴的对称点D ′,连接C D ′交x轴于点P,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点, ∴点C (﹣3,2),点D (0,2). ∵点D ′和点D 关于x 轴对称, ∴点D ′的坐标为(0,﹣2). 设直线C D ′的解析式为y =kx +B ,∵直线C D ′过点C (﹣3,2),D ′(0,﹣2), ∴有{2=−3k +b −2=b ,解得:{k =−43b =−2,∴直线C D ′的解析式为y =−43x ﹣2.令y =−43x ﹣2中y =0,则0=−43x ﹣2,解得:x =−32, ∴点P 的坐标为(−32,0). 故选C .(方法二)连接C D ,作点D 关于x 轴的对称点D ′,连接C D ′交x 轴于点P ,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点,∴点C (﹣3,2),点D (0,2),C D ∥x轴,∵点D ′和点D 关于x轴对称,∴点D ′的坐标为(0,﹣2),点O为线段D D ′的中点.又∵OP∥C D ,∴点P为线段C D ′的中点,∴点P的坐标为(−32,0).故选:C .二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为3或﹣2,对应的n值为﹣2或3,该组数据的中位数是3.【分析】利用平均数和众数的定义得出m的值,进而利用平均数的定义求出n的值,从而求得中位数即可.【解析】∵一组数据4,3,2,m,n的众数为3,平均数为2,∴m的值可能为3,∴4+3+2+3+n=2×5,解得n=﹣2.同理m可能是﹣2,n可能是3,所以该组数据排序为:﹣2,2,3,3,4,所以中位数为3,故答案为:3或﹣2,﹣2或3,3.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为y=﹣2x+5.【分析】直接根据”上加下减,左加右减”的原则进行解答.【解析】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)x﹣1=﹣2x+5.故答案为:y=﹣2x+515.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度12米.【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和B C 构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.【解析】设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.故答案为:12米.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了280件.【分析】根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【解析】甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分因此:40×(70÷10)=280件,故答案为:28017.如图,在矩形A B C D 中,B C =20C m,点P和点Q分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P和点Q的速度分别为3C m/s和2C m/s,则最快4s后,四边形A B PQ成为矩形.【分析】根据矩形的性质,可得B C 与A D 的关系,根据矩形的判定定理,可得B P=A Q,构建一元一次方程,可得答案.【解答】解;设最快x秒,四边形A B PQ成为矩形,由B P=A Q得3x=20﹣2x.解得x=4,故答案为:4.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为4或8.【分析】作D E⊥A B 于E,由直角三角形的性质得出D E=12A D =2√3,由勾股定理得出A E=√3D E=6,B E=√BD2−DE2=2,得出A B =A E﹣B E=4,或A B =A E+B E=8,即可得出答案.【解析】作D E⊥A B 于E,如图所示:∵∠A =30°,∴D E=12A D =2√3,∴A E=√3D E=6,B E=√BD2−DE2=√42−(2√3)2=2,∴A B =A E﹣B E=4,或A B =A E+B E=8,∵四边形A B C D 是平行四边形,∴C D =A B =4或8;故答案为:4或8.三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.【分析】原式利用二次根式性质,二次根式除法法则,以及平方差公式计算即可求出值. 【解析】原式=√22−(4﹣3)+√94=√22−1+32=√2+12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.【分析】(1)根据勾股定理作出边长为√5的正方形即可得;(2)连接A C ,根据勾股定理逆定理可得△A B C 是以A C 、B C 为腰的等腰直角三角形,据此可得答案.【解析】(1)如图1所示:(2)如图2,连A C ,则BC=AC=√12+22=√5,AB=√12+32=√10,∵(√5)2+(√5)2=(√10)2,即B C 2+A C 2=A B 2,∴△A B C 为直角三角形,∠A C B =90°,∴∠A B C =∠C A B =45°.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 人数x部门八年级0 0 1 11 7 1九年级 1 0 0 7 10(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 8152.1请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.(至少从两个不同的角度说明推断的合理性).【分析】整理、描述数据:根据八、九年级各的20名学生的成绩即可补全表格;分析数据:根据众数的定义即可得;(1)总人数乘以样本中九年级体质优秀人数占九年级人数的比例即可得;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些.【解析】整理、描述数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 八年级0 0 1 11 7 1九年级 1 0 0 7 10 2分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 81 52.1(1)估计九年级体质健康优秀的学生人数为180×10+220=108人,故答案为:108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.故答案为:九年级;两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.【分析】(1)根据平行四边形的性质得到D F=B E,A B ∥C D ,根据平行四边形的判定定理证明四边形D EB F是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形A GB D 是矩形,根据直角三角形的性质得到ED =EB ,证明结论.【解答】(1)证明:∵四边形A B C D 是平行四边形,∴A B =C D ,A B ∥C D ,∵E、F分别为边A B 、C D 的中点,∴D F=B E,又A B ∥C D ,∴四边形D EB F是平行四边形,∴D E∥B F;(2)∵A G∥D B ,A D ∥C G,∴四边形A GB D 是平行四边形,∵∠G=90°,∴平行四边形A GB D 是矩形,∴∠A D B =90°,又E为边A B 的中点,∴ED =EB ,又四边形D EB F是平行四边形,∴四边形D EB F是菱形.23.如图,直线l 与x 轴交于点A ,与y 轴交于点B (0,2).已知点C (﹣1,3)在直线l 上,连接OC .(1)求直线l 的解析式;(2)P 为x 轴上一动点,若△A C P 的面积是△B OC 的面积的2倍,求点P 的坐标.【分析】(1)利用待定系数法求直线l 的解析式;(2)利用直线l 的解析式确定A 点坐标,再计算出S △A C P =2S △B OC =2,设P (t ,0),根据三角形面积公式得到12•|t ﹣2|×3=4,然后解方程求出即可的P 点坐标. 【解析】(1)设直线l 的解析式y =kx +B ,把点C (﹣1,3),B (0,2)代入解析式得,{b =2−k +b =3, 解得k =﹣1,B =2,∴直线l 的解析式:y =﹣x +2;(2)把 y =0代入y =﹣x +2得﹣x +2=0,解得:x =2,则点A 的坐标为(2,0),∵S △B OC =12×2×1=1,∴S △A C P =2S △B OC =2,设P (t ,0),则A P =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).24.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x /元… 15 20 25 … y /件 … 25 20 15 …已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【分析】(1)根据题意可以设出y 与x 的函数关系式,然后根据表格中的数据,即可求出日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解析】(1)设日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =kx +B , {15k +b =2520k +b =20, 解得,{k =−1b =40, 即日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =﹣x +40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元), 即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(1)如图1,在正方形A B C D 中,E 是A B 上一点,F 是A D 延长线上一点,且D F =B E .求证:C E =C F ;(2)如图2,在正方形A B C D 中,E 是A B 上一点,G 是A D 上一点,如果∠GC E =45°,请你利用(1)的结论证明:GE =B E +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E 是A B 上一点,且∠D C E =45°,B E =4,则D E = 10 .②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.【分析】(1)根据正方形的性质,可直接证明△C B E≌△C D F,从而得出C E=C F;(2)延长A D 至F,使D F=B E,连接C F,根据(1)知∠B C E=∠D C F,即可证明∠EC F=∠B C D =90°,根据∠GC E=45°,得∠GC F=∠GC E=45°,利用全等三角形的判定方法得出△EC G≌△FC G,即GE=GF,即可得出答案GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中利用勾股定理即可求解;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E的垂线,垂足是E,过C 作A G的垂线,垂足是G,B E和GC 相交于点F,B F=6﹣2=4,设GC =x,则C D =GC =x,FC =6﹣x,B C =2+x.在直角△B C F中利用勾股定理求得C D 的长,则三角形的面积即可求解.【解析】(1)证明:如图1,在正方形A B C D 中,∵B C =C D ,∠B =∠C D F,B E=D F,∴△C B E≌△C D F,∴C E=C F;(2)证明:如图2,延长A D 至F,使D F=B E,连接C F,由(1)知△C B E≌△C D F,∴∠B C E=∠D C F.∴∠B C E+∠EC D =∠D C F+∠EC D即∠EC F=∠B C D =90°,又∵∠GC E=45°,∴∠GC F=∠GC E=45°,∵C E=C F,∠GC E=∠GC F,GC =GC ,∴△EC G≌△FC G,∴GE=GF,∴GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形.A E=AB ﹣B E=12﹣4=8,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中,A E2+A D 2=D E2,则82+(12﹣x)2=(4+x)2,解得:x=6.则D E =4+6=10.故答案是:10;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E 的垂线,垂足是E ,过C 作A G 的垂线,垂足是G ,B E 和GC 相交于点F ,则四边形A EFG 是正方形,且边长=A D =6,B E =B D =2,则B F =6﹣2=4,设GC =x ,则C D =GC =x ,FC =6﹣x ,B C =2+x .在直角△B C F 中,B C 2=B F 2+FC 2,则(2+x )2=42+x 2,解得:x =3.则B C =2+3=5,则△A B C 的面积是:12A D •B C =12×6×5=15.。

2023-2024学年八年级下学期期末考试数学试卷附答案解析

2023-2024学年八年级下学期期末考试数学试卷附答案解析

第1页(共17页)2023-2024学年八年级下学期期末考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项
1.(3分)下列各组数是勾股数的是(
)A .2,3,4
B .3,4,5
C .4,5,6
D .5,6,7
2.(3分)计算
r2r1−r1的结果为(
)A .1B .2
C .2r1
D .2r13.(3分)某校举行健美操比赛,甲、乙、丙三个班各选10名学生参加比赛,三个班参赛学生的平均身高都是1.65米,其方差分别是s 甲2=1.9,s 乙2=2.4,s 丙2=1.6,则参赛学生身高比较整齐的班级是(
)A .甲班B .乙班C .丙班
D .三个班一样整齐4.(3分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(

A .对角线互相平分的四边形是平行四边形
B .两组对角分别相等的四边形是平行四边形
C .两组对边分别相等的四边形是平行四边形
D .两组对边分别平行的四边形是平行四边形
5.(3分)下列计算正确的是(
)A .2+3=5B .42−2=3
C .3×5=8
D .6÷3=26.(3分)如图,在Rt △ABC 中,∠ACB =90°,AB =12,CD 是AB 边上的中线,则
CD 的长为()
A .24
B .12
C .8
D .6。

八年级数学下期末测试含答案

八年级数学下期末测试含答案

CDBA八年级下学期期末测试题(含答案)一、选择题(每小题3分,共24分)1、计算的结果是-1的式子是()A、1--B、0)1(-C、)1(--D、11-2、函数xy1=与xy=的图象在同一平面直角坐标系内的交点的个数是()A、1个B、2个C、3个D、03、方程111-=-xxx()A、解为x=1B、无解C、解为任何实数D、解为x≠1的任何实数4、函数xky=的图象经过点(1,-2),则函数1+=kxy的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限5、在直角坐标系中,点P(2,-3)到原点的距离是()A、5B、11C、13D、26、数据0,1,2,3,x的平均数是2,则这组数据的方差是()A、2B、2C、10D、107、把多项式aaxax22--分解因式,下列结果正确的是()A.)1)(2(+-xxa B. )1)(2(-+xxaC.2)1(-xa D. )1)(2(+-axax8、当k<0,反比例函数xky=和一次函数kkxy+=的图象大致是()二、填空题(每小题3分,共21分)9.不改变分式的值,使分子、分母的第一项系数都是正数,则________=--+-yxyx.10.已知a1 -b1 =5,则babababa---2232+ 的值是.11、已知反比例函数22(1)my m x-=-,则m= ,12、如下图,已知AB=AD,要使△ABC≌△ADC,可增加条件,理由是定理。

