五年级数学上册知识点汇总
五年级上册数学知识点汇总
五年级上册数学知识点汇总一、小数乘法1. 小数乘法的意义:小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
2. 小数乘法的计算法则:①先按整数乘法的法则算出积;②再给积点上小数点。
看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
乘得的积的小数位数不够,要添0补位。
3. 小数乘法中,两个因数与积的小数位数的关系:一个因数的小数位数+另一个因数的小数位数=积的小数位数。
4. 积的近似值:根据要求,要省略某一位后面的尾数求近似值时,要看这一位的下一位,用“四舍五入”法求近似值。
注意:近似值与原数是相等的,求近似值后一般都要写出计数单位。
5. 连乘、乘加、乘减:小数连乘时,先把小数看成整数,再按整数乘法法则算出积,然后点上小数点;如果使用简便算法,先确定积的小数位数,再点上小数点;注意:连乘、乘加、乘减时,不要忘记加进小数点后的位数;当乘得的结果末尾有0时,应根据小数的基本性质,把末尾的0去掉。
二、小数除法1. 小数除法的意义:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2. 小数除以整数的计算方法:小数除以整数先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够在被除数的末尾用0补足);然后按照除数是整数的除法进行计算。
3. 商的近似值:根据要求,要省略商的某一位后面的尾数求近似值时,要看这一位的下一位,用“四舍五入”法求近似值。
注意:近似值与原数是相等的,求近似值后一般都要写出计数单位。
4. 循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
依次不断重复出现的数字叫循环节。
循环小数的缩写法是将第一个循环节以后的数字全部略去,而在第一个循环节的首位和末位两个数字中间添上一个“·”,(相当于循环点)的方法。
五年级数学上册知识点
五年级数学上册知识点1. 数的大小比较- 次序:数字的大小比较,包括从小到大和从大到小的顺序。
- 认识整数:正整数和负整数,并了解它们在数轴上的位置。
2. 加减法运算- 加法和减法的概念和运算方法。
- 两位数和两位数的加减运算。
- 带进位的加法和借位的减法。
3. 乘法运算- 乘法的概念和运算方法。
- 乘法口诀表的研究和运用。
- 两位数和一位数的乘法。
4. 除法运算- 除法的概念和运算方法。
- 除法口诀表的研究和运用。
- 两位数除以一位数的除法。
5. 多位数的加减乘除运算- 多位数和多位数的加减乘除运算。
- 多位数和整数的加减乘除运算。
6. 数的性质与关系- 偶数和奇数的辨认和性质。
- 因数和倍数的概念及其关系。
7. 小数- 小数的概念和表示方法。
- 小数的加减运算。
8. 小数和分数的转化- 小数和分数之间的关系。
- 小数和分数的转化方法。
9. 分数的运算- 分数之间的大小比较。
- 分数的加减乘除运算。
10. 单位换算- 长度、重量和容量的单位换算。
- 通过换算解决实际问题。
11. 图形与面积- 二维图形的认识和分类。
- 面积的概念和计算方法。
12. 时间和日期- 时钟和时间的概念和读法。
- 日期的表示和计算。
13. 数据的收集和整理- 数据的收集和整理方法。
- 条形图和表格的制作和分析。
以上是五年级数学上册的知识点,希望对你有帮助!。
五年级数学上册知识点梳理归纳
五年级数学上册知识点梳理归纳五年级数学上册知识点分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
(也就是把什么平均分什么就是单位“1”。
)3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
如4/5的分数单位是1/5。
4、分数与除法A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/55、真分数和假分数、带分数1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数≧13、带分数:带分数由整数和真分数组成的分数。
带分数>1.4、真分数<1≤假分数真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:(2)整数化为假分数,用整数乘以分母得分子如:(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:(4)1等于任何分子和分母相同的分数。
如:7、分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
如:24/30=4/510、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/2011、分数和小数的互化(1)小数化为分数:数小数位数。
一位小数,分母是10;两位小数,分母是100……如:0.3=3/10 0.03=3/100 0.003=3/1000(2)分数化为小数:方法一:把分数化为分母是10、100、1000……如:3/10=0.3 3/5=6/10=0.61/4=25/100=0.25方法二:用分子÷分母如:3/4=3÷4=0.75(3)带分数化为小数:先把整数后的分数化为小数,再加上整数12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。
五年级数学上册知识点归纳总结
五年级数学上册知识点归纳总结(一)负数的初步认识负数的初步认识(一)正负数及零的意义:像+20,+8848,+3260 这样的数都是正数(正数前面的“+”可以省略不写),像-20,-155,-422 这样的数都是负数.0 是正数和负数的分界线,0 既不是正数也不是负数.负数的初步认识(二)1.生活中具有相反意义的数量:像零℃以上与零℃以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示.2.初步认识数轴:(1)0右边的数都是正数,0左边的数都是负数.(2)-2和2到0的距离相等.(3)正数都大于0,负数都小于0.(二)多边形的面积平行四边形的面积1.公式推导:沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形.通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高.通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h.2.平行四边形拉伸和平移问题:(1)把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大.(2)把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小.3.两平行四边形之间的关系:等底等高的两平行四边形面积一定相等,但面积相等的两个平行四边形形状不一定相同;三角形的面积:1.公式推导:用两个完全相同的三角形,可以拼成一个平行四边形.三角形的面积等于拼成的平行四边形的一半.观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同.通过平行四边形的面积公式,可以推导出三角形的面积公式.如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2.2.两三角形之间的关系:等底等高的两三角形面积一定相等,但面积相等的两个三角形形状不一定相同;3.