作业导航-3.形状相同的图形 4.相似多边形

合集下载

北师大版数学八年级下册《相似多边形》相似图形

北师大版数学八年级下册《相似多边形》相似图形
∠ E=_80_° ,∠ A´=_11_8°,
A
3
B 118° E
C
D B´
2

6

80°
C´D´=_4_

五边形A´B´C´D´E´与五边形
ABCDE的相似比为_2:_1
2、如图:下面的两个菱形相似吗?为什么?
满足什么条件的两个菱形一定相似? A
120°
H
D
B
D´ E
60°
F
C
G
一块长3m、宽1.5m的矩形黑板如下图所
示,镶在其外围的木质边框宽7.5cm。边框的
内外边缘所成的矩形相似吗?为什么?
E
3m
F
A
B
1.5m
(1.5+0.075 2)m
D
H
(3+0.075 2)m
1.5︰3≠1.65︰3.15
C G
直观有时是不可靠的
1、五边形ABCDE∽五边形 A´B´C´D´E´,则
答:如果两个多边形相似,它们 的对应角都相等,对应边成比例。
1.观察下面两组图形,图(1)中的两个 图形相似吗?为什么?
10
正方形
12 (1)
菱形
10
12
答:不相似。因为虽然它们对应边是成比例
的,但它们的对应角不相等。
图(2)中的两个图形相似吗?为什么?
10 正方形
8 矩形
10
(2)
12
答:不相似。因为虽然它们对应角相等, 但它们对应边不成比例。
(2)在上图两个多边形中,相等内角的两边是否成比例?
AB BC CD DE EF FA
A1B1 B1C1 C1D1 D1E1 E1F1 F1 A1

人教版初中数学第二十七章相似知识点

人教版初中数学第二十七章相似知识点

第二十七章相似一、目标与要求1.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.2.能根据相似比进行计算.3.通过与相似多边形有关概念的类比,得出相似三角形的定义,领会特殊与一般的关系.4.能根据定义判断两个多边形是否相似,训练学生的判断能力.5.能根据相似比求长度和角度,培养学生的运用能力.6.通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.二、知识框架三、重点、难点1.理解并相似三角形的判定与性质2.位似图形的有关概念、性质与作图.3.利用位似将一个图形放大或缩小.4.用图形的坐标的变化来表示图形的位似变换.5.把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.四、中考所占分数与题型分布本章会出1-2道选择、填空题,简答题必有一道三角形和相似形的综合题,本章约占15-20分.第二十七章相似27.1 图形的相似1.每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形.2.相似图形强调图形形状相同,与它们的位置、颜色、大小无关.3.相似图形不仅仅指平面图形,也包括立体图形相似的情况.4.我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.5.若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.例1:1.从哈哈镜和平面镜中看见不同的镜像,是否相似?2.从放大镜或者望远镜中看见不同的镜像,是否相似?6.相似多边形对应角相等,对应边的比相等.对应边的比称为相似比.例2:在比例尺为1:10000000的地图上,量的A、B两地的距离为10cm,求两地的实际距离.解:地图与实际的环境是相似的,因此地图中的1cm相当于实际10000000cm,即100km.A、B两地相距10cm,相当于1000km.例3:如图27.1-1,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x.图27.1-1解:四边形ABCD 和EFGH 相似,他们的对应角相等,因此可得83o C α∠=∠=,118o A E ∠=∠=在四边形ABCD 中,四边形ABCD 和EFGH 相似,他们的对应边相等,由此可得EH EF AD AB =,即242118x = 解得28x cm =27.2 相似三角形27.2.1 相似三角形的判定在△ABC 和△A ‘B ‘C ’中,如果''',,A A B B C C ∠=∠∠=∠∠=∠,''''''=AB BC AC k A B B C AC==,我们就说△ABC 和△A ‘B ‘C ’相似,记作△ABC ∽△A ‘B ‘C ’,k 就是他们的相似比.对应角相等,对应边成比例的两个三角形叫做相似三角形. 成比例线段〔简称比例线段〕:对于四条线段a 、b 、c 、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a =c b d〔或a :b=c :d 〕,那么,这四条线段叫做成比例线段,简称比例线段. 例1.如图27.2-1,在△ABC 中,点D 是边AB 的中点,DE//BC,DE 交AC 于点E,△ADE 与△ABC 有什么关系? 解:在△ADE 与△ABC 中,A A ∠=∠DE//BC过点E 作EF//AB,EF 交BC 于点F.在□BFED 中,DE=BF,DB=EF又1,2A C ∠=∠∠=∠∴△ADE ∽△EFCAE=EC=在此处键入公式。

《相似多边形》图形的相似PPT精品课件

《相似多边形》图形的相似PPT精品课件

∵正三角形的三边都相等,

.
B
C
D
E
F
4.3 相似多边形
例1 下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?
(2) 正方形 ABCD 与正方形 EFGH.
A
B
解:(1)∵正方形的每个角都是直角,

D
C
∵正方形的四边相等,
E
F

H
G
4.3 相似多边形
归纳
相似多边形:各角分别相等、各边对应成比例的两个多边形叫做相似 多边形. 相似比:相似多边形对应边的比叫做相似比 .
教案下载: . /jiaoan/
ppt论坛: . .cn
ppt课件: . /kejian/
语文课件: . /kejian/yuwen/ 数学课件: . /kejian/shuxue/
英语课件: . /kejian/yingyu/ 美术课件: . /kejian/meishu/
科学课件: . /kejian/kexue/ 物理课件: . /kejian/wuli/
4.3 相似多边形
思考 1:任意两个正 n 边形相似吗? 答:任意两个正 n 边形都相似.
思考 2:任意两个菱形相似吗? 答:任意两个菱形不一定相似.
4.3 相似多边形
1. 观察下面两组图形,图中的两个图形相似吗?为什么?
10 正方形
12
菱形
10
12
答:不相似. 因为虽然它们对应边是成比例的,但它们的对应角不相等.
与 F1A1 的比都相等,称为对应边.
A1
B1
A
B
F
C
F1
C1
ED
E1