13、等腰三角形的一个角是40°,则另外两个角是14、如图所示,设A为反比例函数xky=图象上一点,且矩形ABOC的面积为3,则这个反比例函数解析式为.15、函数y中,自变量x的取值范围是三、解答题(共55分)16.计算:(共6分,每小题3分)(1)2011011(1)()2---+(2)()33296422+∙+-÷++-aaaaaa17.解方程(6分,每小题3分)(1)313221x x+=--(2)482222-=-+-+xxxxx18、(4分)先化简,再求值:(abba22++2)÷baba--22,其中2=a,21-=b19、(4分)已知一次函数的图像经过点(—2,-2)和点(2,4),(1)求这个函数的解析式。

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案一、选择题1.函数3y x =+中,自变量x 的取值范围是( ) A .x >3 B .x ≥3 C .x >﹣3 D .x ≥﹣3 2.下列各组数中,不能构成直角三角形的一组是 ( )A .7,24,25B .41,4,5C .3,4,5D .4,5,63.下列说法中:①一组对边平行,另一组对边相等的四边形是平行四边形 ②对角线相等的四边形是矩形 ③有一组邻边相等的矩形是正方形④对角线互相垂直的四边形是菱形,正确的个数是( ).A .1个 B .2个 C .3个D .4个4.一年级(1)班部分同学背诵课文《人之初》的时间(单位:s )26,42,30,40,29,29,27,29,28,30,设平均数为P ,众数为Z ,中位数为W ,则( ) A .P= ZB .P=WC .Z=WD .P= Z=W5.在 △ABC 中, AC = 9 , BC = 12 , AB = 15 ,则 AB 边上的高是( ) A .365B .1225C .94D .3346.如图,点E 为ABCD 边AD 上一点,将ABE △沿BE 翻折得到FBE ,点F 在BD 上,且EF DF =.52C ∠=︒那么ABE ∠的度数为( )A .38°B .48°C .51°D .62°7.如图所示,2AB =,则数轴上点C 表示的数为( )A .3B .5C 13D 58.如图1,在矩形ABCD 中,E 是CD 上一点,动点P 从点A 出发沿折线AE →EC →CB 运动到点B 时停止,动点Q 从点A 沿AB 运动到点B 时停止,它们的速度均为每秒1cm .如果点P 、Q 同时从点A 处开始运动,设运动时间为x (s ),△APQ 的面积为ycm 2,已知y 与x 的函数图象如图2所示,以下结论:①AB =5cm ;②cos ∠AED =35 ;③当0≤x ≤5时,y=225x ;④当x =6时,△APQ 是等腰三角形;⑤当7≤x ≤11时,y =55522x +.其中正确的有( )A .2个B .3个C .4个D .5个二、填空题9.若26x -有意义,则x 的取值范围是____________.10.菱形的两条对角线分别是6cm ,8cm ,则菱形面积为_________.11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米.12.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,3ACD BCD ∠=∠,点E 是斜边AB 的中点,若2CD =,则CE 的长为_____.13.若直线y=2x+1平移后过点(-1,2),则平移后直线的解析式为___________________.14.如图,已知矩形ABCD 中(AD >AB),EF 经过对角线的交点O ,且分别交AD ,BC 于E ,F ,请你添加一个条件:______,使四边形EBFD 是菱形.15.如图,直线142y x =-+与坐标轴分别交于点A ,B ,点P 是线段AB 上一动点,过点P作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,连接MN ,则线段MN 的最小值为_________.16.如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE 翻折,使点D落在BC边上的点F处.则AF=__;CF=__;DE=__.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺)19.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A、B、C都是格点.∠是直角,请在图1补全他的思路;(1)小明发现图2中ABC(2)请借助图3用一种不同于小明的方法说明ABC ∠是直角. 20.如图,在正方形ABCD 中,点E ,F 在AC 上,且AF CE =.求证:(1)BE DE =. (2)四边形BEDF 是菱形. 21.阅读下列材料,然后回答问题:在进行类似于二次根式231+的运算时,通常有如下两种方法将其进一步化简:方法一:222(31)2(31)3131(31)(31)(3)1--===-++-- 方法二:2231(3)1(31)(31)3131313131--+-====-++++(1)请用两种不同的方法化简:253+; (2)化简:111142648620202018++++++++.22.甲、乙两家采摘园的草莓品质相同,销售价格都是每千克50元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买100元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过6千克后,超过部分五折优惠.优惠期间,设某游客的草莓采摘量为x (x >6)千克,在甲采摘园所需总费用为y 1元,在乙采摘园所需总费用为y 2元. (1)求y 1、y 2关于x 的函数解析式; (2)如果你是游客你会如何选择采摘园? 23.图1,在正方形ABCD 中,,P 为线段BC 上一点,连接,过点B 作,交CD 于点Q .将沿所在直线对折得到,延长交于点N .(1)求证:.(2)若,求AN 的长.(3)如图2,延长交BA 的延长线于点,若,记的面积为,求与x 之间的函数关系式.24.如图,在平面直角坐标系xOy 中,直线384y x =-+分别交x 、y 轴于点A 、B ,将正比例函数2y x =的图像沿y 轴向下平移3个单位长度得到直线l ,直线l 分别交x 、y 轴于点C 、D ,交直线AB 于点E .(1)直线l 对应的函数表达式是__________,点E 的坐标是__________; (2)在直线AB 上存在点F (不与点E 重合),使BF BE =,求点F 的坐标; (3)在x 轴上是否存在点P ,使2PDO PBO ∠=∠?若存在,求点P 的坐标;若不存在,请说明理由.25.已知,△ABC 为等边三角形,BC 交y 轴于点D ,A (a ,0)、B (b ,0),且a 、b 满足方程269-10a a b +++=.(1)如图1,求点A 、B 的坐标以及CD 的长.(2)如图2,点P 是AB 延长线上一点,点E 是CP 右侧一点,CP=PE ,且∠CPE =60°,连接EB,求证:直线EB必过点D关于x轴的对称点.(3)如图3,若点M在CA延长线上,点N在AB的延长线上,且∠CMD=∠DNA,试求AN-AM的值是否为定值?若是请计算出定值是多少,若不是请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的意义,被开方数是非负数即可求解.【详解】解:根据题意得:x+3≥0,解得x≥﹣3.故自变量x的取值范围是x≥﹣3.故选D.【点睛】本题主要考查了二次根式有意义的条件,自变量的取值范围,解题的关键在于能够熟练掌握二次根式有意义的条件.2.D解析:D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【详解】解:A、72+242=252,能构成直角三角形,故此选项不符合题意;B、42+52=2,能构成直角三角形,故此选项不符合题意;C、32+42=52,能构成直角三角形,故此选项不符合题意;D、52+42≠62,不能构成直角三角形,故此选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.A解析:A【解析】【分析】分别对各个结论进行判断,即可得出答案.【详解】解:一组对边平行,另一组对边相等的四边形可能是平行四边形或梯形,故①错误;对角线相等的平行四边形是矩形,,故②错误; 有一组邻边相等的矩形是正方形,故③正确; 对角线互相垂直平分的四边形是菱形,故④错误; 故选:A . 【点睛】本题主要考查平行四边形的判定、矩形的判定、正方形的判定、菱形的判定;熟练掌握特殊四边形的判定方法是解题的关键.4.C解析:C 【解析】 【分析】分别求出这组数据的平均数,中位数,众数进行判断即可. 【详解】解:由题意得:平均数264230402929272928303110P +++++++++==把这组数据重新排列如下:26,27,28,29,29,29,30,30,40,42, ∴处在最中间的两个数为29、29, ∴中位数2929292W +==, ∵29出现了3次,出现的次数最多, ∴众数29Z =, ∴Z W =, 故选C . 【点睛】本题主要考查了求中位数,众数和平均数,解题的关键在于能够熟练掌握三者的定义.5.A解析:A 【分析】首先由题目所给条件判断△ABC 是直角三角形,再按照面积法求解即可. 【详解】解:∵222291281144225AC BC +=+=+=,2215225AB ==, ∴222AC BC AB +=.∴△ABC 是直角三角形且90C =∠. ∴由直角三角形面积的计算方法1122S AC BC AB h ==,可知AB 边上的高是91236155⨯=. 故选A. 【点睛】本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.6.C解析:C 【解析】 【分析】由平行四边形的性质和折叠的性质得出∠BFE =∠A =52°,∠FBE =∠ABE ,由等腰三角形的性质和三角形的外角性质得出∠EDF =∠DEF =12∠BFE =26°,由三角形内角和定理求出∠ABD =102°,即可得出∠ABE 的度数. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠A =∠C =52°,由折叠的性质得:∠BFE =∠A =52°,∠FBE =∠ABE , ∵EF =DF ,∴∠EDF =∠DEF =12∠BFE =26°, ∴∠ABD =180°-∠A -∠EDF =102°, ∴∠ABE =12∠ABD =51°, 故选:C . 【点睛】本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质、三角形的外角性质、三角形内角和定理;熟练掌握平行四边形的性质和等腰三角形的性质是解决问题的关键.7.C解析:C 【解析】 【分析】根据题意得OB OC =,在Rt ABO 中,利用勾股定理可得13OB =,从而得到13OC OB ==,即可求解.【详解】 解:如图,由题意知:3OA =,2AB =,BA OC ⊥,OB OC =.90BAO ∴∠=︒.在Rt ABO 中,90BAO ∠=︒,22223213OB OA AB ∴=++13OC OB ∴=∴数轴上点C 13故选:C . 【点睛】本题主要考查了勾股定理,数轴与实数,尺规作图——作一条线段等于已知线段,熟练掌握相关知识点是解题的关键.8.B解析:B 【分析】根据图中相关信息即可判断出正确答案. 【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小, ∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=, 35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=,AP AQ xcm ==,45PH xcm ∴=,212•25y AQ PH y ∴===x ,故③正确;当6x = 时,5AQ AB cm ==,172PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确; 故选B . 【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题 9.3x ≥【解析】 【分析】根据被开方数大于或等于0,列式计算即可得解. 【详解】解:∵∴2x -6≥0, 解得x ≥3. 故答案为:x ≥3. 【点睛】本题考查二次根式有意义的条件.解题的关键是明确二次根式的被开方数是非负数. 10.24cm 2 【解析】 【分析】根据菱形面积的计算公式,即可求解. 【详解】解:菱形面积为对角线乘积的一半,可得菱形面积168242⨯⨯=(cm 2)故答案为24cm 2. 【点睛】此题主要考查了菱形面积的计算,掌握菱形面积的计算公式是解题的关键. 11.3 【解析】 【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 米,则斜边为(8-x )米.利用勾股定理解题即可. 【详解】解:设竹子折断处离地面x 米,则斜边为(8-x )米, 根据勾股定理得:x 2+42=(8-x )2 解得:x=3.∴折断处离地面高度是3米,故答案为:3.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.12.2【分析】根据角之间的关系求得45DEC ∠=︒,从而求得CE 的长.【详解】解:∵3ACD BCD ∠=∠,90ACB ∠=︒∴22.5BCD ∠=︒又∵CD AB ⊥∴9022.5BCD B BAC ∠=︒-∠=∠=︒,90CDE ∠=︒又∵点E 是斜边AB 的中点∴CE AE =∴22.5ECA BAC ∠=∠=︒∴45BEC ∠=︒∴CDE △为等腰直角三角形 ∴2CE故答案为2.【点睛】此题主要考查了直角三角形的有关性质,熟练掌握勾股定理、斜边中线等于斜边一半等性质是解题的关键.13.2 4.y x =+【分析】由平移的性质可设平移后的解析式为:2y x b =+,再利用待定系数法求解即可得到答案.