三角形与平行四边形之间的关系:(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形;(2)等底等高的三角形面积是平行四边形面积的一半;(3)等面积.等底(高)的三角形和平行四边形,三角形的高(底)是平行四边形的2倍;梯形的面积:1.推导公式:两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼成的平行四边形面积的一半.通过观察可以发现,拼成的平行四边形的底等于梯形的上底.下底之和,平行四边形的高等于梯形的高.根据平行四边形面积公式,可以推导出梯形的面积公式.用S 表示梯形的面积,a.b 和h 分别表示梯形的上底.下底和高,梯形的面积公式为:S=(a+b )×h÷2.2.梯形与平行四边形之间的关系:(1)一个平行四边形可以分成两个完全相同的梯形,注意两个不同的梯形也可以拼成一个平行四边形;(2)要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边形的底,这样剪去才能最大.公顷和平方千米:1.公顷:1公顷就是边长100米的正方形的面积,1公顷=10000平方米.一个社区.校园的面积通常用“公顷”为单位;2.平方千米:1平方千米就是边长1000米的正方形的面积,1平方千米=100公顷=100万平方米=1000000平方米.表示一个国家.省市.地区.湖泊的面积是就要用“平方千米”作单位.3.面积单位换算进率:10010010010000100222222mm cm dm m hm km ÷÷÷÷÷−−−→−−−→−−−→−−−→−−−→【同步练习】单位换算8平方米=( )平方分米 3平方分米=( )平方厘米7平方分米=( )平方厘米 ( )平方分米=15平方米( )平方厘米=78平方分米 10平方千米=( )公顷120000平方米=( )公顷 7平方米=( )平方分米78公顷=( )平方米 55平方分米=( )平方厘米14平方米=( )平方分米 360000平方米=( )公顷3平方千米=( )平方米=( )公顷【同步练习】在括号里填上合适的单位名称.课桌的面积大约是44( ). 一枚邮票的面积大约是8( ). 教室的面积大约是48( ).我们校园的面积大约是2( ).江苏省的面积大约是10.26( ).简单组合图形的面积:1.求组合图形面积的常见方法:⑴分割法:可以把一个组合图形分成几个简单的图形,分别求出这几个简单图形的面积,再求和.⑵添补法:可以把一个组合图形看作是从一个简单图形中减去几个简单的图形,求出它们的面积差.2.计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积之和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差.【同步练习】求下面图形的面积(单位:m).你能想出几种方法.不规则图形的面积:1.要点:(1)把整格和半格分别涂上不同的颜色,避免重复和遗漏.(2)不满整格的可以全部看成半格计算;或者先数整格的个数,再把不满整格的也看成整格,数出一共有多少格.(3)有顺序地去数,做到不重复.不遗漏.2.方法:先数整格的,再数不满整格的,不满整格的除以2折算成整格,最后相加;若不规则图形为轴对称图形,可先算出一半图形的面积,再乘以2.【同步练习】图中每个小方格的面积为12m,请你估计这个池塘的面积.(三)小数的意义和性质小数的意义和读写方法:1.小数的意义:分母是10.100.1000……的分数都可以用小数表示.一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2.小数的读写:整数部分的0在每一级中间要读出来,在末尾不用读出来,而小数部分的0都要读出来(常考题)【同步练习】填空(1)506毫米=( )米; (2)23分=( )元;(3)148厘米=( )米; (4)8角5分=( )元;(5)0.023米=( )毫米 ; (6)3.09元=( )元( )分;(7)0.008= ()(); 0.621= ()(); 3.15=()(); 【同步练习】用0.0.2.6这四个数字和小数点组成小数.(1)组成最小的小数( ); (2)组成最大的小数( );(3)组成最小的两位小数( ); (4)组成最大的两位小数( );(5)组成只读一个0的两位小数( ); (6)组成一个0都不读的小数( ); 小数的计数单位和数位顺序表:【同步练习】在6.47这个数中,6在( )位上,表示( )个( );4在( )位上表示( )个( );7在( )位上,表示( )个( ).【同步练习】0.508是由( )个十分之一和( )个千分之一组成的,也可以看作是由( )个千分之一组成的.【同步练习】1里面有()个0.1,()个百分之一;50里面有()个0.01.【同步练习】1.45的计数单位是(),1.45含有()个这样的计数单位.1.450的计数单位是(),1.450含有()个这样的计数单位.【同步练习】一个小数的计数单位是0.001,它比0.01大,又比0.02小,这个小数可能是 .小数的性质:1.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变.2.易错点:①在小数点后面添上0或者去掉0,小数的大小不变.(×)②在一个数后面添上0或者去掉0,小数的大小不变.(×)【同步练习】把下面各数改写成小数部分是两位的小数.5元6角=()元 8分=()元1分米2厘米=()米 12厘米=()米【同步练习】在800,8.00,0.80,80.000这几个数中,不改变原数的大小,能去掉3个0的数是(),只能去掉2个0的数是(),只能去掉1个0的数是(),一个0也不能去掉的数是().小数的大小比较:先看整数部分,整数部分大的数就大;整数部分相同的,十分位上的数大的小数就大;十分位上的数相同的,再比较百分位上的数,以此类推.【同步练习】比较大小:0.76.0.067.0.706.0.076.0.67.0.607()<()<()<()<()<()【同步练习】7.□6>7.46 ,□里可填的数是().【同步练习】大于0.5而小于1的一位小数有()个.大于0.07而小于0.08的三位小数有()个;【同步练习】在□.□8的两个□里各填一个数字,使得到的小数分别符合下面的要求,(1)使这个小数尽可能大,这个小数是().(2)使这个小数尽可能小,这个小数是().(3)使这个小数尽可能接近5,这个小数是().大数值的改写1.用“万”作单位:a.从个位起,往左数四位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“万”字;c.用“=”连接.2.用“亿”作单位:a.从个位起,往左数八位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“亿”字;c.用“=”连接.【同步练习】把168000改写成用“万”作单位的数是();省略万位后面的尾数是();把995000000元改写成以“亿元”为单位的数是(),保留一位小数是(). 小数的近似数1.保留整数:就是精确到个位,要看十分位上的数来决定四舍五入.2.保留一位小数:就是精确到十分位,要看百分位上的数来决定四舍五入.3.保留两位小数:就是精确到百分位,要看千分位上的数来决定四舍五入. 【同步练习】求下面各数的近似数:1.5.064(精确到十分位)2.3.1449(精确到百分位)3.2.905(保留一位小数)4.2549880000(改写成用“亿”作单位的数,再保留两位小数)(四)小数加法和减法小数的加法和减法1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低位算起,各位满十要进一;不够减时要向前一位借1当10再减.2.被减数是整数时,要添上小数点,并根据减数的小数部分补上“0”后再减.3.用竖式计算小数加.减法时,小数点末尾的“0”不能去掉,把结果写在横式中时,小数点末尾的“0”要去掉.