2018-2019嘉兴中考必备数学考前押题密卷模拟试卷9-10(共2套)附详细试题答案

合集下载

{3套试卷汇总}2018-2019嘉兴市考前冲刺必刷卷数学试题

{3套试卷汇总}2018-2019嘉兴市考前冲刺必刷卷数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A .37B .38C .50D .51【答案】D【解析】试题解析: 第①个图形中有3 盆鲜花,第②个图形中有336+=盆鲜花,第③个图形中有33511++=盆鲜花,…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+,则第⑥个图形中的鲜花盆数为26238.+=故选C.2.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x -=+ 【答案】D 【解析】因客户的要求每天的工作效率应该为:(48+x )件,所用的时间为:72048x+, 根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+, 可以列出方程:72072054848x -=+. 故选D .3.已知二次函数y =﹣(x ﹣h)2+1(为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h 的值为( )A .36或6B .36或6C .或1D .1或【答案】C 【解析】∵当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小,∴①若h <1≤x≤3,x=1时,y 取得最大值-5,可得:-(1-h )2+1=-5,解得:或(舍);②若1≤x≤3<h ,当x=3时,y 取得最大值-5,可得:-(3-h )2+1=-5,解得:或(舍).综上,h 的值为或,故选C .点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.4.一元二次方程210x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断【答案】A【解析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.5.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,则下面所列方程中正确的是( )A .1200012000100 1.2x x =+ B .12000120001001.2x x =+ C .1200012000100 1.2x x =- D .12000120001001.2x x=- 【答案】B【解析】首先设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为1.2x 元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x 元,可得:12000120001001.2x x=+ 故选B .【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 6.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .45【答案】D【解析】如图,连接AB ,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5,∴4cos cos 5OB C ABO AB =∠==. 故选D .7.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b -- 【答案】C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( ) A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 【答案】B【解析】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.9.如图,点A 是反比例函数y=k x的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是( )A .3B .﹣3C .6D .﹣6【答案】D 【解析】试题分析:连结OA ,如图,∵AB ⊥x 轴,∴OC ∥AB ,∴S △OAB =S △CAB =3,而S △OAB =|k|,∴|k|=3,∵k <0,∴k=﹣1.故选D .考点:反比例函数系数k的几何意义.10.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c <0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤【答案】C【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:b2a-<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>b2a-时,y随着x的增大而增大,故⑤错误;故选:C.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.二、填空题(本题包括8个小题)11.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.【答案】7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m12.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为1003米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)【答案】100(3【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得3,然后计算AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=CD AD,∴1003,在Rt△BCD中,3,∴3(3).答:A、B两点间的距离为100(3)米.故答案为100(3.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.13.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.【答案】1【解析】根据弧长公式l=,可得r=,再将数据代入计算即可.【详解】解:∵l=,∴r===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).14.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.【答案】1 2【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是12.故答案为:12.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.若a,b互为相反数,则a2﹣b2=_____.【答案】1【解析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 【答案】4; 【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②, ①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,17.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.【答案】(3【解析】过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F ,根据直角三角形30°角所对的直角边等于斜边的一半求出DE ,再根据勾股定理求出CE ,然后根据同时同地物高与影长成正比列式求出EF ,再求出BF ,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D 作DE ⊥BC 的延长线于E ,连接AD 并延长交BC 的延长线于F . ∵CD=8,CD 与地面成30°角,∴DE=12CD=12×8=4, 根据勾股定理得:22CD DE -2242-2284-3. ∵1m 杆的影长为2m ,∴DE EF =12, ∴EF=2DE=2×4=8,∴3+8=(3.∵AB BF =12,∴AB=12(28+43)=14+23. 故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB 的影长若全在水平地面上的长BF 是解题的关键.18.因式分解:223x 6xy 3y -+- =【答案】﹣3(x ﹣y )1【解析】解:﹣3x 1+6xy ﹣3y 1=﹣3(x 1+y 1﹣1xy )=﹣3(x ﹣y )1.故答案为:﹣3(x ﹣y )1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (3,1)在反比例函数k y x=的图象上. 求反比例函数k y x=的表达式;在x 轴的负半轴上存在一点P ,使得S △AOP =12S △AOB ,求点P 的坐标;若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.【答案】(1)3y x=;(2)P (3-,0);(3)E (31),在. 【解析】(1)将点A 31)代入k y x=,利用待定系数法即可求出反比例函数的表达式; (2)先由射影定理求出BC=3,那么B 3,﹣3),计算求出S △AOB =1233S △AOP =12S △AOB P 的坐标为(m ,0),列出方程求解即可;(3)先解△OAB ,得出∠ABO=30°,再根据旋转的性质求出E 1),即可求解.【详解】(1)∵点A 1)在反比例函数k y x =的图象上, ∴∴反比例函数的表达式为y =;(2)∵A 1),AB ⊥x 轴于点C ,∴AC=1,由射影定理得2OC =AC•BC ,可得BC=3,B ,﹣3),S △AOB =12×4= ∴S△AOP =12S △AOB 设点P 的坐标为(m ,0), ∴12, ∴|m|=∵P 是x 轴的负半轴上的点,∴m=﹣∴点P 的坐标为(-0);(3)点E 在该反比例函数的图象上,理由如下:∵OA ⊥OB ,OA=2,OB=AB=4,∴sin ∠ABO=OA AB =24=12, ∴∠ABO=30°,∵将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,∴△BOA ≌△BDE ,∠OBD=60°,∴BO=BD=OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD ﹣,BC ﹣DE=1,∴E(1), ∵×(﹣1),∴点E 在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.20.如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC 平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).【答案】(1)见解析;(2)8 633π【解析】(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.【详解】(1)证明:∵∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA为⊙O的半径,∴AM是⊙O的切线(2)解:连接AC,∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=23,∴S阴影=S梯形OADC﹣S扇形OAC=12×(4+2)×23﹣26048=63-3603ππ.【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.21.某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:品名猕猴桃芒果批发价(元/千克)20 40零售价(元/千克)26 50()1他购进的猕猴桃和芒果各多少千克?()2如果猕猴桃和芒果全部卖完,他能赚多少钱?【答案】(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】()1设购进猕猴桃x千克,购进芒果y千克,由总价=单价⨯数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;()2根据利润=销售收入-成本,即可求出结论.【详解】()1设购进猕猴桃x千克,购进芒果y千克,根据题意得:50 20401600x yx y+=⎧+=⎨⎩,解得:{2030x y==.答:购进猕猴桃20千克,购进芒果30千克.()2262050301600420(⨯+⨯-=元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2根据数量关系,列式计算.22.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【答案】(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或47【解析】(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:930 423b cb c-++=⎧⎨-++=⎩解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:0 23k ak a-+=⎧⎨+=⎩解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=4综上所述,满足条件的a的值为-3或4【点睛】本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.23.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.① 若该公司当月卖出3部汽车,则每部汽车的进价为万元;② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)【答案】解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.24.某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?【答案】(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ;(2)90-25-10-5=50,补全条形统计图(3)503000200⨯=750(人)答: 每天的骑行路程在2~4千米的大约750人25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b4a-﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.【答案】(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标; (2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题解析:(1)∵a 、b 460.a b --=∴a−4=0,b−6=0,解得a=4,b=6,∴点B 的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O 的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:5÷2=2.5秒,第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.26.天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两行环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元,求购买A 型和B 型公交车每辆各需多少万元?预计在该条线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?【答案】(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【解析】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“A 型公交车1辆,B型公交车2辆,共需400万元;A 型公交车2辆,B 型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由“购买A 型和B 型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得24002350x y x y +=⎧⎨+=⎩, 解得100150x y =⎧⎨=⎩, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得100150(10)122060100(10)650a a a a +-⎧⎨+-⎩, 解得:283554a ≤≤, 因为a 是整数,所以a =6,7,8;则(10﹣a )=4,3,2;三种方案:①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元;②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小【答案】B【解析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.2.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.【答案】A【解析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【答案】D【解析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A 、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意; C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意; D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D .【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.4.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A.6.5B.9C.13D.15【答案】A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.5.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°【答案】B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.6.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【答案】B【解析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.7.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%【答案】B【解析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=14时,点E的运动路程为114或72或92,则下列判断正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对【答案】A 【解析】由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,可得△ABE ∽△ECF ,继而根据相似三角形的性质可得y=﹣2155a x x a a ++-,根据二次函数的性质可得﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭,由此可得a=3,继而可得y=﹣218533x x +-,把y=14代入解方程可求得x 1=72,x 2=92,由此可求得当E 在AB 上时,y=14时,x=114,据此即可作出判断. 【详解】解:由已知,AB=a ,AB+BC=5,当E 在BC 上时,如图,∵E 作EF ⊥AE ,∴△ABE ∽△ECF ,∴AB CE BE FC =, ∴5a x x a y-=-, ∴y=﹣2155a x x a a++-, ∴当x=522b a a +-=时,﹣215551·5223a a a a a +++⎛⎫+-= ⎪⎝⎭, 解得a 1=3,a 2=253(舍去), ∴y=﹣218533x x +-, 当y=14时,14=﹣218533x x +-, 解得x 1=72,x 2=92,。