2024-2025学年北师版初中数学九年级上册教案第四章图形的相似与整理4.3相似多边形

2024-2025学年北师版初中数学九年级上册教案第四章图形的相似与整理4.3相似多边形

第四章图形的相似3 相似多边形教学目标教学反思1.了解相似多边形的定义,掌握相似多边形的性质.2.在探索相似多边形的性质时掌握类比的方法.3.体会相似多边形与相似三角形的区别与联系.教学重难点重点:相似多边形的判定.难点:两个多边形相似性质的简单应用.教学过程导入新课教师用多媒体出示几个图形,让学生找出形状相同的图形,并连线.然后教师提出问题形状相同的两个图形有什么样的关系?由这一问题来引入本节课要研究的课题.探究新知一、预习新知下图中的两个多边形分别是幻灯片上的多边形ABCDEF和银幕上的多边形A1B1C1D1E1F1.它们的形状相同吗?教学反思师:它们的形状相同吗?生:六边形ABCDEF和六边形A1B1C1D1E1F1形状相同.师:在上面的两个多边形中,是否有相等的内角?设法验证你的猜测.生:∠A与∠A1,∠B与∠B1,∠C与∠C1,∠D与∠D1,∠E与∠E1,∠F与∠F1分别对应相等.师:这样的角我们称为对应角,在上面的两个多边形中,夹相等内角的两边是否成比例?生:通过测量AB与A1B1,BC与B1C1,CD与C1D1,DE与D1E1,EF与E1F1,F A与F1A1的比相等.师:这样的边我们称为对应边.师:从上面的讨论结果来看,大家能否猜到相似多边形的定义呢?生:可以,各角分别相等、各边成比例的两个多边形叫做相似多边形.师:相似怎样表示呢?请同学们认真看书.生:六边形ABCDEF和六边形A1B1C1D1E1F1相似,记作六边形ABCDEF∽六边形A1B1C1D1E1F1.师:相似多边形对应边的比叫做相似比,一般用字母k表示,“∽”读作“相似于”.在记两个多边形相似时,需要注意什么?生:要把表示对应顶点的字母写在对应的位置上.二、合作探究观察下面两组图形.(1)(2)师:(1)中的两个图形相似吗?生:(1)中的两个图形不相似.师:为什么?教学反思生:虽然这两个图形的对应边成比例,但是对应角不相等,所以这两个图形不相似.师:(2)中的两个图形相似吗?生:也不相似.师:这又是为什么呢?生:虽然这两个图形的对应角相等,但是对应边不成比例,所以这两个图形不相似.教师补充:两个多边形不相似,它们的对应角可能相等,如上面的(2);两个多边形不相似,它们的对应边可能成比例,如上面的(1).师:任意两个等边三角形相似吗?生:相似,因为它们的对应角都为60°,对应边成比例.师:任意两个正方形呢?生:也是相似的师:那任意两个正n边形呢?生:两个正n边形的对应角相等,对应边成比例,所以它们都是相似的.师:任意两个菱形相似吗?生:不一定相似师:为什么?生:虽然对应边成比例,但是菱形对应角不一定相等,所以不一定相似.巩固练习在矩形ABCD中,AB=4,BC=3,下列四个矩形中与矩形ABCD相似的是()答案:A典型例题【例1】如图,四边形ABCD与四边形A′B′C′D′相似,求∠A的度数与x 的值.【问题探索】此题考查相似多边形的性质,如何用相似多边形的性质求∠A 的度数与x 的值?【解】由相似图形的性质,知∠A =∠A ′=107°,4x =52,x =85.【总结】相似多边形的对应边成比例,对应角相等. 【例2】在宽为20 m ,长为30 m 的矩形花坛四周修筑小路.(1)如果四周的小路的宽均相等,都是x ,如图1,那么小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 相似吗?请说明理由;(2)如果相对着的两条小路的宽均相等,宽度分别为x ,y ,如图2,试问小路的宽x 与y 的比值为多少时,能使得小路四周所围成的矩形A′B ′C ′D ′和矩形ABCD 相似?请说明理由.图1 图2【问题探索】判断两个矩形是否相似要从边出发,求小路的宽x 与y的比值,要运用相似图形的性质.【解】(1)如果四周的小路的宽均相等,那么小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 不相似.理由:设四周的小路的宽为x m.30230x +=1515x +,20220x +=1010x+. ∵ 30230x +20220x+≠, ∴ 小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 不相似. (2)∵ 当20220y +=30230x+时,小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 相似,解得xy=32, 教学反思∴路的宽x与y的比值为3∶2时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.【总结】相似多边形的对应边成比例,对应角相等,两个边数相同的多边形,如果各边对应边成比例,各角对应相等,那么它们就相似.课堂练习1.放大镜中的多边形与原多边形的关系是()A.形状不同,大小不同B.形状相同,大小相同C.形状相同,大小不同D.形状不同,大小相同2.给出下列命题:①所有的正方形都相似;①所有的矩形都相似;①所有的三角形都相似;①所有的等腰直角三角形都相似;①所有的正五边形都相似.其中,正确命题为()A.①①①B.①①①C.①①①D.①①①3.若△ABC①△A′B′C′,且AB︰A′B′=1∶2,则△ABC与△A′B′C′相似比是,△A′B′C′与△ABC的相似比是.4.如图,ABCD∽AEFB,且AB=3 cm,BC=6 cm.求AE的长.参考答案1.C2.C3.1224.解:∵ABCD∽AEFB,∴ABAE =BCEF.又∵AB=3 cm,BC=6 cm,EF=AB=3 cm,∴AE=3×36=32.课堂小结(学生总结,老师点评)1.相似多边形的定义2.相似多边形的性质3.相似比的定义布置作业习题4.4第1题、第2题板书设计第四章图形的相似3 相似多边形1.相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.2.相似比:相似多边形对应边的比叫做相似比.。

