树诚培优试卷---相交线与平行线全章测试

合集下载

第五章相交线与平行线单元试卷培优测试卷

第五章相交线与平行线单元试卷培优测试卷

第五章相交线与平行线单元试卷培优测试卷一、选择题1.下列说法中错误的是()A.一个锐角的补角一定是钝角;B.同角或等角的余角相等;C.两点间的距离是连结这两点的线段的长度;D.过直线l上的一点有且只有一条直线垂直于l2.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A.5个B.4个C.3个D.2个3.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠44.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角5.如图,AB∥CD,∠1=120°,则∠2=()A.50°B.70°C.120°D.130°6.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是()A.先右转30,后左转60︒B.先右转30后左转60︒C.先右转30后左转150︒D.先右转30,后左转307.如图,OC是∠AOB的平分线,直线l∥OB.若∠1=50°,则∠2的大小为()A.50°B.60°C.65°D.80°8.下列命题是假命题的有()①邻补角相等;②对顶角相等;③同位角相等;④内错角相等.A.1个B.2个C.3个D.4个9.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)10.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=()A.61°B.58°C.48°D.41°11.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直12.已知:如图,直线a∥b,∠1=50°,∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°二、填空题13.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.14.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD=_________.15.如图,AB∥CD, AC∥BD, CE平分∠ACD,交BD于点E,点F在CD的延长线上,且∠BEF=∠CEF,若∠DEF=∠EDF,则∠A的度数为_____ .16.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.17.如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)______________.18.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)19.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.如图1,D 是△ABC 延长线上的一点,CE //AB .(1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.22.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.23.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.24.如图1,//PQ MN ,点A ,B 分别在MN ,QP 上,2BAM BAN ∠=∠射线AM 绕A 点顺时针旋转至AN 便立即逆时针回转,射线BP 绕B 点顺时针旋转至BQ 便立即逆时针回转.射线AM 转动的速度是每秒2度,射线BQ 转动的速度是每秒1度.(1)直接写出QBA ∠的大小为_______;(2)射线AM 、BP 转动后对应的射线分别为AE 、BF ,射线BF 交直线MN 于点F ,若射线BP 比射线AM 先转动30秒,设射线AM 转动的时间为t ()0180t <<秒,求t 为多少时,直线//BF 直线AE ?(3)如图2,若射线BP 、AM 同时转动m ()090m <<秒,转动的两条射线交于点C ,作120ACD ∠=︒,点D 在BP 上,请探究BAC ∠与BCD ∠的数量关系.25.如图,AB ∥CD .(1)如图1,∠A 、∠E 、∠C 的数量关系为 .(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数; (3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.26.(问题提出)(1)如图①,已知 AB ∥CD ,求证 :∠1+∠MEN+∠2=360°(推广应用)(2)如图②,已知 AB ∥ CD ,求∠1+∠2+∠3+∠4+∠5 +∠6的度数为___________. 如图③,已知 AB ∥CD ,求∠1+∠2+∠3+∠4+∠5 +∠6+…+∠n 的度数为_________.27.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由.28.如图1,在四边形ABCD 中,A D BC ,A=C ∠∠.(1)求证:B=D ∠∠;(2)如图2,点E 在线段AD 上,点G 在线段AD 的延长线上,连接BG ,AEB=2G ∠∠,求证:BG 是EBC ∠的平分线;(3)如图3,在(2)的条件下,点E 在线段AD 的延长线上,EDC ∠的平分线DH 交BG 于点H ,若ABE=66∠︒.,求B HD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:D选项中缺少先要条件,就是在同一平面内故选:D2.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.3.B解析:B【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.【详解】∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠6是内错角,故选B.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.4.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 5.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.6.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.7.C【分析】根据平行线的性质可求∠AOB,再根据角平分线的定义求得∠BOC,再根据平行线的性质可求∠2.【详解】∵l∥OB,∴∠AOB+∠1=180°∴∠AOB=180°﹣∠1=130°,∵OC是∠AOB的平分线,∴∠BOC=65°,∴∠2=∠BOC=65°.故选:C.【点睛】考查了角平分线,平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,同旁内角互补的知识点.8.C解析:C【解析】试题分析:根据命题的正确与否,直接可知:邻补角相加和为180°,不一定相等,故①是假命题;根据对顶角相等的性质,可知②是真命题;根据平行线的性质,两直线平行,同位角相等,可知③是假命题;根据平行线的性质,两直线平行,内错角相等,可知④是假命题.故选C.9.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.11.B解析:B【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B.【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.12.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.二、填空题13.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题. 14.70°【解析】【分析】从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,根据,因与互为邻补角,则+=180°,从而求出∠BOD 的大小.【详解】∵OE 平解析:70°【解析】【分析】从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,根据2COB EOB ∠=∠,因AOC ∠与COB ∠互为邻补角,则AOC ∠+COB ∠=180°,从而求出∠BOD 的大小.【详解】∵OE 平分∠COB ,∴∠COB=2∠EOB (角平分线的定义),∵∠EOB=55°,∴∠COB=110°,∵AOC ∠+COB ∠=180°,∴∠BOD=180°−110°=70°.故答案是:70°【点睛】此题主要考查了邻补角、角平分线的性质,关键是掌握邻补角互补.15.108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF ,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED ,然后根据题意和三角形的外角的性解析:108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED ,然后根据题意和三角形的外角的性质,四边形的内角和求解.详解:∵CE 平分∠ACD∴∠ACE=∠DCE∵AB∥CD,AC∥BD,∴∠A+∠B=180°,∠B=∠BDF,∠ACD+∠A=180°,∠ACE=∠CED ∵∠EDF=∠DEF =∠ECD+∠CED∴∠CEF=∠FEB=∠CED+∠DEF设∠B=x,则∠A=180°-x,∠ACE=∠ECD=∠CED=12 x,∴∠EDF=x,∠BEF=32x∴∠CEB=360°-2×∠BEF=360°-3x∴∠A+∠B+∠BEC+∠ACE=180°-x+x+360°-3x+12x=360°解得x=72°∴∠A=180°-72°=108°.故答案为108.点睛:此题主要考查了平行线的性质和三角形的外角的综合应用,关键是利用平行线的性质和三角形的外角确定角之间的关系,有一定的难度.16.19800【解析】100条直线两两相交,最多有个交点,每个交点处有两组对顶角,4对邻补角,故100条直线两两相交于一点共有4950×2=9900(对)对顶角,有4950×4=19800解析:19800【解析】100条直线两两相交,最多有100(1001)49502-=个交点,每个交点处有两组对顶角,4对邻补角,故100条直线两两相交于一点共有4950×2=9900(对)对顶角,有4950×4=19800(对)邻补角,故答案为:9900,19800.17.①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长解析:①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.18.①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,解析:①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.19.30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.20.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC )=12∠ACB.【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.22.见解析【解析】分析:(1)求出∠ADE+∠FEB=180°,根据平行线的判定推出即可;(2)根据角平分线定义得出∠BAD=∠CAD,推出HD∥AC,根据平行线的性质得出∠H=∠CGH,∠CAD=∠CGH,推出∠BAD=∠F即可.详解:(1)AD∥EF.理由如下:∵∠BDA+∠CEG=180°,∠ADB+∠ADE=180°,∠FEB+∠CEF=180°∴∠ADE+∠FEB=180°,∴AD∥EF;(2)∠F=∠H,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD.∵∠EDH=∠C,∴HD∥AC,∴∠H=∠CGH.∵AD∥EF,∴∠CAD=∠CGH,∴∠BAD=∠F,∴∠H=∠F.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较好的题目,难度适中.23.(1)证明见解析;(2)∠BCD=108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF=∠DAB,由角平线的定义得出∠EDF=∠FDC,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF=x,则∠CFB=1.5x,由两直线平行,内错角相等得出∠ABF=1.5x,由角平分线的定义得出∠ABC=3x,最后利用两直线平行,同旁内角互补得出关于x的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF=∠CBF,由角平分线的定义与已知条件可求出∠ABC与∠FDC,由平移的性质与平行公理的推论得出AD∥PQ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB∥DE,∴∠EDF=∠DAB,∵DF平分∠EDC,∴∠EDF=∠FDC,∴∠FDC=∠DAB,∵∠FDC+∠ABC=180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.24.(1)60°;(2)当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,2BAC BCD ∠=∠.【分析】(1)根据2BAM BAN ∠=∠得到60BAN ∠=︒,再根据直线平行的性质即可得到答案;(2)设灯转动t 秒,直线//BF 直线AE ,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出BAC ∠,再根据三角形内角和即可表示出BCD ∠,即可得到答案;【详解】解:(1)∵2BAM BAN ∠=∠180BAM BAN ∠+∠=︒,∴60BAN ∠=︒,∴QBA ∠60BAN =∠=︒(两直线平行,内错角相等)故结果为:60︒;(2)设灯转动t 秒,直线//BF 直线AE ,①当090t <<时,如图,//PQ MN ,PBF BFA ∴∠=∠,//AE BF ,EAM BFA ∴∠=∠,EAM PBF ∴∠=∠,21(30)t t ∴=⋅+,解得30t =;②当90180t <<时,如图,//PQ MN ,180PBF BFA ∴∠+∠=︒,//AE BF ,EAN BFA ∴∠=∠180PBF EAN ∴∠+∠=︒,1(30)(2180)180t t ∴⋅++-=,解得110t =,综上所述,当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,理由:设射线AM 转动时间为m 秒,作//CH PQ ,//PQ MN ,////CH PQ MN ∴,2180QBC ∴∠+∠=︒,1180MAC ∠+∠=︒,21360QBC MAC ∴∠+∠+∠+∠=︒,180QBC m ∠=︒-,2MAC m ∠=,()123601802180BCA m m m ∴∠=∠+∠=---=︒︒-︒,而120ACD ∠=︒,()12012018060BCD BCA m m ︒︒∴∠=-∠=--=-︒︒,1802CAN m ∠=︒-,()18022120BAC QBA m m ︒︒∴∠=∠--=-,:2:1BAC BCD ∴∠∠=,即2BAC BCD ∠=∠,BAC ∴∠和BCD ∠关系不变.【点睛】本题主要考查了补角、角的运算、直线平行的性质和判定以及三角形的内角和定理,结合图形添加辅助线、分类讨论是解题的关键.25.(1)∠AEC=∠C+∠A;(2)∠C﹣∠E=15°;(3)2∠AGF+∠GDC=90°.理由见解析.【分析】(1)过点E作EF∥AB,知AB∥CD∥EF,据此得∠A=∠AEF,∠C=∠CEF,根据∠AEC=∠AEF+∠CEF可得答案;(2)分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,知∠AEF=x+50°,∠MFC=115°-x,据此得∠C=180°-(115°-x)=x+65°,进一步计算可得答案;(3)分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,知∠GPE=y+z,从而得2x+2y+z=90°,∠C=180°-z,根据GD∥FC得∠D=z,由GH∥AB,AB∥CD知∠AGF=x+y,继而代入可得答案.【详解】(1)∠AEC=∠C+∠A,如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠C=∠CEF,则∠AEC=∠AEF+∠CEF=∠A+∠C,故答案为:∠AEC=∠C+∠A;(2)如图2,分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,∴∠C=180°﹣(115°﹣x)=x+65°,∴∠C﹣∠E=x+65°﹣(x+50°)=15°;(3)如图3,分别过点E 、F 、G 作FM ∥AB ,EN ∥AB ,GH ∥AB ,设∠GAE =x =∠GAB ,∠GFM =y ,∠MPC =z ,则∠GPE =y +z ,∴2x +2y +z =90°,∠C =180°﹣z ,∵GD ∥FC ,∴∠D =z ,∵GH ∥AB ,AB ∥CD ,∴∠AGF =x +y ,∴2∠AGF +∠GDC =90°.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.26.(1)见解析,(2)900,180(1).n ︒︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出即可;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,根据平行线的判定得出EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,根据平行线的性质得出即可;如图③,利用(1)(2)②发现规律,直接得到答案.【详解】证明:(1)证明:过点E 作EF ∥CD ,∵AB ∥CD , ∴EF ∥AB ,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN =360°;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,∵CD ∥AB , ∴EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,如图③,由∠1+∠2+∠MEN 3601802=︒=︒⨯,∠1+∠2+∠3+∠4+∠5+∠69001805=︒=︒⨯,可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 180(1)n =︒-,故答案为:900°,180(1)n ︒-;【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键.27.(1)C 的坐标为(0,4),点D 的坐标为(1,2);(2)①点E 的坐标为(1,3),F 的坐标为(0,3)或点E 的坐标为(0,1),F 的坐标为(1,1);②存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【解析】【分析】(1)由点A 和点C 在y 轴上确定出向右平移3个单位,再根据△ACD 的面积求出向上平移的单位,然后写出点C 、D 的坐标即可.(2)①根据线段EF 平行于线段OM 且等于线段OM ,得出2a +1=﹣2b +3,|a ﹣b |=1,解答即可;②首先根据题意求出点P 的坐标为(,2),设点E 在F 的左边,由EF ∥x 轴得出a +b =1,求出△PEF 的面积=(b ﹣a )×|2a +1﹣2|=2,得出(b ﹣a )|2a ﹣1|=4,当EF 在点P 的上方时,(b ﹣a )(2a ﹣1)=4,与a +b =1联立得:,此方程组无解;当EF 在点P 的下方时,(b ﹣a )(1﹣2a )=4,与a +b =1联立得:,解得:,或;分别代入点E (a ,2a +1)、F (b ,﹣2b +3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E (a ,2a +1)、F (b ,﹣2b +3)得:E (﹣,0)、F (,0),或E (,4)、F (﹣,4);综上所述,存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.28.(1)见解析;(2)见解析;(3)57BHD ∠=︒.【解析】【分析】(1)由AD BC ∥可得180A B ∠+∠=︒,进而可证180C B ∠+∠=︒,从而AB CD ∥,180A D +=︒∠∠,根据等角的补角相等可证B D ∠=∠;(2)由AD BC ∥,可得CBG G ∠=∠,又2AEB G ∠=∠,可证EBG G ∠=∠,从而EBG CBG ∠=∠,可证BG 是EBC ∠的角平分线;(3)设GDH HDC α∠=∠=,EBG CBG β∠=∠=,由AB CD ∥,可得6622180βα︒++=︒,即57αβ+=︒.过点H 作HP AB ,可证CD HP ,所以DHP HDC α∠=∠=,180DHP BHD ABE GBE ∠+∠+∠∠=︒+,即66180BHD αβ+∠+︒+=︒,进而可求出57BHD ∠=︒. 【详解】解:(1)证明:∵AD BC ∥,∴180A B ∠+∠=︒,∵A C ∠=∠,∴180C B ∠+∠=︒,∴AB CD ∥,∴180A D +=︒∠∠,∴B D ∠=∠;(2)∵AD BC ∥,∴CBG G ∠=∠,∵2AEB G ∠=∠,∴2CBE G ∠=∠,∴2EBG CBG G ∠+∠=∠,∴EBG G ∠=∠,∴EBG CBG ∠=∠,∴BG 是EBC ∠的角平分线;(3)∵DH 是GDC ∠的平分线,∴GDH HDC ∠=∠,设GDH HDC α∠=∠=,∵AD BC ∥,∴2BCD GDC α∠=∠=.设EBG CBG β∠=∠=,∵AB CD ∥,∴180ABC BCD ∠+∠=︒,∴180ABE EBC BCD ∠+∠+∠=︒,∵66ABE ∠=︒,∴6622180βα︒++=︒,∴57αβ+=︒.过点H 作HP AB ,∴180PHB ABH ∠+∠=︒,∵AB CD ∥,∴CD HP ,∴DHP HDC α∠=∠=,∴180DHP BHD ABE GBE ∠+∠+∠∠=︒+,即 66180BHD αβ+∠+︒+=︒, ∴57BHD ∠=︒.【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。