【详解】解:设平移后的解析式为:2y x b =+,把()1,2-代入2y x b =+得:()212,b ⨯-+=4,b ∴=所以平移后的解析式为:2 4.y x =+故答案为:2 4.y x =+【点睛】本题考查的是一次函数的图像的平移,及利用待定系数法求解函数解析式,掌握一次函数的平移的特点是解题的关键.14.E解析:EF ⊥BD【分析】通过证明△OBF ≌△ODE ,可证四边形EBFD 是平行四边形,若四边形EBFD 是菱形,则对角线互相垂直,因而可添加条件:EF ⊥BD .【详解】当EF ⊥BD 时,四边形EBFD 是菱形.理由:∵四边形ABCD 是矩形,∴AD ∥BC ,OB=OD ,∴∠FBO=∠EDO ,在△OBF 和△ODE 中EDO FBO BO DOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBF ≌△ODE (ASA ),∴OE=OF ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,∴四边形EBFD 是菱形.故答案为:EF ⊥BD.【点睛】本题考查了矩形的性质,平行四边形的判定,菱形的判定,以及全等三角形的判定方法,熟练掌握性质及判定方法是解答本题的关键.15.【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可.【详解】如图,连接,PM ⊥x 轴,PN ⊥y 轴,四边形是矩形,,当时,最小,直线与坐标轴分别交于点A ,B ,【分析】如图,连接OP ,依题意,四边形OMPN 是矩形,则OP MN =,当OP AB ⊥时,OP 最小,底面积法求得OP 即可.【详解】如图,连接OP ,PM ⊥x 轴,PN ⊥y 轴,90AOB ∠=︒∴四边形OMPN 是矩形,∴OP MN =,∴当OP AB ⊥时,OP 最小, 直线142y x =-+与坐标轴分别交于点A ,B , 令0,4x y ==,)4(0,A ∴令0,8y x ==,(0,8)B ∴4,8OA OB ∴==,22224845AB OA OB ∴=++=当OP AB ⊥时,1122ABC S OA OB OP AB =⨯=⨯△, 8545OA OB OP AB ⨯∴=== ∴MN OP ==85. 85. 【点睛】 本题考查了矩形的性质,勾股定理,垂线段最短,找到MN OP =是解题的关键. 16.4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x解析:4 5【分析】先根据矩形的性质得AB=CD=8,在RtΔABF 中,利用勾股定理计算BF=6,再根据矩形的性质得AD=CB=10 ,则CF=BC−BF=4;设DE=x ,则EF=x , EC=8−x ,然后在 RtΔECF 中根据勾股定理得到42+(8−x)2=x 2 ,再解方程即可得到DE 的长.【详解】解:根据折叠可得AF =AD =10,∵四边形ABCD 是矩形,∴BC=AD=10,在Rt△ABF中, AB2+FB2=AF2,∴FB=6.∴FC=10﹣6=4,设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.则DE=5.故答案为:10,4,5.【点睛】本题考查了图形的折叠,矩形的性质和勾股定理,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:解析:55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+32=(10﹣x )2.解得:x =4.55,答:折断处离地面的高度为4.55尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可;(2)过A 点作于,过作于,然后证明≌,得到,在证明即可得到答案.【详解解析:(1)见解析;(2)见解析【解析】【分析】(1)先利用勾股定理求出三角形三边的长,然后用勾股定理的逆定理进行判断即可; (2)过A 点作AD BE ⊥于D ,过C 作CE DB ⊥于E ,然后证明ADB △≌BEC △,得到ABD BCE ∠=∠,在证明90ABD EBC ∠+∠=即可得到答案.【详解】解:(1)∵AB221310BC ,AC ∴222AB BC AC +=, ∴ABC 是直角三角形,∴90ABC ∠=.(2)过A 点作AD BE ⊥于D ,过C 作CE DB ⊥于E ,由图可知:AD BE =,BD CE =,90ADB BEC ∠=∠=,在ADB △和BEC △中,AD BE ADB BEC BD CE =⎧⎪∠=∠⎨⎪=⎩, ∴ADB △≌BEC △(SAS ),∴ABD BCE ∠=∠,在BEC △中,180BEC BCE EBC ∠+∠+∠=,∴18090BCE EBC BEC ∠+∠=-∠=,∴90ABD EBC ∠+∠=,∵D ,B ,E 三点共线,∴180ABD EBC ABC ∠+∠+∠=,∴()18090ABC ABD EBC ∠=-∠+∠=.【点睛】本题主要考查了勾股定理和勾股定理的逆定理,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)见解析【分析】(1)根据边角边证明全等即可得出结论;(2)同理可得,然后证明,即可得出,结论可得.【详解】解:(1)∵四边形是正方形,∴,,在和中,,∴,∴解析:(1)见解析;(2)见解析【分析】(1)根据边角边证明ABE ADE ≅△△全等即可得出结论;(2)同理可得BFC DFC ≅△△,然后证明()ABE CBF SAS ≅△△,即可得出BE BF DE DF ===,结论可得.【详解】解:(1)∵四边形ABCD 是正方形,∴AB AD CD BC ===,45DAE BAE BCF DCF ∠=∠=∠=∠=︒,在ABE △和ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE ADE SAS ≅△△,∴BE DE =.(2)同理可得BFC DFC ≅△△,可得BF DF =,∵AF CE =,∴AF EF CE EF -=-,即AE CF =,在ABE △和CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE CBF SAS ≅△△,∴BE BF =,∴BE BF DE DF ===,∴四边形BEDF 是菱形.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键.21.(1);(2)【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为(-+-+-+…+-),继而求得答案.【详解】解:(1)解析:(12【解析】【分析】(1)首先理解题意,根据题目的解析,即可利用两种不同的方法化简求得答案;(2)结合题意,可将原式化为12,继而求得答案.【详解】解:(1)2()()222-(2)原式=1212. 故答案为2. 【点睛】 此题考查了分母有理化的知识.此题难度较大,解题的关键是理解题意,掌握分母有理化的两种方法.22.(1),;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简解析:(1)130100y x =+,225150y x =+;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简即可得到结论;(2)分别令12y y =,12y y >,12y y <求出对应x 的值或取值范围,从而得出结论.【详解】解:(1)由题意可得:1100500.630100y x x =+⨯=+,2506(6)500.525150y x x =⨯+-⨯⨯=+,即1y 关于x 的函数解析式是1230100,y x y =+关于x 的函数解析式是225150y x =+; (2)当12y y =时,即:3010025150x x +=+,解得10x =,即当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当12y y >时,即:3010025150x x +>+,解得10x >,即当采摘量超过10千克时,选择乙采摘园;当12y y <时,即:3010025150x x +<+,解得10x <,即当采摘量超过6千克且少于10千克时,选择甲采摘园;由上可得,当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园.【点睛】本题考查了一次函数的实际应用,正确理解题意列出函数关系式是解题的关键. 23.(1)证明见解析;(2);(3).【分析】(1)先证,再据ASA 证明△ABP ≌△BCQ ,可证得BP=CQ ;(2)连接,先证,得到,设AN=x ,用x 表示出ND ;再求出DQ 和的值,再在RT △NDQ解析:(1)证明见解析;(2);(3). 【分析】(1)先证,再据ASA 证明△ABP ≌△BCQ ,可证得BP=CQ ; (2)连接,先证,得到,设AN=x ,用x 表示出ND ;再求出DQ 和的值,再在RT △NDQ 中用勾股定理列方程求解;(3)作QG ⊥AB 于G ,先证MB=MQ 并设其为y ,再在RT △MGQ 中用勾股定理列出关于x 、y 的方程,并用x 表示y ;用y 表示出△MBQ 的面积,用x 表示出△的面积.最后据用x 、y 表示出S ,并把其中的y 用x 代换即可.【详解】(1)在正方形ABCD 中,,,,,,,.(2)在正方形ABCD 中连接,如下图:由折叠知BC=,又AB=BC,∠BAN=90°∴,,,,,,,设,,,,,.(3)如下图,作,垂足为G,由(1)知∵∠MBQ=∠CQB=∠MQB∴BM=MQ设,则.,,,故.【点睛】此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用.24.(1),;(2)存在,;(3)或【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作轴于M ,轴于N ,利用,得到F 点的横坐标,再代解析:(1)23y x =-,()4,5;(2)存在,()4,11F -;(3)()4,0P 或()4,0-【解析】【分析】(1)根据一次函数平移的方法求出直线l 对应的函数表达式,再联立两个直线解析式求出交点坐标;(2)作EM y ⊥轴于M ,FN y ⊥轴于N ,利用()EBM FBN AAS ≌,得到F 点的横坐标,再代入解析式求出F 点纵坐标即可;(3)在y 轴正半轴上取一点Q ,使3OQ OD ==,利用等腰三角形的性质得PBO BPQ ∠=∠,即可求出5PQ BQ ==,再由勾股定理求出OP 的长,得到点P 坐标. 【详解】解:(1)正比例函数2y x =的图像沿y 轴向下平移3个单位长度,得23y x =-, 联立两个直线解析式,得38423y x y x ⎧=-+⎪⎨⎪=-⎩,解得45x y =⎧⎨=⎩, ∴()4,5E ,故答案是:23y x =-,()4,5;(2)如图,作EM y ⊥轴于M ,FN y ⊥轴于N ,∴4EM =,90EMB FNB ∠=∠=︒,∵BE BF =,EBM FBN ∠=∠,∴()EBM FBN AAS ≌,∴4FN EM ==, 在384y x =-+中,当4x =-时,11y =, ∴()4,11F -;(3)易知()0,8B ,()0,3D -,∴8OB =,3OD =,如图,在y 轴正半轴上取一点Q ,使3OQ OD ==,∵90POB ∠=︒,OQ OD =,∴PQ PD =,∴PDO PQO PBO BPQ ∠=∠=∠+∠,∵2PDO PBO ∠=∠,∴PBO BPQ ∠=∠,∴5PQ BQ ==,∴由勾股定理得:4OP =,∴()4,0P 或()4,0-.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求法,以及利用数形结合思想解决一次函数与几何综合问题.25.(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a=-3,b=1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出解析:(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a =-3,b =1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出OD ,DB 即可解决问题.(2)如图2中,连接EC ,设BE 交PC 于K .由△ACP ≌△BCE (SAS ),推出∠APC =∠CEB ,可证∠KBP =∠KCE =60°勾股定理求出OF ,可得D ,F 关于x 轴对称,即可解决问题;(3)如图3中,作DH ⊥AC 于H .想办法证明△DHM ≌△DON 即可解决问题;【详解】解:(1)∵269-10a a b +++=∴23-10a b ++=()∴a =-3,b =1,∴A (﹣3,0),B (1,0),如图1中,∵△ABC 是等边三角形,∴∠ABC =60°,AB =BC =AC ,∵A (﹣3,0),B (1,0),∴OA =3,OB =1,∴AB =BC =AC =4,在Rt △ODB 中,30,ODB ∠=︒2,BD ∴=∴CD =BC ﹣BD =2.(2)如图2中,连接EC ,设BE 交PC 于K .∵CP=PE,∠CPE=60°,∴△CPE是等边三角形,∴∠PCE=60°,CP=CE,∵△ABC是等边三角形,∴∠ACB=∠PCE=60°,∴∠ACP=∠BCE,∵CA=CB,CP=CE,∴△ACP≌△BCE(SAS),∴∠APC=∠CEB,∵∠PKB=∠EKC,∠ECK+∠CKE+∠CEK=180°,∠KBP+∠PKB+∠KPB=180°,∴∠KBP=∠KCE=60°,∴∠OBF=∠PBK=60°,∵∠BOF=90°,OB=1,∴BF=2∴OF=22413-=-=,BF OB∵223,=-=OD BD OB∴OD=OF,∴D,F关于x轴对称,∴直线EB必过点D关于x轴的对称点.(3)是定值,理由如下:如图3中,作DH⊥AC于H.在Rt△CDH中,∵∠CHD=90°,∠C=60°,CD=2,∴CH=1,∴DH=∴AH=3,∵OD∴DH=OD,∵∠DHM=∠DON,∠M=∠DNO,∴△DHM≌△DON(AAS),∴HM=ON,∴AN﹣AM=OA+ON﹣(HM﹣AH)=3+3=6.【点睛】本题属于三角形综合题,考查了等边三角形的性质和判定,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