相似多边形几种基本模型

相似多边形几种基本模型

相似多边形几种基本模型简介相似多边形是指具有相似形状但大小可以不同的多边形。

在几何学中,相似多边形的研究是十分重要的,因为相似多边形在实际应用中有广泛的应用,例如地图制作、建筑设计等。

本文将介绍几种相似多边形的基本模型及其性质。

1. 全等多边形全等多边形是一种特殊的相似多边形,指的是具有完全相同形状和大小的多边形。

全等多边形有着相同的内角和边长,且对应的边和角完全相等。

在实际应用中,全等多边形常用于图形的复制和移动。

2. 等角多边形等角多边形是指具有相似形状但角度完全相等的多边形。

等角多边形的边长可以不同,但是对应的角度是相等的。

在相似多边形中,等角多边形是一类重要的模型,它们经常用于地图制作和建筑设计中。

3. 等比例多边形等比例多边形是指边长成比例但角度不一定相等的多边形。

等比例多边形的每两个相邻边的比值相等,同时对应的内角和外角成比例。

等比例多边形的性质使其在数学和物理领域中有广泛应用,例如计算机图形学和模型缩放。

4. 递推相似多边形递推相似多边形是指由一个基本多边形通过递推公式生成的一系列相似多边形。

递推相似多边形的边和角都是按照一定比例不断增长或缩小的。

递推相似多边形通常用于数学的递推原理和图形的渐进构造。

5. 黄金分割多边形黄金分割多边形是指由黄金比例所确定的一类相似多边形。

黄金分割比例是指将一条线段分成两部分,其中较短部分与整体的比等于较长部分与较短部分的比例。

黄金分割多边形的边长和角度都可以通过黄金比例进行计算。

总结相似多边形是几何学中重要的研究对象,它们具有相似的形状但大小可以不同。

全等多边形和等角多边形是相似多边形的特殊情况,它们在实际应用中有广泛的应用。

等比例多边形、递推相似多边形和黄金分割多边形是相似多边形的其他常见模型,它们在数学和物理学中也有重要的应用。

对于研究相似多边形及其模型,理解它们的性质和特点是很关键的。

以上是关于“相似多边形几种基本模型”的文档,共计800字。

《相似多边形》课件

《相似多边形》课件

工程测量
工程师使用相似多 边形来确定难以到 达的物体或地形的 尺寸。
解题技巧
绘制图形
首先绘制出相似多边形,标明对应边和角边形的未知 量。
确定比例尺
使用对应边的长度比例计算相似多边形的比 例尺。
检验结果
检查计算结果是否与已知信息和比例尺相 符。
总结
1
相似多边形概念
相似多边形是指形状相同、大小不同的多边形。
2
相似多边形特征
相似多边形的对应角度相等,对应边成比例。
3
相似多边形的用途
相似多边形可用于建筑设计、地图制作、影视特效等。
相似多边形
什么是相似多边形?学习相似多边形概念和基本特征,探索相似多边形的性 质和应用。
基本特征
1 定义
2 比例尺
相似多边形是指形状相同、大小不同的多 边形。它们的对应角度相等,对应边成比 例。
相似多边形的边长比例称为比例尺。
3 相似判定
4 尺形相似
两个多边形相似,必须满足一个条件:对 应角度相等。
比例判定
如果两个多边形的对应边成比 例,则它们相似。
旋转判定
如果一个多边形围绕另一个多 边形的一个定点旋转,可以重 合,则它们相似。
应用场景
建筑物
设计师使用相似多 边形来确定建筑物 的比例和尺寸。
地图
地图使用相似多边 形来表示现实世界 中的物体和地形。
影视特效
影视特效使用相似 多边形来制作逼真 的计算机图形。
两个多边形相似,不一定尺寸相同。但如 果它们的尺寸相同,则称为尺形相似。
性质
✔️ 对应角度相等 ✔️ 对应边成比例 ✔️ 相似图形面积比等于边长比的平方 ✔️ 多边形的比例尺相等,则这些多边形相似

北师大版数学九年级上册4.3 相似多边形教案

北师大版数学九年级上册4.3 相似多边形教案

3相似多边形●归纳导入下列每组图形形状相同吗?每组图形中边与角分别有什么关系?【归纳】相似多边形的定义:各角分别__相等__各边__成比例__的两个多边形叫做相似多边形.【教学与建议】教学:通过图形的比较,归纳相似多边形所具备的共同特征,导入相似多边形的定义.建议:强调相似多边形定义的两个关键点:一是各角分别相等;二是各边成比例.●类比导入色彩斑斓的世界中有许多形状相同的图形,这些图形的形状相同,大小不等,我们称之为相似图形.今天,老师就带领同学们来了解相似王国里的一个伟大家族——相似多边形(板书课题).【教学与建议】教学:收集相似图形的信息,体会相似图形在生活中的实际意义,自然引出课题——相似多边形.建议:让学生口答图片的异同,教师补充.命题角度1利用相似多边形的定义判断相似多边形具备的两个关键点:①各角分别相等;②各边分别成比例.【例1】(1)已知矩形ABCD中,AB=4,BC=3,下列四个矩形中与矩形ABCD相似的是(A)A B C D(2)下列各组图形中相似的有__①②__.(填序号)①放大镜下放大后的图象和原来的事物;②幻灯片的底片与投影在屏幕上的画面;③天空中两片白云的照片.命题角度2利用相似多边形的性质计算利用相似多边形的性质进行计算的关键是找准对应边和对应角.【例2】(1)一个五边形的边长分别为2,3,4,5,6,另一个和它相似的五边形的最大边长为24,则这个五边形的最短边长为(B)A.6 B.8 C.10 D.12(2)在四边形ABCD与四边形A′B′C′D′中,AB=3,BC=5,∠D=50°,A′B′=6,要使四边形ABCD∽四边形A′B′C′D′,则B′C′=__10__,∠D′=__50°__.高效课堂教学设计1.掌握相似多边形和相似比的概念.2.利用定义判断两个多边形是否相似.3.掌握相似多边形的性质,能根据相似比进行相关的计算.▲重点相似多边形的定义和性质.▲难点如何判断两个多边形是否相似.◆活动1创设情境导入新课(课件)观察以下三组图形,每一组图形的对应边、对应角有什么关系呢?(1)(2)(3)◆活动2 实践探究 交流新知 【探究1】相似多边形的概念和性质 教师展示课件(播放动画)在这两个多边形中,是否有相等的内角?夹相等内角的两边是否成比例? 归纳:1.各角分别相等、各边成比例的两个多边形叫做相似多边形. 2.相似用“∽”表示,读作“相似于”.例如,在上图中,六边形ABCDEF 与六边形A 1B 1C 1D 1E 1F 1相似,记作六边形ABCDEF ∽六边形A 1B 1C 1D 1E 1F 1.在记两个多边形相似时,要把表示对应顶点的字母写在对应的位置上.3.相似多边形对应边的比叫做相似比.例如,五边形ABCDE ∽五边形A 1B 2C 1D 1E 1,对应边的比AB A 1B 1 =BCB 1C 1=CD C 1D 1 =DE D 1E 1 =EA E 1A 1 =45 ,因此五边形ABCDE 与五边形A 1B 1C 1D 1E 1的相似比为k 1=45,五边形A 1B 1C 1D 1E 1与五边形ABCDE 的相似比为k 2=54.讨论:下面每组图形形状相同,它们的对应角有怎样的关系?对应边呢? (1)正三角形ABC 与正三角形DEF ; (2)正方形ABCD 与正方形EFGH .(1) (2)归纳:相似多边形的对应边成比例,对应角相等. 【探究2】相似多边形的判定 1.想一想:(1)任意两个等边三角形相似吗?任意两个正方形呢?任意两个正n 边形呢? (2)任意两个菱形相似吗?2.观察下面两组图形,提出问题(多媒体展示): 图①中的两个图形相似吗?为什么? 图②中的两个图形呢?与同伴交流.图① 图②如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗? 归纳:相似多边形必须同时具备两点:对应角相等、对应边成比例. ◆活动3 开放训练 应用举例例1 一块长3 m 、宽1.5 m 的矩形黑板如图所示,镶在其外围的木质边框宽7.5 cm.边框的内外边缘所成的矩形相似吗?为什么?(让学生先判断,分组讨论,再通过计算验证自己的判断)【方法指导】对应边成比例的两个矩形相似.解:不相似.理由如下:内边缘矩形长3 m ,宽1.5 m ,外边缘所成的矩形长为3+0.075×2=3.15(m),宽为 1.5+0.075×2=1.65(m).∴边框的内外边缘所成的矩形的长之比为33.15 =2021 ,宽之比为1.51.65 =1011 .∵2021≠1011,∴边框的内外边缘所成的矩形不相似. 例2 如图,四边形ABCD ∽四边形A ′B ′C ′D ′,则∠1=__70°__,AD =__28__.【方法指导】根据相似多边形对应边之比相等,对应角相等可得.解:四边形ABCD ∽四边形A ′B ′C ′D ′,则∠1=∠B =70°,A ′D ′AD =D ′C ′DC .即21AD =1824,解得AD =28.◆活动4 随堂练习1.如果六边形ABCDEF ∽六边形A ′B ′C ′D ′E ′F ′,∠B =75°,则∠B ′的度数是(C) A .15° B .25° C .75° D .105°2.△ABC ∽A ′B ′C ′,相似比为35 ,且AC =3,BC =4,AB =5,则A ′C ′=__5__,__B ′C ′__=__203__,A ′B ′=__253__,∠C ′=__90°__.3.课本P 87随堂练习T 1.解:(1)相似.理由如下:∵32 =4.53 =1.5,且矩形的每个内角均为90°,∴该组两个矩形相似;(2)不相似.理由如下:∵22.5 ≠36,∴该组两个矩形不相似.◆活动5 课堂小结与作业学生活动:这节课你的主要收获是什么?还有什么疑惑?教学说明:相似多边形的概念及性质的运用中,通过观察、类比提高数学思维. 作业:课本P 88随堂练习T 2,P 88习题4.4中的T 1、T 2、T 3.本节课设置大量的图片,体现数学来源于生活.通过折纸操作、观察、猜想,探索出相似多边形的概念,让学生切身感受到自己是学习的主人,为学生今后获取知识、探索发现和创造打下良好的基础.。