第五章相交线与平行线单元试卷培优测试卷

第五章相交线与平行线单元试卷培优测试卷
28.[问题解决]:如图1,已知AB∥CD,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,求∠BED的度数.
嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程:
解:过点E作EF∥AB,
∴∠ABE=∠BEF=40°
∵AB∥CD,
∴EF∥CD,

请你补充完成嘉淇的解答过程:
14.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为_____度.(用n来表示)
15.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)
[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:
如图3,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.
(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.
第五章相交线与平行线单元试卷培优测试卷
一、选择题
1.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若 ,则 ;③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有()
A.1个B.2个C.3个D.4个
②在同一平面内,若 ,则 ,说法正确;
③直线外一点到直线的垂线段叫点到直线的距离,说法错误;

数学数学第五章 相交线与平行线的专项培优练习题(含答案

数学数学第五章 相交线与平行线的专项培优练习题(含答案

数学数学第五章 相交线与平行线的专项培优练习题(含答案一、选择题1.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个 2.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒3.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠54.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180° 5.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A .30°B .35°C .36°D .45°6.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个7.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°8.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=9.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D .10.如图,若∠1=70°,∠2=110°,∠3=70°,则有( ).A .a ∥bB .c ∥dC .a ⊥dD .任两条都无法判定是否平行 二、填空题11.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.12.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.13.已知∠ABC=70︒,点D 为BC 边上一点,过点D 作DP//AB ,若∠PBD=12∠ABC ,则∠DPB=_____︒.14.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.15.如图①:MA 1∥NA 2,图②:MA11NA 3,图③:MA 1∥NA 4,图④:MA 1∥NA 5,……,则第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n+1______.(用含n 的代数式表示)16.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6 cm ,则AB =_________ cm .17.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.18.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___19.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.20.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.三、解答题21.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由; (问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.22.感知与填空:如图①,直线//AB CD ,求证:B D BED ∠+∠=∠.阅读下面的解答过程,并填上适当的理由,解:过点E 作直线//EF CD ,2D ∴∠=∠( )//AB CD (已知),//EF CD ,//AB EF ∴( )1B ∴∠=∠( )12BED ∠+∠=∠,B D BED ∴∠+∠=∠( )应用与拓展:如图②,直线//AB CD ,若22,35,25B G D ∠=︒∠=∠=︒.则E F ∠+∠= 度方法与实践:如图③,直线//AB CD ,若60,80E B F ∠=∠=︒∠=︒,则D ∠= 度.23.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF =( )A .180°B .270°C .360°D .540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB ∥EF ,请直接写出∠BAD ,∠ADE ,∠DEF 之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD ,ED 分别平分∠BAC ,∠CEF 时,∠ACE 与∠ADE 之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB ∥EF ,当∠ACD=90°时,∠BAC 、∠CDE 和∠DEF 之间又有怎样的数量关系?请你直接写出结果,不需要证明.24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.(问题提出)(1)如图①,已知 AB ∥CD,求证:∠1+∠MEN+∠2=360°(推广应用)(2)如图②,已知 AB∥ CD,求∠1+∠2+∠3+∠4+∠5 +∠6的度数为___________.如图③,已知 AB∥CD ,求∠1+∠2+∠3+∠4+∠5 +∠6+…+∠n的度数为_________.26.已知:∠1=∠2,EG 平分∠AEC.(1)如图1,∠MAE=50°,∠FEG=15°,∠NCE=80°.试判断EF 与CD 的位置关系,并说明理由.(2)如图2,∠MAE=135°,∠FEG=30°,当AB∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE、∠FEG、∠NCE 之间满足什么关系时,AB∥CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.2.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.3.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.4.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A.∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B.∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C.∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D.∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.5.C解析:C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F ,∵BF 平分∠ABE∴∠ABE =2∠ABF=4∠F ,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.6.D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A 的两边分别和∠B 的两边平行,∴∠B 和∠A 可能相等也可能互补,即∠B 的度数是20°或160°,故选:D.8.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.9.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.A解析:A【详解】解:∵∠4=∠1=70°,∠2=110°,∴∠4+∠2=180°;∴a ∥b .∵∠2≠∠3,∴c 与d 不平行.故选A .二、填空题11.【分析】条直线相交只有一个交点,条直线相交,交点数是,条直线相交,交点数是,即,可写出, 的解.【详解】解:求平面内不过同一点的条直线两两相交的交点个数,可由简入繁, 当2条直线相交时,交点解析:1n -【分析】2条直线相交只有一个交点,3条直线相交,交点数是12+,n 条直线相交,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-,可写出2a , 1n n a a --的解.【详解】解:求平面内不过同一点的n 条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点数只有一个;当3条直线相交时,交点数为两条时的数量+第3条直线与前两条的交点2个,即交点数是12+;同理,可以推导当n 条直线相交时,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-, 212(21)12a ∴=⨯⨯-=, 111(1)(1)(2)122n n a a n n n n n -∴-=----=-, 本题的答案为:1,1n -.【点睛】本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.12.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥. 13.35或75【解析】分析:根据题意,分为点P 在∠ABC 的内部和外部两种情况,由平行线的性质求解.详解:如图,当P 点在∠ABC 的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=∠ABC,∠A解析:35或75【解析】分析:根据题意,分为点P 在∠ABC 的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=12∠ABC,∠ABC=70︒∴∠PBD=35°∴∠ABP=∠ABC-∠PBD=35°.当点P在∠ABC的外部时,∵∠PBD=12∠ABC,∠ABC=70︒∴∠PBD=35°∴∠ABP=∠ABC+∠DPB=105°∵PD∥AB∴∠DPB+∠ABP=180°∴∠DPB=75°.故答案为:35或75.点睛:此题主要考查了平行线的性质,关键是明确P点的位置,分两种情况进行求解. 14.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.15.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图,∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.16.12【解析】如图,∵M、N是线段AB的三等分点,C是BN的中点,∴AM=MN,CN=CB,∴AM+CB=MN+CN=MC=6,∴AB=AM+MN+CN+CB=(AM+CB)+(MN+CN)解析:12【解析】如图,∵M、N是线段AB的三等分点,C是BN的中点,∴AM=MN,CN=CB,∴AM+CB=MN+CN=MC=6,∴AB=AM+MN+CN+CB=(AM+CB)+(MN+CN)=6+6=12(cm).17.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).18.130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计解析:130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.19.70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当解析:70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.20.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即解析:121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE平分∠BAC交BD于点E,∴∠BAE=12∠BAC=59°,∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.