八年级数学(下)第二学期期末考试含答案

八年级数学(下)第二学期期末考试含答案

八年级数学(下)第二学期期末考试总分:120分 时量:120分钟一、选择题(本大题共12小题,共36分)1.下列各式运算结果是负数的是( )A.()2--B.02--C.22-D.()22- 2.为庆祝中华人民中国成立70周年,我国于2019年10月1日在北京天安门广场举行大型阅兵仪式,在此次活动中,共有15个徒步方队,32个装备方队,空中梯队12个,约15000名官兵通过天安门广场接受党和人民的检阅.将数字15000用科学计数法表示为( )A.31510⨯B.41.510⨯C.51.510⨯D.60.1510⨯3.下列运算中正确的是( )A.2323a a a =⋅B.()224ab ab =C.2222ab b a ÷=D.()222a b a b +=+4.如图,在三角形ABC 中,45A ∠=︒,三角形ABC 的高线BD ,CE 交于点O ,则BOC ∠的度数( )A.120︒B.125︒C.135︒D.145︒5.如图,AB//CD ,AF 交CD 于点E ,45A ∠=︒,则CEF ∠等于( )A.135︒B.120︒C.45︒D.35︒6.一个样本的方差是0,若中位数是a ,那么它的平均数是( )A.等于aB.不等于aC.大于aD.小于a7.下列命题是真命题的是( )A.一组对边平行另一组对边相等的四边形是平行四边形B.一组邻边相等的平行四边形是菱形C.对角线相等的四边形是矩形D.对角线垂直的四边形是菱形8.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=⎧⎨+=⎩C.100131003x y x y +=⎧⎪⎨+=⎪⎩D.1003100x y x y +=⎧⎨+=⎩9.如图所示为抛物线()20y ax bx c a =++≠在坐标系中的位置,以下六个结论:①0a >;②0b >;③0c >;④240b ac ->;⑤0a b c ++<;⑥20a b +>.其中正确的个数是( )A.3B.4C.5D.610.已知圆锥的底面半径为3cm ,母线长为9cm ,则圆锥的侧面积是( )A.218cm πB.227cm πC.236cm πD.254cm π11.一次函数()0y ax c a =+≠与二次函数()20y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A. B.C.D.12.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB 为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP .①点E 在M 的内部;②CD 的长为332-;③若P 与C 重合,则15DPE ∠=︒;④在P 的运动过程中,若3AP =26PE =+;⑤N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A.①②④B.②③④C.②③⑤D.③④⑤二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式()24a b ab +-的结果是________.14.若一元二次方程2220x x --=有两个实数根1x ,2x ,则1212x x x x +-的值是________.15.正六边形的外接圆的半径与内切圆的半径之比为________.16.如图,点A ,B ,C 都在O 上,若30C ∠=︒,则AOB ∠的度数是________度. 17.将二次函数2y x =的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是________.18.抛物线23y x x =--与直线y x b =+交于A 、B 两点,且26AB =,则b =________.三、解答题(本大题共8个小题)19.计算:(1)()10120209322-⎛⎫+--+- ⎪⎝⎭; (2)解一元二次方程2890x x +-=.20.先化简代数式:22321124a a a a -+⎛⎫-+ ⎪+-⎝⎭,再从2-,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查.随机调查了九年级部分学生每天完成作业所用的时间,并根据统计结果制成了条形统计图(时间取整数,图中从左至右依次为第1、2、3、4、5组)和扇形统计图,请结合图中信息回答下列问题:(1)本次调查的学生人数为________;(2)补全条形统计图;(3)根据图中提供的信息,可知下列结论正确的是________(只填所有正确的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知学生完成作业所用时间的众数在第二组内C.图中,90~120时间段对应的扇形圆心角为108(4)学生每天完成作业的时间不超过120分钟,视为课业负担适中,根据以上调查,估计该校九年级560名学生中,课业负担适中的学生有多少人?22.如图,平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,CF AE =,连AF ,BF . (1)求证:四边形BFDE 是矩形;(2)已知60DAB ∠=︒,AF 是DAB ∠的平分线,若3AD =,求DC 的长度.23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,O 是直角三角形ABC 的外接圆,直径4AC =,过C 点作O 的切线,与AB 延长线交于点D ,M 为CD 的中点,连接BM ,OM ,且BC 与OM 相交于点N .(1)求证:BM 与O 相切;(2)当60A ∠=︒时,求弦AB 和弧AB 所夹图形的面积;(3)在(2)的条件下,在O 的圆上取点F ,使15ABF ∠=︒,求点F 到直线AB 的距离.25.阅读下面材料:对于二次函数()20y ax bx c a =++>,当m x n ≤≤时,二次函数在何处取得最值?对此,我们可做如下探究:当0a >时,观察图①到图④:(1)由图①可知,当x n =时取最小值,当x m =时取最大值,点离对称轴越近,函数值越小;(2)由图②、图③可知,当2b x a=-时取最小值,点离对称轴越近,函数值越小; (3)由图④可知,当x m =时取最小值,当x n =时取最大值,点离对称轴越近,函数值越小.结论:1.当抛物线开口向上时,抛物线上的点,离对称轴越近,其对应的函数值越小;2.若对称轴在自变量的取值范围内,则二次函数在2b x a=-时取最小值; 3.若对称轴不在自变量的取值范围内,则二次函数在离对称轴最近的点处取得最小值.请结合以上结论,解决下列问题:(1)已知二次函数222y x x =--,当32x -≤≤时,此时函数的最大值和最小值; (2)已知二次函数数222y x x =--在1m x m ≤≤+的范围内有最小值2m ,求出m 的值;(3)二次函数222y x x =--,当m x n ≤≤时,()m y n m n ≤≤≠,求出此时的m ,n 的值.26.如图,抛物线218333y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点.以AB 为直径作M .(1)求出M的坐标并证明点C在M上;(2)若P为抛物线上一动点,求出当CP与M相切时P的坐标;,若存在,求出D点坐标,若不存在,请说明(3)在抛物线上是否存在一点D,使得BC平分ABD理由.参考答案考试时间:120分钟 满分:120分一、选择题(本大题共12小题,每小题3分,共36分)1-5:BBCCA 6-11:ABCBB 11-12:DB二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式(a +a )2−4aa 的结果是 (a-b)2 ;14.若一元二次方程0222=--x x 有两个实数根21,x x ,则2121x x x x -+的值是___4__;16. 如图,点 A ,B ,C 都在 ⊙O 上,若 ∠C =30∘,则 ∠AOB 的度数是 60 度. 17.将二次函数的图象先向右平移1个单位,再向上平移2个单位,平移后的得到图像函数表达式是 y=(x-1)2+2 ;18.抛物线32--=x x y 与直线b x y +=交于A 、B 两点,且AB =62,则b = -1 .三、解答题(本大题共8个小题)19.计算:(1)239)2020()21(01-+--+-; (2)解一元二次方程a 2+8a −9=0.解:原式=2-3 ----3分 1,921=-=x x -------3分 20.先化简代数式:412)231(22-+-÷+-a a a a ,再从−2,0,2这三个数中,选择一个恰当的数作为a 的值,代入求值.解:原式=12--a a ; -----3分 当a=0时,原式=2----3分21.某中学对本校学生每天完成作业所用时间的情况进行了抽样调查。

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案 一、选择题 1.式子10x -在实数范围内有意义,则x 的取值范围是( )A .x ≥10B .x ≠10C .x ≤10D .x >10 2.以下列三段线段的长为三边的三角形中,不能构成直角三角形的是( ) A .6,8,10 B .5,12,13 C .111,,345 D .9,40,413.在下列条件中,不能判定四边形为平行四边形的是( )A .对角线互相平分B .一组对边平行且相等C .两组对角分别相等D .对角线互相垂直 4.比赛中给一名选手打分时,经常会去掉一个最高分,去掉一个最低分,这样的评分方式一定不会改变选手成绩数据的( )A .众数B .平均数C .中位数D .方差5.如图,将△ABC 放在正方形网格中(图中每个小正方形边长均为1)点A ,B ,C 恰好在网格图中的格点上,那么∠ABC 的度数为( )A .90°B .60°C .30°D .45°6.如图,在Rt ABC 中,90ABC ∠=︒,点D 在边AC 上,2AB =,BD CD =,2BC AB =.若ABD △与EBD △关于直线BD 对称,则线段CE 的长为( )A .655B .755C .855D .9557.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,则EC 的长为( )A .1B .53C .32D .438.如图,直线m 与n 相交于点()1,3C ,m 与x 轴交于点()2,0D -,n 与x 轴交于点()2,0B ,与y 轴交于点A .下列说法错误的是( ).A .m n ⊥B .AOB DCB ∆∆≌C .BC AC =D .直线m 的函数表达式为3333y x =+ 二、填空题9.当代数式241x x --有意义时,x 应满足的条件_____. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形两直角边边长的和为3,面积为1,则图中阴影部分的面积为____________ .12.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,点F 是线段DE 上的一点.连接AF ,BF ,∠AFB =90°,且AB =10,BC =16,则EF 的长是_______13.在平面直角坐标中,点A (﹣3,2)、B (﹣1,2),直线y =kx (k ≠0)与线段AB 有交点,则k 的取值范围为___.14.如图,矩形ABCD 中,直线MN 垂直平分AC ,与CD ,AB 分别交于点M ,N .若DM =2,CM =3,则矩形的对角线AC 的长为_____.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C 处折断,顶部(B )着地,离旗杆底部(A )4米,工人在修复的过程中,发现在折断点C 的下方1.25米D 处,有一明显裂痕,若下次大风将旗杆从D 处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19.如图,每个小正方形的边长都为1,AB 的位置如图所示.(1)在图中确定点C ,请你连接CA ,CB ,使CB ⊥BA ,AC =5;(2)在完成(1)后,在图中确定点D ,请你连接DA ,DC ,DB ,使CD =10,AD =17,直接写出BD 的长.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形. (2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 .21.阅读下列材料,然后回答问题:31+的运算时,通常有如下两种方法将其进一步化简: 22(31)2(31)3131(31)(31)(3)1--==++-- 2(3)1(31)(31)3131313131-+-====++++ (153+ (242648620202018++++++ 22.振兴加工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数解析式;(2)求出图中a 的值及乙组更换设备后加工零件的数量y 与时间x 之间的函数解析式.23.如图1,在一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。