九年级数学上册 4.3 相似多边形教案 (新版)北师大版

九年级数学上册 4.3 相似多边形教案 (新版)北师大版

课题:4.3相似多边形教学目标:1.经历相似多边形概念的形成过程,了解相似多边形的含义.2.在探索相似多边形本质特征的过程中,进一步发展学生观察、操作、归纳、类比等多方面的能力,提高学生的数学思维水平.3.使学生体会团队合作精神,充分认识数学与人类生活的密切联系,体验数学活动充满探索与创造. 教学重点与难点:重点:经历相似多边形的概念的形成过程,理解掌握相似多边形的概念与性质. 难点:经历相似多边形的概念的形成过程,正确理解相似多边形概念的含义. 课前准备:教师:多媒体课件.学生:(1)搜集生活中形状相同的实物或图片;(2)测量工具:刻度尺、量角器. 教学过程:一、创设情境 导入新课活动内容:上节课我们一起学习了形状相同的图形,下面一组图片(多媒体展示),哪些图形是相似图形?黑板边框的内外边缘所围成的矩形的形状也相同吗?(1)形状相同的国旗 (2)形状的叶片 (3)形状相同的三角形 (4)不同型号电视机播放的动画片.处理方式:学生有前面所学知识能从直观上认识相似多边形,在这个问题上回答上应该没什么难处,但对于黑板的内外边框所在的矩形,学生们会从直观上误认为也是相似的,教师再按照相同比例BCADEF放大发现这两个矩形不是相似的.带着这个疑惑引入到本节,那么满足什么条件的多边形才是形状相同的多边形呢?今天我们一起来探究相似多边形.设计意图:充分利用学生已有的思维基础创设悬念,使学生形成思维冲突,增强学生好奇心,产生巨大的疑惑,引起强烈的学习欲望,从而展开对新知识的探究.二、 探究学习,感悟新知 活动内容:1.各小组派代表展示自己课前所收集得到的资料(可以是照片、资料、也可以是亲自仿制),并解说从从中获取的信息及对于现实生活的实际意义(选3—4个小组代表讲解)2.教师展示课件(播放动画)A 1B 1C 1D 1E 1F 1ABC DEF在这两个多边形中,是否有相等的内角?相等的内角的两边是否成比例?初步感知定义. 处理方式:让学生通过测量自己发现两个相似多边形的边角存在的关系,在测量上不要求绝对准确,取近似值,学生也可通过小组讨论得到相似多边形初步的定义.引导学生分组讨论、探究、验证、交流,并进行演示,着重引导学生说明验证的方法,无论学生提出什么样的验证方式,只要有道理,教师都应给予充分肯定和鼓励.对“相等内角的两边是否对应成比例”这个问题学生可能会感到困难,由于学生已经学习了成比例线段,我会利用这一点启发学生运用测量、计算的方法解决这一难点.从而得到相似多边形的定义.各角分别相等、各边成比例的两个多边形叫做相似多边形.强调相似多边形的两个条件缺一不可.记作如:六边形ABCDEF ∽六边形A 1B 1C 1D 1E 1F 1,注意:记两个多边形相似时,要把对应顶点的字母写在对应的位置.相似多边形对应边的比叫做相似比,相似比与叙述的顺序有关. 设计意图:引导学生尝试用自己的语言叙述定义,教师给予规范并板书.并给出相似多边形的表示方法和相似比的概念,引导学生回忆表示全等三角形时应注意的问题,类似可以得到相似要注意的问题.并强调相似比与两个多边形叙述的顺序有关.渗透了类比的思想.三、例题解析,应用新知活动内容1:例1下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢? (1)正三角形ABC 与正三角形DEF (2)正方形ABCD 与正方形EFGH(一)例题讨论及讲解1.要求学生根据题目提出的问题结合所学的知识,画出图形、小组讨论,得出结果(组内互相交流协商、教师给予适当帮助).2.各小组派出代表将自己的结论进行相互比较,从而得出正确的结论(教师给与提示). (二)提出新问题,由特殊向一般问题转化1、通过刚才的讨论和学习、你认为其他形状相同的多边形,他们的对应角也相等吗?对应边也成比例吗?(归纳相似多边形的本质特征)解:(1)由于正三角形每个内角都等于600,所以∠A =∠D =600,∠B =∠E =600, ∠C =∠F =600;由于正三角形三边相等,所以FDCAEF BC DE AB == (2)由于正方形的每个角度是直角,所以∠A =∠E =900, ∠B =∠F =900, ∠C =∠G =900, , ∠D =∠H =900;由于正方形四边相等,所以HEDAGH CD FG BC EF AB ===. 巩固训练: 1.想一想:(1)任意两个等边三角形(正三角形)相似吗?任意两个正方形呢?任意两个正n 边形呢? (2)任意两个菱形相似吗?2.观察下面两组图形,提出问题(多媒体展示): 图(1)中的两个图形相似吗?为什么? 图(2)中的两个图形呢?与同伴交流.(1)(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?(让学生充分思考、讨论、交流,教师巡回指导,最后引导学生作出归纳)处理方式:学生归纳出如果两个多边形不相似,它们的对应角可能都相等;如果两个多边形不相似,对应边也可能成比例。