三、解答题21.(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α【分析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P在BD延长线上时,∠CPA=∠α-∠β;如图所示,当P在DB延长线上时,∠CPA=∠β-∠α.【点睛】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.22.两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;82;20【分析】感知与填空:根据平行公理及平行线的性质即可填写;应用与拓展:根据感知与填空的方法添加辅助线即可得到∠E+∠F=∠B+∠G+∠D,即可得到答案;方法与实践:过点F作平行线,用同样的思路证明即可得到∠D的度数.【详解】感知与填空:两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换,应用与拓展:如图,作GM∥AB,由感知得:∠E=∠B+∠EGM,∵AB∥CD,GM∥AB,∴GM∥CD,∴∠F=∠D+∠FGM,∴∠E+∠F=∠B+∠D+∠EGF,∵22,35,25B EGF D ∠=︒∠=∠=︒,∴∠E+∠F=82︒,故答案为:82.方法与实践:如图:作FM ∥AB ,∴∠MFB+∠B=180︒,∵60B ∠=︒,∴∠MFB=180︒-∠B=120︒,∵80F ∠=︒,∴∠MFE=40︒,∵∠E=∠MFE+∠D, 60E ∠=︒,∴∠D=20︒,故答案为:20.【点睛】此题考查平行公理的运用及平行线的性质定理,解此题的关键是理解感知部分的作线方法,得到的方法的总结,由此才能正确解答后面的问题.23.(1)C ;(2)BAD DEF ADE ∠+∠=∠;(3)2360C ADE ∠+∠∠=︒;(4)90BAC DEF CDE【分析】(1)利用平行线的性质,即可得到180A ACD ∠+∠=︒,180E ECD ∠+∠=︒,进而得出360BACACE CEF ; (2)过D 作//DG AB ,利用平行线的性质,即可得到A ADG ,E EDG ,进而得出A E ADG EDG ADE ;(3)利用(1)可得360BAC C CEF ,利用(2)可得DBAD DEF ,根据AD ,ED 分别平分BAC ∠,CEF ∠,即可得到22360BAD C DEF,化简即可得到ACE ∠与ADE ∠之间的数量关系;(4)过C 作//CG AB ,过D 作//DH AB ,则有//////CG AB EF DH ,可得1180BAC, 23∠∠=,4DEF ,34CDE ,则有1180BAC ,可求出390BAC ,利用34CDE ,4DEF ,得到90BAC DEF CDE . 【详解】解:(1)////AB CD EF ,180A ACD ,180E ECD ∠+∠=︒, 360A ACD E ECD ,即360BAC ACE CEF ,故选:C .(2)BAD DEF ADE ∠+∠=∠,如图,过D 作//DG AB ,//AB EF ,////DG AB EF ∴,A ADG ,E EDG , A E ADG EDG ADE ;(3)2360C ADE ∠+∠∠=︒, 理由:由(1)可得,360BACC CEF , 由(2)可得,DBAD DEF , 又AD ,ED 分别平分BAC ∠,CEF ∠,2BAC AD B ,2CEF DEF ,22360BAD C DEF ,即2()360BAD DEF C ,2360ACE ADE .(4)90BAC DEF CDE ,理由:如图,过C 作//CG AB ,过D 作//DH AB ,//AB EF ,//////CG AB EF DH ,∴1180BAC , 23∠∠=,4DEF,34CDE ∴1180BAC ∵1290∠+∠=,∴329019018090BAC BAC , ∴3490BAC DEF CDE , 即有:90BACDEF CDE . 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.25.(1)见解析,(2)900,180(1).n ︒︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出即可;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,根据平行线的判定得出EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,根据平行线的性质得出即可;如图③,利用(1)(2)②发现规律,直接得到答案.【详解】证明:(1)证明:过点E 作EF ∥CD ,∵AB ∥CD , ∴EF ∥AB ,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN =360°;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,∵CD ∥AB , ∴EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,如图③,由∠1+∠2+∠MEN 3601802=︒=︒⨯,∠1+∠2+∠3+∠4+∠5+∠69001805=︒=︒⨯,可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 180(1)n =︒-,故答案为:900°,180(1)n ︒-;【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键.26.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析【分析】(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得2FEG NCE MAE +=∠∠∠.【详解】(1)//EF CD∵12∠=∠∴//MB EF∴50AEF MAE ==︒∠∠∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠∵EG 平分∠AEC∴65CEG AEG ==︒∠∠∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠∴80CEF NCE ==︒∠∠∴//EF CD ;(2)∵12∠=∠∴//MB EF∵∠MAE =135°∴18045AEF MAE =︒-=︒∠∠∵∠FEG =30°∴75AEG AEF FEG =+=︒∠∠∠∵EG 平分∠AEC∴75GEC =︒∠∵//AB CD∴18075NCE GEC FEG =︒--=︒∠∠∠;(3)2FEG NCE MAE +=∠∠∠∵12∠=∠∴//MB EF∴180MAE FEA +=︒∠∠∴180FEA MAE =︒-∠∠∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠∵EG 平分∠AEC∴GEC AEG =∠∠∴FEC GEC FEG =+∠∠∠∴180FEC MAE FEG FEG =︒-++∠∠∠∠∴1802FEC MAE FEG =︒-+∠∠∠∵//,//AB CD AB EF∴//EF CD∴180FEC NCE +=︒∠∠∴1802180MAE FEG NCE ︒-++=︒∠∠∠∴2FEG NCE MAE +=∠∠∠.【点睛】本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.。

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc一、选择题(每题5分,共20分)1. 在同一平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种答案:B2. 下列说法中,正确的是:A. 同一平面内,两条直线不相交,则它们一定平行B. 同一平面内,两条直线相交,则它们一定垂直C. 同一平面内,两条直线平行,则它们永不相交D. 同一平面内,两条直线相交,则它们一定平行答案:C3. 如果两条直线都与第三条直线平行,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 无法确定答案:B4. 两条直线相交,交点处的夹角为90°,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 重合答案:C二、填空题(每题5分,共20分)1. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线____。

答案:平行2. 在同一平面内,两条直线不相交,则它们是____。

答案:平行3. 垂直于同一直线的两条直线一定是____。

答案:平行4. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角和为____。

答案:180°三、解答题(每题10分,共20分)1. 已知直线AB与直线CD相交于点O,且∠AOB=∠COD=90°,求证:AB∥CD。

证明:因为∠AOB=∠COD=90°,所以AB⊥OB,CD⊥OD。

根据垂直于同一条直线的两条直线平行,所以AB∥CD。

2. 已知直线l1与直线l2相交于点P,且l1∥l3,l2∥l4,求证:l3与l4相交。

证明:因为l1∥l3,l2∥l4,所以∠l1P=∠l3P,∠l2P=∠l4P。

根据同位角相等,两直线平行,所以l3∥l1,l4∥l2。

又因为l1与l2相交,所以l3与l4相交。

四、计算题(每题10分,共40分)1. 在同一平面内,直线m与直线n相交,交点为O。

已知∠1=45°,求∠2的度数。

答案:∠2=180°-45°=135°2. 已知直线a与直线b平行,直线c与直线a相交于点A,且∠BAC=60°,求∠ABC的度数。

相交线与平行线 培优练习附答案

相交线与平行线 培优练习附答案

故共有 2+2+6+6=16 对同旁内角
H

B D F
E G
EG
EG
A
B
A
B
A
B
C
D
C
D
C
D
H
(1)
(2)
F
H
(3)
F
H
(4)
F
A
练 :1 、 如 图 : 按 各 组 角 的 位 置 , 判 断 错 误 的 是 (
)
A、∠1 与∠A 是同旁内角
B、∠3 与∠4 是内错角
C、∠5 与∠6 是同旁内角
D、∠2 与∠5 是同位角
EG
一类为三线中两线平行,有两对同旁内角;另一类三线两两
相交,有六对同旁内角。
A
解:(1)取出 EF,得到基本图形如图(1),有 2 对同旁内角;

(2)取出 GH,得到基本图形如图(2),有 2 对同旁内角; (3)取出 AB,得到基本图形如图(3),有 6 对同旁内角; C
(4)取出 CD,得到基本图形如图(4),有 6 对同旁内角;
甲 乙 两 同 学 从 此 题 证 明 中 发 现 ,问 题 的 实 质 在 于 AA1 ∥ BA2 ,它 与 连 接 A1 、 A2 两 点 之 间
的 折 线 段 无 关 。因 此 ,如 图 3 ,甲 同 学 将 A1 、A3 之 间 的 折 线 段 增 加 到 4 条 A1B1 ,B1 A2 ,A2 B2 ,
例 2:如图(1),一辆汽车在公路上由 A 向 B 行驶,M,N 分别为位于 AB 两侧的学校,(1)汽车
在 公 路 上 行 驶 时 会 对 学 校 的 教 学 造 成 影 响 ,当 汽 车 行 驶 在 何 处 时 对 学 校 影 响 最 大 ? 在 图 上 标出来;(2)当汽车从 A 向 B 行驶时,哪一段上对两个学校的影响越来越大?哪一段上

相交线与平行线培优复习试卷含答案

相交线与平行线培优复习试卷含答案

相交线与平行线培优复习试卷对顶角:1、两条直线相交成四个角,其中不相邻的两个角是对顶角。

2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

3、对顶角的性质:对顶角相等。

4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。

5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

同位角、内错角、同旁内角:1、两条直线被第三条直线所截,形成了8个角。

2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。

3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。

4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。

5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。

六类角:1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。

2、余角、补角只有数量上的关系,与其位置无关。

3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。

4、对顶角既有数量关系,又有位置关系。

平行线的判定与性质:平行线的判定平行线的性质1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行4、平行于同一条直线的两直线平行5、垂直于同一条直线的两直线平行1、两直线平行,同位角相等2、两直线平行,内错角相等3、两直线平行,同旁内角互补4、经过直线外一点,有且只有一条直线与已知直线平行命题:1、命题的概念:一件事情的语句,叫做命题。

