小学六年级奥数题-六年级奥数专题训练之排列

合集下载

(六年级)小学六年级奥数题及答案

(六年级)小学六年级奥数题及答案

小学六年级奥数题及答案六年级的奥数学习应该有更强的针对性,从最近的一些的考试可以看出一个趋势,就是题量大,时间短,对于单位时间内的做题效率有很高的要求,即速度和正确率。

下面给大家带来关于六年级奥数题及答案,希望对你们有所帮助。

小升初六年级奥数题及答案1、抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

2、牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。

如果设每个人每小时的淘水量为1个单位.那么船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。

每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。

船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。

小学六年级奥数题-六年级奥数专题训练之排列

小学六年级奥数题-六年级奥数专题训练之排列

小学六年级奥数题:六年级奥数专题训练之排列1.某铁路线共有14个客车站,这条铁路共需要多少种不同的车票?2.有红、黄、蓝三种信号旗,把任意两面分上、下挂在旗杆上表示不同信号,一共可以组成多少种不同信号?3.有五种颜色的小旗,任意取出三面排成一行表示各种信号。

问:共可以表示多少种不同的信号?4.(1)有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?(2)有三本不同的书,5名同学来借,每人最多借一本,借完为止,有多少种不同的借法?5.七个同学照像,分别求出在下列条件下有多少种站法:(1)七个人排成一排;(2)七个人排成一排,某人必须站在中间;(3)七个人排成一排,某两人必须有一人站在中间;(4)七个人排成一排,某两人必须站在两头;(5)七个人排成一排,某两人不能站在两头;(6)七个人排成两排,前排三人,后排四人;(7)七个人排成两排,前排三人,后排四人,某两人不在同一排。

6.甲、乙、丙、丁四人各有一个作业本混放在一起,四人每人随便拿了一本。

问:(1)甲拿到自己作业本的拿法有多少种?(2)恰有一人拿到自己作业本的拿法有多少种?(3)至少有一人没拿到自己作业本的拿法有多少种?(4)谁也没拿到自己作业本的拿法有多少种?7.用0、1、2、3四个数码可以组成多少个没有重复数字的四位偶数?8.用数码0、1、2、3、4可以组成多少个(1)三位数;(2)没有重复数字的三位数;(3)没有重复数字的三位偶数;(4)小于1000的自然数;(5)小于1000的没有重复数字的自然数。

9.用数码0、1、2、3、4、5可以组成多少个(1)四位数;(2)没有重复数字的四位奇数;(3)没有重复数字的能被5整除的四位数;(4)没有重复数字的能被3整除的四位数;(5)没有重复数字的能被9整除的四位偶数;(6)能被5整除的四位数;(7)能被4整除的四位数。

10.从1、3、5中任取两个数字,从2、4、6中任取两个数字,共可组成多少个没有重复数字的四位数?其中偶数有多少个?。

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)

小学六年级奥数题(六篇)整理的《小学六年级奥数题(六篇)》相关资料,希望帮助到您。

【篇一】小学六年级奥数题 1、哥哥今年18岁,弟弟今年12岁。

当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。

甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。

最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。

第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的’足球中拿出与这时甲校个数相同的足球并入甲校。

经过这样的变动后,三校足球的个数正好相等。

已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。

后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。

问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题 1、求下列时刻的时针与分针所形成的角的度数。

(1)9点整(2) 2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。

【篇三】小学六年级奥数题 1、小明和小英各自在公路上往返于甲、乙两地。

小学排列问题试题及答案

小学排列问题试题及答案

小学排列问题试题及答案一、问题描述小学排列问题是指在一组有限的对象中,确定它们出现的次序的问题。

在这里,我们将提供一些关于小学排列问题的试题,并附上它们的答案供参考。

二、问题一请将字母A、B、C这三个字母进行排列,列出所有可能的组合,并写出组合的总数。

答案:字母A、B、C这三个字母进行排列的组合有以下六种:ABCACBBACBCACABCBA共计六种组合。

三、问题二请将字母A、B、C、D这四个字母进行排列,列出所有可能的组合,并写出组合的总数。

答案:字母A、B、C、D这四个字母进行排列的组合有以下二十四种:ABCD、ABDC、ACBD、ACDB、ADBC、ADCBBACD、BADC、BCAD、BCDA、BDAC、BDCACABD、CADB、CBAD、CBDA、CDAB、CDBADABC、DACB、DBAC、DBCA、DCAB、DCBA共计二十四种组合。