形状相同的图形相似多边形

形状相同的图形相似多边形

联系
相似三角形是相似多边形的一种特殊情, 它们都具有对应角相等和对应边成比例的性 质。在解决相似多边形的问题时,可以借鉴 相似三角形的相关知识和方法。
区别
相似多边形包括的范围更广,可以包括任何 边数的多边形,而相似三角形则仅限于三角 形。此外,在相似多边形的判定中,需要满 足更多的条件,如对应边成比例、对应角相 等且顺序一致等。
在热学中,相似多边形可以用于描 述热量在不同物体之间的传递过程。
在工程中的应用
建筑设计
建筑师在设计建筑时,可以利用相似多边形来确 保建筑物的稳定性和美观性。
机械制造
在机械制造中,相似多边形可以用于设计和制造 具有特定形状和功能的机械零件。
航空航天
在航空航天领域,相似多边形可以用于设计和制 造飞机、火箭等飞行器的外形和结构。
相似多边形是形状相同的图形中 的一种特殊情况,其中两个多边 形对应角相等,对应边成比例。
相似多边形的定义
01
对应角相等
两个多边形如果相似,那么它们的对应角必须相等。即,如果一个多边
形的一个角是A度,那么另一个相似多边形中对应的角也必须是A度。
02 03
对应边成比例
除了对应角相等外,相似多边形的对应边还必须成比例。也就是说,如 果两个多边形的一组对应边的长度比是k:1,那么它们的所有对应边的 长度比都应该是k:1。
形状相同的图形相似多边形
目 录
• 引言 • 相似多边形的性质 • 相似多边形的判定 • 相似多边形的应用 • 相似多边形与相似三角形的关系 • 总结与展望
01
引言
主题的引入
形状相同的图形
在几何学中,形状相同的图形指 的是两个图形在大小、方向或位 置上可能有所不同,但它们的形 状是一致的。

相似多边形 ppt课件

相似多边形 ppt课件






思路点拨
4.3 相似多边形






解题通法
解决此类问题,一般是根据对应边成比例,列出比例
式求解,注意结果要符合实际.
4.3 相似多边形
易 ■ 判定相似多边形时忽略条件

例 下列各组图形中一定是相似多边形的是 (


A. 两个直角三角形


B. 两个等边三角形
C. 两个菱形
D. 两个矩形
A. 甲和乙
B. 甲和丙
C. 乙和丙
D. 甲、乙和丙
4.3 相似多边形
[解题思路]


矩形已经满足各角分别相等,判断各边是否成比例即可







,∴ 甲与乙不相似;∵ =
,∴ 甲与丙
解 .∵
.
.

.

.


[答案]
B
相似;∵
.
.
,∴ 乙与丙不相似.
4.3 相似多边形
考 ■考点二 相似多边形的性质

∴BC=12.
[答案]
48 12
4.3 相似多边形
重 ■题型 相似多边形性质与判定的应用

例 如图,一个矩形广场的长为 90 m,宽为 60 m,广

型 场内有两横、两纵四条小路,如果两条横向小路的宽均为

破 1.2 m,那么每条纵向小路的宽为多少时小路内外边缘所围
成的两个矩形相似?
4.3 相似多边形

4.3 相似多边形
[解题思路]

北师大版八年级数学下册《形状相同的图形》PPT课件(4篇)

北师大版八年级数学下册《形状相同的图形》PPT课件(4篇)
8
3
6
4 AB
C
A3 C
3
2
O
D
D
-2 -1 O 1 2 3 4 5 6 7 8 x
3-1
3
( x ,y ) (2x , 2y )
巩固训练 1、小王的文具袋里有一塑料的等腰直角三 角板,教室的讲台上有一木制的大等腰直角三 角板,那么这两个三角板( ) A、形状相同 B、形状不同 C、边长不成比例 D、无法比较 2、指出下列各组图形中有( )组肯定是形 状相同的图形。
请在下列图形中找出形状相同的图形
4
1
2
5
3
7 6
8 10
9
14
11 12
13
1、下列图形中,形状一定相同的有( )。
A.两个半径不等的圆 B.所有的等边三角形 C.
所有的正方形 D.所有的正六边形 E.所有的等腰
三角形 F.所有的等腰梯形 G.圆锥与圆柱 H、长
与宽相同,但高不同的两个长方体 I、横坐标相同,纵坐
2)所有的等腰三角形都是形状相同的图形.
3)所有的等腰直角三角形都是形状相同的图形 4)所有的圆柱体都是形状相同的图形. 5)所有的菱形都是形状相同的图形.
(假)
所有的圆柱真的都是形状相同的吗?
所有的菱形真的都是形状相同的图形吗?
所有的等腰三角形真的都是形状相同的图 形吗?
形状相同的图形
1.结合具体实例认识形状相同的图形,能近似地画出
【课堂练习】 1、在下面的图形中,形状相同的图形有
(填序号)
2、两个形状相同的图形, 不一定相等。 3、教学投影仪胶片上的图形与它投映在银幕上的图形 相同, 不同。
4、下列各图形中不是形状相同的图形的是 ( ) A、所有的等腰直角三角形 B、两个正五边形 C、你和你的照片 D、你和你的影子

九年级《图形的相似》知识点归纳

九年级《图形的相似》知识点归纳

苏科版九下《图形的相似》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC == 简记为:512长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形(3)合、分比性质:a c a b c db d b d±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b n mf e d c b a , 那么ban f d b m e c a =++++++++ . 知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(上图)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.4、判定定理3:简述为:三边对应成比例,两三角形相似.5、判定定理4:直角三角形中,“斜边和一直角边对应成比例” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“斜边和一直角边对应成比例”(3如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则 ∽ ==> AD 2=BD ·DC ,∽ ==> AB 2=BD ·BC ,∽ ==> AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)FE D CB A E BD E D(3)B C AE DBC(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

《相似多边形》相似图形PPT精选教学课件

《相似多边形》相似图形PPT精选教学课件
07 产品经理看到你登陆都要哭了,你 是海军 陆战队 吗?是 登录啦 。 08 “唉”和“哎”是完全不同的两个字,如 果当话 头的话 可以用 “诶”。
09 “优惠券”打成“优惠卷”的商家我是不 会买的 。 10 娱乐新闻也是要严谨的,“曝光”写成 “暴光” 就勉勉 强强了 ,“爆 光”是什 么啦。
11 你们真的是一群很有品位的读者, 一定不 会分不 清品位 和品味 的。 04 语言习惯
06 同理还有能把确凿读成 quezuo 而不是 quezao 的。 07 太多流行歌手唱“在午夜徘回……”, 以至于 听到哪 个歌手 唱对“ 徘徊”都 很让人 感动。
08 除了周杰伦以外,很难接受任何人 念出“瓜 牛”这两 个字。 03 文字
#3 typo 01 分不清“哪”和“那”,会真的造成语意 理解上 的困惑 。
如:六边形ABCDEF与六边形A1B1C1D1E1F1相似, 记作六边形ABCDEF 六边形A1B1C1D1E1F1,其中 AB:A1B1的值就是相似比.
注:1、相似符号“∽ ”读作“相似于” 2、在记两个多边形相似时,要把表示对应角顶点 的字母写在对应的位置上。
S
如果两个多边形相似,那 么它们的对应角有什么关系? 对应边呢?
02 读音
#2 pronouncation 01 想邀请把弹幕(danmu)读成 tanmu 的朋友,当场给我弹弹看。 02 阈 Yù值,这个词很难读,当然最简单的办 法就是 ……不 用这个 词。 03 接电话时请用“唯”,用“胃”我勉强能 忍,但 用“ why”的是 不是过 分了。 04 一旦把“崩溃”说成“奔溃”,就会给人 一种在 大雨里 含泪嚎 叫奔跑 的即视 感。 05 给予现在也可以读作 gei yu 了,但我听到有人读 ji yu,我还是会忍不住投去赞赏的 目光。