2、命题的组成:每个命题都是、两部分组成。

(1)题设是事项;(2)结论是由已知事项的事项。

3、命题的表述句式:命题常写成“……,……”的形式。

具有这种形式的命题中,用“如果”开始的部分是,用“那么”开始的部分是。

4. 命题的真假:正确的命题称为真命题;错误的命题称为假命题。

第五章相交线与平行线单元试卷培优测试卷

第五章相交线与平行线单元试卷培优测试卷

第五章相交线与平行线单元试卷培优测试卷一、选择题1.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积2.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )A .1B .2C .3D .43.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个 4.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个5.如图,下列推理所注的理由正确的是( )A .∵AB CD ∥,∴ ∠1=∠2(内错角相等,两直线平行)B .∵∠3=∠4,∴ AB CD ∥(内错角相等,两直线平行)C .∵AB CD ∥,∴∠3=∠4(两直线平行,内错角相等)D .∵∠1=∠2,∴ AB CD ∥(内错角相等,两直线平行)6.如图,AB ∥CD ,∠B =20°,∠D =40°,则∠BED 为( )A .20°B .30°C .60°D .40°7.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个8.给出下列命题:①平分弦的直径垂直于弦,且平分弦所对的弧;②平面上任意三点能确定一个圆;③图形经过旋转所得的图形和原图形全等;④三角形的外心到三个顶点的距离相等;⑤经过圆心的直线是圆的对称轴.正确的命题为( )A .①③⑤B .②④⑤C .③④⑤D .①②⑤9.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A .1个B .2个C .3个D .4个10.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个11.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( )A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED12.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒二、填空题13.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .14.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.15.镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动12°,B 灯每秒转动4°.B 灯先转动12秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 .16.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.17.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)18.如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD 恰好与边AB 平行.19.已知∠ABC=70︒,点D 为BC 边上一点,过点D 作DP//AB ,若∠PBD=12∠ABC ,则∠DPB=_____︒.20.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.三、解答题21.()1如图1,//,40,130AB CD AEP PFD ∠=︒∠=︒.求EPF ∠的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P 作//,PM AB140AEP ∴∠=∠=︒( )//,AB CD (已知)//,PM CD ∴( )2180PFD ∴∠+∠=.( )130,PFD ∠=︒218013050∴∠=︒-︒=.12405090∴∠+∠=︒+︒=.即90EPF ∠=.()2如图2,//,AB CD 点P 在,AB CD 外,问,,PEA PFC P ∠∠∠之间有何数量关系.请说明理由;()3如图3所示,在()2的条件下,已知,P a PEA ∠=∠的平分线和PFC ∠的平分线交于点,G 用含有a 的式子表示G ∠的度数是 ____.(直接写出答案,不需要写出过程)22.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .23.如图,A 、B 分别是直线a 和b 上的点,∠1=∠2,C 、D 在两条直线之间,且∠C =∠D .(1) 证明:a ∥b ;(2) 如图,∠EFG=60°,EF 交a 于H ,FG 交b 于I ,HK ∥FG ,若∠4=2∠3,判断∠5、∠6的数量关系,并说明理由;(3) 如图∠EFG 是平角的n 分之1(n 为大于1的整数),FE 交a 于H ,FG 交b 于I .点J 在FG 上,连HJ .若∠8=n ∠7,则∠9:∠10=______ .24.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .(1)求证:∠ABE +∠C ﹣∠E =180°.(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.25.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。

人教版初一数学7年级下册 第5章(相交线与平行线)单元培优卷(含答案)

人教版初一数学7年级下册 第5章(相交线与平行线)单元培优卷(含答案)

七年级数学下册第五章相交线与平行线培优卷一、选择题1.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短2.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角3.如图,直线a,b被直线c所截,则下列说法中错误的是( )A.∠1与∠2是邻补角B.∠1与∠3是对顶角C.∠2与∠4是同位角D.∠3与∠4是内错角4.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠45.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A.20 B.30 C.40 D.606.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()A.∠EMB=∠ENDB.∠BMN=∠MNCC.∠CNH=∠BPGD.∠DNG=∠AME7.如图,面积为12cm2的△ABC沿BC方向平移到△DEF的位置,平移的距离是边BC长的2倍,则图中四边形ACED的面积为( )A.24cm2B.36cm2C.48cm2D.无法确定8.如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y9.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④12DFB CGE ∠=∠.其中正确的结论是( )A .①③④B .①②③C .②④D .①③10.将下面的如图平移后,可以得到选项图形中的( )A .B .C .D .二、填空题11.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.12.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.13.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.14.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.15.如图,在△ABC 中,6BC cm =,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为_____秒.三、解答题16.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射,若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2=_________,∠3=________.(2)在(1)中,若∠1=55°,则∠3=_______;若∠1=40°,则∠3=________;(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3=________时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.请说明理由.17.如图,线段,点沿射线运动(不与、两点重合),连接、,作平分,作,设,1.如图1,当,探究与、的数量关系;2.当点位置发生变化时,请你利用提供的图2、3、4继续操作,探究⑴中的问题.18.如图,已知OD 是∠AOB 的角平分线,C 为OD 上一点.(1)过点 C 画直线CE∥OB,交OA 于E;(2)过点 C 画直线CF∥OA,交OB 于F;(3)过点 C 画线段CG⊥OA,垂足为G.根据画图回答问题:①线段______的长度就是点C到OA的距离;②比较大小:CE______CG(填“>”或“=”或“<”);③通过度量比较∠AOD与∠ECO的关系是:∠AOD______∠ECO(填“>”或“=”或“<”);19.已知:如图(1),直线AB∥CD,EF分别交AB、CD于E、F两点,∠BEF、∠DFE的平分线相交于点K.(1)求∠EKF的度数.(计算过程不准用三角形内角和)(2)如图(2),∠BEK、∠DFK的平分线相交于点K1,问∠K1与∠K的度数是否存在某种特定的等量关系?写出结论并证明.(3)在图2中作∠BEK1、∠DFK1的平分线相交于点K2,作∠BEK2、∠DFK2的平分线相交于点K3,依此类推,作∠BEK n、∠DFK n的平分线相交于点K n+1,请用含的n式子表示∠K n+1的度数.(直接写出答案,不必写解答过程)20.(1)、如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD °.(2)、如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;(3)、在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.21.AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数;(用含n的代数式表示)(2)将(1)中线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.22.如图,直线AB、CD相交于点O,OM⊥AB (1)若∠1=∠2,求∠NOC的度数;(2)若∠1=14∠BOC,求∠MOD的度数.23.(1)、如图,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;(2)、如图,在(1)的条件下,AB的下方两点E,F满足:BF平分∠ABE,CF 平分∠DCE,若∠CFB=20°,∠DCE=70°,求∠ABE的度数.(3)、在前面的条件下,若P是BE上一点;G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP﹣∠MGN的值不变;②∠MGN 的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.【参考答案】1.A 2.A 3.D 4.D 5.B 6.D 7.B 8.B 9.A 10.A 11.2412.互相垂直.13.125︒或20︒14.68°15.2或616.(1)100°,90°;(2)90°,90°;(3)90°.17.(1)1122EPF βα∠=-,(2)1122EPF βα∠=-或1122EPF βα∠=+18.①CG ;②>;③=19.(1)∠EKF=90°;(2)∠K=2∠K ;(3)归纳总结得:∠K n+1=112n + ×90°.20.(1)、25°;(2)、∠BPD=∠B+∠D ;(3)、50°.21.(1)∠BED=n°+40°;(2)∠BED 的度数改变,∠BED=220°﹣n°.22.(1)90°;(2)150°23.(1)、AB ∥CD ;(2)、30°;(3)、①∠DGP ﹣∠MGN 的值随∠DGP 的变化而变化;②∠MGN 的度数为15°不变.。

数学第五章 相交线与平行线的专项培优练习题(含答案

数学第五章 相交线与平行线的专项培优练习题(含答案
同理,可以推导当n条直线相交时,交点数是 ,即



本题的答案为:1, .
【点睛】
本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.
13.【解析】
【分析】
首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25
13.如图, 平分 平分 ,则 ______.
14. 与 的两边互相垂直,且 ,则 的度数为_________.
15.如图,图①是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图②,则图②中的∠CFG的度数是_____________.
16.两个角的两边分别平行,一个角是50°,那么另一个角是__________.
∴∠ABF+∠CDF= (∠ABE+∠CDE)=125°,
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠BFE=∠DEF=26°,
∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,
故选:A.
【点睛】
本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.
17.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.
18.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.

(完整版)《相交线与平行线》单元测试卷含答案

(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1。

如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D。

对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为( )A.40°B.35° C。

50°D。

45°31 2 3。

如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC。

∠B+∠ECB=180° D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为( )A。

向右平移1格再向下 B。

向右平移3格再向下C.向右平移2格再向下D.以上答案均可5。

如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D。

垂直于同一直线的两直线平行6。

如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是( )A.40°B.70°C.80° D。

140°7。

同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是( )A。

a∥d B。

a⊥c C。

a⊥d D。

b⊥d8。

如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120 ° B。

130° C.140° D。

150°9。

如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )A。

30° B.60° C。

80° D。

树诚培优试卷---相交线与平行线全章测试

树诚培优试卷---相交线与平行线全章测试

《相交线与平行线》一、填空题1.如图,a 与b 直线相交,∠1=360,则∠3=________,∠2=__________.2.如图,直线AB 、CD 、EF 相交于点O ,则∠AOC 的对顶角是_____________,∠AOD 的邻补角是_____________. 3.在同一平面内,两条直线的位置关系有_____种分别是 . 4.命题“两直线平行,内错角相等”的题设_________,结论____________.5.如图,要从小河a 引水到村庄A ,请设计并作出一最佳路线,理由是:__________. 6.如图,∠1=700,a ∥b 则∠2=_____________,7.如图,∠ACB =90°,CD ⊥AB ,则图中与∠A 互余的角有 个,它们分别是 . 8.如7题图.可以表示点到直线的距离的线段共有 条9.如图,直线a ∥b,且∠1=28°,∠2=50°,则∠ABC =___ ____10.在同一平面内.a 、b 、c 是直线,且a ∥b , b ⊥c , 则a ___c ; 在同一平面内.a 、b 、c 是直线,且a ⊥b , b ⊥c , 则a __ _c . 11.如图,若∠1=∠2,则互相平行的线段是________________.12.如图,,D 是AB 上一点,CE ∥BD ,CB ∥ED ,EA ⊥BA 于点A ,若∠ABC =38°,则∠13.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1 ∠______________。

14.如图∠B 与∠_____是直线______和直线_______被直线_________所截的同位角. 二、选择题(共6小题,每题3分,共18分) 15.如图,∠ADE 和∠CED 是( )A .同位角B .内错角C .同旁内角D .互为补角第11题 第12题 第13题 第14题第(14)题DBA F CBABAHG2 1F EDC BA 16.在下图中,∠1,∠2是对顶角的图形是( )17.平面内三条直线的交点个数可能有〔 〕A 、1个或3个B 、2个或3个C 、1个或2个或3个D 、0个或1个或2个或3 18.下列说法中,正确的是( )A 、图形的平移指图形沿水平方向移动B 、平移前后图形的形状和大小都没有改变C 、“相等的角是对顶角”是一个真命题D 、“直角都相等”是一个假命题 19.点P 为直线l 外一点,点A 、B 、C 为直线l 上三点,PA = 4 cm ,PB = 5 cm ,PC = 2 cm ,则点到直线l 的距离是( )A 、2cmB 、小于2cmC 、不大于2cmD 、4cm 20.在以下现象中属于平移的是( )①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动; ③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动。

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)