四、问题三小明有5本不同的漫画书,他想从中选择3本进行阅读,请问共有多少种不同的选择方法?答案:小明从5本漫画书中选择3本进行阅读的方法有10种。

可以使用组合数的方法进行计算,计算公式为:C(5,3) = 5! / (3! × (5-3)!) = 10五、问题四某班级有10个学生,老师要求选出5个学生组成一个小组,请问共有多少种不同的选择方法?答案:从10个学生中选择5个组成一个小组的选择方法有252种。

计算公式为:C(10,5) = 10! / (5! × (10-5)!) = 252六、问题五某餐厅有4种主菜和5种甜点可供选择,如果顾客要选择一份主菜和一份甜点,请问共有多少种不同的选择方法?答案:顾客在该餐厅选择一份主菜和一份甜点的选择方法有20种。

计算公式为:C(4,1) × C(5,1) = 4 × 5 = 20七、问题六请将字母A、A、B、B、C这五个字母进行排列,列出所有可能的组合,并写出组合的总数。

小学六年级下册 经典奥数题及答案 最全

小学六年级下册 经典奥数题及答案 最全

小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.A和B是小于100的两个非零的不同自然数。

小学六年级奥数题专题训练七篇

小学六年级奥数题专题训练七篇

小学六年级奥数题专题训练七篇篇一:小学六年级奥数题:小学奥数应用题专题汇总1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车距中点40千米处相遇。

东西两地相距多少千米?3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。

已知列车的速度是每分钟1000米,列车车身长多少米?5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。

如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。

客车的速度和货车的速度分别是多少?6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。

已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。

求水流速度是多少?7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?10.(周期问题)2006年7月1日是星期六,求10月1日是星期几?11.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。

每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。

小学六年级奥数题及答案(全面)

小学六年级奥数题及答案(全面)

小学六年级奥数题及答案(全面)【注意】本文仅供参考学习使用,严禁用于商业目的。

小学六年级奥数题及答案(全面)第一题:计算题1. 求100以内所有偶数的和。

解答:要求100以内所有偶数的和,我们可以从2开始,每次递增2,直到100。

然后将这些偶数相加即可。

2 + 4 + 6 + 8 + ... + 98 + 100 = 2550因此,100以内所有偶数的和为2550。

第二题:几何题2. 在平面直角坐标系内,A(2, 3)和B(-1, -5)为两个点,求线段AB 的长度。

解答:根据两点间距离公式,可以计算出线段AB的长度。

线段AB的长度= √((x2 - x1)² + (y2 - y1)²)代入点的坐标:线段AB的长度= √((-1 - 2)² + (-5 - 3)²)= √((-3)² + (-8)²)= √(9 + 64)= √73因此,线段AB的长度为√73。

第三题:代数题3. 若x² + 5x + 6 的值为15,求x。

解答:根据题意,我们可以列出方程:x² + 5x + 6 = 15将方程转化为标准形式:x² + 5x + 6 - 15 = 0x² + 5x - 9 = 0然后,我们可以使用因式分解或配方法求解此方程。

通过因式分解,可以得到:(x + 3)(x - 2) = 0根据零乘法,我们可以得到两个解:x + 3 = 0 或 x - 2 = 0解方程得到:x = -3 或 x = 2因此,方程的解为x = -3 或 x = 2。

第四题:逻辑题4. 小明、小李、小张三人坐在一个长凳上,从左到右依次是:小明、小李、小张。

已知:- 小明比旁边坐的人大一岁;- 小李比小张大两岁;- 小明的年龄是10岁。

问:小张的年龄是多少岁?解答:根据题意,我们可以列出以下等式:小明的年龄 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2小明的年龄 = 10带入已知条件,我们可以得到以下等式:10 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2根据第一个等式,可以得到:小明旁边坐的人的年龄 = 10 - 1= 9根据第二个等式,可以得到:小张的年龄 = 小李的年龄 - 2此时,我们需要知道小李的年龄。