北师大版数学九年级上册第四章图形的相似知识点归纳及例题

北师大版数学九年级上册第四章图形的相似知识点归纳及例题

北师大版九年级上册第四章图形的相似知识点归纳及例题【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方;3、探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;4、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标变化;5、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识点网络】【知识点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 知识点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等; 2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多形. 知识点诠释:(1)相似多边形的定义既是判定方法,又是它的性质. (2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段. 知识点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项) (2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项). 4.平行线分线段成比例:基本事实:两条直线被一组平行线所截,所得的对应线段成比例. 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 知识点二、相似三角形 1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):两角分别相等的两个三角形相似. 知识点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似. 判定方法(三):两边成比例且夹角相等的两个三角形相似.2b知识点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.知识点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。

第四章图形的相似4.3相似多边形

第四章图形的相似4.3相似多边形

(1.5+0.075 2)m
直观有时是不可靠的 C G
所有的矩形不一定相似
1、五边形ABCDE∽五边形
A´B´C´D´E´,则 ∠ E=_8_0°,∠ A´=_11_8 ,° ° C´D´=__4 五边形A´B´C´D´E´与五边形
A
3
B 118° E
C
D B´
2
ABCDE的相似比为_2_:1

B= —12—0 C= —10—5 D=—13—5
E= —12—0
F= —90—
BC=—6— mm B1=—12—0
CD=—5—.5 mm C1=—1—05 DE=—5— mm D1=—1—35 EF=—7—.5 mm E1=—1—20
FG=—4—.5 mm F1=—9—0
作业布置
• 习题4.4 第1、2、3题(抄题画图)
A、B、C对应,且相似比为
ห้องสมุดไป่ตู้
2 5
,若DE=
4cm,
求BC的长.
解 ∵ △ ADE ∽△ ABC,
DE 2 . BC 5
BC 5 DE 5 4 10(cm).
2
2
4.▱ABCD中,AB=10,AD=6,EF∥AD,若 ▱ABCD与▱ADFE相似,求AE的长.
解 ∵ 平行四边形 ABCD ∽平行四边形 ADFE,
AB AD . AD AE
∵AB=10,AD=6
10 6 . 6 AE
∴AE=3.6
一块长3m、宽1.5m的矩形黑板如下图所
示,镶在其外围的木质边框宽7.5cm。边框的
内外边缘所成的矩形相似吗?为什么?
3m
E
F

九年级数学上册第四章图形的相似3相似多边形相似多边形学习导航素材北师大版

九年级数学上册第四章图形的相似3相似多边形相似多边形学习导航素材北师大版

相似多边形学习导航一.认识“形状相同的图形”1.形状相同的图形:形状相同的图形就是两个图形的形状完全一样,而图形的大小和位置不一定相同.温馨提示:判断两个图形是否形状相同时,应注意考察图形的变化特征,抓住问题的关键.2.画形状相同的图形的方法:画形状相同的图形,实际上就是将图形放大或缩小,利用方格纸或利用坐标的变化放大或缩小图形是车形状相同图形的两种常用的准确的方法。

二.结识“相似多边形”1.相似多边形的定义若两个多边形的各角对应相等,各边对应成比例,则这两个多边形就叫做相似多边形。

温馨提示:(1)两个多边形的边数不同,则两个多边形一定不相似;(2)两个边数相同的多边形,必须具备以下两个条件:①对应角相等;②对应边成比例;这是两个相似多边形的本质特征。

(3)边数相同的正多边形一定相似;(4)在记两条多边形相似时,应把表示对应顶点的字母写在对应的位置上.2. 灵活掌握相似多边形的性质相似多边形有以下性质:(1) 两个相似多边形的对应角相等、对应边成比例.(2) 两个相似多边形的周长比等于相似比、面积比等于相似比的平方.温馨提示:①相似多边形的对应边的比叫做相似比。

②全等的多边形是相似比为1的相似多边形;③求两个相似多边形的相似比时,要注意两个图形的顺序:若相似多边形甲与乙相似,若甲与乙的相似比为k ,则乙与甲相似比为1k . 三.学会利用定义判定两个多边形是不是相似 判定两个多边形是不是相似,主要是利用定义,特别需要注意的是,必须同时满足两个条件才行,否则就会出错。