【同步练习】数字7在十位上比在十分位上表示的数大(),小于1的最大的三位小数比最小的两位小数大().【同步练习】3.6的计数单位是(),它有()个这样的单位,再加上()个这样的计数单位就得到4.【同步练习】在一个减法算式中,差是6.25,如果被减数增加0.5,减数减少0.5,则现在的差是().小数加减法简便计算:1.加法运算律:加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)2.减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+ca+b-c=a-c+b a+b-c+d=a-c+b+d【类型一】8.43+2.87+0.57+0.13 【类型二】6.52–3.44–2.56【类型三】9.6+6.7–9.6+3.3 【类型四】17.84–(5.84+11.79)(五)小数乘法和除法小数乘整数:小数乘整数,先按整数乘法计算,再看乘数里有几位小数,就从积的右边起数出几位,点上小数点.【同步练习】根据504×25=12600,直接写出下面每题的积.5.04×25= 50.4×25= 0.504×25=504×0.25= 504×2.5= 504×0.025=一个数乘10.100.1000……的计算规律1.规律:一个小数乘10.100.1000……小数点就分别向右移动一位.两位.三位……反过来.把小数的小数点向右移动一位两位.三位……就等于把这个小数乘10.100.1000 ……这就是小数点移动引起的小数大小变化规律.注意:如果当移动小数点但末尾数位不够时,可以用添“0”的办法补足数位,过去一个整数乘10就在末尾添1个“0”,乘100就在末尾添2个“0”……2.单位换算:例如求0.86吨=?千克时,可以这样想:把吨数改写成千克数,是把高级单位的数改写成低级单位的数,要乘以进率,进率是1000,只要把0.86的小数点向右移动三位.【同步练习】在括号里填上合适的数.0.04×()=4 0.978×()=978 5.08×()=50.846.5×()=4650 0.09×()=9 1.04×()=104【同步练习】单位换算.2.3米=()分米3.004升=()豪升7.07千克=( )克 21平方分米9平方厘米=( )平方厘米0.6平方米=( )平方厘米 4.3小时=( )小时( )分一个数除以整数除数是整数的小数除法,按整数除法算,商的小数点和被除数对齐;末尾有余数添0继续除;整数部分不够商1在个位商0.一个数除以10.100.1000……的计算规律1.规律:一个小数除以10.100.1000……小数点就分别向左移动一位.两位.三位……反过来,把一个数的小数点向左移动一位.两位.三位……就等于把这个小数除以lO.100 .1000……注意:如果当移动小数点数位不够时,可以用添“0”补足数位.整数实际上就是小数部分都是0的数,同样可以用这个规律求商.过去一个整十.整百数除似10或100,就在末尾去掉1个“0”或2个“0”……2.单位换算:例如求4.6分米=?米时,可以这样想:这道题是把分米数改写成米数,是把低级单位的数改写成高级单位的数,要除以进率,进率是10,只要把4.6的小数点向右移动一位.【同步练习】在括号里填上合适的数.139.8÷()=1.398 47.8÷()=0.478 1153÷()=1.153 8÷1000=()()÷100=7.5 ()÷10=0.01【同步练习】单位换算17分米=()米 1200毫升=()升3050米=()千米 350平方分米=()平方米710克=()千克 5030千克=()吨150分=()小时 720平方厘米=()平方分米小数乘以小数1.法则:小数乘小数先按整数乘洪乘,再看乘数里一共有几位小数,就从积的右边起数出几位,点上小数点.当小数位数不够时,在前面用0补足;末尾有0的要先点小数点再化简.2.积不变的规律:(1)一个乘数扩大多少倍,另一个乘数缩小相应的倍数,积不变;(2)当一个乘数不为0时,另一个乘数大于1,积就大于第一个乘数;另一个乘数小于1,积就小于第一个乘数.【同步练习】根据44×21=924 ,直接写出下面几个算式的积.4.4×2.1=( ) 0.44×0.21=( )0.44×2.1=( ) 4.4×0.21=()【同步练习】在括号填入合适的数,使等式成立.5.46×24=2.4×() 4.24×0.25=()×0.4246.4×0.53=5.3×() 18×0.42=0.18×()【同步练习】比较大小0.8×1.5○0.8;0.8×1.5○1.5.积的近似值求积的近似值,先计算乘法的积,根据要保留的位数看后一位上的数,用四舍五人的方法得出积的近似数.结果是近似值的,要用约等号表示.【同步练习】6.9628保留整数是();保留到十分位是();保留两位小数是();保留三位小数是()【同步练习】求一个小数的近似数,如果保留三位小数,要看小数第()位. 一个数除以小数1.被除数数位够:先划去除数的小数点,将除数变成整数,然后除数的小数点向右移动了一位,被除数的小数点也向右移动一位,划去被除数原来的小数点,再按照除数是整数的除法来计算.2.被除数数位不够:(1)先把除数转化成整数;(2)把除数转化成整数后,被除数的小数点也要向右移动相同位数.如果位数不够,要用0补足;(3)再按除数是整数的计算方法进行计算.3.商不变的规律:(1)除数和被除数扩大相同倍数,商不变;(2)当被除数不为0时,除数大于1,商就小于被除数;除数小于1,商就大于被除数.【同步练习】把下面的式子变成除数是整数的除法算式0.75÷0.25=( )÷25 0.672÷4.2 =( )÷420.24÷4.8=( )÷48 14 ÷0.56 =( )÷( )76.8÷0.5=( )÷5 0.54÷0.18 =( )÷( )【同步练习】根据1664÷13=128写出下面各题的商.16.64÷0.13 =( ) 166.4÷0.13=( )1664 ÷0.013=( ) 1.664÷1.3 =( )166.4 ÷130 =( ) 16.64÷1.3 =( )【同步练习】巧比大小.12.01÷1.02○12.01 0.36÷0.36○0.367.8×0.98○0.98 10.8÷5.4○10.81.8×1.1○18×0.11 0.99÷1.1○0.99×1.1商的近似值1.求商的近似值:保留整数要除到( )位,保留一位小数要除到( ),保留两位小数要除到( ),也就是比保留的位数多除( )位,再按( )法取近似值.2.循环小数:⎧⎨⎩有限小数(小数部分位数是有限的)小数无限小数(小数部分位数是无限的) 循环小数: 0.378378…… 1.13636……(用循环节表示) 0.378g g 1.136g g3.进一法:有时候不管余下的数是多少,都还需要分1份,就要用进一法把结果添上1,比如只要油有余下的,不管余下多少都要有1个油壶才能装完,这就要在商里添上1个.4.去尾法:有时候不管余下的数是多少,都不能再得到1个或1份时,就要用去尾法舍去余数,比如余下的钱不够再买1个足球.余下的米数不够做1件衣服,这余数就舍去.【同步练习】一间教室长8.8米,宽6.5米,如果用0.38平方米的瓷砖铺地,至少需要多少块瓷砖?(得数保留整数)【同步练习】植物油厂的每个油桶最多装油4.5千克,要装600千克的油,需要多少个油桶?【同步练习】金星服装厂有一批布料,如果做儿童服装,每套用布2.2米,正好可以做100套;如果用来做成人服装,每套用布2.5米,那么可以做多少套成人服装呢?小数四则混合运算1.运算顺序:(1)同一级符号从左往右依次计算;(2)既有加减,又有乘除,先算乘除,再算加减;(3)有小括号的,先算小括号里面的.2.简便计算类型:(1)乘法结合律a b c a c b()()⨯⨯=⨯⨯基本方法:先交换因数的位置,再计算.