2019年浙江省嘉兴市中考数学全真模拟试卷附解析

2019年浙江省嘉兴市中考数学全真模拟试卷附解析

2019年浙江省嘉兴市中考数学全真模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118 B .112 C .19 D .162.对于抛物线y =(x -3)2+2与y =2(x -3)2+1,下列叙述错误的是( ) A .开口方向相同 B .对称轴相同 C .顶点坐标相同D .图象都在x 轴上方3. 如图,△ABC 中,AC=8,AB = 12,BC = 10,E 是AC 中点,∠AED =∠B ,则△ADE 与△ACB 的周长之比为( ) A .1:2B .1:3C .2:3D .2:54.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( ) A .34 B .33 C .24 D .8 5.下列定理中无逆定理的是( ) A .平行四边形的两组对边分别相等 B .平行四边形的两组对角分别相等 C .三角形的中位线平行于第三边 D .四边形的内角和为360°6.若关于x 的方程332x k +=的解是正数,则k 为( ) A .23k <B .23k > C .为任何实数D .0k >7.一只狗正在平面镜前欣赏自已的全身像 (如图所示),此时,它看到的全身像是( )8.用代数式表示“2a 与 3 的差”为()A.23a-B.32a-C.2(3)a-D.2(3)a-9.在-5,110-,-3. 5,-0.01,-2,-12各数中,最大的数是()A.-12 B.110-C.-0.01 D.-510.如图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为10厘米,AB=16厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,则“图上”太阳升起的速度为()A.0.4厘米/分 B.0.6厘米/分C. 1.0厘米/分 D.1.6厘米/分二、填空题11.如图,⊙O的直径 AB=8cm,C 为⊙O上的一点,∠BAC=30°,则BC=______cm.12.28x x++ =2(___)x+.13.若等腰三角形的一个外角为120°。

浙江省嘉兴一中实验学校2018-2019学年初二第二学期期中考数学试卷(解析版) (1)

浙江省嘉兴一中实验学校2018-2019学年初二第二学期期中考数学试卷(解析版) (1)

嘉兴一中实验学校2018-2019学年第二学期期中考八年级数学试卷一、选择题(每小题有4个选项,其中有且只有一个正确,请把正确选项的编码填入答题卷的相应表格,每小题3分,共30分)1.二次根式√a+3中,字母 a的取值范围是()A. a>−3B. a ≥−3C. a>3D. a≥3【答案】B.【解析】为确保二次根式有意义,二次根式根号下的数字大于等于0,∴a+3≥0,∴a≥−3.2.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】C【解析】A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、是中心对称图形,不是轴对称图形,故此选项错误.3.不解方程,判断方程4x2−4x+1=0的根的情况()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能确定【答案】B【解析】∆=b2−4ac=(−4)2−4×4×1=0,因此x有两个相等的实数根.4.把方程x2−4x−7=0化成(x−m)2=n的形式,则m、n的值是()A. 2,7B. -2,11C. -2,7D. 2,11【答案】D【解析】x2−4x−7=0x 2−4x +4−4−7=0(x −2)2=115.某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A. 50(1+x )2=182B. 50+50(1+x )+50(1+x )2=182 C. 50(1+x )+50(1+x )2=182 D. 50+50(1+x )=182 【答案】B【解析】根据题意得:五、六月份的产量为50(1+x )、50(1+x )2,∴50+50(1+x )+50(1+x )2=182,故选B.6.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结矩形各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )cm 。

2018-2019学年浙江省嘉兴市九年级期末数学模拟试卷

2018-2019学年浙江省嘉兴市九年级期末数学模拟试卷

2018-2019学年浙江省嘉兴市九年级期末数学模拟试卷一、选择题(每小题3分,共30分)2.(3分)(2009•巴中)|﹣|的倒数是()﹣5.(3分)2008年9月,我国成功实施了神舟七号载人航天飞行.实行太空行走的航天员所穿戴的航天服地面重量6.(3分)下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8).二、填空题(每小题3分,共30分)11.(3分)已知数轴上两点A,B它们所表示的数分别是+3和﹣5,则线段AB=_________.12.(3分)(2002•苏州)的相反数是_________.13.(3分)如果|x|=6,则x=_________.14.(3分)(2005•遵义)(﹣3)2﹣1=_________.15.(3分)比较大小:32_________23.16.(3分)在多项式5x2y﹣3x2y2+6中,次数最高的项的系数是_________.17.(3分)如果+|y+2|=0,则x2﹣2y的值为_________.18.(3分)某数的平方根是a+3和2a﹣15,那么这个数是_________.19.(3分)要能清楚地表示出各部分在总体中所占的百分比,应选择_________统计图.20.(3分)我市教研室对2008年嘉兴市中考数学试题的选择题作了错题分析统计,受污损的下表记录了n位同学的错题分布情况:已知这n人中,平均每题有11人答错,同时第6题答错的人数恰好是第5题答错人数的1.5倍,且第2题有80%的同学答对.则第5题有_________人答对.三、解答题:(共40分)21.(12分)计算:(1)(﹣3)﹣(﹣7)(2)(3)(7m﹣8n)﹣2(m﹣4n+5)22.(4分)先化简,再求(2a2﹣5a)﹣2(3a+5+a2)的值,其中a=﹣1.23.(10分)解方程:(1)2y+3=11﹣2y;(2)24.(8分)某班组织春游,A、B两个风景点全班每人任选一处.去A风景点的每人付费25元,去B风景点的每人付费35元.若去B风景点的人数比去A风景点的少4人,全班共付费1660元.问全班有多少人?25.(6分)某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.2018-2019学年浙江省嘉兴市九年级期末数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)2.(3分)(2009•巴中)|﹣|的倒数是()﹣|=,的倒数是|5.(3分)2008年9月,我国成功实施了神舟七号载人航天飞行.实行太空行走的航天员所穿戴的航天服地面重量6.(3分)下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8).二、填空题(每小题3分,共30分)11.(3分)已知数轴上两点A,B它们所表示的数分别是+3和﹣5,则线段AB=8.12.(3分)(2002•苏州)的相反数是﹣.的相反数是﹣.13.(3分)如果|x|=6,则x=±6.14.(3分)(2005•遵义)(﹣3)2﹣1=8.15.(3分)比较大小:32>23.16.(3分)在多项式5x2y﹣3x2y2+6中,次数最高的项的系数是 ﹣3.17.(3分)如果+|y+2|=0,则x2﹣2y的值为8.+|y+2|=018.(3分)某数的平方根是a+3和2a﹣15,那么这个数是49.19.(3分)要能清楚地表示出各部分在总体中所占的百分比,应选择扇形统计图.20.(3分)我市教研室对2008年嘉兴市中考数学试题的选择题作了错题分析统计,受污损的下表记录了n位同学的错题分布情况:已知这n人中,平均每题有11人答错,同时第6题答错的人数恰好是第5题答错人数的1.5倍,且第2题有80%的同学答对.则第5题有44人答对.三、解答题:(共40分)21.(12分)计算:(1)(﹣3)﹣(﹣7)(2)(3)(7m﹣8n)﹣2(m﹣4n+5)22.(4分)先化简,再求(2a2﹣5a)﹣2(3a+5+a2)的值,其中a=﹣1.23.(10分)解方程:(1)2y+3=11﹣2y;(2)24.(8分)某班组织春游,A、B两个风景点全班每人任选一处.去A风景点的每人付费25元,去B风景点的每人付费35元.若去B风景点的人数比去A风景点的少4人,全班共付费1660元.问全班有多少人?25.(6分)某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.。