四。

典例分析例1 已知矩形ABCD ,长8m ,宽6m ,又知矩形ABEF 的面积为212m ,试问:矩形ABCD 与矩形ECDF 相似吗?并说明理由。

分析:因为两个四边形都是矩形,所以只要判断对应边的比是不是相等即可。

解:因为矩形ABEF 的面积为212m ,所以AB·BE=21,所以27=BE ,所以EC=BC -BE=29278=-。

04第四节 相似多边形

04第四节 相似多边形

第四节相似多边形第五课时●课题§4.4 相似多边形●教学目标(一)教学知识点经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.(二)能力训练要求经历探索图形的边、角关系,培养学生的观察能力,分析判断能力.(三)情感与价值观要求通过观察、推断可以获得教学猜想,体验数学活动充满着探索性和创造性.●教学重点探索相似多边形的定义,以及用定义去判断两个多边形是否相似.●教学难点探索相似多边形的定义的过程.●教学方法指导探索法.●教具准备投影片两张第一张(记作§4.4 A)第二张(记作§4.4 B)●教学过程Ⅰ.创设问题情境,引入新课[师]大家从语文的角度来分析一下“相似”一词的意思.[生]“相似”就是差不多,但也不是完全相同,既有相同部分也有不同部分.[师]很好,那“相似多边形”应怎么理解呢?[生]“相似多边形”即为两个边数相同的多边形,并且形状一样、大小可能不同.[师]大家的分析能力非常棒,究竟“两个相似多边形”需满足什么条件呢?本节课我们将进行探索.Ⅱ.新课讲解1.探究相似多边形的定义[生]在上图中,六边形ABCDEF 与六边形A 1B 1C 1D 1E 1F 1是形状相同的图形,其中 ∠A 与∠A 1,∠B 与∠B 1,∠C 与∠C 1,∠D 与∠D 1,∠E 与∠E 1,∠F 与∠F 1分别对应相等,AB 与A 1B 1,BC 与B 1C 1,CD 与C 1D 1,DE 与D 1E 1,EF 与E 1F 1,F A 与F 1A 1的比都相等.[师]从上可知,幻灯片上的六边形与银幕上的六边形形状相同,只是大小不同,它们的对应角相等、对应边成比例.那么,形状相同的多边形是都有这种关系呢,还是只有六边形才有呢?下面我们继续进行探讨.[例题]下列每组图形形状相同,它们的对应角有怎样的关系呢?对应边呢? (1)正三角形ABC 与正三角形DEF ; (2)正方形ABCD 与正方形EFGH . [师]请大家互相交流. [生]解:(1)由于正三角形每个角都等于60°,所以 ∠A =∠D =60°,∠B =∠E =60°,∠C =∠F =60° 由于正三角形三边相等,所以FDCAEF BC DE AB ==. (2)由于正方形的每个角都是直角,所以 ∠A =∠E =90°,∠B =∠F =90°, ∠C =∠G =90°,∠D =∠H =90°. 由于正方形四边相等,所以 HEDAGH CD FG BC EF AB === [师]从上面的讨论结果来看,大家能否猜测出相似多边形的定义呢? [生]可以.对应角相等,对应边成比例的两个多边形叫做相似多边形(similar polygons ). 相似多边形对应边的比叫做相似比(similarity ratio ).[师]相似应该怎样表示呢?请认真看书.[生]六边形ABCDEF与六边形A1B1C1D1E1F1相似.记作六边形ABCDEF∽六边形A1B1C1D1E1F1,其中AB∶A1B1等于相似比.[师]在记两个多边形相似时,要注意什么?[生]要注意把表示对应角顶点的字母写在对应的位置上.2.想一想(1)如果两个多边形相似,那么它们的对应角有什么关系?对应边呢?若两个多边形相似,那么它们的对应角相等,对应边成比例.3.议一议[生]1.(1)中的两个图形不相似.因为相似形需要满足两个条件,一个是对应角相等,一个是对应边成比例,虽然(1)中的两个图形对应边成比例,但对应角不相等,所以两个图形不相似.(2)中的两个图形也不相似.因为它们的对应边不成比例,所以两个图形不相似.2.如果两个多边形不相似,那么它们的对应角也可能都相等,如(2)中的两个图形;如果两个多边形不相似,那么它们的对应边也可能成比例,如(1)中的两个图形对应边成比例,但对应角不相等.4.做一做一块长3 m,宽1.5 m的矩形黑板如图所示,镶在其外围的木质边框宽7.5 cm.边框的内外边缘所成的矩形相似吗?为什么?请大家交流后回答.图4-16[生]答:不相似.内边缘的矩形长为300 cm ,宽为150 cm ,外边缘的矩形长为315 cm ,宽为165 cm ,因为315300≠165150,所以内外边缘所成的矩形不相似. 5.想一想(2)所有的边数相同的正多边形都相似吗?[师]正多边形是指各边都相等,各角都相等的多边形,请大家根据定义进行判断. [生]相似,因为各角都相等,各边都相等,所以在两个图形中满足对应角相等、对应边成比例,因此这两个正多边形肯定相似.比如:两个正三角形相似.Ⅲ.课堂练习判断下列每组中的两个图形是相似多边形吗?并说明理由. (1)两个大小不等的矩形; (2)两个大小不等的正五边形; (3)一个正方形与一个平行四边形; (4)两个大小不等的菱形. 解:(1)两个大小不等的矩形不一定相似,虽然它们的对应角相等,都是直角,但它们的对应边不一定成比例.(2)两个大小不等的正五边形是相似多边形,因为它们的对应角相等,对应边成比例.(3)一个正方形与一个平行四边形不相似,因为平行四边形的四个角不相等,四条边也不相等,所以对应角不相等,对应边也不成比例.(4)两个大小不等的菱形不一定相似.因为菱形的边长相等,两个菱形满足对应边成比例,但对应角不一定相等,所以不一定相似.Ⅳ.课时小结本节课通过探究相似多边形满足的条件,从而推导出相似多边形的定义,并能根据定义判断某些图形是否为相似多边形.Ⅴ.课后作业 习题4.51.解:对应边的比为2∶3.2.解:两个正六边形的边长分别为a 和b ,这两个正六边形相似.因为正六边形的每个角都等于120°,所以满足对应角相等,对应边成比例,所以它们相似.3.解:小路内外边缘所成的矩形不相似,虽然它们的对应角相等,但对应边12102220 ,即对应边不成比例,所以不相似.Ⅵ.活动与探究纸张的大小图4-17如图,将一张长、宽之比为2的矩形纸ABCD 依次不断对折,可以得到矩形纸BCFE ,AEML ,GMFH ,LGPN .(1)矩形ABCD 、BCFE 、AEML 、GMFH 、LGPN 长与宽的比改变了吗? (2)在这些矩形中,有成比例的线段吗? (3)你认为这些大小不同的矩形相似吗? 解:(1)矩形ABCD 、BCFE 、AEML 、GMFH 、LGPN 长与宽的比不改变.设纸的宽为a ,长为2a ,则BC =a ,BE =22a AE =22a ,ME =2aMF =2a,HF =42aLG =42a ,LN =4a∴BE BC=a ∶22a =2ME AE = 22a ∶2a =22aHF MF =∶242=a 42=LN LG a ∶4a=2 所以五个矩形的长与宽的比不改变. (2)在这些矩形中有成比例的线段. (3)这些大小不同的矩形都相似. ●板书设计●备课资料经典名题苏轼巧分田产相传,北宋大文学家苏轼在凤翔作官时,为官清正,秉公执法,深得百姓拥戴.一天,有兄弟四人前来告状.苏轼坐在公案前,展开状纸一看:“小民杨大毛,家住城南寨.先父临终时,留下两顷田.只因分不均,兄弟反目.青天大老爷,请把理来断.”图4-18苏轼接过地契,心中暗暗盘算,杨家田地为工字形,如何分配,才让四兄弟满意呢?沉思片刻,计上心来,遂唤一名差役耳语道:“只需如此如此……”差役遵嘱叫上四兄弟当场丈量,不一会儿,只见四兄弟满面带笑地跑过来,叩头不迭道:“多谢恩公明断!”你知道苏轼是怎样使分开后的四块田地形状相同,面积相等的吗?分法如下:图4-193.形状相同的图形4.相似多边形作业导航认识生活中形状相同的图形;理解相似多边形和相似比的意义.一、选择题1.下列图形中一定相似的是( )A.有一个角相等的两个平行四边形B.有一个角相等的两个等腰梯形C.有一个角相等的两个菱形D.有一组邻边对应成比例的两平行四边形2.下列结论不正确的是( )A.所有的矩形都相似B.所有的正方形都相似C.所有的等腰直角三角形都相似D.所有的正八边形都相似3.