八年级下册数学期末试卷测试卷(含答案解析)

八年级下册数学期末试卷测试卷(含答案解析)

八年级下册数学期末试卷测试卷(含答案解析)一、选择题1.下列二次根式,无论x 取什么值都有意义的是( ) A .xB .21x -C .21x D .21x +2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .2、3、4B .3、4、5C .5、12、13D .30、50、603.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB =CD ,AD =BC B .AB //CD ,AB =CD C .AB =CD ,AD //BCD .AB //CD ,AD //BC4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在正方形ABCD 中,取AD 的中点E ,连接EB ,延长DA 至F ,使EF =EB ,以线段AF 为边作正方形AFGH ,交AB 于点H ,则AHAB的值是( )A 51- B 51+ C 352D .126.如图,在菱形ABCD 中MN 分别在AB 、CD 上且AM=CN ,MN 与AC 交于点O ,连接BO 若∠DAC=62°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°7.如图,等腰Rt ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;②DMN 为等腰三角形;③DM 平分∠BMN ;④AE =23EC ;⑤AE=NC ,其中正确结论有( )A .2个B .3个C .4个D .5个8.如图,直线 y 1 与 y 2 相交于点C , y 1 与 x 轴交于点 D ,与 y 轴交于点(0,1), y 2 与 x 轴 交于点 B (3,0),与 y 轴交于点 A ,下列说法正确的个数有( )①y 1的 解 析 式 为12y x =+;② OA = OB ;③2AC BC =④12y y ⊥;⑤ ∆AOB ≅ ∆BCD . A .2 个B .3个C .4 个D .5 个二、填空题9.5x -中字母x 的取值范围是__________.10.如图,在菱形ABCD 中,AC ,BD 两对角线相交于点O .若∠BAD =60°,BD =2cm ,则菱形ABCD 的面积是____cm 2.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 在矩形ABCD 的对角线AC 上,且不与点A C 、重合,过点P 分别作边AB AD 、的平行线,交两组对边于点E F 、和G H 、.四边形PEDH 和四边形PFBG 都是矩形并且面积分别为S 1,S 2,则S 1,S 2之间的关系为__________.13.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 14.如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是____(写出一个即可).15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y (米)与小王出发的时间x (分钟)之间的函数图象,则学校到书店的距离为________米.16.已知矩形ABCD,点E在AD边上,DE AE>,连接BE,将ABE△沿着BE翻折得到BFE△,射线EF交BC于G,若点G为BC的中点,1FG=,6DE=,则BE长为________.三、解答题17.计算:(1)(25﹣2)0+|2﹣5|+(﹣1)2021;(2)(6+3)(6﹣3)+14÷7.18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即10A C'=尺,则此时秋千的踏板离地的距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2).(1)线段AB的长为;(2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=92.①用直尺画出一个满足条件的△ABC;②写出所有符合条件的点C 的坐标.20.已知:如图,在Rt △ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作CF ∥AB ,交DE 的延长线于点F ,连接BF 、CD . (1)求证:四边形CDBF 是平行四边形.(2)当D 点为AB 的中点时,判断四边形CDBF 的形状,并说明理由.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,问: (1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg ?23.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值; (3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.24.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC ∆.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =.(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,72P a ⎛⎫- ⎪⎝⎭,是线段BC 上一点,在x 轴上是否存在一点N ,使BPN ∆面积等于BCM ∆面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD.(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.【参考答案】一、选择题 1.D 解析:D 【分析】直接利用二次根式有意义,则被开方数是非负数,进而得出答案. 【详解】解:A.x 0x 时,二次根式有意义,故此选项不合题意;2B.1x -210x -时,二次根式有意义,故此选项不合题意;21C.x 0x ≠时,二次根式有意义,故此选项不合题意; 2D.1x +x 取什么值,二次根式都有意义,故此选项符合题意.故选:D . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.C解析:C 【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可. 【详解】解:A 、22+32≠42,不能构成直角三角形,故此选项不符合题意;B 32+42≠52,不能构成直角三角形,故此选项不符合题意;C 、52+122=132,能构成直角三角形,故此选项符合题意;D 、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.【点睛】本题主要考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.A解析:A【分析】设AB=2a,根据四边形ABCD为正方形,E点为AD的中点,可得EF的长,进而可得结果.【详解】解:设AB=2a,∵四边形ABCD为正方形,∴AD=2a,∵E点为AD的中点,∴AE=a,∴BE225AE AB=+=a,∴EF5=a,∴AF=EF﹣AE=(5-1)a,∵四边形AFGH为正方形,∴AH=AF=(5-1)a,∴()515122aAHAB a--==.故选:A.【点睛】本题考查了正方形的性质,解决本题的关键是掌握正方形的性质.6.A解析:A【解析】【分析】连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:连接OB,∵四边形ABCD为菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵MAO NCOAM CNAMO CNO ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AMO≌△CNO(ASA),∴AO=CO , ∵AB=BC , ∴BO ⊥AC , ∴∠BOC=90°, ∵∠DAC=62°, ∴∠BCA=∠DAC=62°, ∴∠OBC=90°-62°=28°. 故选A . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.C解析:C 【解析】 【分析】先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断⑤;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断②,再根据等腰三角形的性质及外角性质可判断③,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断④. 【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∴∠=︒=∠,BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒,9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又∵M 为EF 的中点, ∴AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ),AF CN ∴=,AF AE =,AE CN ∴=,故⑤正确;在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ),AM NM ∴=,∴点M 是AN 的中点,又∵90ADN ∠=︒, ∴12DM AM NM AN ===,DM NM =, DMN ∴是等腰三角形,故②正确;DM AM =,22.5DAM ADM ∴∠=∠=︒,45DMN DAM ADM ∴∠=∠+∠=︒,9045DMB DMN DMN ∴∠=︒-∠=︒=∠,DM ∴平分BMN ∠,故③正确;如图,连接EN ,∵AM NM =,AM BE ⊥,∴BE 垂直平分AN ,∴EA =EN ,22.5ENA EAN ∴∠=∠=︒,45CEN ENA EAN ∴∠=∠+∠=︒,又∵45C ∠=︒,∴90ENC ∠=︒,且EN CN =,在Rt ENC 中,22222EC EN CN EN =+=, ∴EC ,AE ∴,故④错误, 即正确的有4个,故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.8.A解析:A【分析】通过待定系数法,求出直线y 1的解析式,于是可对①进行判断;利用待定系数法求出y 2的解析式为y =﹣x +3,则可确定A (0,3),所以OA =OB ,于是可对②进行判断;通过两点间的距离公式求出AC 、BC 的长,从而对③进行判断;计算∠EDO 和∠ABO 的度数,再通过三角形的内角和定理得出∠DCB 的度数,即可对④进行判断;通过计算BD 和AB 的长可对⑤进行判断.【详解】由图可知:直线y 1过点(0,1),(1,2),∴直线y 1的解析式为11y x =+,所以①错误;设y 2的解析式为y =kx +b ,把C (1,2),B (3,0)代入得:230k b k b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩,所以y 2的解析式为y =﹣x +3,当x =0时,y =﹣x +3=3,则A (0,3),则OA =OB ,所以②正确;∵A (0,3),C (1,2),B (3,0),∴ACBC ,∴12AC BC ==,所以③错误; 在11y x =+中,令y 1=0,得x =-1,∴D (-1,0),∴OD =1.∵OE =1,∴OD =OE ,∴∠EDO =45°.∵OA =OB =3,∴∠ABO =45°,∴∠DCB =180°-45°-45°=90°,∴DC ⊥AB ,∴12y y ⊥,故④正确;因为BD =3+1=4,而AB ,所以△AOB 与△BCD 不全等,所以⑤错误.故正确的有②④.故选A.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;也考查了全等三角形的判定.二、填空题9.5x≥【解析】【分析】根据二次根式成立的条件可直接进行求解.【详解】解:由题意得:x-≥,解得:5x≥;50x≥.故答案为5【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.A解析:3【解析】【分析】BD=1,可证△ABD是等由菱形的性质可得AB=AD,AC⊥BD,AO=CO,BO=DO=12边三角形,可得AB=BD=4,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,AO=CO,BO=DO=1BD=1cm,2∵∠BAD=60°,∴△ABD是等边三角形,∴AB=BD=2cm,∴223cm=-AO AB BO∴AC=3,∴菱形ABCD 的面积=12AC ×BD =2,故答案为:【点睛】本题主要考查了菱形的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解. 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:===a==b=c ∵>>∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.S 1=S 2【分析】由矩形的性质找出90D B ∠=∠=︒,结合对边互相平行即可证出四边形PEDH 和四边形PFBG 都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果.【详解】解:∵四边形ABCD 为矩形,∴90D B ∠=∠=︒.又∵////EF AB CD ,////GH AD BC ,∴四边形PEDH 和四边形PFBG 都是矩形.∵//EF AB ,//HG BC ,四边形ABCD 为矩形,∴四边形AEPG 和四边形PHCF 也是矩形,∴ACD ABC SS =,PHC PCF S S =,AEP APG S S =, ∴ACD PHC AEP ABC PCF APG S S S S S S --=--,∴12S S故答案为:12S S .【点睛】本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键.13.32y x =--【解析】【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b ,把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行,∴k=-3,∴一次函数解析式为y=-3x-2.故答案为:y=-3x-2.【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.14.C解析:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等(写出一个即可).【分析】根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.【详解】解:根据题意可得出:四边形CBFE 是平行四边形,当CB=BF 时,平行四边形CBFE 是菱形,当CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 时,都可以得出四边形CBFE 为菱形. 故答案为:如:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象,则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭, 解得:x =840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键. 16.【分析】先设,根据,,可得,,再根据,可得,进而得出方程,即可得到的长,可求得,再利用勾股定理可以,再用一次勾股定理即可算出.【详解】解:设,,,,,又为的中点,,由折叠可得,,解析:【分析】先设AE EF x ==,根据6DE =,1FG =,可得6AD x BC =+=,1EG x =+,再根据GEB GBE ∠=∠,可得EG BG =,进而得出方程612x x ++=,即可得到AE 的长,可求得EG BG =,再利用勾股定理可以BF ,再用一次勾股定理即可算出BE .【详解】解:设AE EF x ==,6DE =,1FG =,6AD x BC ∴=+=,1EG x =+,又G 为BC 的中点,1622x BG BC +∴==,由折叠可得,AEB GEB ∠=∠,由//AD BC ,可得AEB GBE ∠=∠,GEB GBE ∴∠=∠,EG BG ∴=,612x x +∴+=, 解得4x =,即4AE =,5EG BG EF FG ∴==+=,90BAE BFE ∠=∠=︒,BF ∴BE ∴=故答案是:【点睛】本题主要考查了折叠问题,勾股定理、三角全等、解题的关键是折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)﹣2;(2)3+.【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=1+﹣2解析:(12;(2)【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=2﹣12;(2)22=6﹣=【点睛】本题考查二次根式的混合运算,零指数幂,掌握二次根式混合运算的运算顺序和计算法则及平方差公式(a +b )(a ﹣b )=a 2﹣b 2的结构是解题关键.18.绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于 的方程,即可求解.【详解】解:由题意可知: 尺,设绳索OA 的长为x 尺,根据题意得,解得.答:绳索OA 的解析:绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于x 的方程,即可求解.【详解】解:由题意可知:5A D '= 尺,设绳索OA 的长为x 尺,根据题意得()2221015x x ++-=, 解得14.5x =.答:绳索OA 的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积画解析:(1)2)①见解析;②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积92画出对应的三角形即可; ②根据点C 的位置,写出点C 的坐标即可.【详解】解:(1)如图所示在Rt △ACB 中,∠P =90°,AP =3,BP =3 ∴AB ==(2)①如图所示Rt △ACB 中,∠C =90°,AC =3,BC =3 ∴119=33222ABC S AC BC =⨯⨯=△②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).满足条件的三角形如图所示.C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型. 21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x 即可.【详解】解:(1)设y=kx+b ,代入(20,10解析:(1)y =20x -300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y =0,求出对应的x 即可.【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:1002030030k bk b=+⎧⎨=+⎩,解得:20300kb=⎧⎨=-⎩,∴y=20x-300;(2)取y=0,则20x-300=0,解得x=15,∴免费行李的最大质量为15kg.【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y的值即可求出x的值.23.(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程解析:(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案;(3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF===,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t为2或2或4.【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.24.(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【解析】【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、解析:(1)y =13x+4;(2)见解析;(3)存在,点N (﹣463,0)或(343,0). 【解析】【分析】(1)根据题意证明△CHB ≌△BOA (AAS ),即可求解;(2)求出B 、E 、D 的坐标分别为(-1,0)、(0,12)、(1,-1),即可求解; (3)求出BC 表达式,将点P 代入,求出a 值,再根据AC 表达式求出M 点坐标,由S △BMC =12MB×y C =12×10×2=10,S △BPN =12S △BCM =5=12 NB×a=38NB 可求解. 【详解】解:(1)令x =0,则y =4,令y =0,则x =﹣2,则点A 、B 的坐标分别为:(0,4)、(﹣2,0),过点C 作CH ⊥x 轴于点H ,∵∠HCB+∠CBH =90°,∠CBH+∠ABO =90°,∴∠ABO =∠BCH ,∠CHB =∠BOA =90°,BC =BA ,在△CHB 和△BOA 中,===BCH ABO CHB BOA BC BA ∠∠∠∠⎧⎪⎨⎪⎩, ∴△CHB ≌△BOA (AAS ),∴BH =OA =4,CH =OB=2,∴ 点C (﹣6,2),将点A 、C 的坐标代入一次函数表达式:y= m x+ b 得:426b m b=⎧⎨=-+⎩, 解得:134m b ⎧=⎪⎨⎪=⎩, 故直线AC 的表达式为:y =13x+4;(2)同理可得直线CD 的表达式为:y =﹣12x ﹣1①,则点E (0,﹣1),直线AD 的表达式为:y =﹣3x+4②,联立①②并解得:x =2,即点D (2,﹣2),点B 、E 、D 的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E 是BD 的中点,即BE =DE ;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =﹣12x-1,将点P (﹣72,a )代入直线BC 的表达式得:34a =, 直线AC 的表达式为:y =13x+4, 令y=0,则x=-12,则点M (﹣12,0),S △BMC =12MB×y C =12×10×2=10, S △BPN =12S △BCM =5=12NB×a=38NB , 解得:NB =403, 故点N (﹣463,0)或(343,0). 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键. 25.(1)①证明见解析;②;(2);(3).【分析】(1)①由,推出,,推出四边形是平行四边形,再证明即可.②先证明,推出,延长即可解决问题.(2).只要证明是等边三角形即可.(3)结论:.如解析:(1)①证明见解析;②60EBF ∠=︒;(2)IH =;(3)222EG AG CE =+.【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)IH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =,EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩, BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒, 3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩, DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。