【同步练习】4.36×12.5×8【例2】0.95×0.25×4 (2)乘法分配律乘法分配律()±⨯=⨯±⨯a b c a c b c【同步练习】(1.25-0.125)×8【例2】(20-4)×0.25 (3)乘法分配律逆应用乘法分配律逆向定律()⨯±⨯=±a b a c a b c【同步练习】3.72×3.5+6.28×3.5【例2】 15.6×2.1-15.6×1.1(4)乘法分配律拓展应用【例1】4.8×10.1【例2】0.39×199(5)拆分因数【同步练习】1.25×2.5×32【例2】3.2×0.25×12.5(6)添加因数“1”【例1】56.5×99+56.5【例2】4.2×99+4.2(7)更改因数的小数点位置【同步练习】6.66×3.3+66.6×67【例2】4.8×7.8+78×0.52(8)除法的性质字母表示:)÷=÷÷(ca⨯bbac【同步练习】420÷2.5÷4【例2】17.8÷(1.78×4)(六)统计表和条形统计图(二)复式统计表复式统计表其实就是由几张单式统计表合成的,所以从复式统计表中,不仅可以横向比较.纵向比较,还可以从“合并”和“总计”中看出总体的比较情况.复式条形统计图复式条形统计图的结构比单式条形统计图更复杂,表达的信息也比单式条形统计图更丰富,不仅便于对同一类数据进行比较,而且便于对两类相关数据进行比较. 与复式统计表相比,复式条形统计图表示的数据则更加直观.形象.(七)解决问题的策略例举法1.例表法:例举的特点:有顺序.不重复.不遗漏【同步练习】用18根1米长的栅栏围一个长方形的羊圈,怎样围成的面积最大?在周长不变的前提下,当长方形的长和宽的数值相差越大,面积就越小,反之,长方形的长和宽的数值相差越小,面积就越大.2.例举法:【同步练习】最少订1本,最多订3本,有多少种情况?订一本:A.B.C 订二本:AB.AC.BC 订三本:ABC 得出结论:要按一定顺序列举,才能做到既不重复,又不遗漏.当情况比较复杂时要先分类,再列举.列举时可以列表,也可以用文字或符号.字母等来表示.总之要把每种可能一一列举出来,并且要用尽可能简单的方法表示,让人一看就明白.3.画图法:【同步练习】小强.小华和小丽是好朋友,如果她们每两人之间通一次电话,一共要通多少电话?如果他们互相寄一张节日贺卡,一共要寄多少张?提问:“每两人之间通一次电话”和“两人互寄一张贺卡”有什么不同?【同步练习】一个平行四边形的面积是36平方米,它的底和高分别是多少(底.高取整米数)?请你列表看一看有几种情况.【同步练习】用36个1平方厘米的小正方形拼成长方形,有多少种不同的拼法?它们的周长各是多少?拼一拼,算出结果.【同步练习】面包房的面包有4个装和6个装两种不同的包装.妈妈要购买50个面包,一共有几种不同的选择方法?【同步练习】动物园售票规定,一人券2元一张,团体券15元一张(可供10人参观),六年级一班有58人.买门票最少要花多少元?(八)用字母表示数用字母表示数1.用含有字母的式子表示数量关系和计算公式:小结:用含有字母的式子表示数量关系和计算公式简洁.明了,让人一目了然. 字母在不同的情况下,表示数的范围不一样,有的时候可以表示任意的数,但在表示生活中的数的时候,有时会有一定的范围.【同步练习】如果用大写的C表示周长,a表示长方形的长吧,b表示长方形的宽,你能用字母表示长方形的周长公式吗?那么面积呢?解析:长方形的周长=(长+宽)×2,用字母分别代进去,为C=(a+b)×2,省略乘号为C=2(a+b)长方形的面积=长×宽,用S表示面积,则S=a×b.【同步练习】若a表示单价,b表示数量,c表示总价.(1)已知单价.数量,求总价:()(2)已知总价.单价,求数量:()(3)已知总价.数量,求单价:()【同步练习】若用m表示工作效率,t表示工作时间,n表示工作总量.(1)已知工作效率.工作时间,求工作总量:()(2)已知工作总量.工作效率,求工作时间:()(3)已知工作总量.工作时间,求工作效率:()【同步练习】你能用字母表示以前学过的运算律吗?加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:a×(b+c)=a×b+a×c【同步练习】用含有字母的式子表示下面的数量:(1)水果店运来苹果X筐,每筐30千克.卖去50筐,还剩()千克.(2)水果店运来苹果X筐,每筐30千克.卖去50千克,还剩()千克.(3)一本书X元,买10本同样的书应付()元.(4)搭一个正方形要4根小棒,一行搭n个正方形要()根小棒.(5)一件衣服用布2米,X米布可做的件数为().(6)一个正方形花坛长5米,四周有一条a米宽的小路.小路的面积()平方米.小路外边一周长()米.2.含有字母的式子的书写(1)当字母与数字相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如:a×2通常可以写成2a或2• a.(2)当字母与字母相乘时,省略乘号,用点表示或直接去掉乘号,如:a×b写作a•b或ab;相同字母的话就写一个字母,再在字母的右上角写上2,如:ɑ×ɑ通常写成ɑ•ɑ或ɑ2,读作:ɑ的平方,表示2个ɑ相乘;(3)字母与1相乘省略1不写,只写字母本身,如:1×ɑ写做ɑ.要特别注意的是:加号.减号和除号不能用小圆点代替,也不能省略不写.【同步练习】省略乘号,写出下面各式:a×x= x×x= 5×x= x×3=y×8= x×2= y×b= 4×b×5=5x×2= 1×a= 4×m×n=3.把数代入含有字母的式子求值当给出式子中每个字母表示的数量是多少时,就可以把数字带进去算出这个式子表示的数值.注意要对应相应字母的的数值.【同步练习】煤气公司铺设一段管道,3米长的钢管用了x根,5米长的钢管用了y根.(1)用式子表示这段管道的长度.(2)当x=40根,y=30根时,这段管道长多少米?【同步练习】甲.乙两船分别从两个码头同时向下游出发,甲船每小时行a千米,乙船每小时行b千米,经10小时甲追上了乙.(1)用式子表示10小时甲.乙两船共行过的路程.(2)若a=58,b=41,求两个码头的距离.4.化简含有字母的式子化简形如“ax±bx”的式子,形如“ax±bx”的含有字母的式子,可以运用乘法分配律进行化简.【同步练习】计算下面各题:3x+5x=10y-9y=15a+10a=8b+2b=1×a=y+4y=15b-14b=15x-x=6a-a=y×y=.。
五年级上册数学全册重点知识总结
五年级上册全册重点知识总结第一单元本单元知识盘点:1.小数乘整数的计算方法。
乘:先按整数乘法的法则去乘;数:数一数两个因数中一共有几位小数;点:因数中共有几位小数,就从积的右边起数出几位小数,点上小数点。
提示:计算出小数乘整数的乘积后,积的小数部分末尾若出现0,要根据小数的性质去掉小数末尾的0,使小数成为最简形式。
2.小数乘小数的计算方法。
计算时先转化成整数乘整数,再算出积,最后看两个因数的小数位数一共是几位,就从积的右边起,数出几位点上小数点。
提示:积的小数位数不够时,要在前面用0补位,小数部分末尾有0的要把0去掉。
3.求一个数的几倍是多少的问题的解法。
无论倍数(大于1)是整数还是小数,都用乘法计算。
4.小数乘法的验算方法。
方法一:根据因数与积的大小关系检验。
方法二:因数位置交换再乘一遍。
方法三:用计算器来验算。
5.求积的近似数的方法。
先明确要保留的小数位数,再看要保留的数位的下一位上的数字是几,最后按照“四舍五入”法取积的近似值。
提示:若近似数末尾是0,这个0必须保留。
6.整数乘法的运算定律推广到小数。
整数乘法的交换律、结合律和分配律对小数乘法同样适用,运用运算定律可以使计算简便。
提示:运用乘法运算定律可以改变运算顺序,但不改变计算结果。
7.判断购物钱数够不够的方法。
可以采用“上舍入”和“下舍入”的方法进行估算。
“上舍入”就是取比该值大的最接近的整数,如:30.7“上舍入”为31。
“下舍入”就是取比该值小的最接近的整数,如:30.7“下舍入”为30。
8.乘加、乘减的计算方法。
没有括号的小数乘加、乘减运算,要先算乘法,后算加、减法。