第五章相交线与平行线单元试卷(培优篇)(Word版含解析)一、选择题1.如图,∠1=20º,AO⊥CO,点B、O、D在同一条直线上,则∠2的度数为()A.70ºB.20ºC.110ºD.160º2.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为().A.100︒B.80︒C.75︒D.50︒3.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠44.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°5.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°6.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.102°B.108°C.124°D.128°7.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条.其中真命题的有()A.0个B.1个C.2个D.3个8.如图,直线l1∥l2∥l3,等腰Rt△ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则AB:BD的值为()A 42534C52832209.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A.纵坐标不变,横坐标减2B.纵坐标不变,横坐标先除以2,再均减2C.纵坐标不变,横坐标除以2D.纵坐标不变,横坐标先减2,再均除以210.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240° 11.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-=12.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒二、填空题13.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).14.如图,在△ABC 中,6BC cm =,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为_____秒.15.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)16.已知:如图放置的长方形ABCD和等腰直角三角形EFG中,∠F=90°,FE=FG=4cm,AB=2cm,AD=4cm,且点F,G,D,C在同一直线上,点G和点D 重合.现将△EFG沿射线FC向右平移,当点F和点C重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm2,则△EFG 向右平移了____cm.17.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n的式子表示)18.如图,直线a∥b,且∠1=28°,∠2=50°,则∠ABC=_______.19.如图,请你添加一个条件....使得AD∥BC,所添的条件是__________.20.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.三、解答题21.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.22.已知AB∥CD,点C在点D的右侧,连接AD,BC,BE平分∠ABC,DE平分∠ADC,BE,DE相交于点E.(1)如图1,当点B在点A的左侧时,①若∠ABC=50º,∠ADC=70º,求∠BED的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.23.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 24.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.25.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示). 26.如图,已知AB ∥CD ,∠A=40°,点P 是射线B 上一动点(与点A 不重合),CM ,CN 分别平分∠ACP 和∠PCD ,分别交射线AB 于点M,N .(1)求∠MCN 的度数.(2)当点P 运动到某处时,∠AMC=∠ACN ,求此时∠ACM 的度数.(3)在点P 运动的过程中,∠APC 与∠ANC 的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.27.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.28.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.2.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村 ∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B .【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.3.B解析:B【分析】同位角:两条直线a ,b 被第三条直线c 所截(或说a ,b 相交c ),在截线c 的同旁,被截两直线a ,b 的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.【详解】∵直线AD ,BE 被直线BF 和AC 所截,∴∠1与∠2是同位角,∠5与∠6是内错角,故选B.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.4.A解析:A【分析】运用平行线的判定方法进行判定即可.【详解】解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;故答案为A.【点睛】本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.5.C解析:C【分析】已知∠CFN=110°,根据对顶角相等可得∠DFE=∠CFN=110°,因为FG平分∠EFD,由角平分线的定义可得∠EFG=12∠EFD=55°;再由EG⊥FG,可得∠G=90°,即可求得∠GEF=35°;又因AB∥CD,∠EFD=110°,根据平行线的性质可得∠BEF=70°,即可得∠BEG=∠BEF﹣∠GEF=35°.【详解】∵∠CFN=110°,∴∠DFE=∠CFN=110°,∵FG平分∠EFD,∴∠EFG=12∠EFD=55°,又EG⊥FG,即∠G=90°,∴∠GEF=35°,∵AB∥CD,∠EFD=110°,∴∠BEF=70°,∴∠BEG=∠BEF﹣∠GEF=35°.故选C.【点睛】本题考查了平行线的性质,垂直的定义以及角平分线的性质.熟练运用相关知识是解决问题的关键.6.A解析:A【解析】【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE ,∠CFE=∠CFG-∠EFG 即可.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选:A .【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.7.B解析:B【解析】试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确; 同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确; 从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确; 过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.故选B.8.A解析:A 【解析】解:如图,作3BF l ⊥, 3AE l ⊥,∵090ACB ∠=,∴090BCF ACE ∠+∠=,∵090BCF CFB ∠+∠=,∴ACE CBF ∠=∠,在ACE ∆和CBF ∆中,{BFC CEACBF ACE BC AC∠=∠∠=∠=∴ACE CBF ∆≅∆,∴3,4CE BF CF AE ====,∵1l 与2l 的距离为1, 2l 与3l 的距离为3,∴1,7AG BG EF CF CE ===+=,∴AB =∵23//l l , ∴14DG AG CE AE ==, ∴1344DG CE ==, ∴325744BD BG DG =-=-=,∴2554AB BD ==, 故选A .【点睛】本题考查了全等三角形的性质和判定,平行线分线段成比例定理等,构造全等三角形是解决本题的关键.9.D解析:D【解析】图案横向拉长2倍就是纵坐标不变,横坐标乘以2,又向右平移2个单位长度,就是纵坐标不变,横坐标加2,应该利用逆向思维纵坐标不变,横坐标先减2,再均除以2.故选:D .点睛:此题主要考查了坐标与图形变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减10.C解析:C【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.11.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.12.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)(1)

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)(1)