八年级下册数学期末试卷练习(Word版含答案)

八年级下册数学期末试卷练习(Word版含答案)

八年级下册数学期末试卷练习(Word 版含答案)一、选择题1.要使二次根式3x -有意义,x 的值可以是( ) A .﹣1B .0C .2D .42.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( ) A .4个B .3个C .2个D .1个3.四边形ABCD 的对角线AC 和BD 相交于点O ,下列判断正确的是( ) A .若AO =OC ,则ABCD 是平行四边形 B .若AC =BD ,则ABCD 是平行四边形C .若AO =BO ,CO =DO ,则ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则ABCD 是平行四边形4.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩方差分别记作2S 甲、2S 乙,则下列结论正确的是( )A .22 S S <甲乙B .22S S >甲乙 C .22S S =甲乙 D .无法确定5.如图,点E 是边长为8的正方形ABCD 的对角线BD 上的动点,以AE 为边向左侧作正方形AEFG ,点P 为AD 的中点,连接PG ,在点E 运动过程中,线段PG 的最小值是( )A.2 B.2C.22D.426.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF=()A.3 B.4 C.5 D.68.如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED=35;③当0≤x≤5时,y=225x;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=55522x+.其中正确的有()A.2个B.3个C.4个D.5个二、填空题9.2021x-x的取值范围是____________.10.已知菱形ABCD的边长为4,∠A=60°,则菱形ABCD的面积为_________.11.如图,在△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D.若 BD=10cm,BC=8cm,则点 D 到直线 AB 的距离= ________.12.如图,在矩形ABCD 中,AB =8,AD =6,将矩形沿EF 翻折,使点C 与点A 重合,点B 落在B ′处,折痕与DC ,AB 分别交于点E ,F ,则DE 的长为______.13.已知一次函数的图象经过(2,0),(0,4)-两点,则该一次函数解析式是______. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,已知直线1:1l y x =+与x 轴交于点,A 与直线21:22l y x =+交于点B ,点C 为x 轴上的一点,若ABC ∆为直角三角形,则点C 的坐标为__________.16.如图,矩形ABCD 中,AB =6,BC =8,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是_____.三、解答题17.(1)148312242÷+⨯- (2)(32126)2352--⨯+18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域. (1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.如图,每个小正方形的边长都是1.A 、B 、C 、D 均在网格的格点上.(1)求边BC 、BD 的长度.(2)∠BCD 是直角吗?请证明你的判断.(3)找到格点E ,画出四边形ABED ,使其面积与四边形ABCD 面积相等(一个即可,且E 与C 不重合).20.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB ,QP =QD . (1)求证:四边形ABCD 是矩形; (2)求证:CD =CP .21.743+743+7212+437+=,4312⨯=,即:22(4)(3)7+=,4312=2227437212(4)243(3)((43)23++=+⨯+=+=问题:(1)填空:423+=__________,526-=____________﹔(2)进一步研究发现:形如2m n ±的化简,只要我们找到两个正数a ,b (a b >),使a b m +=,ab n =,即22()()a b m +=,a b n ⨯=﹐那么便有:2m n ±=__________.(3)化简:415-(请写出化简过程)22.由于持续高温和连日无雨,某水库的蓄水量y (万立方米)与干旱时间t (天)之间的关系满足一次函数y kt b =+,(k ,b 为常数,且k ≠0),其图象如图所示.(1)由图象知k = ,其实际意义是 ;(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸? 23.如图,四边形ABCD ,,动点P 从点B 出发,沿BC 方向以每秒的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 停止运动,设运动时间为t (秒).(1)当时,是否存在点P ,便四边形PQDC 是平行四边形,若存在,求出t 值;若不存在,请说明理由;(2)当t 为何值时,以C ,D ,Q ,P 为顶点的四边形面积等于;(3)当时,是否存在点P ,使是等腰三角形?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由.24.直线1l :3y x =-交x 轴于A ,交y 轴于B .(1)求AB 的长;(2)如图1,直线1l 关于y 轴对称的直线2l 交x 轴于点C ,直线3l :12y x b =+经过点C ,点D 、T 分别在直线2l 、3l 上.若以A 、B 、D 、T 为顶点的四边形是平行四边形,求点D 的坐标;(3)如图2,平行y 轴的直线2x =交x 轴于点E ,将直线1l 向上平移5个单位长度后交x轴于M ,交y 轴于N ,交直线2x =于点P .点()2,F t t 在四边形ONPE 内部,直线PF 交OE于G ,直线OF 交PE 于H ,求()GE ME HE +的值.25.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P . (1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).【参考答案】一、选择题 1.D 解析:D 【分析】二次根式的被开方数大于等于零,由此计算解答. 【详解】 解:∵30x -≥,x≥,∴3观察只有D选项符合,故选:D.【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.2.C解析:C【分析】判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案.【详解】解:①222+=,能构成直角三角形;345②222+≠,不能构成直角三角形;346③222+=,能构成直角三角形;51213④222+≠,不能构成直角三角形;51112∴其中直角三角形有2个;故选:C.【点睛】本题主要考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c,那么+=这个三角形就是直角三角形.3.D解析:D【解析】【分析】根据平行四边形的判定条件进行逐一判断即可.【详解】解:∵AO=OC,BO=OD,∴四边形的对角线互相平分∴D能判定ABCD是平行四边形.若AO=BO,CO=DO,证明AC=BD,并不能证明四边形ABCD是平行四边形,故C错误,若AO=OC,条件不足,无法明四边形ABCD是平行四边形,故A错误,若AC=BD,条件不足,无法明四边形ABCD是平行四边形,故B错误,故选D.【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.A解析:A【解析】【分析】根据甲、乙的进球的统计图可知,甲的成绩波动幅度比乙的波动幅度小,由此即可得到答案.【详解】解:有题意可知,甲的成绩波动幅度比乙的波动幅度小,∴22S S甲乙,故选A.【点睛】本题主要考查了方差的定义,解题的关键在于能够熟练掌握,波动越小,方差越小.5.C解析:C【分析】连接DG,可证△AGD≌△AEB,得到G点轨迹,利用点到直线的最短距离进行求解.【详解】解:连接DG,如图,,∵四边形ABCD、四边形AEFG均为正方形,∴∠DAB=∠GAE=90°,AB=AD,AG=AE,∵∠GAD+∠DAE=∠DAE+∠BAE,∴∠GAD=∠BAE,∵AB=AD,AG=AE,∴△AEB≌△AGD(S A S),∴∠PDG=∠ABE=45°,∴G点轨迹为线段DH,当PG⊥DH时,PG最短,在Rt△PDG中,∠PDG=45°,P为AD中点,DP=4,设PG=x,则DG=x,由勾股定理得,x2+x2=42,解得x=2.故选:C.【点睛】本题主要考查正方形的性质,全等三角形的判定和性质,掌握连接DG,得到G点轨迹,是解题的关键.6.D解析:D 【解析】 【分析】连接BF ,根据菱形的性质得出△ADF ≌△ABF ,从而得到∠ABF =∠ADF ,然后结合垂直平分线的性质推出∠ABF =∠BAC ,即可得出结论. 【详解】解:如图,连接BF ,∵四边形ABCD 是菱形,∠BAD =80°, ∴AD =AB ,∠DAC =∠BAC=12∠BAD =40°, 在△ADF 和△ABF 中, AD AB DAF BAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABF (SAS ), ∴∠ABF =∠ADF ,∵AB 的垂直平分线交对角线AC 于点F ,E 为垂足, ∴AF =BF ,∴∠ABF =∠BAC =40°, ∴∠DAF =∠ADF =40°, ∴∠CFD =∠ADF +∠DAF =80°. 故选:D .【点睛】本题考查菱形的性质,全等三角形的判定与性质以及三角形的外角定理等,理解图形的基本性质是解题关键.7.A解析:A 【解析】 【详解】∵直角三角形ABC 中,∠C =90°,AB =10,AC =8, ∴221086BC =-=.∵点E 、F 分别为AC 、AB 的中点,∴EF 是△ABC 的中位线, ∴116322EF BC ==⨯=. 故选A .8.B解析:B 【分析】根据图中相关信息即可判断出正确答案. 【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小, ∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=, 35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=,AP AQ xcm ==,45PH xcm ∴=,212•25y AQ PH y ∴===x ,故③正确;当6x = 时,5AQ AB cm ==,172PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确;故选B .【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题 9.x ≥2021【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】解:∵2021x -有意义,∴20210x -≥,解得:2021x ≥.故答案为:2021x ≥.【点睛】本题主要考查了二次根式有意义的条件,正确掌握定义是解题关键.10.A解析:83【解析】【分析】作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.【详解】如图所示,菱形ABCD 中,AB=AD=4,∠A=60°,过点D 作DE ⊥AB 于点E ,则3sin 6043DE AD =︒== ∴菱形ABCD 的面积为AB ∙DE=4×2383故答案为:83【点睛】本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.11.D解析:6cm【解析】【分析】过点D作DE⊥AB于E,利用勾股定理列式求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD即可求解.【详解】如图,过点D作DE⊥AB于E,∵∠C=90°,BD=10cm,BC=8cm,∴226BD BC-cm,∵∠C=90°,BD是∠ABC的平分线,∴DE=CD=6cm,即点D到直线AB的距离是6cm.故答案为:6cm.【点睛】本题考查了勾股定理、角平分线的性质、点到直线的距离等知识,在解题时要能灵活应用各个知识点是本题的关键.12.D解析:7 4【分析】设DE=x,则CE=8-x,根据折叠的性质知:CE=8-x.在直角△AED中,利用勾股定理列出关于x的方程并解答即可.【详解】解:如图,在矩形ABCD中,AB=DC=8,AD=6.设DE=x,则CE=8-x,根据折叠的性质知:AE=CE=8-x.在直角△AED中,由勾股定理得:AD2+DE2=AE2,即62+x2=(8-x)2.解得x=74.即DE的长为74.故答案是:74.【点睛】本题主要考查了翻折变换(折叠问题),矩形的性质,解题时,借用了方程思想,求得了相关线段的长度.13.y=2x-4【分析】由一次函数的图象经过(2,0),(0,-4)两点,可设一次函数解析式为y=kx+b(k≠0).然后将点的坐标代入解析式,故得2k+b=0,b=-4.进而推导出函数解析式为y=2x-4.【详解】解:设该一次函数的解析式为:y=kx+b(k≠0).由题意得:2004k bk b+=⎧⎨⋅+=-⎩,解得:24kb=⎧⎨=-⎩,∴该一次函数的解析式为y=2x-4.故答案为:y=2x-4.【点睛】本题主要考查用待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解决本题的关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.(2,0)或(5,0)【分析】先求出A ,再求出,解得,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】与轴交解析:(2,0)或(5,0)【分析】先求出A ,再求出1122y x y x =+⎧⎪⎨=+⎪⎩,解得=23x y ⎧⎨=⎩,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】1:1l y x =+与x 轴交于点A ,∴y=0,x=-1,∴A(-1,0),直线1:1l y x =+与直线21:22l y x =+交于点B , 1122y x y x =+⎧⎪⎨=+⎪⎩, 解得=23x y ⎧⎨=⎩, ∴B (2,3),当点C 为直角顶点时,∴BC ⊥AC ,∴BC ∥y 轴,B 、C 横坐标相同,C (2,0),当点B为直角顶点时,∴BC⊥AB,1:1l y x=+,k=1,∴∠BAC=45°,∴△ABC为等腰直角三角形,∴AB=()222+1+3=32,AC=2AB=6,AO=1,CO=AC-AO=5,C(5,0),C点坐标为(2,0)或(5,0).故答案为:(2,0)或(5,0).【点睛】本题考查等腰直角三角形的性质,掌握直角三角形的顶点分两种情况讨论解决问题是关键.16.【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到△CDE与△CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在Rt△BCF中利用勾股定理即可得到x的值,在Rt△AEF中利用勾股4133【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到△CDE与△CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在Rt△BCF中利用勾股定理即可得到x的值,在Rt△AEF中利用勾股定理即可求出EF的长度.