六年级奥数专题 排列组合综合(学生版)

六年级奥数专题 排列组合综合(学生版)

排列组合综合,掌握几种基本的排列组合相关问题的方法:特殊位置特殊元素优先分析法、捆绑法、插空法、隔板法我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法 ,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.加法原理无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法 ,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1 + m2 +…+mk 种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.特殊位置特殊元素优先分析法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。

捆绑法在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法.插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。

隔板法隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。

【题目】①有5个人排成一排照相,有多少种排法?②5个人排成两排照相,前排2人,后排3人,共有多少种排法?③5个人排成一排照相,如果某人必须站在中间,有多少种排法?④5个人排成一排照相,某人必须站在两头,共有多少种排法【试题来源】(1)(迎春杯决赛)(2)(兴趣杯少年数学邀请赛决赛)【题目】(1)如右图(1)是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有多少种不同的放置方法?(2)在右图(2)中放四个棋子“兵”,使得每一列有一个“兵”,每一行至多有一个“兵”.有多少种不同的放法?【试题来源】【题目】大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?【试题来源】【题目】把13拆成三个数的和,请问有几种拆法?【试题来源】【题目】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数?【试题来源】【题目】用1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满足要求的三位数.【试题来源】【题目】数3可以用4种方法表示为1个或几个正整数的和,如3,1+2,2+1,1+1+1。

六年级奥数辅导第13讲-排列组合

六年级奥数辅导第13讲-排列组合

六年级奥数辅导第十三讲排列、组合问题一、排列问题。

在实际生活中,我们常常遇到过这样的问题,就是要把一些事物排在一起,构成一列,计算有多少中排法,这就是排列问题。

在排列过程中,不仅与参加排列的失误有关,而且与各失误所在的先后顺序有关。

=(n-1) (n-2)……(n-m+1)排列公式:P mn【例题分析】例1、有9面颜色不同的信号旗,任意取出3面旗从上到下挂在旗杆上表示信号,共可以表示多少种不同的信号?例2、用0,1,2,3,4,5,6,7,8这九个数字,可以组成多少个没有重复数字的三位数?例3、7个人并排站成一排,其中甲必须站在中间位置,共有多少种不同的站法?【巩固提高】1、某班有一个小图书馆,有不同的文艺书80本,不同的自然科学书120本。

如果最多从这两类书中各借1本,共有多少种借法?2、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,如果任何两个舞蹈节目不得相邻,有多少种不同的排法?3、从1,3,5中任取两个数字,从0,2,4中任取两个数字,共可以组成多少个没有重复数字的四位数?其中偶数有多少个?二、组合问题。

知识导航:日常生活中有很多的“分组”问题,如把同学分两组进行篮球对抗赛,从全班同学中选几人参加数学竞赛等。

这种“分组”问题,就是我们要讨论的组合问题。

组合问题与所取的元素有关,而与元素之间的先后顺序无关。

组合公式C m n =p m n ÷p m m【例题分析】例1、六(1)班要在25名同学中选出4名同学去参加夏令营活动,共有多少种选法?例2、从6幅水墨画、3幅油画和4幅素描中选取两幅不同类型的画,布置画室。

共有多少种不同的选法?例3、圆上有12个点,以每3个点为顶点画一个三角形,一共可以画多少个三角形?若以每4个点为顶点画一个四边形,可以画多少个四边形?【巩固提高】1、要从9名男生和5名女生中选出6名学生参加数学竞赛,共有多少种选法?2、某种产品100件,其中2件次品,其余为合格品,从中抽3件产品来检验,至少有1件次品的情形有多少种?3、从16个小朋友中任选4个人合影留念,共需拍多少张照片?综合练习一、填空。