第五章相交线与平行线单元试卷(培优篇)(Word 版 含解析)(1)一、选择题1.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 2.已知点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4 cm ,PB =5 cm ,PC =2 cm ,则点P 到直线m 的距离为( )A .4 cmB .5 cmC .小于2 cmD .不大于2 cm3.如图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A .110°B .115°C .125°D .130° 4.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个5.如图,面积为12cm 2的△ABC 沿BC 方向平移到△DEF 的位置,平移的距离是边BC 长的2倍,则图中四边形ACED 的面积为( )A .24cm 2B .36cm 2C .48cm 2D .无法确定6.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转30 7.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y8.给出下列命题:①平分弦的直径垂直于弦,且平分弦所对的弧;②平面上任意三点能确定一个圆;③图形经过旋转所得的图形和原图形全等;④三角形的外心到三个顶点的距离相等;⑤经过圆心的直线是圆的对称轴.正确的命题为( )A .①③⑤B .②④⑤C .③④⑤D .①②⑤ 9.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64°10.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒. 11.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 12.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直二、填空题13.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.14.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.15.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .16.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.17.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).18.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.19.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.(1)如图a 所示,//AB CD ,且点E 在射线AB 与CD 之间,请说明AEC A C ∠=∠+∠的理由.(2)现在如图b 所示,仍有//AB CD ,但点E 在AB 与CD 的上方,①请尝试探索1∠,2∠,E ∠三者的数量关系.②请说明理由.22.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.23.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)24.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由; (问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.25.(1)问题发现如图①,直线AB ∥CD ,E 是AB 与AD 之间的一点,连接BE ,CE ,可以发现∠B +∠C =∠BEC .请把下面的证明过程补充完整:证明:过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC ( )∴∠C =∠CEF .( )∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C = (等量代换)即∠B +∠C =∠BEC .(2)拓展探究如果点E 运动到图②所示的位置,其他条件不变,求证:∠B +∠C =360°﹣∠BEC . (3)解决问题如图③,AB ∥DC ,∠C =120°,∠AEC =80°,则∠A = .(之间写出结论,不用写计算过程)26.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足|a ﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN =45°.(1)求a 、b 的值;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前,若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.27.如图1,//PQ MN ,点A ,B 分别在MN ,QP 上,2BAM BAN ∠=∠射线AM 绕A 点顺时针旋转至AN 便立即逆时针回转,射线BP 绕B 点顺时针旋转至BQ 便立即逆时针回转.射线AM 转动的速度是每秒2度,射线BQ 转动的速度是每秒1度.(1)直接写出QBA ∠的大小为_______;(2)射线AM 、BP 转动后对应的射线分别为AE 、BF ,射线BF 交直线MN 于点F ,若射线BP 比射线AM 先转动30秒,设射线AM 转动的时间为t ()0180t <<秒,求t 为多少时,直线//BF 直线AE ?(3)如图2,若射线BP 、AM 同时转动m ()090m <<秒,转动的两条射线交于点C ,作120ACD ∠=︒,点D 在BP 上,请探究BAC ∠与BCD ∠的数量关系.28.如图,已知AB ∥CD ,∠A=40°,点P 是射线B 上一动点(与点A 不重合),CM ,CN 分别平分∠ACP 和∠PCD ,分别交射线AB 于点M,N .(1)求∠MCN 的度数.(2)当点P 运动到某处时,∠AMC=∠ACN ,求此时∠ACM 的度数.(3)在点P 运动的过程中,∠APC 与∠ANC 的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.2.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.3.C解析:C【分析】先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两直线平行,内错角相等,即可求得∠BFD的度数.【详解】解:如图,过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故选:C.【点睛】此题考查了平行线的性质与角平分线的定义,解题的关键是注意数形结合思想的应用,注意辅助线的作法.解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.5.B解析:B【解析】试题分析:由题意可知根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,依此计算即可.∵平移的距离是边BC 长的两倍,∴BC=CE=EF ,∴四边形ACED 的面积是三个△ABC 的面积;∴四边形ACED 的面积=12×3=36cm 2.考点:平移的性质.6.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.7.B解析:B【分析】根据平行线的性质可得∠CEF=180°-y,x=z+∠CEF,利用等量代换可得x=z+180°-y,再变形即可.【详解】解:∵CD∥EF,∴∠C+∠CEF=180°,∴∠CEF=180°-y,∵AB∥CD,∴x=z+∠CEF,∴x=z+180°-y,∴x+y-z=180°,故选:B.8.C解析:C【分析】①垂径定理的逆定理,注意有否有缺少什么;②如果三点共线;③旋转的性质;④三角形的外心的性质;⑤圆的性质.【详解】①平分弦(不是直径)的直径垂直于弦,且平分弦所对的弧,原命题错误;②三点共线时不能确定一个圆,原命题错误;③由旋转的性质可知,原命题正确;④由三角形的外心的性质,原命题正确;⑤由圆的性质,原命题正确;本题的答案是:C.【点睛】考查垂径定理的逆定理、旋转的性质、三角形的外心的性质、圆的性质.9.B解析:B【解析】【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键. 10.D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC到H∵AB∥CD,EF∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.故选D.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.11.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.12.B解析:B【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B.【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.二、填空题13.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.14.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°, 故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.15.(1)35,55;(2)与,【分析】(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数; (2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.【详解】(1),,,解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 16.46【分析】过点C 作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠解析:46【分析】过点C 作CF ∥AB ,根据平行线的传递性得到CF ∥DE ,根据平行线的性质得到∠ABC =∠BCF ,∠CDE +∠DCF =180°,根据已知条件等量代换得到∠BCF =76°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:过点C 作CF ∥AB ,∵AB ∥DE ,∴AB ∥DE ∥CF ,∴∠ABC =∠BCF ,∠CDE +∠DCF =180°,∵∠ABC =76°,∠CDE =150°,∴∠BCF =76°,∠DCF =30°,∴∠BCD =46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系. 17.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.18.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.19.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即解析:121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE平分∠BAC交BD于点E,∴∠BAE=12∠BAC=59°,∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1);(2)①∠1+∠2-∠E=180°;②见解析【分析】(1)过点E作EF∥AB,根据平行线的性质得到∠A=∠AEF和∠FEC=∠C,再相加即可;(2)①、②过点E作EF∥AB,根据平行线的性质可得∠AEF+∠1=180°和∠FEC=∠2,从而可得三者之间的关系.【详解】解:(1)过点E作EF∥AB,∴∠A=∠AEF,∵AB∥CD,∴EF∥CD,∴∠FEC=∠C,∵∠AEC=∠AEF+∠FEC,∴∠AEC=∠A+∠C;(2)①∠1+∠2-∠E=180°,②过点E作EF∥AB,∴∠AEF+∠1=180°,∵AB∥CD,∴EF∥CD,∴∠FEC=∠2,即∠CEA+∠AEF=∠2,∴∠AEF=∠2-∠CEA,∴∠2-∠CEA+∠1=180°,即∠1+∠2-∠AEC=180°.【点睛】本题考查了平行线的性质,作辅助线并熟记性质是解题的关键.22.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=12x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=42⋅;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=12×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(−2,0)、C(2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩,∴直线AC的解析式为y=12x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=12|t−1|•2+12|t−1|•2=4,解得t=3或−1,∴P点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.23.(1)∠G=∠AEG+∠CFG;(2)见解析;(3)FR⊥HK,理由见解析【分析】(1)根据平行线的判定和性质即可写出结论;(2)过点G 作//GP AB ,根据平行线的性质得角相等和互补,即可得证;(3)根据平行线的性质得角相等,即可求解.【详解】解:(1)如图:过点G 作//GH AB ,∵//AB CD ,∴//GH CD ,∴AEG EGH ∠=∠,CFG FGH ∠=∠,EGF AEG CFG ∴∠==∠+∠AEG ∴∠、CFG ∠与G ∠之间的数量关系为G AEG CFG ∠=∠+∠.故答案为:G AEG CFG ∠=∠+∠.(2)如图,过点G 作//GP AB ,180BEG EGP ∴∠+∠=︒,180EHG HGP ∠+∠=︒,90180EHG EGP ∴∠+︒+∠=︒,90EHG EGP ∴∠+∠=︒,//AB CD ,DFG EHG ∴∠=∠,180180()1809090BEG DFG EGP EHG EGP EHG ∴∠-∠=︒-∠-∠=︒-∠+∠=︒-︒=︒.(3)FR 与HK 的位置关系为垂直.理由如下: FT 平分DFG ∠交HK 于点T ,GFT KFT ∴∠=∠,90EGF ∴∠=︒,90GFT ERT ∴∠+∠=︒,90KFT ERT ∴∠+∠=︒,ERT TEB ∠=∠,90KFT TEB ∴∠+∠=︒,//AB CD ,FKT TEB ∴∠=∠,90∴∠+∠=︒,KFT FKT∴∠=︒,90FTK∴⊥,即FR HK⊥.KT FR∴FR与HK的位置关系是垂直.【点睛】本题考查了平行线的判定和性质,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.24.(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α【分析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB ∥PE ∥CD ,∴∠α=∠APE ,∠β=∠CPE ,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P 在BD 延长线上时,∠CPA=∠α-∠β;如图所示,当P 在DB 延长线上时,∠CPA=∠β-∠α.【点睛】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.25.(1)平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ;(2)证明见解析;(3)20°.【分析】(1)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(2)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(3)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可.【详解】(1)证明:如图①,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC (平行于同一直线的两直线平行),∴∠C =∠CEF .(两直线平行,内错角相等),∵EF∥AB,∴∠B=∠BEF(同理),∴∠B+∠C=∠BEF+∠CEF(等量代换)即∠B+∠C=∠BEC,故答案为:平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF+∠CEF;(2)证明:如图②,过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C+∠CEF=180°,∠B+∠BEF=180°,∴∠B+∠C+∠AEC=360°,∴∠B+∠C=360°﹣∠BEC;(3)解:如图③,过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C+∠CEF=180°,∠A=∠BEF,∵∠C=120°,∠AEC=80°,∴∠CEF=180°﹣120°=60°,∴∠BEF=80°﹣60°=20°,∴∠A=∠AEF=20°.故答案为:20°.【点睛】本题考查了平行线的性质和判定的应用,能正确作出辅助线是解此题的关键,注意:①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.26.(1)a=3,b=1;(2)当t=15秒或82.5秒时,两灯的光束互相平行;(3)∠BAC 与∠BCD的数量关系不发生变化,其大小比值为∠BCD:∠BAC=2:3.【分析】(1)利用绝对值和完全平方式的非负性即可解决问题.(2)分三种情况,利用平行线的性质列出方程即可解决.(3)将∠BAC和∠BCD分别用t的代数式表示,然后在进行运算即可.【详解】(1)∵|a ﹣3b|+(a+b ﹣4)2=0.又∵|a ﹣3b|≥0,(a+b ﹣4)2≥0.∴a =3,b =1;故答案为a=3,b=1.(2)设A 灯转动t 秒,两灯的光束互相平行,①当0<t <60时,3t =(30+t )×1,解得t =15;②当60<t <120时,3t ﹣3×60+(30+t )×1=180,解得t =82.5;③当120<t <150时,3t ﹣360=t+30,解得t =195>150(不合题意)综上所述,当t =15秒或82.5秒时,两灯的光束互相平行.故答案为:t=15秒或t=82.5秒.(3)设A 灯转动时间为t 秒,∵∠CAN =180°﹣3t ,∴∠BAC =45°﹣(180°﹣3t )=3t ﹣135°,又∵PQ ∥MN ,∴∠BCA =∠CBD+∠CAN =t+180°﹣3t =180°﹣2t ,∵∠ACD =90°,∴∠BCD =90°﹣∠BCA =90°﹣(180°﹣2t )=2t ﹣90°,∴∠BCD :∠BAC =2:3.故答案为:∠BAC 与∠BCD 的数量关系不发生变化,其大小比值为∠BCD:∠BAC =2:3.【点睛】本题考查了绝对值和完全平方式的非负性、平行线的性质、解方程等知识,读懂题目的意思,掌握好平行线的性质是解题的关键.27.(1)60°;(2)当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,2BAC BCD ∠=∠.【分析】(1)根据2BAM BAN ∠=∠得到60BAN ∠=︒,再根据直线平行的性质即可得到答案;(2)设灯转动t 秒,直线//BF 直线AE ,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出BAC ∠,再根据三角形内角和即可表示出BCD ∠,即可得到答案;【详解】解:(1)∵2BAM BAN ∠=∠180BAM BAN ∠+∠=︒,∴60BAN ∠=︒,∴QBA ∠60BAN =∠=︒(两直线平行,内错角相等)故结果为:60︒;(2)设灯转动t 秒,直线//BF 直线AE ,①当090t <<时,如图,//PQ MN ,PBF BFA ∴∠=∠,//AE BF ,EAM BFA ∴∠=∠,EAM PBF ∴∠=∠,21(30)t t ∴=⋅+,解得30t =;②当90180t <<时,如图,//PQ MN ,180PBF BFA ∴∠+∠=︒,//AE BF ,EAN BFA ∴∠=∠180PBF EAN ∴∠+∠=︒,1(30)(2180)180t t ∴⋅++-=,解得110t =,综上所述,当30t =秒或110秒时//BF 直线AE ;(3)BAC ∠和BCD ∠关系不会变化,理由:设射线AM 转动时间为m 秒,作//CH PQ ,//PQ MN ,////CH PQ MN ∴,2180QBC ∴∠+∠=︒,1180MAC ∠+∠=︒,21360QBC MAC ∴∠+∠+∠+∠=︒,180QBC m ∠=︒-,2MAC m ∠=,()123601802180BCA m m m ∴∠=∠+∠=---=︒︒-︒,而120ACD ∠=︒,()12012018060BCD BCA m m ︒︒∴∠=-∠=--=-︒︒,1802CAN m ∠=︒-,()18022120BAC QBA m m ︒︒∴∠=∠--=-,:2:1BAC BCD ∴∠∠=,即2BAC BCD ∠=∠,BAC ∴∠和BCD ∠关系不变.【点睛】本题主要考查了补角、角的运算、直线平行的性质和判定以及三角形的内角和定理,结合图形添加辅助线、分类讨论是解题的关键.28.(1)∠MCN=70°;(2)∠ACM=35°;(3)不变.(详见解析)【分析】(1)由AB ∥CD 可得∠ACD=180°-∠A ,再由CM 、CN 均为角平分线可求解; (2)由AB ∥CD 可得∠AMC=∠MCD ,再由∠AMC=∠ACN 可得∠ACM =∠NCD ; (3)由AB ∥CD 可得∠APC=∠PCD ,再由CN 为角平分线即可解答.【详解】解:(1)∵A B ∥CD ,∴∠ACD=180°﹣∠A=140°,又∵CM ,CN 分别平分∠ACP 和∠PCD ,∴∠MCN=∠MCP+∠NCP=12(∠ACP+∠PCD )=12∠ACD=70°, 故答案为:70°.(2)∵AB ∥CD ,∴∠AMC=∠MCD ,又∵∠AMC=∠ACN ,∴∠MCD=∠ACN ,∴∠ACM=∠ACN ﹣∠MCN=∠MCD ﹣∠MCN=∠NCD ,∴∠ACM=∠MCP=∠NCP=∠NCD ,∴∠ACM=14∠ACD=35°, 故答案为:35°.(3)不变.理由如下:∵AB∥CD,∴∠APC=∠PCD,∠ANC=∠NCD,又∵CN平分∠PCD,∴∠ANC=∠NCD=12∠PCD=12∠APC,即∠APC:∠ANC=2:1.【点睛】本题主要考查了平行线的性质,角平分线的性质的运用,解决问题的关键是掌握两直线平行,内错角相等.。

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)