本单元知识点易错汇总:1.计算小数乘法时,不能忘记点积中的小数点。
2.小数乘整数的积的末尾有0时,一定要先点积中的小数点,再去掉积中小数部分末尾的0。
3.在计算小数乘法时,积的小数位数不够时,需要在前面添0补位,再点上小数点。
4.判断积中小数点的位置是否正确时,先看两个因数乘积的末尾是否有0,有0时,根据小数的基本性质可以去掉0,去掉后积的小数位数少于因数中的小数位数和;没有0时,积的小数位数与因数中的小数位数和一定相同,反之计算结果就是错误的。
数学五年级上册总复习要点整理
数学五年级上册总复习要点整理一. 算数1. 整数1.1 正整数和负整数的概念1.2 整数的比大小1.3 整数的加减法则及应用1.4 整数的乘除法则及应用2. 分数2.1 分数的概念和性质2.2 分数的比较大小和约分2.3 分数的加减法则及应用2.4 分数的乘除法则及应用3. 小数3.1 小数的概念和性质3.2 小数的读法和写法3.3 小数的比较大小和四则运算4. 算式的变形和计算4.1 算式的基本等式4.2 算式的变形4.3 算式的括号应用4.4 算式的口算加减乘除5. 数的应用5.1 包括数值解释、图形解释等二. 几何1. 植入几何学1.1 植入几何中的点和线1.2 植入几何中的角和三角形1.3 植入几何的统计图形初步2. 视图几何学2.1 视角的概念和画法2.2 视图及其分类3. 几何变换3.1 平移和旋转的概念和画法3.2 对称的概念和画法三. 量1. 长度1.1 长度的测量1.2 长度的运算2. 面积2.1 面积的概念和测量2.2 面积的运算3. 重量3.1 重量的测量3.2 重量的运算4. 容积和长度之间的换算4.1 容积和长度的概念4.2 容积和长度之间的换算四. 数据1. 数据資料1.1 資料的收集1.2 資料的分析2. 平均数2.1 一般用算术平均数2.2 一般应用3. 计数方法3.1 排列表和频数分布表3.2 众数和中位数五. 算法1. 数字串/字符运算1.1 数字串和字符的概念1.2 字符的比较和分类1.3 数字串的基本操作2. 计算机图形学2.1 图形学的概念和分类2.2 图形计算和显示2.3 特殊效果的实现以上是数学五年级上册总复习的要点整理,希望能够对同学们的学习有所帮助。
五年级数学上册总复习知识点归纳
第一章小数乘法1,当一个数乘比1小的数,积比这个数小。
当一个数乘比1大的数,积比这个数大。
例: 2.4× 0.5 < 2.4 0.97× 8.2 < 8.22.4× 1.02 > 2.4 0.97× 0.84 < 0.972,两数相乘,一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。
一个因数不变,另一个因数缩小到原来的几分几,积也缩小到原来的几分之几。
3,两数相乘,一个因数扩大到原来的m倍,另一个因数扩大到原来的n倍,积扩大到原来的m乘以n倍。
4,小数乘法计算法则:一算:小数乘小数,先按整数乘法算出积;二看:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;三点:当乘得的积的小数位数不够时,要在前面用0补足,再点上小数点,如果积的小数末尾有0,就根据小数的基本性质把0去掉!5、小数点的位移规律:把一个小数扩大10倍、100倍、1000倍、……只要把小数点向右移动一位、两位、三位……位数不够时,要用“0”补足。
把一个小数缩小为原来的1/10、1/100、1/1000、……只要把小数点向左移动一位、两位、三位……位数不够时,要用“0”补足。
6、根据因数判断积的小数位数:两个因数一共有几位小数,积就是几位小数。
7、整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
乘法的交换律:a×b=b×a乘法的结合律:( a×b)×c= a×(b×c)乘法的分配律:(a+b)×c=a×c+b×c8、积的近似数:保留a位小数,就看第a+1位,再用四舍五入的方法取值。
①保留整数:表示精确到个位,看十分位上的数;②保留一位小数:表示精确到十分位,看百分位上的数;③保留两位小数:表示精确到百分位,看千分位上的数;生活中人民币最小单位常常是“分”,因此以元为单位一般保留两位小数。
小学五年级数学上册35个重要知识点归纳
小学五年级数学上册35个重要知识点归纳五年级数学上35个重要知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法;(3)去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
五年级数学上册各单元知识点归纳
五年级数学上册各单元知识点归纳第一单元小数乘法1、小数乘法的计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数;就从积的右边起数出几位点上小数点。
乘得的积小数位数不够时;就在积的前面用0来补足;再点小数点。
2、计算结果中;小数部分末尾的0要去掉;把小数化简。
3、规律:一个数(0除外)乘大于1的数;积比原来的数大。
一个数(0除外)乘小于1的数;积比原来的数小。
一个数(0除外)乘1;积等于原来的数。
4、求近似数的方法有三种:⑴四舍五入法;⑵进一法;⑶去尾法。
5、计算钱数;保留两位小数;表示计算到分。
保留一位小数;表示计算到角。
6、小数四则运算顺序跟整数是一样的。
乘法交换律、乘法结合律、乘法分配律对于小数乘法同样适用。
五年级数学上册各单元知识点归纳加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c 除法:除法性质:a÷b÷c=a÷(b×c)五年级数学上册各单元知识点归纳1、用数对表示位置时;一般列数在前面;行数在后面。
第三单元小数除法1、小数除以整数的计算方法:小数除以整数;按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除;商0;点上小数点。
如果有余数;要添0再除。
2、小数除以小数的计算方法:先将除数和被除数扩大相同的倍数;使除数变成整数;再按“小数除以整数的计算方法”进行计算。
3、如果被除数的位数不够;在被除数的末尾用0补足。
4、在实际应用中;小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数;求出商的近似数。
五年级数学上册知识点归纳
五年级数学上册知识点归纳一、整数与小数1. 整数的概念:整数包括自然数、0和负整数。
2. 整数的表示:正整数、负整数和0可以表示为数轴上的点,数轴上的点可以表示为整数。
3. 整数的比较:比较整数大小时,可以用数轴、大小关系符号(<、>、=)进行表示。
4. 小数的概念:小数是有限位数或无限循环小数。
二、小数的运算1. 小数的加法:小数相加时,先对齐小数点,然后按照位数进行相加,最后写下小数点。
2. 小数的减法:小数相减时,可以通过改变被减数的符号并转化为加法运算来进行计算。
3. 小数的乘法:小数相乘时,先按照整数乘法的规则进行运算,最后确定小数点的位置。
4. 小数的除法:小数相除时,可以将除数与被除数都乘以相同的10的倍数,使被除数变为整数,然后按照整数除法的规则进行运算,最后确定小数点的位置。
三、分数的概念与运算1. 分数的概念:分数是由分子和分母构成的,分子表示被分的份数,分母表示分成几份。
2. 分数的相等:当分子分母成比例时,表示的分数是相等的。
3. 分数的比较:比较分数大小时,可以通过相等分母,然后比较分子的大小来判断。
4. 分数的加法减法:分数相加减时,需要先找到相同的分母,然后按照分母进行运算,最后化简(约分)。
5. 分数的乘法除法:分数相乘除时,可以直接按照分子分母进行运算,最后化简(约分)。
四、面积和周长1. 面积的概念:面积是二维图形所占的单位面积的总和。