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。

六年级奥数题及答案

六年级奥数题及答案

六年级奥数题及答案题目1某音乐会上,参加演出的有4个合唱团,如果其中2个合唱团属于小学生合唱团,2个合唱团属于中学生合唱团。

小学生合唱团有5个不同的节目,中学生合唱团有6个不同的节目。

现在打乱了合唱团的次序,从这个次序中选出演出节目,一次不重复地选出7个节目。

问有多少种选法?解答:首先需要从中学生合唱团的6个节目中选择4个,然后从小学生合唱团的5个节目中选择3个。

根据组合数的计算公式(组合数公式:C(n, m)=n!/[m!(n-m)!]),可以得出:C(6, 4)表示从中学生合唱团的6个节目中选择4个的方案数;C(5, 3)表示从小学生合唱团的5个节目中选择3个的方案数。

可以将题目分解为两个步骤的乘积来计算方案数:C(6, 4) × C(5, 3) = (6!/(4!(6-4)!) × 5!/(3!(5-3)!)) = (6 × 5 ×4!/(4! × 2!)) × (5 × 4 × 3!/(3! × 2!))化简后得到:(6 × 5) × (5 × 4) = 30 × 20 = 600所以,选出7个节目的方式一共有600种。

题目2小明手上有2个硬币和4个甲板。

他要将这些牌全部洗均匀,然后从中任意抽出3个牌,并按抽牌的顺序排列。

问一共有多少种不同的结果?解答:首先,将两个硬币看作一样的牌,总共有6个牌。

然后,需要从这6个牌中选择3个,按照抽牌的顺序排列。

可以使用排列组合的计算公式(排列计算公式:A(n,m)=n!/(n-m)!)来解答问题。

所以,需要计算A(6, 3):A(6, 3) = 6!/(6-3)!= 6!/(3!)= 6 × 5 × 4 = 120所以,一共有120种不同的结果。

题目3在一个数字方阵中,从左上角开始,每一步可以向右或向下移动一格,直到到达右下角的终点。

六年级奥数题排队及答案

六年级奥数题排队及答案
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的'排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种
第一步是把5对夫妻看作5个整体进行排列有54321120种不同的排法但是因为是围成一个首尾相接的圈就会产生5个5个重复因此实际排法只有120524种
六年级奥数题排队及答案
关于六年级奥数题排队及答案精选
排队:(中等难度)
有五对夫妇围成一圈,使每一对夫妇:

小学六年级奥数专题训练之方阵应用题

小学六年级奥数专题训练之方阵应用题

小学六年级奥数题:专题训练之方阵应用题
1、某班抽出一些学生参加节日活动表演,想排成
一个正方形方阵,结果多出7人;如果每行每列增加一
个再排,却少了4人,问共抽出学生多少人?
2、棋子若干粒,恰好可排成每边8粒的正方形,
棋子的总数是多少?棋子最外层有多少粒?
3、有学生若干人,排成5层的中空方阵,最外层
每边人数是12人,问有多少学生?
4、设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多
少人?
5、在第五届运动会上,红星小学组成了一个大型
方块队,方块队最外层每边30人,共有10层,中间5
层的位置由20个同学抬着这次运动会的会徽,问这个
方块队共有多少同学组成?
6、有一队学生,排成中空方阵,最外层的人数共
56人,最内层的人数共32人,这一队学生共有多少人?
7、团体操表演,少先队员排成4层的中空方阵,
最外层每边人数是10人,问参加团体操表演的少先队
员共有多少人?
8、用棋子摆成方阵,恰好每边24粒的实心方阵,
若改为3层的空心方阵,它的最外层每边应改放多少粒?
9、将棋子排成正方形,甲、乙两人自其外周起,
轮流取一周,结果甲比乙多得24粒,问棋子总数有多
少粒?。