第五章相交线与平行线单元试卷(培优篇)(Word 版 含解析)一、选择题1.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º 2.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠43.如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=65°,则∠2的度数为( )A .115°B .65°C .35°D .25°4.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .5.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个6.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°7.如图,直线a ∥b ,AC ⊥AB 于A ,AC 交直线b 于点C ,∠1=50°,则∠2的度数是( )A .50°B .40°C .25°D .20°8.下列命题中,其逆命题为真命题的是( )A .若a =b ,则a 2=b 2B .同位角相等C .两边和一角对应相等的两个三角形全等D .等腰三角形两底角不相等 9.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是( ) 已知:如图,∠BEC =∠B+∠C ,求证:AB ∥CD证明:延长BE 交__※__于点F ,则∠BEC =__⊙__+∠C又∵∠BEC =∠B+∠C ,∴∠B =▲∴AB ∥CD (__□__相等,两直线平行)A .⊙代表∠FECB .□代表同位角C .▲代表∠EFCD .※代表AB10.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 11.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°12.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒二、填空题13.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n 次移动n 格.则不停留棋子的格子的编号有_____.14.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.15.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________16.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.17.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.18.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)19.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l 格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).22.已知,90AOB ︒∠=,点C 在射线OA 上,//CD OE .(1)如图 1,若120OCD ︒∠=,求∠BOE 的度数;(2)把“90AOB ︒∠=°”改为“120AOB ︒∠=”,射线OE 沿射线OB 平移,得到O E ',其它条件不变(如 图 2 所示),探究,OCD BO E '∠∠ 的数量关系;(3)在(2)的条件下,作PO OB '⊥,垂足为O ' ,与OCD ∠ 的角平分线CP 交于点P ,若BO E α'∠= , 用含 α 的式子表示CPO '∠(直接写出答案).23.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .(1)求证:∠ABE +∠C ﹣∠E =180°.(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.24.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 25.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.26.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.27.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值∥,且直线AB、CD与AD、BC分别交于A、D和28.如图`,已知:直线AD BCB、C两点,点P在直线AB上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.2.B解析:B【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a ,b 的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.【详解】∵直线AD ,BE 被直线BF 和AC 所截,∴∠1与∠2是同位角,∠5与∠6是内错角,故选B.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.3.D解析:D【解析】解:∵直线a ∥b ,∴∠1+∠ABC +∠2=180°.又∵BC ⊥AB ,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D .4.C解析:C【分析】根据同位角的定义可以判断对错 .【详解】解:两条直线a 、b 被第三条直线c 所截,在截线c 的同旁,且在被截直线a 、b 同一侧的角称为同位角,根据这个定义,A 选项的两角不在被截线的同侧,错误;B 选项的两角不是两条直线被第三条直线所截形成的角,错误;C 选项的角符合同位角的定义,正确;D 选项的两角不是两条直线被第三条直线所截形成的角,错误.故选C .【点睛】本题考查同位角的意义,通过同位角的意义进行灵活判断是解题关键.5.D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A 的两边分别和∠B 的两边平行,∴∠B 和∠A 可能相等也可能互补,即∠B 的度数是20°或160°,故选:D.7.B解析:B【解析】试题分析:根据平行线的性质,由a∥b 可得∠1=∠B=50°,然后根据垂直的定义知△ABC 是直角三角,然后根据直角三角形的两锐角互余,可求的∠2=40°.故选:B.8.C解析:C【分析】根据互为逆命题的关系,将四个选项的题设和结论互换,逐一验证,A 是假命题,B 是假命题,C 是真命题,D 是假命题.故答案为C.【详解】根据互为逆命题的关系,题设和结论互换,可知:A 选项中,若a=b ,则a 2=b 2的逆命题为:若a 2=b 2,则a=b ,是假命题;B 选项中,同位角相等的逆命题为:相等的角是同位角,是假命题;C 选项中,两边和一角对应相等的两个三角形全等的逆命题是:全等三角形的对应边相等,对应角相等,是真命题;D 选项中,等腰三角形的两底角不相等的逆命题为:两个角不相等的三角形是等腰三角形,是假命题.故选C.【点睛】此题主要考查互为逆命题的关系,三角形的性质定理,熟练掌握即可得解.9.C解析:C【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.10.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.11.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC ﹣∠1=25°.∵GH ∥EF ,∴∠2=∠AEC=25°.故选C .12.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

第五章相交线与平行线单元试卷培优测试卷

第五章相交线与平行线单元试卷培优测试卷

第五章相交线与平行线单元试卷培优测试卷一、选择题1.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º2.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个3.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C .60°D .72° 5.如图,AB ∥CD ,∠1=120°,则∠2=( )A.50°B.70°C.120°D.130°6.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A.70°B.45°C.110°D.135°7.如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E-∠F=48°,则∠CDE的度数为( ).A.16°B.32°C.48°D.64°8.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的角度可能是是()A.第一次右拐60°,第二次左拐120°B.第一次左拐60°,第二次右拐60°C.第一次左拐60°,第二次左拐120°D.第一次右拐60°,第二次右拐60°9.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为(). A.20° B.80° C.160° D.20°或160°10.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c11.甲,乙两位同学用尺规作“过直线l外一点C作直线l的垂线”时,第一步两位同学都以C 为圆心,适当长度为半径画弧,交直线l 于D ,E 两点(如图);第二步甲同学作∠DCE 的平分线所在的直线,乙同学作DE 的中垂线.则下列说法正确的是( )A .只有甲的画法正确B .只有乙的画法正确C .甲,乙的画法都正确D .甲,乙的画法都不正确12.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个二、填空题13.如果1∠的两边分别平行于2∠的两边,且1∠比2∠的2倍少30,则1∠=________.14.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.15.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.16.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________17.如图,长方形ABCD 中,AB =6,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位长度,得到长方形A 1B 1C 1D 1,第2次平移长方形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位长度,得到长方形A 2B 2C 2D 2,…,第n 次平移长方形A n -1B n -1C n -1D n -1沿A n -1B n -1的方向向右平移5个单位长度,得到长方形A n B n C n D n (n >2),若AB n 的长度为2 016,则n 的值为__________.18.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.19.如图,已知直线//a b ,直线c 与a 、b 相交,且1135∠=︒,则2∠=______.20.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题21.如图,已知//AB CD ,50A C ∠=∠=︒,线段AD 上从左到右依次有两点E 、F (不与A 、D 重合)(1)求证://AD BC ;(2)比较1∠、2∠、3∠的大小,并说明理由;(3)若:1:4FBD CBD ∠∠=,BE 平分ABF ∠,且1BDC ∠=∠,判断BE 与AD 的位置关系,并说明理由.22.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.23.(1)方法感悟如图①所示,求证:BCF B F ∠=∠+∠.证明:过点C 作//CD EF//AB EF (已知)//CD AB ∴(平行于同一条直线的两条直线互相平行)1,2B F ∴∠=∠∠=∠(两直线平行,内错角相等 )12B F ∴∠+∠=∠+∠即BCF B F ∠=∠+∠(2)类比应用如图②所示,//,AB EF 求证:360B BCF F ∠+∠+∠=︒.证明:(3)拓展探究如图③所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可). 如图④所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可).24.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D证明如下:过E 点作EF ∥AB .∴∠B=∠1(两直线平行,内错角相等.) 又AB ∥CD(已知)∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.25.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。

(完整word版)相交线与平行线培优卷

(完整word版)相交线与平行线培优卷

2016-2017学年七年级下册《相交线与平行线》测试题数 学(培优卷)本试卷分选择题和非选择题两部分,共三大题25小题,共6页,满分150分.考试用时120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题.每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 如图,下列判断正确的是( )A 。

∠2与∠5是对顶角B 。

∠2与∠4是同位角 C.∠3与∠6是同位角 D.∠5与∠3是内错角2。

如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD ,使其拐角∠ABC =150°, ∠BCD =30°,则( )A .AB ∥BC B .AB ∥DC C .BC ∥CD D .AB 与CD 相交 3。

如图,下列说法错误的是( )A .若a ∥b ,b ∥c ,则a ∥cB .若∠1=∠2,则a ∥cC .若∠3=∠2,则b ∥cD .若∠3+∠5=180°,则a ∥c4、在一个平面内,任意四条直线相交,交点的个数最多为( )A 。

7B 。

6 C.5 D.4 5. 如图,AB ∥EF ,CD ⊥EF ,∠BAC =50°,则∠ACD =( )A 。

120°B.130° C 。

140° D 。

150°6。

如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( ) A 。

60° B.50° C 。

40° D.30°654321第1题图 第2题图第3题图第5题图 第6题图7. 下列各网格中的图形是用其图形中的一部分平移得到的是( )A :B : C: D :8. 如图,AB ∥EF ∥CD ,∠ABC=46º,∠CEF=154º,则∠BCE 等于( ) A. 20° B 。

第五章 相交线与平行线提优测试卷(解析版)

第五章 相交线与平行线提优测试卷(解析版)