2. 面积的计算:不同二维图形的面积计算方式不同,例如正方形面积=边长的平方,矩形面积=长乘以宽。
3. 周长的概念:周长是封闭图形边界的长度总和。
4. 周长的计算:不同图形的周长计算方式不同,例如正方形周长=4倍边长,矩形周长=2倍长+2倍宽。
五、时、钟与时针、分针1. 时钟的制作:时钟通常由表盘、时针、分针、秒针组成。
2. 读时:通过时针和分针的位置来读取时间,时针指向的数字代表小时,分针所在位置代表分钟。
六、几何图形与变换1. 点、线、面的概念:点是没有长度、宽度和高度的,线是由无数个点连接而成的,面是由无数个线连接而成的。
小学五年级上册数学知识点汇总
小学五年级上册数学知识点汇总小学五年级上册数学知识点汇总1第一单元方向与路线一、判断物体方向口诀:1、找准观测点。
例子:A在B是什么方向,以B为观测点。
2、判断方向,一般从南或北说起。
3、找角度,角的一条边在南或北。
二、描述路线要注意:方向和距离。
第二单元小数乘法(本学期重点)一、小数点位置的移动引起小数大小的变化小数点向右移动一位,两位,三位,原来的数就扩大10倍;100倍;1000倍。
小数点向左移动一位,两位,三位原来的数就缩小到原来的1/10;1/100;1/1000。
小数点向左或者向右移动,位数不够时,要用0补足位。
1、小数乘法的计算方法:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、积与因数的关系:一个数(0除外)乘大于1的数,积比原来的数大。
一个数(0除外)乘小于1的数,积比原来的数小。
第三单元小数除法(本学期重点)1、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
2、一个数除以小数:除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,(位数不够的,在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
3、求商的近似值:①用四舍五入法,保留整数,除到第一位小数;保留一位小数,除到第二位小数;保留两位小数,除到第三位小数……②根据具体情况用去尾法或进一法取近似值。
4、循环小数的表示方法有两种:例4.3232……或4.325、商的变化规律:(十分重要)如果除数是小于1的小数,那么商大于被除数;如果除数是大于1的小数,那么商小于被除数。
如果被除数比除数小,商就小于1。
四、解决问题1、商不变的规律:被除数和除数同时扩大或者同时缩小相同的倍,商不变。
五年级数学上册重点知识点整理(8篇)
五年级数学上册重点知识点整理篇11、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:(a±b)×c=a×c±b×c2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2长方形的面积公式:s=ab正方形的周长公式:c=4a正方形的面积公式:s=3、读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间)速度=(路程)÷(时间)时间=(路程)÷(速度) 总价=(单价)×(数量)单价=(总价)÷(数量)数量=(总价)÷(单价) 总产量=(单产量)×(数量)单产量=(总产量)÷(数量)数量=(总产量)÷(单价)工作总量=(工作效率)×(工作时间)工作效率=(工作总量)÷(工作时间)工作时间=(工作总量)÷(工作效率)大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量×倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数被减数=减数+差减数=被减数-差加数=和-另一个加数被除数=除数×商除数=被除数÷商因数=积÷另一个因数小学数学四边形知识点1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
最新部编版五年级上册数学全部知识点汇总(完整编版)
最新部编版五年级上册数学全部知识点汇
总(完整编版)
本文档旨在为五年级学生提供最新部编版五年级上册数学知识点的全面汇总。
以下是本册教材中的全部知识点概述:
1. 数的认识与整数
- 认识自然数和整数
- 整数的正负与数轴表示
- 整数的比较和排序
- 自然数的分类与运算
2. 分数与小数
- 认识分数和分数的大小
- 用图形表示分数
- 分数的化简与比较
- 小数与分数的转化
3. 算术与代数
- 四则运算的认识和运用
- 运算定律的理解和应用
- 等式与方程的解法
- 图形的认识和表示
4. 推理与判断
- 数学问题的解决方法
- 实际问题的分析与推理
- 图形的判断和分类
- 推理和证明的基本方法
5. 数据与概率
- 数据的整理和分析
- 数据的图表表示
- 概率的认识和应用
- 概率的图形表示
以上是最新部编版五年级上册数学全部知识点的汇总,希望能对五年级的研究有所帮助。
根据教材的指导,学生应该掌握这些知识点,并能够熟练运用于实际问题中。
祝你研究顺利!。
五年级数学上册知识点
五年级数学上册知识点第一单元负数的初步认识1.0既不是正数,也不是负数。
正数都大于0,负数都小于0。
2.在数轴上,以“0”为分界点,越往左边的负数越小,左边的数都比右边的数小。
第二单元多边形的面积1.边长是100米的正方形的面积就是1公顷。
边长是1000米的正方形的面积就是1平方千米。
2. 1公顷=10000平方米 1平方千米=100公顷3. 长方形的周长=(长+宽)×2正方形的周长=边长×44.正方形的面积=边长×边长长方形的面积=长×宽平行四边形面积=底×高三角形面积=底×高÷2梯形的面积=(上底+下底)×高÷2第三单元小数的意义和性质1.分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。
2.小数的组成:小数是由整数部分、小数点和小数部分组成的。
比较小数的大小时,先比整数部分,再比小数部分。
3.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
第四单元小数加法和减法1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低位算起,各位满十要进一;不够减时要向前一位借1当10再减。
第五单元小数乘法和除法1.一个小数乘以10、100、1000……只要把小数点向右移动一位、两位、三位……;2.一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……;积不变。
第六单元统计表和条形统计图1. 复式统计表的优点........:把几张相关联的单式统计表合并成一张统计表后,便于从整体上了解、对比、分析数据。
2. 复式条形统计图的优点..........:把两张或多张相关联的条形统计图合并后,能更清楚的表示各种数量的多少,更直观、形象地比较多种数量之间的关系。
第七单元解决问题的策略1.把事情发生的可能性有条理地找出来,从而找出问题的全部答案,这种策略叫2.要做到不重复、不遗漏,就要按顺序来排列。
五年级数学上册必背知识点
五年级数学上册必背知识点一、小数乘法。
1. 小数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如,2.5×3表示3个2.5相加的和是多少。
- 计算方法:先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的末尾有0,要先点上小数点,再把0去掉。
2. 小数乘小数。
- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。