浙江省嘉兴市秀洲区2018-2019学年九年级下学期初中毕业升学考试适应性练习数学试卷及参考答案

浙江省嘉兴市秀洲区2018-2019学年九年级下学期初中毕业升学考试适应性练习数学试卷及参考答案
A . 15° B . 18° C . 21° D . 24° 8. 数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(-1,-6),由此可求得哪些结论?”小明思考后求得 下列4个结论:①该函数表达式为y=2x-4;②该一次函数的函数值随自变量的增大而增大;③点P(2a,4a-4)在该函数图 象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是( ) A. ① B . ② C . ③ D . ④ 9. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD∥OA交OB于点D,点I是△OCD的内心, 连结OI,BI.若∠AOB=β,则∠OIB等于( )
角硬币(假设同种类每枚硬币的质量相同),经过操作得到如下记录.
记录
天平左边
天平右边
状态
记录一
5枚壹元硬币 1个10克的砝码
10枚伍角硬币
平衡
记录二
15枚壹元硬币
20枚伍角硬币 1个10克的砝码
平衡
请你帮小ቤተ መጻሕፍቲ ባይዱ同学算一算,一枚壹元硬币和一枚伍角硬币的质量分别是多少克? 19. 如图是6×6的正方形网格,点A,B,C均在格点上.请按下列要求完成作图:①仅用无刻度直尺,且不能用直尺中
Ⅱ.学生每周运动的时间在7≤x<9这一组的数据是: 7,7.2,7.4,7.5,7.5,7.6,7.8,7.8,8,8.2,8.4,8.5,8.6,8.8根据以上信息,解答下列问
题:
(1) 求这次被抽取的学生数。 (2) 写出被抽取学生每周运动的时间的中位数. (3) 根据此次问卷调查结果,估计该校九年级全体学生每周运动的时间超过7.9小时的学生有多少人? 22. 图1是某酒店的推拉门,已知门的宽度AD=2米,两扇门的大小相同(即AB=CD),且AB+CD=AD,现将右边的门 CDD1C1绕门轴DD1向外面旋转67°(如图2所示).

嘉兴中考数学试题及答案

嘉兴中考数学试题及答案

嘉兴中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个角的度数是45°,那么它的余角是多少度?A. 45°B. 30°C. 15°D. 75°答案:A3. 一个长方体的长、宽、高分别是3cm、4cm和5cm,那么它的体积是多少立方厘米?A. 20B. 24C. 30D. 40答案:C4. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A5. 以下哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = -3答案:A二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别是3和4,它的斜边长是________。

答案:57. 如果一个圆的半径是7,那么它的面积是________。

答案:153.94(π取3.14)8. 一个数的立方是27,这个数是________。

答案:39. 一个数的绝对值是5,这个数可能是________或________。

答案:5,-510. 如果一个分数的分子是7,分母是14,化简后的结果是________。

答案:1/2三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2) / (x + 1),其中x = 4。

答案:(3×4 - 2) / (4 + 1) = 1012. 一个数列的前三项分别是1,3,6,求第四项。

答案:根据数列的规律,每一项是前一项的2倍,所以第四项是6×2 = 12。

13. 一个三角形的三个内角分别是30°,60°,90°,求这个三角形的边长比。

答案:这是一个直角三角形,边长比为1:√3:2。

四、解答题(每题10分,共20分)14. 解方程:2x + 5 = 11。

答案:2x = 11 - 5x = 315. 证明:如果一个三角形的两边长分别是a和b,且a > b,那么这个三角形的第三边c满足b - a < c < a + b。