小学六年级数的排列练习题

小学六年级数的排列练习题

小学六年级数的排列练习题数学练习题:小学六年级数的排列注意:以下为小学六年级数学的排列练习题,请按题目要求进行计算。

1. 从1、2、3、4、5这五个数字中任选3个数字进行排列,可以得到多少个不同的三位数?2. 在一个包含6个不同数字的集合中,选出3个数字,组成一个三位数。

求这样的三位数共有多少个?3. 用数字1、2、3、4组成一个没有重复数字的三位数。

问能组成多少个不同的三位数?4. 由数字0、1、2、3、4、5六个数字组成三位数,且其中每位上的数字都不相同,能够组成多少个不同的三位数?5. 一个数码锁的密码是一个三位数,每一位上的数字都是1、2、3这三个数字中的一个。

那么一共可以设置多少个不同的密码?6. 从数字0、1、2、3、4、5这六个数字中选出3个数字,组成一个三位数。

问可选出多少个不同的三位数?7. 某地发生了地震,该地共有6栋房子。

现需要对这些房子进行编号,每栋房子的编号由1、2、3、4、5、6这六个数字中的不同三个数字组成。

那么一共可以有多少种不同的编号方式?8. 小明在农场养了5只鸟,现需要为每只鸟进行编号。

每只鸟的编号由数字0、1、2、3、4这五个数字中的任意两个数字组成。

问一共可以有多少种不同的编号方式?9. 由数字1、2、3、4、5五个数字组成的三位数有多少个?10. 从数字0、1、2、3、4这五个数字中选出3个数字,组成一个三位数。

问可选出多少个不同的三位数?请按照以上题目进行计算,每题的答案将在下面给出。

答案:1. 60个不同的三位数。

2. 120个不同的三位数。

3. 24个不同的三位数。

4. 120个不同的三位数。

5. 27个不同的密码。

6. 60个不同的三位数。

7. 60种不同的编号方式。

8. 20种不同的编号方式。

9. 60个不同的三位数。

10. 60个不同的三位数。

希望以上练习题可以帮助到你,祝你学习进步!。

小学六年级奥数题还原问题、找规律、不等与排序

小学六年级奥数题还原问题、找规律、不等与排序

小学六年级奥数题还原问题、找规律、不等与排序1.小学六年级奥数题还原问题篇一【例】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。

哥哥看弟弟挑得太多,就拿来一半给自己。

弟弟觉得自己能行,又从我哥哥那拿一半。

哥哥不让,哥哥只好给他5块,于是哥哥比哥哥多挑了2块。

我弟弟一开始打算挑几块?【分析】我们得先算出最后哥哥、弟弟各挑多少块。

只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。

提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。

对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。

2.小学六年级奥数题还原问题篇二【例】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。

这时他的存折上还剩1250元。

他原有存款多少元?【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。

由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是1250+100=1350(元)余下的钱(余下一半钱的2倍)是:1350×2=2700(元)用同样道理可算出“存款的一半”和“原有存款”。

综合算式是:[(1250+100)×2+50]×2=5500(元)归约问题的一般特点是,已知某个数按一定顺序四则运算的结果,或增减某个数的结果,需要初始数(运算前或增减前)。

解决归约问题,通常要按照运算的相反顺序或增减进行相应的逆运算。

3.小学六年级奥数题找规律篇三在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()【解析】(1)在数列3,6,9,12,(),()中,前一个数加上3就等于后一个数,相邻两个数的差都是3,根据这一规律,可以确定()里分别填15和18;(2)在数列1,2,4,7,11,(),()中,第一个数增加1等于第二个数,第二个数增加2等于第三个数,也就是相邻两个数的差依次是1,2,3,4……这样下一个数应为11增加5,所以应填16;再下一个数应比16大6,填22。

小学六年级数学排列组合练习题

小学六年级数学排列组合练习题

小学六年级数学排列组合练习题题目一:排列问题
1. 小明有7本不同的书籍,他想按照一定的顺序将它们放在书架上。

请问他一共有多少种不同的放法?
2. 用数字0、1、2、3、4、5、6组成一个没有重复数字的三位数,
一共有几种可能的排列方式?
3. 一张彩票上有6个数字,数字范围从1到49。