例如,2.5×0.3表示2.5的十分之三是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
当积的小数位数不够时,要在前面用0补足,再点小数点。
3. 积的近似数。
- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。
例如,将1.234×5.67的积保留两位小数,先算出积为6.99678,然后看千分位数字6,向百分位进1,得到7.00。
4. 整数乘法运算定律推广到小数。
- 乘法交换律:a× b = b× a,例如,0.5×1.2 = 1.2×0.5。
- 乘法结合律:(a× b)× c=a×(b× c),如(0.2×0.3)×0.4 = 0.2×(0.3×0.4)。
- 乘法分配律:(a + b)× c=a× c + b× c,例如,(1.5+2.5)×3.2=1.5×3.2 +2.5×3.2。
二、位置。
1. 数对。
- 用数对表示位置时,先表示列数,再表示行数。
例如,在方格纸上,点A在第3列第2行,用数对表示为(3,2)。
- 两个数对中第一个数相同,表示在同一列;第二个数相同,表示在同一行。
三、小数除法。
五年级数学上册知识点归纳总结3篇
五年级数学上册知识点归纳总结第一篇:整数与小数:1. 整数的概念:包括正整数、负整数、0.2. 整数的大小比较:同号比大小看数值大小,异号比大小看绝对值大小.3. 整数的运算:加、减、乘、除.4. 小数的概念:小数点后面有数字的有限小数和无限循环小数.5. 小数的读法:小数点前面的数的读法+小数点+小数点后面数的读法.6. 小数的大小比较:先比较整数部分大小,整数部分相同再比较小数部分.7. 小数的运算:加减法和乘除法.8. 小数的转化:分数、百分数、比.9. 数据的整理与表达:用表格、图形等形式进行数据的整理和表达.第二篇:分数和计算:1. 分数的概念:分数包括真分数、假分数、带分数.2. 分数的读法:分母表示了等分的份数,分子表示了实际数的数量.3. 分数的大小比较:通分后比较分子大小.4. 分数的运算:加减法和乘除法.5. 分数的化简和约分:将分数约分到最简.6. 分数的转化:小数、百分数、比.7. 计算的积极性:数学计算需要认真积极,遇到困难要勇于思考和解决.8. 定义分数:分子、分母、等分.9. 分数的加减法:异分数通分后加减法.第三篇:长度、面积和周长:1. 长度的概念:长度是直线段的大小,用米、分米、厘米等来表示.2. 面积的概念:面积是平面内一个图形所覆盖的区域的大小,用平方米、平方分米、平方厘米等来表示.3. 周长的概念:周长是图形边界的长度,用米、分米、厘米等来表示.4. 不同单位的换算:用不同的方法将一种单位转化为另一种单位.5. 长度、面积和周长的计算:各种图形的长度、面积和周长的计算方法.6. 长度、面积和周长的比较:比较不同的图形的长度、面积和周长的大小.7. 多边形的面积和周长:正多边形和不规则图形的面积和周长的计算方法.8. 尺子读数的误差:尺子的读数存在误差,需要注意取整.9. 采取正确的测量方法:采用正确的方法和工具进行测量,保证测量结果的准确性.。
五年级上册数学知识点
五年级上册数学知识点五年级上册数学知识点15篇漫长的学习生涯中,大家都没少背知识点吧?知识点也可以通俗的理解为重要的内容。
想要一份整理好的知识点吗?以下是店铺精心整理的五年级上册数学知识点,欢迎阅读与收藏。
五年级上册数学知识点1观察物体1、正确辨认从上面、前面、左面观察到物体的形状。
2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
5、从不同的位置观察,才能更全面地认识一个物体。
小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
被除数不变,除数缩小,商扩大。
③被除数不变,除数缩小,商扩大。
6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如6.3232…………的循环节是32.7、小数部分的位数是有限的小数,叫做有限小数。
小学五年级数学上册知识点归纳
根据实际情况⑶去尾法(不管小数部分是多少;都要舍去尾数取整数)5、计算钱数;保留两位小数;表示计算到分.保留一位小数;表示计算到角.6、小数四则运算顺序跟整数是一样的.7、运算定律和性质:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4;见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时;省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置;要用到数对(先列:即竖排;后行:即横排).用数对要能解决两个问题:一是给出一对数对;要能在坐标图中标出物体所在位置的点.二是给出坐标中的一个点;要能用数对表示.竖排是列;从左往后数横排是行;从前往后数数对(列;行)第三单元小数除法9、小数除法的意义:已知两个因数的积与其中的一个因数;求另一个因数的运算.如:0.6÷0.3表示已知两个因数的积0.6;一个因数是0.3;求另一个因数是多少.10、小数除以整数的计算方法:小数除以整数;按整数除法的方法去除;商的小数点要和被除数的小数点对齐.被除数的整数部分不够除;商0;点上小数点.如果有余数;要添0再继续除.11、除数是小数的除法的计算方法:1)先移动除数的小数点;使它变成整数;2)除数的小数点向右移动几位;被除数的小数点也要向右移动几位(位数不够的;在被除数的末尾用0补足)3)然后按除数是整数的小数除法进行计算.12、在实际应用中;小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数;求出商的近似数.13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外);商不变.②除数不变;被除数扩大(缩小);商随着扩大(缩小).③被除数不变;除数缩小;商反而扩大;被除数不变;除数扩大;商反而缩小.*规律:被除数与商的大小关系:1)一个数(0除外)除以大于1的数;商比被除数小.2)一个数(0除外)除以小于1的数;商比被除数大.14、(P28)循环小数:一个数的小数部分;从某一位起;一个数字或者几个数字依次不断重复出现;这样的小数叫做循环小数. 循环节:一个循环小数的小数部分;依次不断重复出现的数字.如6.302302……的循环节是302.简写作6.3.02.15、小数部分的位数是有限的小数;叫做有限小数.小数部分的位数是无限的小数;叫做无限小数.小数分为有限小数和无限小数.第四单元可能性29、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积;因为长方形面积=长×宽;所以平行四边形面积=底×高.30、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形;平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍;因为平行四边形面积=底×高;所以三角形面积=底×高÷231、梯形面积公式推导:旋转32、两个完全一样的梯形可以拼成一个平行四边形.平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍;因为平行四边形面积=底×高;所以梯形面积=(上底+下底)×高÷233、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍.34、长方形框架拉成平行四边形;周长不变;面积变小.35、组合图形面积计算:必须转化成已学的简单图形.当组合图形是凸出的;用虚线分割成几种简单图形;把简单图形面积相加计算.当组合图形是凹陷的;用虚线补齐成一种最大的简单图形;用最大简单图形面积减几个较小的简单图形面积进行计算.