2019年浙江省嘉兴市中考数学综合模拟试卷附解析

2019年浙江省嘉兴市中考数学综合模拟试卷附解析

P B AO2019年浙江省嘉兴市中考数学综合模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=,8PA =,那么弦AB 的长是( )A .4B .8C .43D .832.如图,圆与圆之间不同的位置关系有( ) A .2种 B .3种C .4种D .5种3.计算:tan 245°-1= .( )4.已知△ABC ∽△A'B'C',且它们的相似比是 3,则下列命题正确的是( )A .∠A 是∠A ′的3倍B .∠A ′是∠A 的3倍C .A'B'是 AB 的3倍D .AB 是A'B'的 3倍 5.下列图形中,是中心对称图形而不是轴对称图形的是( )A .平行四边形B .正三角形C .正方形D .线段AB 6.关于x 的不等式31x m +<的正整数解是 1、2、3,则整数m 的最大值是( ) A .10 B . 11 C .12 D .13 7.四边形四个内角的度数比是2:3:3:4,则这个四边形是 ( ) A .等腰梯形B .直角梯形C .平行四边形D .不能确定8.下列各组条件中,能判定△ABC 为等腰三角形的是 ( ) A .∠A=60°,∠B=40° B .∠A=70°,∠B=50° C .∠A=90°,∠B=45°D .∠A=120°,∠B=15°9.下列方程组中,是二元一次方程组的是( )A . 2626xy x y =⎧⎨-=⎩B . 2131x y y z -=⎧⎨=+⎩C . 213x y x y +=⎧⎨-=⎩D . 2121x x y ⎧=⎨+=⎩10.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是 ( )A .这种变换是相似变换B .对应边扩大到原来的2倍C.各对应角度数不变D.面积扩大到原来的2倍11.如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备的水管的长为()A.17.5m B.35m C.335m D.70m二、填空题12.已知⊙O的半径是3,圆心O到直线l的距离是3,则直线l与⊙O的位置关系.13.一副象棋(共 32 个),全部正面朝下,小明任意模一颗,取到“车”的概率是.14.两个反比例函数y=3x,y=6x在第一象限内的图象如图所示, 点P1,P2,P3,…,P2 005在反比例函数y=6x图象上,它们的横坐标分别是x1,x2,x3,…,x2 005,纵坐标分别是1,3,5,…,共2005个连续奇数,过点P1,P2,P3,…,P2 005分别作y轴的平行线,与y=3x的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2 005(x2 005,y2 005),则y2 005= .15.把“等腰三角形的两腰相等”改写成“如果……那么……”的形式:.16.已知□ABCD的两条对角线相交于直角坐标系的原点0,且点A,B 的坐标分别为A(-1,-5),B(-1,2),则C,D的坐标分别为 .17.如图,是由16个边长为1的正方形拼成的,任意连接,这些小格点的若干个顶点可得到一些线段,则线段AB、CD中,长度是有理数的线段是________.18.如图,在Rt△ABC中,∠ACB=90°,AD=DB,AB=5,则CD的长是.19.直线3y x=-与32y x=-+的位置关系为 .(填“平行"或“相交").20.如果一个角的两边分别与另一个角的两边平行,并且这两个角相差 90°,那么这两个角的度数分别是 .21.说出一个可以用252x+表示结果的实际问题: .三、解答题22.小明和小乐做摸球游戏,一只不透明的口袋里放有 3 个红球和 5 个绿球,每个球除颜色外都相同,每次摸球前都将袋中的球充分搅匀,从中任意摸出一个球,记录颜色后再放回,若是红球,小明得 3 分,若是绿球,小乐得 2 分,游戏结束时得分多者获胜.你认为这个游戏对双方公平吗?若你认为公平,请说明理由;若你认为不公平,也请说明理由,并修改规则,使该游戏对双方公平.23. “一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2)求恰好选中医生甲和护士A 的概率.24.用两根长度均为 20 cm 的绳子,分别围成一个正方形和圆,试猜想,正方形和圆的面积哪个大?25.当y=-1时,你能确定代数式[(x+2y )2-(x+y )(x -y )-5y 2]÷(2x )的值吗?如果可以的话,请写出结果.26.已知32131a a x x x x +⋅⋅=,求a 的值.27.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能 性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?28.合并同类项. (1) 54x f x f -+- (2)374pq pq pq qp +-+ (3)22302154z z a b b c a b b c +-- (4)78512xy yx xy xy -+-29.将- 8 ,- 6 ,-4 , 0 , -2 ,2,4,6,8 这 9 个数分别填入右图的 9 个空格中,使得每行的 3 个数,每列的3 个数,斜对角线的 3 个数相加均为 0.30.如图,过圆上两点AB作一直线,点M在圆上,点P在圆外,且点M,P•在AB同侧,∠AMB=50°,设∠APB=x,当点P移动时,求x的变化范围,并说明理由,当点P移至圆内时,x有什么变化?(直接写出结果)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.4.D5.A6.D7.B8.C9.C10.D11.D二、填空题12.相切13.1814.2004.515.如果有两条边是等腰三角形的两腰,那么这两条边相等16.C(1,5) D(1,-2)17.CD18.2.519.平行20.135°、45°21.小明回家做数学作业用了x分钟,做语文作业用了25分钟,则252x+表示他这两门作业平均每门需要的时间答案不唯一,如:三、解答题22.(1)不公平;(2)()3 8P=摸出红球,()58 P=摸出绿球∵小明平均每次得分39388⨯=(分)小乐平均每次得分55284⨯=(分)∵9584<,∴游戏不公平.可修改为:①口袋里只放 2 个红球和 3 个绿球;或②摸出红球小明得 5 分,摸出绿球小乐得3分.23.解:(1)用列表法或树状图表示所有可能结果如下: ① 列表法 ②树状图(2)P (恰好选中医生甲和护士A )=1624.圆25.-2.26.a=927.它们的结果有36种可能;不同,甲赢的机会大,理由略28.(1) 65x f - (2) 7pq (3) 22152a b b c - (4)-8xy29.填法不唯一30.解:设BP 交⊙O 于C ,连接AC ,∵∠ACB>∠P ,∠ACB=∠AMB ,∴∠AMB>∠P , ∴50°>x ,∴0°<x<50°, 当点P 移至圆内时,50°<x<180°.A B 甲 (甲,A) (甲,B) 乙 (乙,A) (乙,B) 丙 (丙,A)(丙,B)护 士医 生。