【详解】解:如图所示,连接CE,∵E 为AD 中点,∴AE =DE =4,由折叠可得,AE =GE ,∠EGF =∠A =90°,∴DE =GE ,又∵∠D =90°,∴∠EGC =∠D =90°,又∵CE =CE ,∴Rt △CDE ≌Rt △CGE (HL ),∴CD =CG =6,设AF =x ,则GF =x ,BF =6﹣x ,CF =6=x ,∵∠B =90°,∴Rt △BCF 中,BF 2+BC 2=CF 2,即(6﹣x )2+82=(x+6)2,解得x =83, ∴AF =83, ∵∠A =90°,∴Rt △AEF 中,EF 22AE AF +2284()3+4133 4133【点睛】 本题主要考查了矩形的性质以及折叠问题,解题时我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题17.(1);(2)【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式;解析:(1)4;(2)18-【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式=4=4=(2)原式=⨯624=--18=-【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则并能正确进行运算是关键. 18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=,∴△ABC 为直角三角形, ∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF为等腰三角形,∵2270km=-=,ED EC CD∴EF=140km,∵台风的速度为20km/h,∴140÷20=7h,∴台风影响该海港持续的时间有7h.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1),;(2)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可.(2)利用勾股定理的逆定理判断即可.(3)利用等高模型解决问题即可.【详解】解:(1)BC解析:(12922)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可.(2)利用勾股定理的逆定理判断即可.(3)利用等高模型解决问题即可.【详解】解:(1)BC2225+29,BD22+4244(2)结论:不是直角.理由:∵CD5BC29,BD=42∴BC2+CD2≠BD2,∴∠BCD≠90°.(3)如图,四边形ABED即为所求.【点睛】本题考查作图-应用与设计作图,勾股定理,勾股定理的逆定理,四边形的面积等知识,解题的关键是掌握勾股定理以及勾股定理的逆定理解决问题,属于中考常考题型.20.(1)见解析;(2)见解析【分析】(1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即解析:(1)见解析;(2)见解析【分析】(1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即可;(2)连接CQ,根据全等三角形的判定定理HL推出Rt△CDQ≌Rt△CPQ,根据全等三角形的性质推出即可.【详解】解:证明:(1)∵PQ⊥CP,∴∠QPC=90°,∴∠QPA+∠BPC=180°-90°=90°,∵∠QPA=∠PCB,∴∠BPC+∠PCB=90°,∴∠B=180°-(∠BPC+∠PCB)=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)连接CQ,∵四边形ABCD是矩形,∴∠D=90°,∵∠CPQ=90°,∴在Rt△CDQ和Rt△CPQ中,CQ CQ DQ PQ=⎧⎨=⎩, ∴Rt △CDQ ≌Rt △CPQ (HL ),∴CD =CP .【点睛】本题考查了三角形内角和定理,垂直的定义,矩形的判定和性质,全等三角形的性质和判定,能求出∠B =90°和Rt △CDQ ≌Rt △CPQ 是解此题的关键.21.(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算; (2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果; (3)将写成,4解析:(112)a b >;(3【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果;(34写成3522+,就可以凑成完全平方的形式进行计算. 【详解】解:(11;(2)a b ===>;(3. 【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.22.(1);水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可;(2)根据(1)中函数解析式,令万立方米时,解析:(1)30-;水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可; (2)根据(1)中函数解析式,令360y =万立方米时,求出对应的干旱天数t 即可; (3)根据(1)中函数解析式,令0y =万立方米时,求出对应的干旱天数t ,减去(2)中的干旱天数即为所求.【详解】解:(1)一次函数y kt b =+,(k ,b 为常数,且k ≠0),根据图像可得:900=2030040k b k b+⎧⎨=+⎩, 解得:301500k b =-⎧⎨=⎩, 所以一次函数解析式为:301500y t =-+,k 的值代表每干旱一天水库蓄水量将减少30万立方米,故答案为:-30;水库蓄水量每天减少30万立方米;(2)由(1)知一次函数解析式为:301500y t =-+,令360y =,即360301500t =-+,解得:38t =,故38天后将发生严重干旱警报;(3)由(1)知一次函数解析式为:301500y t =-+,令0y =,即0301500t =-+,解得:50t =,503812-=(天),故预计再持续12天,水库将干涸.【点睛】此题考查了函数的图像问题,一次函数的实际应用,根据图像求出一次函数的解析式是解题的关键.23.(1)存在,t=3;(2)秒;(3)存在,t=3秒或t=秒【分析】(1)根据运动得出CP=15-3t ,DQ=12-2t ,进而用平行四边形的对边相等建立方程求解即可;(2)要使以C 、D 、Q 、P 为解析:(1)存在,t =3;(2)秒;(3)存在,t =3秒或t =秒【分析】(1)根据运动得出CP =15-3t ,DQ =12-2t ,进而用平行四边形的对边相等建立方程求解即可;(2)要使以C 、D 、Q 、P 为顶点的梯形面积等于30cm 2,可以分为两种情况,点P 、Q 分别沿A D 、BC 运动或点P 返回时,再利用梯形面积公式,即=30,因为Q 、P点的速度已知,A D、A B、BC的长度已知,用t可分别表示DQ、BC的长,解方程即可求得时间t;(3)使△PQD是等腰三角形,可分三种情况,即PQ=P D、PQ=Q D、QD=PD;可利用等腰三角形及直角梯形的性质,分别用t表达等腰三角形的两腰长,再利用两腰相等即可求得时间t.【详解】解:(1)∵四边形PQDC是平行四边形∴DQ=CP当0<t<5时,点P从B运动到C,∵DQ=AD-AQ=12-2t,CP=15-3t,∴12-2t=15-3t解得t=3,∴t=3时,四边形PQDC是平行四边形;(2)如图2,①当点P是从点B向点C运动,由(1)知,CP=15-3t,DQ=12-2t,∵以C、D、Q、P为顶点的四边形面积等于30cm2,∴S四边形CDQP==30,即12(15−3t+12−2t)×10=30,解得:t=,②当点P是从点C返回点B时,由运动知,DQ=12-2t,CP=3t-15,∵以C、D、Q、P为顶点的四边形面积等于30cm2,∴S四边形CDQP=12(DQ+CP)•AB=12(12−2t+3t−15)×10=30,解得:t=9(舍去),∴当t为秒时,以C、D、Q、P为顶点的四边形面积等于30cm2;(3)当PQ=PD时,如图3,作PH⊥AD于H,则HQ=HD,∵QH =HD =12DQ =12(12-2t )=6-t ,由AH =BP ,∴6-t +2t =3t解得:t =3秒;当PQ =DQ 时,QH =AH -AQ =BP -AQ =3t -2t =t ,DQ =12-2t ,∵DQ 2=PQ 2=t 2+102,∴(12-2t )2=102+t 2,整理得:3t 2-48t +44=0,解得:t =秒, ∵0<t <5,∴t =秒, 当DQ =PD 时,DH =AD -AH =AD -BP =12-3t ,∵DQ 2=PD 2=PH 2+HD 2=102+(12-3t )2∴(12-2t )2=102+(12-3t )2即5t 2-24t +100=0,∵△<0,∴方程无实根,综上可知,当t =3秒或t =秒时,△PQD 是等腰三角形. 【点睛】本题是四边形综合题,主要考查了平行四边形的判定与性质、梯形的面积、等腰三角形的性质,解题的关键是分类思想与方珵思想的综合运用.24.(1);(2)点D 的坐标为或或;(3).【解析】【分析】(1)根据直线的解析式求出其与x 轴的交点A 和与y 轴的交点B 的坐标,进而求出OA 与OB 的长度,再使用勾股定理即可求出AB 的长度;(2)根解析:(1)32AB =2)点D 的坐标为(2,1)--或(4,1)-或(2,5)-;(3)()8GE ME HE +=.【解析】【分析】(1)根据直线1l 的解析式求出其与x 轴的交点A 和与y 轴的交点B 的坐标,进而求出OA 与OB 的长度,再使用勾股定理即可求出AB 的长度;(2)根据直线1l 和直线2l 关于y 轴对称求出直线2l 的解析式,再求出直线3l 的解析式,根据点D 在直线2l 上,可设点(,3)D m m --,然后分类讨论点D 是在线段BC 上,还是在线段BC 的延长线上,或者在线段CB 的延长线上,在每一种情况下结合平行四边形的性质和平移的性质,可用含有m 的式子表示点T 的坐标,再根据点T 在直线3l 上求出m 的值,即可求出点D 的坐标;(3)根据平移的性质求出直线MN 的解析式,再结合直线x =2求出点(2,0)E ,点(2,4)P 和点(2,0)M -,进而求出ME 的长度,然后再结合点()2,F t t 求出直线:(2)2PF y t x t =+-和直线:OF y tx =,进而求出点2,02t G t ⎛⎫ ⎪+⎝⎭和(2,2)H t ,即可得到GE 与HE 的长度,最后再代入计算()GE ME HE +即可.【详解】解:(1)∵直线1:3l y x =-交x 轴于A ,交y 轴于B ,∴0A y =,0B x =.∴03A x =-,03B y =-.∴3A x =,3B y =-.∴(3,0)A ,(0,3)B -.∴3OA =,3OB =.∵AO BO ⊥, ∴AB =(2)∵直线1l 关于y 轴对称的直线2l 交x 轴于点C ,直线1l 交x 轴与点(3,0)A , ∴点A 与点C 关于y 轴对称.∴(3,0)C -.∵点(0,3)B -在y 轴上,∴直线2l 经过点B .∴设直线23:l y kx =-.∵直线2l 经过点(3,0)C -,∴033k =--.解得:1k =-.∴直线23:l y x =--.∵直线31:2l y x b =+经过点(3,0)C -, ∴10(3)2b =⨯-+.解得:32b =. ∴直线31322:y x l =+. ∵点D 在直线23:l y x =--上,∴设点(,3)D m m --.①如下图所示,当点D 在线段BC 上时.∵四边形ABDT 是平行四边形,∴//,AT BD AT BD =.∴BD 经过平移之后到达AT .∴(3,)T m m +-.∵点T 在直线31322:y x l =+上, ∴13(3)22m m -=++,解得2m =-. ∴1(2,1)D --;②如下图所示,当点D 在线段BC 的延长线上时.∵四边形ABTD 是平行四边形,∴//,AD BT AD BT =.∴AD 经过平移之后到达BT .∴(3,6)T m m ---.∵点T 在直线31322:y x l =+上, ∴136(3)22m m --=-+,解得4m =-. ∴2(4,1)D -;③如下图所示,当点D 在线段CB 的延长线上时.∵四边形ADBT 是平行四边形,∴//,AT DB AT DB =.∴BD 经过平移之后到达TA .∴(3,)T m m -.∵点T 在直线31322:y x l =+上, ∴13(3)22m m =-+,解得2m =. ∴3(2,5)D -.综上所述,点D 的坐标为(2,1)--或(4,1)-或(2,5)-.(3)直线1l 向上平移5个单位长度得到的直线MN 解析式为352y x x =-+=+. ∵直线x =2与x 轴交于点E ,与直线MN 交于点P ,直线MN 交x 轴于点M ,∴(2,0)E ,2P x =,0M y =.∴22P y =+,02M x =+.∴4P y =,2M x =-.∴(2,4)P ,(2,0)M -.∴2(2)4E M ME x x =-=--=,设直线PF 的解析式为y px q =+,∵直线PF 经过点(2,4)P 与()2,F t t , ∴242,,p q t tp q =+⎧⎨=+⎩解得2,2p t q t =+⎧⎨=-⎩. ∴直线PF 的解析式为(2)2y t x t =+-.∵直线PF 与x 轴交于点G ,∴0G y =.∴0(2)2G t x t =+-. 解得:22G t x t =+. ∴2,02t G t ⎛⎫ ⎪+⎝⎭. ∴24222E G t GE x x t t =-=-=++. 设直线OF 的解析式为y =cx ,∵直线OF 经过点()2,F t t , ∴2t ct =.解得:c t =.∴直线OF 的解析式为y tx =.∵直线OF 与直线2x =交于点H .∴2H x =.∴22H H y tx t t ==⨯=.∴(2,2)H t .∴202H E HE y y t t =-=-=. ∴4()(42)82GE ME HE t t +=+=+. 【点睛】本题考查了一次函数的综合应用,涉及坐标与长度的关系,勾股定理,轴对称和平移的性质,平行四边形的性质和判定定理,代数式求值,应用一次函数的性质正确求出点的坐标是解题关键. 25.(1)见解析;(2)120;(3)90;(4)72;(5).【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠C解析:(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中,CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605, 正n 边形时,∠CPN=360n , 故答案为:360n . 【点睛】此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学测试卷
2012 11 29 星期四 WXG
一,细心选一选,没有你不会做的 18分
1.若把直线y=2x -3向上平移3个单位长度,得到直线( )
A .y=2x B.y=2x -6 C. y=5x -3 D.y=-x -3
2. 已知直线y=kx+b 不经过第三象限则下列结论正确的是( )
A .k >0, b >0;
B .k <0, b >0;
C .k <0, b <0;
D .k <0, b ≥0
3若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )
A.第一象限
B. 第二象限
C.第三象限
D.第四象限
4. 如果直线y =x +m 与两坐标轴围成的三角形面积等于2,则m 的值是( )
A 、±3
B 、3
C 、±4
D 、4
5.电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通
话均不超过3分钟,则每月应缴费y (元)与市内电话通话次数x 之间的函数关系式
是( )
A .y =28x +0.20
B .y =0.20x +28x
C .y =0.20x +28
D .y =28-0.20x
6.如图6-2,圆柱形开口杯底固定在长方体水池底,向水池匀速注入水(倒在杯外),水
池中水面高度是h ,注水时间为t ,则h 与t 之间的关系大致为下图中的( )
二.认真填一填,相信你能行。