如果我们要中奖必
须完全猜中这6个数字,并且顺序也必须正确。

请问,购买一张彩票
中奖的概率是多少?
题目二:组合问题
1. 小明有10个饼干,他想要选择其中的3个饼干作为礼物送给朋友。

请问他有多少种不同的选择方式?
2. 一个班级里有20个学生,老师要从中选出一组学生作为代表,
组成班委会。

请问,老师一共有多少种不同的选择方式?
3. 一张彩票上有6个数字,数字范围从1到49。

如果我们只需要猜
中这6个数字,而不需要考虑顺序。

请问,购买一张彩票中奖的概率
是多少?
题目三:排列组合综合问题
1. 一家餐厅提供三个主菜和五种配菜,每餐只能点一个主菜和两种
配菜。

请问,一共有多少种不同的点菜方式?
2. 小明想在火车上玩扑克牌,他一共有52张牌。

每次只能出一张牌,并且不重复。

请问,他最多可以玩几局扑克牌?
3. 在一个小组里,有5名男生和3名女生。

老师要从中选出一组人员进行演讲比赛,比赛队伍一定要包含两名男生和一名女生。

请问,老师一共有多少种不同的选择方式?
注意:以上题目中的数字和条件只作为示例,可根据具体情况进行修改和调整。

题目内容仅供参考,不作为具体考试试题使用。

六年级小学生奥数排列组合应用题

六年级小学生奥数排列组合应用题

六年级小学生奥数摆列组合应用题
六年级小学生奥数摆列组合应用题篇三
1、有 13 个队参加篮球竞赛,竞赛分两个组,第一组七个队,第
二组六个队,各组先进行单循环赛(即每队都要与其余各队竞赛一
场),而后由各组的前两名共四个队再进行单循环赛决定冠亚军。

问:共需竞赛多少场?
2、一个口袋中有 4 个球,另一个口袋中有 6 个球,这些球颜色各不同样。

从两个口袋中各取 2 个球,问:有多少种不一样结果?
3、10 个人围成一圈,从中选出两个不相邻的人,共有多少种不
同选法?
4、10 个人围成一圈,从中选出三个人,此中恰有两人相邻,共
有多少种不一样选法?
5、从 1、3、5 中任取两个数字,从0、2、4 中任取两个数字,共可构成多少个没有重复数字的四位数?此中偶数有多少个?
6、从数字 1、3、5、
7、9 中任选三个,从0、2、4、6、8 中任选两个,能够构成多少个
(1)没有重复数字的五位数;
(2)没有重复数字的五位偶数;
(3)没有重复数字的能被 4 整除的五位数。

7、用 1、2、3、4、5 这五个数码能够构成120 个没有重复数字的四位数,将它们从小到大摆列起来,4125 是第几个?
8、在 1000 到 1999 这 1000 个自然数中,有多少个千位、百位、
十位、个位数字中恰有两个同样的数?
9、在前 1993 个自然数中,含有数码 1 的数有多少个?
10、1 在前 10,000 个自然数中,不含数码 1 的数有多少个?。

小学数学六年级下册奥数高频考点常考易错题汇编——计数问题——排队论问题(含答案)

小学数学六年级下册奥数高频考点常考易错题汇编——计数问题——排队论问题(含答案)

小学数学六年级奥数高频考点常考易错题汇编——计数问题——排队论问题一.选择题1.排队买票,从前往后数小明排第5,小军排第10,小明和小军之间有()人。

A.3B.4C.5D.62.同学们排队参观科技馆。

从前面数,东东是第28个,力力是第36个,东东和力力之间有()个人。

A.7B.8C.93.10个小朋友排成一排,从左往右数,小明在第6个,小明左边有几人?() A.4人B.5人C.6人4.排队时,小雨前面有5人,后面有9人,那么这一队一共有()人。

A.14B.15C.135.小朋友们排成队做操,从前往后数,小红排在第5个,从后往前数,小红还是排在第5个,这一队共有()个小朋友。

A.10B.9C.116.小动物排队做操,和之间有()个小动物。

A.5B.6C.77.小朋友们排成一队做游戏,淘气的前面有9人,后面有5人,这一队小朋友共有()人。

A.15B.16C.188.同学们排队做游戏,从前往后数芳芳排第5,从后往前数芳芳排第8,这一队一共有多少人?()A.13B.14C.129.一群小动物排队,从前面数小马排第7,小马后面有5只小动物,这群小动物一共有几只?()A.10B.11C.1210.人们排队进行核酸检测,从前面数,小明排第30个,他后面还有6个人,此时排队的人共有()个。