{3套试卷汇总}2018-2019嘉兴市中考适应性考试数学试题

{3套试卷汇总}2018-2019嘉兴市中考适应性考试数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【答案】D【解析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.2.下列二次根式中,最简二次根式的是()A 15B0.5C5D50【答案】C【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 155A选项错误;B 、0.5=22,被开方数为小数,不是最简二次根式;故B 选项错误; C 、5,是最简二次根式;故C 选项正确;D .50=52,被开方数,含能开得尽方的因数或因式,故D 选项错误;故选C .考点:最简二次根式.3.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.A .+4B .﹣9C .﹣4D .+9【答案】B【解析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.4.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-5 【答案】B 【解析】先利用抛物线的对称轴方程求出m 得到抛物线解析式为y=-x 2+4x ,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x <3的范围内有公共点可确定t 的范围.【详解】∵ 抛物线y=-x 2+mx 的对称轴为直线x=2,∴222(1)b m a -=-=⨯-, 解之:m=4,∴y=-x 2+4x ,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵ 关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴ 3<t≤4,故选:B【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.5.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A 【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°.【详解】∵∠AFD =65°,∴∠CFB =65°,∵CD ∥EB ,∴∠B =180°−65°=115°,故选:A .【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.6.若22a -3,则a 的值可以是( )A .﹣7B .163C .132D .12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a 的取值范围,易得符合条件的选项.【详解】解:∵22a -3,∴4<a-2<9,∴6<a <1.又a-2≥0,即a≥2.∴a 的取值范围是6<a <1.观察选项,只有选项C 符合题意.故选C .【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.7.如图,在ABC 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒【答案】B 【解析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数.【详解】解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.8.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.9.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 【答案】A 【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程. 10.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个【答案】B 【解析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;②a ,b 看y 2=x+a ,y 1=kx+b 与y 轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y 1=kx+b 的图象从左向右呈下降趋势,∴k <0正确;②∵y 2=x+a ,与y 轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y 1>y 2错误;故正确的判断是①.故选B .【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y 随x 的变化趋势:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.二、填空题(本题包括8个小题)11.函数y =2x -中,自变量x 的取值范围是_________. 【答案】x≤1且x≠﹣1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:2020x x -≥⎧⎨+≠⎩,解得:x≤1且x≠﹣1. 故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=k x的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD =10,则k 的值为 .【答案】﹣1【解析】∵OD=2AD ,∴23OD OA =,∵∠ABO=90°,DC ⊥OB ,∴AB ∥DC ,∴△DCO ∽△ABO , ∴23DC OC OD AB OB OA ===, ∴22439ODC OAB S S ⎛⎫== ⎪⎝⎭, ∵S 四边形ABCD =10,∴S △ODC =8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.13.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____. 【答案】120°【解析】设扇形的半径为r ,圆心角为n°.利用扇形面积公式求出r ,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r ,圆心角为n°. 由题意:1816··233r ππ=, ∴r =4, ∴24163603n ππ= ∴n =120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.14.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .【答案】-6【解析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解!15.在△ABC 中,AB=13cm ,AC=10cm ,BC 边上的高为11cm ,则△ABC 的面积为______cm 1.【答案】2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC ,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理16.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________.【答案】5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>17.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.【答案】18块 (4n+2)块.【解析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n 个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块,第n 个图应该有(4n+2)块.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.18.如图,小强和小华共同站在路灯下,小强的身高EF =1.8m ,小华的身高MN =1.5m ,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.【答案】4m【解析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.三、解答题(本题包括8个小题)19.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD 即可.【详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ),∴∠CBO =∠CDO =90°,∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°,∴△ABO ≌△CDE (AAS ),∴AB =CD ,∴四边形ABCD 是平行四边形,∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴▱ABCD 是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO ≌△CDE 是解本题的关键.20.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于24米,在l 上点D 的同侧取点A 、B ,使∠CAD =30°,∠CBD =60°.求AB 的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A 到B 用时1.5秒,这辆校车是否超速?说明理由.(参考数据:3≈1.7,2≈1.4)【答案】 (1)3;(2)此校车在AB 路段超速,理由见解析.【解析】(1)结合三角函数的计算公式,列出等式,分别计算AD 和BD 的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC 中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.21.如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=14DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.【答案】(1)见解析;(2)BG=BC+CG=1.【解析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED :CG=DF :CF.又∵DF=14DC ,正方形的边长为4, ∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.22.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?【答案】(1)2400元;(2)8台.【解析】试题分析:(1)设商场第一次购入的空调每台进价是x 元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设最多将y 台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x 元,依题意,得52000240002,200x x=⨯+ 解得2400.x = 经检验,2400x =是原方程的解.答:第一次购入的空调每台进价是2 400元.(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y 台空调打折出售,由题意,得()()()()30001030002000.95300020020122%2400052000y y ⨯++⨯⋅+⋅-≥+⨯+(),解得8y ≤. 答:最多可将8台空调打折出售.23.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A 、B 、C 、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C 厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D 厂家的零件为 件,扇形统计图中D 厂家对应的圆心角为 ;抽查C 厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A 、B 、C 、D 四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.【答案】(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.24.如图,在Rt △ABC 中,∠C=90°,O 为BC 边上一点,以OC 为半径的圆O ,交AB 于D 点,且AD=AC ,延长DO 交圆O 于E 点,连接AE.求证:DE ⊥AB ;若DB=4,BC=8,求AE 的长.【答案】(1)详见解析;(2)62【解析】(1)连接CD ,证明90ODC ADC ∠+∠=︒即可得到结论;(2)设圆O 的半径为r ,在Rt △BDO 中,运用勾股定理即可求出结论.【详解】(1)证明:连接CD,∵OD OC =∴ODC OCD ∠=∠∵AD AC = ∴ADC ACD ∠=∠90,90,OCD ACD ODC ADC DE AB ∠+∠=︒∴∠+∠=∴⊥.(2)设圆O 的半径为r ,()2224+8,3r r r ∴=-∴=, 设()22222,84,6,6+662AD AC x x x x AE ==∴+=+∴=∴.【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.25.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.【答案】(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.【解析】试题分析:(1460.a b --=可以求得,a b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.试题解析:(1)∵a 、b 460.a b --=∴a−4=0,b−6=0,解得a=4,b=6,∴点B 的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O 的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:8−6=2,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:5÷2=2.5秒,第二种情况,当点P 在BA 上时,点P 移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.26.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;如图2,点P 是四边形ABCD 内一点,且满足PA=PB ,PC=PD ,∠APB=∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)【答案】(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形. 【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°【答案】B【解析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.2.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.【答案】D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D.【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.3.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x ++=在同一坐标系内的图象大致为( )A .B .C .D .【答案】D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线02b x a =->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 4.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->【答案】C【解析】根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误.故选C.5.如图,矩形ABCD中,E为DC的中点,AD:AB=3:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②2BF=PB•EF;③PF•EF=22AD;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④【答案】B【解析】由条件设3,AB=2x,就可以表示出3,23x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设3x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴3,CD=2x∵CP:BP=1:2∴CP=33x,BP=33x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC=33,tan∠EBC=ECBC=33∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BPEF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=43x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·EF=43x·3232AD2=2×3x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴23x∵tan ∠PAB=PB AB =∴∠PAB=30°∴∠APB=60° ∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得,,PO=3∴4AO·x·3x=4x 2又EF·x·3x=4x 2 ∴EF·EP=4AO·PO .故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.6.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .7.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( )A .m 1≥B .1mC .1mD .1m < 【答案】D【解析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0,解得:m <1.故选D .【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 8.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B 【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A .不是轴对称图形,也不是中心对称图形.故错误;B .不是轴对称图形,也不是中心对称图形.故错误;C .是轴对称图形,也是中心对称图形.故正确;D .不是轴对称图形,是中心对称图形.故错误.故选C .【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

∥3套精选试卷∥嘉兴市2018-2019中考一模数学试题

∥3套精选试卷∥嘉兴市2018-2019中考一模数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称【答案】D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.2.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>1【答案】B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.3.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H【答案】C【解析】根据被开方数越大算术平方根越大,可得答案.【详解】解:∵∴3<4,∵,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.4.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90D.绕原点顺时针旋转90【答案】C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.5的平方根是( )A.2 B C.±2 D.【答案】D【详解】∵=2,2的平方根是∴故选D.【点睛】正确化简是解题的关键,本题比较容易出错.6.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【答案】A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=【答案】A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.8.如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2-2B.32C3-1D.1【答案】C【解析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴33,∴BC′=B D-3-1.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.9.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)【答案】A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.10.下列各式:33②177;2682;2432;其中错误的有().A.3个B.2个C.1个D.0个【答案】A【解析】33+3=63,错误,无法计算;②177=1,错误;③2+6=8=22,错误,不能计算;④243=22,正确.故选A.二、填空题(本题包括8个小题)11.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.【答案】1 3【解析】根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是515=13,故答案为13.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.12.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.【答案】3:2;【解析】由AG//BC可得△AFG与△BFD相似,△AEG与△CED相似,根据相似比求解.【详解】假设:AF=3x,BF=5x ,∵△AFG与△BFD相似∴AG=3y,BD=5y由题意BC:CD=3:2则CD=2y∵△AEG与△CED相似∴AE:EC=AG:DC=3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.13.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .【答案】2【解析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x=;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2.考点:反比例函数系数k 的几何意义. 14.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.【答案】11【解析】根据无理数的性质,得出接近无理数的整数,即可得出a ,b 的值,即可得出答案. 【详解】∵a 28<b ,a 、b 为两个连续的整数, ∴252836<<∴a =5,b =6, ∴a +b =11. 故答案为11. 【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键. 15.已知a +b =1,那么a 2-b 2+2b =________. 【答案】1【解析】解:∵a+b=1,∴原式=()()()2122 1.a b a b b a b b a b b a b +-+=⨯-+=-+=+= 故答案为1. 【点睛】本题考查的是平方差公式的灵活运用.16.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.【答案】1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切, ∴d =R ﹣r =5﹣2=1cm , 故答案为1. 【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系. 17.已知关于x 的方程有两个不相等的实数根,则m 的最大整数值是.【答案】1.【解析】试题分析:∵关于x 的方程有两个不相等的实数根,∴.∴m 的最大整数值为1.考点:1.一元二次方程根的判别式;2.解一元一次不等式.18.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12。