25分
7. 若点P(a ,b) 设在某个变化过程中有两个变量x 和y ,如果对于变量x 取值范围内的
______,另一个变量y 都有______的值与它对应,那么就说______是自变量,______是
的函数.
8.某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x 件,应收货款y 元,
那么y 与x 的函数关系式是______,自变量x 的取值范围是______
9求出下列函数中自变量x 的取值范围.321x y -= .23
++=x x y _
10 一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是
11已知一次函数y =kx -5,请你补充一个条件 ,使y 随x 的增大而减小。

12.已知点P既在直线32y x =--上,又在直线28y x =+上,则P点的坐标为
____________.
13一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象如图8-4所示,则当x ______时,y 1<y 2;当
x ______时,y 1=y 2;当x ______时,y 1>y 2.
x
14填空:同底数幂相乘,底数 ,指数 ,即a m ·a n =
(m ,n 都是正整数).
(1)3×3×3×3×3=3( ); (2)a ·a ·a ·a ·a ·a=a ( ).
(3)2m ·2·22m-1=
15.判断正误:对的画“√”,错的画“×”.
(1)b 5·b 5=2b 5; ( ) (2)b 5+b 5=b 10; ( )
(3)b 5·b 5=b 25; ( ) (4)b ·b 5=b 5; ( )
(5)b 5·b 5=b 10. ( )
三、想一想再解答,都是你会做的
1. 已知:等腰三角形的周长为50cm ,若设底边长为x cm ,腰长为y cm ,求y 与x 的函数
解析式及自变量x 的取值范围.7分
2,如图,直线y=1
2x+2交x 轴于点A ,交y 轴于点B 点P (x , y )是线段AB △PAO 的面积为S ,试求S 与x 的函数关系式。

8分
3.已知函数)2()12(232+--=-n x m y m .9分
(1)当m 、n 为何值时,其图象是过原点的直线;
(2)当m 、n 为何值时,其图象是过(0,4)点的直线;
(3)当m 、n 为何值时,其图象是一条直线且y 随x 的增大而减小.
4已知:一次函数y=-2x+3.6分
(1)在平面直角坐标系中,画出此函数的图象;
(2)当x为何值时,y>0?
(3)当x为何值时,y≤1?
(4)当-2≤x≤3时,求y的变化范围,并指出当x为何值时,y有最大值?
(5)当1<y<5时,求x的变化范围.
5 ,已知某一次函数自变量x的取值范围是0≤x≤10,函数y的取值范围,10≤y≤30 , 求此函数解析式4分
6.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
(1)求a,c的值
(2)当x≤6,x≥6时,分别写出y于x的函数关系

若该户11月份用水量为8立方米,求该户11月
份水费是多少元?8分
7.某造纸厂污水处理的剩余污水随着时间的增加而减少,剩余污水量V(万米3)与污水处理时间t(天)的关系如图5-2所示,
(1)由图象求出剩余污水量V(万米3)与污水处理时间t(天)之间的函数解析式;
(2)污水处理连续10天,剩余污水还有多少万立方米?
(3)按照图中的规律,若想将全部污水处理干净,需要连续处理污水多少天?
(4)平均一天可处理污水多少万立方米?8分
8.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机
计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其他费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)9分
9某面粉厂有工人20名,为获得更多利润,增设加工面条项目,用本厂生产的面粉加工成面条(生产1kg面条需用面粉1kg).已知每人每天平均生产面粉600kg,或生产面条400kg.将面粉直接出售每千克可获利润0.2元,加工成面条后出售每千克面条可获利
0.6元,若每个工人一天只能做一项工作,且不计其他因素,设安排x名工人加工面条
(1)求一天中加工面条所获利润y1(元);
(2)求一天中剩余面粉所获利润y2(元);
(3)当x为何值时,该厂一天中所获总利润y(元)最大?最大利润为多少元?9分
10.在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:
方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)
方案二:购买门票方式如图8-9所示.9分
解答下列问题:
(1)方案一中,y与x的函数关系式为______;
方案二中,当0≤x≤100时,y与x的函数关系式为______,
当x>100时,y与x的函数关系式为______.
图8-9
2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场足场赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.。

相关文档
最新文档