第七单元数学广角-植树问题、鸡兔同笼问题36、不封闭栽树问题:(1)一条路的一边两端都栽树=路长÷间隔+1;已知间隔数;树的棵树;求路长.路长=间隔数×(树的棵树-1)(2)一条路的两边两端都栽树=(路长÷间隔+1)×2(3)一条路的一边两端不栽树=路长÷间隔-1(4)一条路的两边两端不栽树=(路长÷间隔-1)×2(5)锯木头时间问题:锯一段木头时间=总时间÷(段数-1)37、封闭图形四周栽树问题:栽树棵树=周长÷间隔38、鸡兔同笼问题:(龟鹤问题、大船小船问题)(1)算术假设法1:假设几只都是兔子;(都是脚多的兔子);先求鸡的只数鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚数减去一只鸡的脚数)兔的只数:总头数-鸡的只数算术假设法2:假设几只都是鸡;(都是脚少的鸡);先求兔子的只数兔子的只数:(总脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数)鸡的只数:总头数-兔子的只数(2)方程法:设兔子有x只;则兔子脚有2x只.那么鸡有(总头数-x)只根据“兔子脚+鸡脚=总脚数”列方程解答先求兔子只数;再算出鸡的只数.即:4x+2×(总头数-x)=总脚数解4x+2×总头数-2x =总脚数4x-2x+2×总头数-2×总头数=总脚数-2×总头数2x=X=补充内容:观察物体39、从不同的角度观察物体;看到的形状可能是不同的;观察长方体或正方体时;从固定位置最多能看到三个面.(习惯上我们从左面、正面、上面看;把这三种视图统称三视图)40、图形的运动:轴对称图形.(1)沿一条直线对折后;两边完全重合的图形叫做轴对称图形;这条直线叫做对称轴.圆有无数条对称轴.正方形有4条对称轴.等边三角形有3条对称轴.长方形有2条对称轴.等腰三角形和等腰梯形有1条对称轴.(2)轴对称图形的特点: 沿对称轴对折;两边完全重合. 每一组对应点到对称轴距离度相等.对应点之间的连线与对称轴互相垂直.(3)要能根据对称轴画出对称图形的另一半.41、数字编码:(1)数不仅可以用来表示数量和顺序;还可以用来编码.(2)邮政编码由6位数字组成;前2位表示省;前3位表示邮区;前4位表示县市;最后2位表示投递局(大地基乡投递局)(3)身份证18位:第7至14位表示出生年月日倒数第二位的数字表示性别;单数-男;双数-女(4)根据卡号信息、运动员编号信息、门牌信息填写编码规律.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学上册知识点汇总
第一单元小数乘法
1.小数乘法的计算法则(先按照整数乘法的法则计算,再看因数中一共有几位小数,就从积的右边起数出几位点了小数点。
)关键:积的小数位数要和因数中的小娄位数相同。
2.小数乘法的意义:
●一个数乘以整数的意义和整数乘法的意义相同,都是求几个
相同加数的和的简便运算。
●一个数乘以小数的意义是求这个数的几分之几是多少。
3、小数乘法的简便运算:整数乘法的运算定律对于小数乘法同样适用。
例:12.8×102=12.8×(100+2)=12.8×100+12.8×2
12.5×56=12.5×8×7=100×7=700
12.8×3.7+12.8×6.3=12.8×(3.7+6.3)
125×(8+4)=125×8+125×4=1000+100
4、积的近似数:求积的近似数时,要先计算出积,再看要保留几位小数,取积的近似数时要比要求保留的数位多看一位,再用四舍五入法取近似值。
例:把12.5638保留两位小数。
先看小数点后的第三位,是3,比5小,所以第二位后的小数都直接舍去,即。
12.5638≈12.56 。
保留一位小数时看小数点后第二位,是6,比5大,所以向前进一,即:12.5638≈12.6
5、找规律:
①从相邻两个数中找,两个两个的找,例:1,3,5,7,
先看1和3 的变化规律,加2.再看3和5的变化规律也是加2,同样5和7也是加2,因此这组数的规律就是后一个数比前一个数大2 ,因此7 后面的两个数就是9,11
②隔一个数找规律。
例:5,28,8,24,11,20,,,,,
这组数两个数两个数的找就不行了,它可以每隔一的数找一组规律即:5,8,11一组,它们是每隔一个数加3; 28,24,20这组是每隔一个数减4。
因此这组数后面的数依次就是14,16,17,12
6、小数乘法应用题。
①归总问题:即求总共有多少,要看清题的问题和已知条件。
弄清问题和条件间的联系,
②求比某个量多多少或少多少时,用减法,用多的量减去少的量。
第二单元小数除法
1、除数是整数的小数除法:计算法则,先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐,如果除到被除数的未尾仍有佘数,就在人才佘数的后面添0继续除。
2、除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后再按照除数是整数的小数除法去除。
3、小数除法的意义:小数除法的意义和整数除法的意义相同,都是已知两个数的积和其中一个因数,求另一个因数的运算。
4、商的近似值。
求商的近似值时,只用除到比要保留的数位多除一位再取近似值就可以了。
例如:12.5÷3≈(结果保留两位小数)只用除到小数点后面第3位即4.166然后取近似值约等于4.17即可。
5、取近似值的方法
a. 四舍五入法,看要保留数位的后一位,比五小直接舍去,大
于等于五时要向前进一。
b. 去尾法:即要保留的数位后面的数直接舍去。
例如:求一个
瓶子里最多可以放入多少水时,要用去尾法。
只能少放,不能多放。
c. 进一法:即不管要保留的数位后的数是几,都直接向前进一。
例如:求做一件上衣需要用多少布料时,应用进一法取值。
只能多不能少。
6、给一个数的近似值,求原数是几的问题。
例如:一个三位小数,四舍五入保留成两位小数后是3.15,这个三位小数最大是几?求最大是几也不是这个原小数四舍后是3.15,因此,第三位数只能是1,2,3,4,要求最大的数,最后一位只能是4,因此,要求这个三位小数最大是几,只用在这个近似数后面直接加一个4即可。
也就是3.154 这个原三位数最小是几?求最小是几,说明3.15的5 是经过五入取值后得到的,要五入第三位数必须是5、6、
7、
8、9,因为求最小的数,所以最后一位数只能是5.最直接的方法,把原数的最后一位数减1,然后再后面加
上5,即这个数最小是3.145。
7、积、商的变化规律。
一个因数不变,另一个因数扩大或缩小几倍,积也扩大或缩小几倍。
例:10×5=50,把10扩大2倍,5不变,
即20×5=100积也扩大2倍
一个因数扩大或缩小a倍,另一个因数扩大或缩小b倍,积就扩大或缩小a×b倍。
例10×5=50,把10扩大2倍,5也扩大2倍
即20×10=200积就扩大2×2=4倍
除数不变,被除数扩大或缩小a倍,商也扩大或缩小a倍
例:100÷50=2,把100扩大2倍50不变,
即200÷50=4商也扩大2倍。
被除数不变,除数扩大或缩小a倍,商就缩小或扩大a倍,例:100÷50=2把50缩小10倍,100不变,
即:100÷5=20 商就缩小10倍
被除数和除数同时扩大或缩小相同的倍数,商不变。
例:100÷50=2把100缩小10倍,把50也缩小10倍
即:10÷5=2 商不变
8、循环小数,小数分为,有限小数,和无限小数。
(判断方法:看小数点后的小数位数,)无限小数又分为无限不循环小数(如圆周率Л就是一个无限不循环小数),和无限循环小数。
一个小数,从小数部分的某一位起有一个或几个数字,依次不断的
重复出现,这样的小数叫循环小数。
例如3.1515........
在循环小数中,依次不断重复出现的一个或几个数字叫做这个循环小数的循环节,例如:3.1515.......的循环节是15。
循环小数的简写,只用在循环节的首位和未位上面加上“.”即可。
例如:3.1515......可简写成。