【精选3份合集】2018-2019学年嘉兴市中考数学联考试题

【精选3份合集】2018-2019学年嘉兴市中考数学联考试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( ) A . B . C .D .【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.2.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤【答案】D 【解析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==,∴()2,2E ,∴14k ≤≤.故选D.3.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG =46°,则∠FAE 的度数是( )A .26°.B .44°.C .46°.D .72°【答案】A 【解析】先根据正五边形的性质求出∠EAB 的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB =108°.∵太阳光线互相平行,∠ABG =46°,∴∠FAE =180°﹣∠ABG ﹣∠EAB =180°﹣46°﹣108°=26°.故选A .【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.4.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH ┴AF 与点H ,那么CH 的长是( )A 22B 5C 32D 35 【答案】D【解析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,最后由直角三角形面积的两种表示法即可求得CH 的长.【详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2 ,2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,2222(2)(32)25AC CF +=+=∵CH ⊥AF , ∴1122AC CF AF CH ⋅=⋅, 112222522CH =⨯, ∴CH=355. 故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1) 【答案】C【解析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意; B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意;C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.6.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【答案】C【解析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.7.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④【答案】B【解析】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD 是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.8.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°【答案】B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).9.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°【答案】D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.10.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >3【答案】B 【解析】试题分析:观察图象可知,抛物线y=x 2+bx +c 与x 轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y <0时,x 的取值范围正好在两交点之间,即﹣1<x <1.故选B .考点:二次函数的图象.106144二、填空题(本题包括8个小题)11.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .【答案】4【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad =cb ,代入a =3,b =2,c =6,解得:d =4,则d =4cm .故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.12.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.13_____.【解析】直接利用二次根式的性质化简求出答案.4===,故答案为4. 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.14.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.【答案】1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.15.若关于x 的一元二次方程(a ﹣1)x 2﹣x+1=0有实数根,则a 的取值范围为________.【答案】a≤54且a≠1. 【解析】根据一元二次方程有实数根的条件列出关于a 的不等式组,求出a 的取值范围即可.【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤54, 又a-1≠0,∴a≤54且a≠1. 故答案为a≤54且a≠1. 点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a 的不等式组是解答此题的关键.16.已知二次函数y=ax 2+bx (a≠0)的最小值是﹣3,若关于x 的一元二次方程ax 2+bx+c=0有实数根,则c的最大值是_____.【答案】3【解析】由一元二次方程ax 2+bx+c=0有实数根,可得y=ax 2+bx (a≠0)和y=-c 有交点,由此即可解答.【详解】∵一元二次方程ax 2+bx+c=0有实数根,∴抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点,∴-c≥-3,即c≤3,∴c 的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax 2+bx (a≠0)和直线y=-c 有交点是解决问题的关键.17.因式分解:32a ab -=_______________.【答案】a(a+b)(a-b).【解析】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式= a(a+b)(a-b).故答案为a(a+b)(a-b).18.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .【答案】10%.【解析】设平均每次降价的百分率为x ,那么第一次降价后的售价是原来的()1x -,那么第二次降价后的售价是原来的()21x -,根据题意列方程解答即可.【详解】设平均每次降价的百分率为x ,根据题意列方程得, ()2100181x ⨯-=,解得10.110%x ==,2 1.9x =(不符合题意,舍去),答:这个百分率是10%.故答案为10%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.三、解答题(本题包括8个小题)19.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?【答案】(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解析】分析:(1)设进价为x 元,则标价是1.5x 元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x ,将标价直降100元销售7辆获利是(1.5x-100)×7-7x ,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x ,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a 元,利润为w 元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x 元,则标价是1.5x 元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x ,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w=(51+20a ×3)(1500-1000-a ), =-320(a-80)2+26460, ∵-320<0, ∴当a=80时,w 最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w 与a 的关系式,进而求出最值.20.如图,在Rt △ABC 中,90ACB ∠=︒,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE.求证:CE=AD ;当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明理由;若D 为AB 中点,则当A ∠=______时,四边形BECD 是正方形.【答案】(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD 是正方形.【解析】(1)先求出四边形ADEC 是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD 是平行四边形,求出CD=BD ,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.21.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC 关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.【答案】(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.22.如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.【答案】(1),;(2)点的坐标为;(3)点的坐标为和【解析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.. 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.【答案】(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-1 0 2-1 (-1,-1)(-1,0)(-1,2)0 (0,-1)(0,0)(0,2)2(2,-1) (2,0) (2,2)共有9种等可能的结果数,其中点M 落在如图所示的正方形网格内(包括边界)的结果数为6, ∴P (点M 落在如图所示的正方形网格内)==.考点:1列表或树状图求概率;2平面直角坐标系.24.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?【答案】(1)2400元;(2)8台.【解析】试题分析:(1)设商场第一次购入的空调每台进价是x 元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设最多将y 台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x 元,依题意,得52000240002,200x x=⨯+ 解得2400.x = 经检验,2400x =是原方程的解.答:第一次购入的空调每台进价是2 400元.(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y 台空调打折出售,由题意,得()()()()30001030002000.95300020020122%2400052000y y ⨯++⨯⋅+⋅-≥+⨯+(),解得8y ≤. 答:最多可将8台空调打折出售.25.已知:如图,∠ABC=∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线.求证:AB=DC .【答案】∵AC 平分BCD BC ∠,平分ABC ∠,∴ACB DBC ∠=∠在ABC 与DCB 中,{ABC DCBACB DBC BC BC∠=∠∠=∠=ABC ∴DCB ≌AB DC ∴=.【解析】分析:根据角平分线性质和已知求出∠ACB=∠DBC ,根据ASA 推出△ABC ≌△DCB ,根据全等三角形的性质推出即可.解答:证明:∵AC 平分∠BCD ,BC 平分∠ABC ,∴∠DBC=12∠ABC ,∠ACB=12∠DCB , ∵∠ABC=∠DCB ,∴∠ACB=∠DBC ,∵在△ABC 与△DCB 中,ABC DCB{BC BC ACB DBC∠=∠=∠=∠,∴△ABC ≌△DCB ,∴AB=DC .26.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由. 【答案】(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40300=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.考点:①条形统计图;②扇形统计图.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A【解析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 2.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2【答案】A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【答案】D【解析】根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.4.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )A .∠1=50°,∠1=40°B .∠1=40°,∠1=50°C .∠1=30°,∠1=60°D .∠1=∠1=45°【答案】D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D .【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.5.下列各曲线中表示y 是x 的函数的是( ) A . B . C . D .【答案】D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .612233499100+++++的整数部分是( ) A .3B .5C .9D .6 【答案】C【解析】解:∵21+21,23+3299100+=99100,∴原式2﹣3299100=﹣1+10=1.故选C .7.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵BE=DF ,∴OE=OF ,∴四边形AECF 是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.8.下列方程中,没有实数根的是( )A.2x2x30-+=--=B.2x2x30C.2x2x10--=-+=D.2x2x10【答案】B【解析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;。