A.35B.36C.3711.有13人参加跑步比赛,小强的前面有9人,他的后面有()人。

A.3B.4C.5D.012.笑笑排队买票,她前面有13人,后面有8人,一共有()人排队。

A.20B.21C.2213.队列表演中,明明前面有7人,后面有12人,这一列一共有()人。

A.18B.19C.2014.红红的前面有6人,红红的后面有4人,这一队一共有多少人?() A.9 人B.10 人C.11 人15.小朋友们排队,从前面数小华排在第8个,从后面数小华排在第6个,这个队伍一共有()个人。

A.13B.14C.15二.填空题16.一共有个小朋友在玩“老鹰捉小鸡”的游戏,小明的前面有个小朋友,从后数,小明排在第个。

最新六年级奥数全真练习之按规律排列.doc

最新六年级奥数全真练习之按规律排列.doc

最新六年级奥数全真练习之按规律排列
奥数是一种理性的精神,使人类的思维得以运用到最完善的程度.让我们一起来阅读最新六年级奥数全真练习之按规律排列,感受奥数的奇异世界!
下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,,那么其中第多少个算式的结果是1992?
答案与解析:先找出规律:每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。

因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3,如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)2=996项,而数字1始终是奇数项,两者不符,所以这个算式是3+1989=1992,是(1989+1)2=995个算式。

为您提供的最新六年级奥数全真练习之按规律排列,希望给您带来启发!
浏览本文的孩子们还看了:
长方形的级奥数问答
级奥数问答:商品编号
级奥数问答之取小球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数题:六年级奥数专题训练之排列
1.某铁路线共有14个客车站,这条铁路共需要多少种不同的车票?
2.有红、黄、蓝三种信号旗,把任意两面分上、下挂在旗杆上表示不同信号,一共可以组成多少种不同信号?
3.有五种颜色的小旗,任意取出三面排成一行表示各种信号。

问:共可以表示多少种不同的信号?
4.(1)有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?
(2)有三本不同的书,5名同学来借,每人最多借一本,借完为止,有多少种不同的借法?
5.七个同学照像,分别求出在下列条件下有多少种站法:
(1)七个人排成一排;
(2)七个人排成一排,某人必须站在中间;
(3)七个人排成一排,某两人必须有一人站在中间;
(4)七个人排成一排,某两人必须站在两头;
(5)七个人排成一排,某两人不能站在两头;
(6)七个人排成两排,前排三人,后排四人;
(7)七个人排成两排,前排三人,后排四人,某两人不在同一排。

6.甲、乙、丙、丁四人各有一个作业本混放在一起,四人每人随便拿了一本。

问:
(1)甲拿到自己作业本的拿法有多少种?
(2)恰有一人拿到自己作业本的拿法有多少种?
(3)至少有一人没拿到自己作业本的拿法有多少种?
(4)谁也没拿到自己作业本的拿法有多少种?
7.用0、1、2、3四个数码可以组成多少个没有重复数字的四位偶数?8.用数码0、1、2、3、4可以组成多少个
(1)三位数;
(2)没有重复数字的三位数;
(3)没有重复数字的三位偶数;
(4)小于1000的自然数;
(5)小于1000的没有重复数字的自然数。

9.用数码0、1、2、3、4、5可以组成多少个
(1)四位数;
(2)没有重复数字的四位奇数;
(3)没有重复数字的能被5整除的四位数;
(4)没有重复数字的能被3整除的四位数;
(5)没有重复数字的能被9整除的四位偶数;
(6)能被5整除的四位数;
(7)能被4整除的四位数。

10.从1、3、5中任取两个数字,从2、4、6中任取两个数字,共可组成多少个没有重复数字的四位数?其中偶数有多少个?。

相关文档
最新文档