五边形ABCDE∽五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( )A.5∶4B.4∶5C.5∶25D.25∶54.如果一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( )A.2∶1B.4∶1C.2∶1D.1∶25.梯形ABCD中,AD∥BC,AD=a,BC=b,EF∥AD交AB、CD于E、F,且梯形AEFD 与梯形EBCF相似,则EF等于( )A.abB.2ba + C.222b a +D.不能确定二、填空题6.如图1,EF AD ∽ABCD ,则∠A 的对应角是________,∠B 的对应角是________,ABAF )() (=.图17.所有的黄金矩形都是________. 8.两个相似多边形的对应边的比是32,则这两个多边形的相似比是________. 9.两个相似多边形的相似比是81,则这两个多边形的对应对角线的比是________. 10.在菱形ABCD 和菱形A ′B ′C ′D ′中,∠A =∠A ′=60°,若AB ∶A ′B ′=1∶3,则BD ∶A ′C ′=________.三、解答题11.某块地的平面图如图2所示,∠A =90°,其比例尺为1∶2000,根据图中标注的尺寸(单位:cm),求该块地的实际周长和面积.图212.如图3,E 、F 分别为矩形ABCD 的边AD 、BC 的中点,若矩形ABCD ∽矩形EABF ,AB =1.求矩形ABCD 的面积.图313.如图4,梯形ABCD中,AD∥BC,E是AB上的一点,EF∥BC,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若AD=4,BC=9,求AE∶EB.图4参考答案一、1.C 2.A 3.B 4.C 5.A二、6.∠FED ∠EF A BC EF 7.相似形 8.32 9.8110.1∶3 三、11.640 m 14400 m 212.由矩形ABCD ∽矩形EABF 可得BCABAB AE =,设AE =x ,则BC =2x ,又AB =1,所以22,21,2112===x x x x ,S 矩形ABCD =2x ·1=2 13.梯形AEFD ∽梯形EBCF ∴EBAEBC EF EF AD == 又∵AD =4,BC =9.∴EF 2=AD ·BC =4×9=36 ∵EF >0 ∴EF =6 ∴32,3264====EB AE EF AD EB AE 即§4.4 相似多边形班级:_______ 姓名:_______一、请你填一填(1)以下五个命题:①所有的正方形都相似 ②所有的矩形都相似 ③所有的三角形都相似 ④所有的等腰直角三角形都相似 ⑤所有的正五边形都相似.其中正确的命题有_______.(2)已知三个数1,2,3,请你再写一个数,使这四个数能成比例,那么这个数是________(填写一个即可).(3)相同时刻的物高与影长成比例,如果有一根电线杆在地面上的影长是50米,同时高为1.5米的标竿的影长为2.5米,那么这根电线杆的高为________米.(4)在一张比例尺为1∶50000的地图上,量得A 、B 两地的图上距离为2.5 厘米,那么A 、B 两地的实际距离是________米.二、如图,图(1)是一个正六边形ABCDEF,使线段BC、FE的长增加相等的数,得图(2),将图(1)中的点A、D分别向两边拉长相等的量,得图(3).那么图(1)与图(2)相似吗?图(1)与图(3)相似吗?图(2)与图(3)呢?为什么?三、(1)如图4—4—1与2—4—2,等腰梯形ABCD与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6 cm, AB=8 cm, AD=5 cm,试求梯形ABCD的各角的度数与A′D′、B′C′的长.图4—4—1 图4—4—2 (2)如图4—4—3,有一个半径为50米的圆形草坪,现在沿草坪的四周开辟了宽10米的环形跑道,那么:①草坪的外边缘与环形跑道的外边缘所成的两个圆相似吗?②这两个圆的半径之比和周长之比分别是多少?它们有什么关系吗?图4—4—3参考答案§4.4 相似多边形一、(1)①④⑤ (2)23或23或332(填写一个即可) (3)30 (4)1250米二、图(1)与图(2)不相似,图(1)与图(3)不相似,图(2)与图(3)也不相似.理由略三、(1)解:∵等腰梯形ABCD 与A ′B ′C ′D ′相似,∠A ′=65°∴∠A =65°,∠B =65°∠D=∠C=180°-65°=115° 又ADD A AB B A ''='', ∴586D A ''=, ∴A ′D ′=415cm ∴B ′C ′=A ′D ′=415cm (2)解:①两个圆相似②这两个圆的半径分别为50米,60米所以它们的半径之比为5∶6,周长之比为(2π×50)∶(2π×60)即为5∶6,所以这两个圆的半径之比等于周长之比.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.形状相同的图形
4.相似多边形
作业导航
认识生活中形状相同的图形;理解相似多边形和相似比的意义. 一、选择题
1.下列图形中一定相似的是( ) A.有一个角相等的两个平行四边形 B.有一个角相等的两个等腰梯形 C.有一个角相等的两个菱形
D.有一组邻边对应成比例的两平行四边形 2.下列结论不正确的是( ) A.所有的矩形都相似 B.所有的正方形都相似
C.所有的等腰直角三角形都相似
D.所有的正八边形都相似
3.五边形ABCDE ∽五边形A ′B ′C ′D ′E ′,若对应边AB 与A ′B ′的长分别为50厘米和40厘米,则五边形A ′B ′C ′D ′E ′与五边形ABCDE 的相似比是( )
A.5∶4
B.4∶5
C.5∶25
D.25∶5 4.如果一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( ) A.2∶1 B.4∶1 C.2∶1 D.1∶2
5.梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,EF ∥AD 交AB 、CD 于E 、F ,且梯形AEFD 与梯形EBCF 相似,则EF 等于( )
A.ab
B.
2
b
a + C.2
22b a +
D.不能确定
二、填空题
6.如图1,EF AD ∽
ABCD ,则∠A 的对应角是________,∠B 的对应角是
________,
AB
AF )
() (=.
图1
7.所有的黄金矩形都是________. 8.两个相似多边形的对应边的比是3
2
,则这两个多边形的相似比是________. 9.两个相似多边形的相似比是
8
1
,则这两个多边形的对应对角线的比是________. 10.在菱形ABCD 和菱形A ′B ′C ′D ′中,∠A =∠A ′=60°,若AB ∶A ′B ′=1∶
3,则BD ∶A ′C ′=________.
三、解答题
11.某块地的平面图如图2所示,∠A =90°,其比例尺为1∶2000,根据图中标注的尺寸(单位:cm),求该块地的实际周长和面积.
图2
12.如图3,E、F分别为矩形ABCD的边AD、BC的中点,若矩形ABCD∽矩形EABF,AB=1.求矩形ABCD的面积.
图3
13.如图4,梯形ABCD中,AD∥BC,E是AB上的一点,EF∥BC,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若AD=4,BC=9,求AE∶EB.
图4
参考答案
一、1.C 2.A 3.B 4.C 5.A
二、6.∠FED ∠EF A BC EF 7.相似形 8.32 9.8
1
10.1∶3 三、11.640 m 14400 m 2
12.由矩形ABCD ∽矩形EABF 可得
BC
AB AB AE =,设AE =x ,则BC =2x ,又AB =1,所以2
2
,21,2112=
==x x x x ,S 矩形ABCD =2x ·1=2 13.梯形AEFD ∽梯形EBCF ∴
EB
AE
BC EF EF AD == 又∵AD =4,BC =9.
∴EF 2=AD ·BC =4×9=36 ∵EF >0 ∴EF =6 ∴
3
2
,3264====EB AE EF AD EB AE 即。

相关文档
最新文档