20182019学年省嘉兴市九年级期末数学模拟试卷

20182019学年省嘉兴市九年级期末数学模拟试卷

学年浙江省嘉兴市九年级期末数学模拟试卷一、选择题(每小题分,共分).(分)(•巴中)﹣的倒数是()﹣,,,,π,…(两个之间依次多一个)..(分)已知数轴上两点,它们所表示的数分别是和﹣,则线段..(分)(•苏州)的相反数是..(分)如果,则..(分)(•遵义)(﹣)﹣..(分)比较大小:..(分)在多项式﹣中,次数最高的项的系数是..(分)如果,则﹣的值为..(分)某数的平方根是和﹣,那么这个数是..(分)要能清楚地表示出各部分在总体中所占的百分比,应选择统计图..(分)我市教研室对年嘉兴市中考数学试题的选择题作了错题分析统计,受污损的下表记录了位同学的错题分布情况:已知这人中,平均每题有人答错,同时第题答错的人数恰好是第题答错人数的倍,且第题有的同学答对.则第题有人答对.三、解答题:(共分).(分)计算:()(﹣)﹣(﹣)()()(﹣)﹣(﹣).(分)先化简,再求(﹣)﹣()的值,其中﹣..(分)解方程:()﹣;().(分)某班组织春游,、两个风景点全班每人任选一处.去风景点的每人付费元,去风景点的每人付费元.若去风景点的人数比去风景点的少人,全班共付费元.问全班有多少人?.(分)某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图,图),请你根据统计图中提供的信息解答下列问题:()在这次研究中,一共调查了多少名学生?()“其他”在扇形统计图中所占的圆心角是多少度?()补全条形统计图.学年浙江省嘉兴市九年级期末数学模拟试卷参考答案与试题解析一、选择题(每小题分,共分).(分)(•巴中)﹣的倒数是()﹣解:∵﹣,的倒数是,的倒数是.,,,,π,…(两个之间依次多一个)..(分)(•苏州)的相反数是﹣.的相反数是﹣..(分)如果,则﹣的值为.,情况:已知这人中,平均每题有人答错,同时第题答错的人数恰好是第题答错人数的倍,且第题有的同学答对.则第题有人答对.三、解答题:(共分).(分)计算:()(﹣)﹣(﹣)().(分)解方程:()﹣;()趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图,图),请你根据统计图中提供的信息解答下列问题:()在这次研究中,一共调查了多少名学生?()“其他”在扇形统计图中所占的圆心角是多少度?()补全条形统计图.。

2019年浙江省嘉兴市中考数学考前冲刺模拟试卷A卷附解析

2019年浙江省嘉兴市中考数学考前冲刺模拟试卷A卷附解析

2019年浙江省嘉兴市中考数学考前冲刺模拟试卷A 卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320 2.已知2x =是 关于x 的方程23202x a -=的一个根,则22a -的值是( )A .3B .4C .5D .6 3.一个容量为50的样本,最大值是l35,最小值是40,取组距为10,则可以分 ( ) A .10组B .9组C .8组D .7组 4.不等式2x -7<5-2x 的正整数解有 ( ) A .1个 B .2个 C .3个 D .4个5.下列计算错误..的是( ) A .6a 2b 3÷(3a 2b-2ab 2)=2b 2-3ab B .[12a 3+(-6a 2)]÷(-3a )=-4a 2+2aC .(-xy 2-3x )÷(-2x )=12y 2+32D .[(-4x 2y )+2xy 2]÷2xy=-2x+y 6.下列计算中,正确的是( ) A .23523x x x += B .223(3)x x -=- C .236(2)6x x -= D .2224()ay a y =7.甲、乙两人练习赛跑,甲的速度为7 m /s ,乙的速度为6.5 m /s ,甲让乙先跑5 m ,设甲出发x (s )后,甲可以追上乙,则下列四个方程中不正确...的是 ( ) A .6.5x=7 x-5 B .7x=6.5x+5 C .7x-5=6.5 D .(7-6.5)x=5二、填空题8.求下列三角函数的值(精确到 0. 0001).(1)sin36°= ;sin53°16′= ;cos25°18′= .(2) cos36°= ;tan54°24′= ;sin26°18′24"= .(3)tan54°= ;cos48°6′36"= ;tan60°= .9.如图,学校在周一举行升国旗仪式,一位同学站在离旗杆20米处,随着国歌响起,五星红旗冉冉升起.当这位同学目视国旗的仰角为37时(假设该同学的眼睛距离地面的高度为1.6米),国旗距离地面约 米.(结果精确到0.1米). 10.如图所示的三个圆是同心圆,那么图中阴影部分的面积为 .11.如图,直线 l 过正方形 ABCD 的顶点 B , 点A 、C 到直线l 的距离分别是 1 和 2 , 则正方形的边长是 .12.将50个数据分成5组列出频数分布表,其中第一组的频数6,•第二组与第五组的频数和为20,那么第三组与第四组的频数和为__ ____.13.如图,已知函数y=3x+b 和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是 .14.如图①、②所示,图①中y 与x 函数 关系;图②中y 与x 函数关系(填“是”或“不是”).15.一个几何体的三视图都是正方形,则这个几何体是 .16.如图,△ABO 按逆时针旋转变换到△CDO ,在这个变换中,旋转中心是_____,•BO 变换到了_______,∠C 是由______旋转变换得到的.17.已知关于x 的分式方程4333k x x x -+=--有增根,则k 的值是 . 18.已知关于x 的方程2mx +3=x 与方程3-2x=1的解相同,则m =_________. 19.如图.点P 是直线l 外一点.过点P 画直线PA 、PB 、PC 、……交l 于点A 、B 、C 、……,请你用量角器量∠1、∠2、∠3的度数,并量PA 、PB 、Pc 的长度.你发现的规律是 .三、解答题20.如图,OA 、OB 是⊙O 的半径,并且OA ⊥OB ,P 是OA 上任意一点,BP 的延长线交⊙O 于Q ,过Q 的切线交OA 的延长线于R .求证:RP =RQ .21.如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90的扇形.(1)求这个扇形的面积(结果保留 ).(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.22.如图所示,在梯形ABCD 中,AB ∥DC ,AD=BC ,延长AB 至E ,使BE=DC ,求证:AC=CE .23.如图,已知PQ ∥MN ,夹在两条平行线间的线段AB 长为 3 cm ,∠ABM =60°.求PQ 与MN 之间的距离.A P R QO BA B P Q M N24.已知y-2与x+1成正比,且当x=l 时,y=-6.(1)求y 与x 之间的函数解析式;(2)求当x=-l 时,y 的值.25.如图.(1)求出图形轮廓线上各转折点A 、B 、C 、D 、E 的坐标;(2)在图上找出A 、B 、C 、D 、E 各点关于x 轴的对称点A ′、B ′、C ′、D ′、E ′,并求出其坐标.26.解下列不等式组:(1)1212x --≤< (2)2x 151132513(1)x x x -+⎧-≤⎪⎨⎪-<+⎩27.如图,O是△ABC外一点,以点O为旋转中心,将△ABC逆时针方向旋转90°,作出经旋转变换后的像.28.一个布袋中放有一个红球和两个白球,现在从布袋里任意摸出一个球,请判断下列事件是必然事件、不可能事件还是随机事件:29.检查一个商店里 10 袋白糖的重量,以 5 g 为基准,超出记为“+”,不足记为“-”,情况如下:-30 g,+20 g,-20 g,-10 g,-50 g,+30 g, -20 g, +30 g, +10 g, -10 g.(1)总的情况是超出还是不足?超出或不足的数量为多少?(2)最多的与最少的相差多少?30.国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元.国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%.(1)写出调整后税款y(元)与x的函数关系式,指出x的取值范围;(2)要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.B5.A6.D7.C二、填空题8.(3)1. 3764 , 0. 6677,1. 7320(1)0. 5878,0.8014, 0. 9041(2)0. 8090,1. 3968,0. 44329.16.710.4π 11. 5 12.2413.x>-214.是,不是15.立方体16.点O ,DO, ∠A17.118.-419.角度越大,线段长度越小三、解答题20.连接OQ ,证明∠RPQ=∠RQP .21.(1)连接BC ,由勾股定理求得:AB AC ==213602n R S π==π, (2)连接AO 并延长,与弧BC 和⊙O 交于E F ,,2EF AF AE =-=BC 的长:1802n R l π==π222r π=π,∴圆锥的底面直径为:22r =222-<,∴不能在余料③中剪出一个圆作为底面与此扇形围成圆锥. 22.思路:证明ΔADC ≌ΔCBE .23.32cm . 24.(1)y=-4x-2;(2)225.(1)A(-2,-l),B(4,4),C(2,O),D(4,1),E(4,O);(2)图略,A ′(-2,1),B ′(4,-4),C ′(2,0),D ′(4,-l),E ′(4,0)26.(1)-1<x ≤5;(2)-1≤x<227.略.28.随机事件,随机事件,不可能事件,必然事件,必然事件29.(1)不足 50g (2)80 g30. (1)y =―25 mx 2―845mx +160m, 0<x<8; (2) ―25 mx 2―845 mx +160m =2000m ×8%×78%,x =2。

2019年浙江省嘉兴市中考数学十年真题汇编试卷附解析

2019年浙江省嘉兴市中考数学十年真题汇编试卷附解析

2019年浙江省嘉兴市中考数学十年真题汇编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( ) A .52B .56C .2D .52.如图,DE 是△ABC 的中位线,F 是DE 的中点,BF 的延长线交AC 于点H ,则AH:HE 等于( ) A .1:1 B .2:1C .1:2D .3:2 3.已知线段a=4,b=8,则a 、b 钓比例中项是( )A .42B .42±C .32D .2±4.如图,AB 为⊙O 的直径,CD 是弦,AB 与 CD 交于点 E ,若要得到 CE =DE ,还需要添加的条件是(不要添加其它辅助线)( )A .AB ⊥CDB .⌒AC =⌒BC C .CD 平分OB D .以上答案都不对5.三角形三边长分别为21n -,2n ,21n +(n 为自然数),这样的三角形是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .直角三角形或锐角三角形6.将一个有40个数据的样本经统计后分成6组,若某一组的频率为0.15,则该组的频数 为 ( ) A .6B .0.9C .6.67D .17.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)( B .4)4(442+-=+-x x x x C .)12(55102-=-x x x x D .x x x x x 3)4)(4(3162+-+=+-8.从A 、B 、C 、D 四人中用抽签的方法,任选2人去打扫公共场地,选中A•的概率是( ) A .41 B .21 C .43 D .以上都不对9.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是 ( ) A .x ·40%×80%=240B .x (1+40%)×80%=240C .240×40%×80%=xD .x ·40%=240×80%二、填空题10.已知Rt △ABC 中,∠C=90°,∠A=60°,BC=5,BD 是中线,则BD= . 11.如图所示,一人拿着一把刻有厘米刻度的小尺,他站在距电线杆 30m 的地方,把手臂向前伸直,小尺竖直看到尺上 12 cm 恰好遮住电线杆,已知臂长 60 cm ,则电线杆的高为 .12.如图,已知矩形ABCD 中,AB=2BC ,E 在CD 上,且AE=AB ,则BCEC= . 13.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0,有下列四个结论:①AC=BD ,②梯形ABCD 是轴对称图形,③∠ADB=∠DAC ,④△AOD ≌△AB0,其中正确的是 .14.若平行四边形的周长为40cm ,对角线AC 、BD•相交于点O ,△BOC•的周长比△AOB 的周长大2cm ,则AB=________cm . 解答题15.如图,若 AB ∥CD ,可得∠B+ =180°,理由 .16.请在下面这一组图形符号中找出它们所蕴含的规律,后在横线上的空白处填上恰当的图形.17. 已知23x y =⎧⎨=⎩是方程组2122x y kx y +=-⎧⎨+=-⎩的解,则k= .18.如果21(3)(4)34x A B x x x x +=+-+-+,则A= ;B= . 19.甲的速度为5 km /h ,乙的速度为3.5 km /h ,两人同时同地出发,(1)若同向走了x(h), 他们之间相距 km ;(2)若相向走了y(h),他们之间相距17 km ,则y= h . 205的相反数是 ,11-的绝对值是 .三、解答题21.在△ABC 中,∠C=90°,a+b=14,c=10,求cosA,ABC S ∆.22.如图,已知在△ABC 中,D 是边BC 上一点,且CD=AC ,∠ACB 的平分线交AD 于点E ,点F 是AB 边的中点.求证:EF ∥BC .23.如图,在△ABC 中,AD 平分∠BAC ,且AB+BD=AC 求证:∠B=2∠C .24. 已知△ABC 和直线m ,以直线m 为对称轴,画△ABC 轴对称变换后所得的图形.25.用代入法解下列方程组: (1) 65232x y x y -=⎧⎨=⎩;(2)0.30.440.20.92m n m n +=⎧⎨-=-⎩;ABm C26.如图所示,在一块长为20 m,宽为14 m的草地上有一条宽为2 m的曲折的小路,你能运用所学的知识求出这块草地的绿地面积吗?27.找出下列图示中的轴对称图形.并画出它们的对称轴.28.按照下面的步骤做:多选几个数试一试,你发现了什么规律?与同伴交流你的理由.29.如图,有一个转盘,转盘分成五个相等的扇形,并在每个扇形上分别标上数字“1,2,3,4,5”五个数字,小明转动了 100 次,并记录下指针指向数字 1 的次数.转动次数指向“ 1”的次指向数字“ 1”的频率(1)请将上表补充完整.(2)根据上表,估计转动转盘,指针指向“1”的概率是多少?30.已知二次函数122--=x x y . (1)求此二次函数的图象与x 轴的交点坐标.(2)二次函数2x y =的图象如图所示,将2x y =的图象经过怎样的平移,就可以得到二次函数122--=x x y 的图象.数20 2 407 60 12 80 18 10021【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.B4.A5.B6.A7.C8.B9.B二、填空题10.335 11.6 cm12.32- 13.①②③14.915.∠C ;两直线平行,同旁内角互补16. 17.418.A=-1,B=119.1.5x,220.5-11三、解答题 21.cosA=53或54,ABC S ∆=24.22.证EF 是△ABD 的中位线即可23.在AC 上截取AP=AB ,证△ABD ≌△APD24.略.25.(1)432x y ⎧=-⎪⎨⎪=-⎩;84m n =⎧⎨=⎩ 26.216 m 227.轴对称图形有:①、③、④、⑥、⑦、⑨、⑩;图略28.略29.(1)如表: (2)P 1=0.21730.解:(1)0122=--x x 解得 211+=x ,212-=x∴图象与x 轴的交点坐标为(21+,0)和(21-,0).(2)11222=⨯--=-a b214)2(144422-=⨯--⨯-=-a b ac ∴顶点坐标为(1,2-).将二次函数2x y =图象向右平移1个单位,再向下平移2个单位, 就可以得到二次函数122--=x x y 的图象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档