第五章相交线与平行线提优测试卷(解析版)一.选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题要求的)1.下列说法不正确的是( )A.在同一平面内,过一点有且只有一条直线垂直于已知直线B.直线外一点到这条直线的垂线段长,叫做点到直线的距离C.在同一平面内,互相垂直的两条直线一定相交D.直线c外一点A与直线c上几点连接而成的线段中,最短线段的长是3cm,则点A到直线c的距离是3cm思路引领:本题强调过一点作已知直线的存在性和唯一性.点的位置可以在直线上,也可以在直线外,且只有一条.解:A、在同一平面内,过一点有且只有一条直线垂直于已知直线,这是垂线的性质,故本选项不符合题意;B、直线外一点到直线的垂线段的长度,叫做点到直线的距离,故本选项不符合题意;C、在同一平面内,如果两条直线相交成直角,则我们就说这两条直线互相垂直;所以两条直线互相垂直,这两条直线一定相交,故本选项不符合题意;D、直线c外一点A与直线C上几点连接而成的线段中,最短线段的长是3cm,但是该线段不一定是垂线段,所以点A到直线c的距离不一定是3cm,故本选项符合题意;故选:D.总结提升:本题主要考查了点到直线的距离,垂线.垂线的性质:在同一平面内,经过一点有且只有一条直线与已知直线垂直.2.如图,给出了过直线外一点画已知直线的平行线的方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等思路引领:作图时保持∠1=∠2,则可判定两直线平行.解:∵∠1=∠2,∴a∥b(同位角相等,两直线平行).故选:A.总结提升:本题主要考查了平行线的判定.平行线的判定方法有:(1)定理1:同位角相等,两直线平行;(2)定理2:内错角相等,两直线平行;(3)定理3:同旁内角互补,两直线平行;(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行;(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.3.如图,在所标识的角中,互为对顶角的两个角是( )A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠2思路引领:两条直线相交后,所得的只有一个公共顶点,且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.解:根据同位角、同旁内角、邻补角、对顶角的定义进行判断,A、∠2和∠3是对顶角,正确;B、∠1和∠3是同旁内角,错误;C、∠1和∠4是同位角,错误;D、∠1和∠2不是对顶角,错误.故选:A.总结提升:解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位思路引领:根据网格结构,可以利用一对对应点的平移关系解答.解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.总结提升:本题考查了生活中的平移现象,利用对应点的平移规律确定图形的平移规律是解题的关键.5.如图所示,同位角共有( )A.1对B.2对C.3对D.4对思路引领:根据两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角进行判断.解:如图,∠1与∠2,∠3与∠4分别是两对同位角.故选:B.总结提升:本题主要考查了同位角的定义,是需要识记的内容.6.如图,直线a、b相交于点O,若∠1等于40°,则∠2等于( )A.50°B.60°C.140°D.160°思路引领:因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选:C.总结提升:本题考查了利用邻补角的概念计算一个角的度数的能力.7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130思路引领:首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.解:如图:故选:A.总结提升:此题考查了平行线的判定.注意数形结合法的应用,注意掌握同位角相等,两直线平行.8.如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有( )个.A.2B.4C.5D.6思路引领:根据两直线平行,内错角相等和两直线平行,同位角相等,找出与∠1是同位角和内错角的角或与∠1相等的角的同位角或内错角即可.解:根据两直线平行,同位角相等、内错角相等,与∠1相等的角有:∠2、∠3、∠4、∠5、∠6共5个.故选:C.总结提升:本题主要考查两直线平行,内错角相等、同位角相等的性质,熟练掌握性质是解题的关键.9.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°思路引领:过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.总结提升:本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.10.如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为( )A.68°B.58°C.48°D.32°思路引领:因直尺和三角板得AD∥FE,∠BAC=90°;再由AD∥FE得∠2=∠3;平角构建∠1+∠BAC+∠3=180°得∠1+∠3=90°,已知∠1=32°可求出∠3=58°,即∠2=58°.解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.总结提升:本题综合考查了平行线的性质,直角,平角和角的和差相关知识的应用,重点是平行线的性质.二、填空题(本大题共8小题,第11~12题每题3分,第13~18题每题4分,共30分.)11.把命题“同角的余角相等”改写成“如果…那么…”的形式 如果两个角是同一个角的余角,那么这两个角相等 .思路引领:命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.总结提升:本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= 20 °.思路引领:本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.总结提升:本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.13.如图,已知AB∥CD,∠α= 85° .思路引领:过∠α的顶点作AB的平行线,然后根据两直线平行,同旁内角互补求出∠1,再根据两直线平行,内错角相等求出∠2,然后求解即可.解:如图,过∠α的顶点作AB的平行线EF,∵AB∥CD,∴AB∥EF∥CD,∴∠1=180°﹣120°=60°,∠2=25°,∴∠α=∠1+∠2=60°+25°=85°.故答案为:85°.总结提升:本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作平行线.14.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于 50 °.思路引领:首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.总结提升:此题考查了翻折变换的知识,本题利用了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.15.如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3= 360 °.思路引领:首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故答案为:360.总结提升:此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.16.如图,∠C=120°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是 ∠BEC=60°(答案不唯一) .思路引领:欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知一同旁内角∠C=120°,故可按同旁内角互补两直线平行补充条件.解:因为∠C=120°,要使AB∥CD,则要∠BEC=180°﹣120°=60°(同旁内角互补两直线平行).故答案为:∠BEC=60°(答案不唯一).总结提升:此题考查平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.17.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是 74° .思路引领:过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°,∴∠2=90°﹣37°=53°;∴在△DEF中,∠DEB=180°﹣2∠2=74°.故答案为:74°.总结提升:本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.18.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是 36 cm2.思路引领:根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.总结提升:本题的关键是得出四边形ACED的面积是三个△ABC的面积.然后根据已知条件计算.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,直线AB、CD相交于点O,∠EOB=90°,OC平分∠AOF,∠AOF=40°,求∠EOD的度数.思路引领:根据角平分线的定义求出∠AOC的度数,根据对顶角相等求出∠BOD的度数,根据互余的性质计算即可.解:∵OC平分∠AOF,∠AOF=40°,∴∠AOC=12∠AOF=20°,∴∠BOD=20°,∵∠EOB=90°,∴∠EOD=∠EOB﹣∠BOD=70°.总结提升:本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.20.将直角梯形ABCD平移得梯形EFGH,若HG=10,MC=2,MG=4,求图中阴影部分的面积.思路引领:根据图形可知图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFDM的面积.解:∵阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,等于梯形EFGH的面积减去梯形EFDM的面积,∴阴影部分的面积等于梯形DHGM的面积,∵HG=10,MC=2,MG=4,∴S阴=S DHGM=12×(8+10)×4=36.总结提升:主要考查了梯形的性质和平移的性质.要注意:平移前后图形的形状和大小不变.本题的关键是能得到:图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH 的面积减去梯形EFDM的面积.21.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.思路引领:此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.总结提升:综合运用了平行线的性质和判定,难度不大.22.如图,长方形ABCD,E为AB上一点,把三角形CEB沿CE对折,设GE交DC于点F,若∠EFD=80°,求∠BCE的度数.思路引领:由于AB∥CD,那么∠DFE=∠BEF,即可得到∠BEF的度数,由折叠的性质知:∠BEC的度数是∠BEF的一半,进而可在Rt△BEC中,根据互余角的性质求得∠BCE的度数.解:∵四边形ABCD是长方形,∴AB∥CD,∠B=90°,∴∠BEF=∠DFE=80°,根据折叠的性质知:∠BEC=∠FEC=40°,则∠BCE=90°﹣∠BEC=50°.总结提升:此题主要考查了图形的翻折变换、矩形的性质以及平行线的性质,难度不大.23.已知:EF∥AD,AB∥DG,求证:∠BEF=∠ADG.思路引领:根据两直线平行内错角相等、同位角相等,即可得出结论.解:∵EF∥AD,∴∠BEF=∠BAD,∵AB∥DG,∴∠BAD=∠ADG,∴∠BEF=∠ADG.总结提升:本题考查了平行线的性质,两直线平行内错角相等、同位角相等,同胖内角互补,是需要同学们熟练记忆的内容.24.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.思路引领:根据两直线平行,同旁内角互补求出∠BCE的度数,再根据角平分线的定义求出∠BCN的度数,然后再根据CM⊥CN即可求出∠BCM的度数.解:∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=12∠BCE=12×140°=70°,∵CM⊥CN,∴∠BCM=20°.总结提升:本题利用平行线的性质和角平分线的定义求解,比较简单.25.如图,AP,CP分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=α.(1)用α表示∠ACP;(2)求证:AB∥CD;(3)若AP∥CF,求证:FC平分∠DCE.思路引领:(1)由角平分线的定义可得∠PAC=α,在Rt△PAC中根据直角三角形的性质可求得∠ACP;(2)结合(1)可求得∠ACD,可证明∠ACD+∠BAC=180°,可证明AB∥CD;(3)由平行线的性质可得∠ECF=∠CAP,∠ECD=∠CAB,结合条件可证得∠ECF=∠FCD,可证得结论.(1)解:∵AP平分∠BAC,∴∠CAP=∠BAP=α,∵∠P=90°,∴∠ACP=90°﹣∠CAP=90°﹣α;(2)证明:由(1)可知∠ACP=90°﹣α,∵CP平分∠ACD,∴∠ACD=2∠ACP=180°﹣2α,又∠BAC=2∠BAP=2α,∴∠ACD+∠BAC=180°,∴AB∥CD;(3)证明:∵AP∥CF,∴∠ECF=∠CAP=α,由(2)可知AB∥CD,∴∠ECD=∠CAB=2α,∴∠DCF=∠ECD﹣∠ECF=α,∴∠ECF=∠DCF,∴CF平分∠DCE.总结提升:本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.26.(1)如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠AEC=∠A+∠DCE.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E作EF∥AB.∴∠A=∠1( 两直线平行,内错角相等 )∵AB∥CD(已知)EF∥AB(辅助线作法)∴CD∥EF( 平行于同一直线的两条直线平行 )∴∠2=∠DCE( 两直线平行,内错角相等 )∵∠AEC=∠1+∠2∴∠AEC=∠A+∠DCE( 等量代换 )(2)当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°(3)如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为 70° .(请直接写出答案)思路引领:(1)过点E作EF∥AB,由平行线的性质得出∠A=∠1,证出CD∥EF,由平行线的性质得出∠2=∠DCE,即可得出结论;(2)过点E作EF∥AB,则EF∥CD,由平行线的性质得出∠A+∠AEF=180°,∠C+∠CEF=180°,即可得出结论;(3)同(2)得∠A+∠AEC+∠DCE=360°,得出∠AEC=110°,即可得出答案.(1)证明:如图①,过点E作EF∥AB,∴∠A=∠1(两直线平行,内错角相等),∵AB∥CD(已知),∵EF∥AB(辅助线作法),∴CD∥EF(平行于同一直线的两条直线平行),∴∠2=∠DCE(两直线平行,内错角相等),∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠DCE(等量代换),故答案为:两直线平行,内错角相等;平行于同一直线的两条直线平行;两直线平行,内错角相等;等量代换;(2)证明:过点E作EF∥AB,如图②所示:∵AB∥CD,∴EF∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;(3)解:同(2)得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°﹣∠A﹣∠DCE=360°﹣130°﹣120°=110°,∴∠MEC=180°﹣∠AEC=180°﹣110°=70°,故答案为:70°.总结提升:本题考查了平行线的判定与性质;正确作出辅助线和平行线的判定和性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.如图, 是 AB 上一点,CE∥BD,CB∥ED,EA⊥BA 于点 A,若∠ABC=38°, ,D 则∠AED= 。 D
1 2
F C
C
E
A
A 第 11 题
B
B
D 第 14) ( 题 第 12 题
A
第 13 题
B 第 14 题
C
13.如图,一个宽度相等的纸条按如图所示方法折叠一下,则 ∠1 ______________。 14.如图∠ 与∠ B _____是直线______和直线_______被直线_________所截的同位角. 二、选择题(共 6 小题,每题 3 分,共 18 分)
树诚学校集小学.初中.高中全程式培训于一体.聘请有丰富经验与教学技巧的一线优秀教师(教学能手与学科骨干).期待你的参与. 联系电话:主校 6296326(总校) 分校:6952464 (东区分校)4967137 常年开设各学科预科与同步班
树诚学校精品资料.
五大板块―――1.重点。2.难点。3.考试易错点。4.提高能力点。 5.思想方法拓展点
树诚学校精品资料.
五大板块―――1.重点。2.难点。3.考试易错点。4.提高能力点。 5.思想方法拓展点
树诚培优试卷
《相交线与平行线》
一、填空题 1.如图,a 与 b 直线相交,∠ 1=36 ,则∠ 3=________,∠ 2=__________. 2.如图,直线 AB、CD、EF 相交于点 O,则∠ AOC 的对顶角是_____________,∠ AOD 的邻补角是_____________. 3.在同一平面内,两条直线的位置关系有_____种分别是 .

9.如图,直线 a∥b,且∠1=28°,∠2=50°,则∠ABC=___
C
a 2
b 1
A
D
第 7图1 题
B
第9题 _c; _c.
第 第 6)题 ( 6题
10.在同一平面内.a、b、c 是直线,且 a∥ b, b⊥ c, 则 a__ 在同一平面内.a、b、c 是直线,且 a⊥ b, b⊥ c, 则 a__ 11.如图,若∠ 1=∠ 2,则互相平行的线段是________________.

4.命题“两直线平行,内错角相等”的题设_________,结论____________.
A
D F O B 第 2) ( 题 第2题
第 55) 第( 题题
2 1
b 3 a
E C
A
第1题 第 1) ( 题
5.如图,要从小河 a 引水到村庄 A,请设计并作出一最佳路线,理由是:__________. 6.如图,∠ 1=70 ,a∥ 则∠ b 2=_____________, 7.如图,∠ ACB=90° ,CD⊥ AB,则图中与∠ 互余的角有 A 8.如7题图.可以表示点到直线的距离的线段共有 个,它们分别是 条 ____ .
D' A D
B
C
25. 分)如图,M、N、T 和 A、B、C 分别在同一直线上,且∠1=∠3,∠P=∠T,求证:∠M=∠R. (8
26、已知:如图,AB//CD,试解决下列问题: (1)∠1+∠2=___ ___; (2 分) (2)∠1+∠2+∠3=___ __; 分) (2 (3)∠1+∠2+∠3+∠4=_ __ __; 分) (2 (4)试探究∠1+∠2+∠3+∠4+„+∠n=
D P C B
A
= 22. 分)如图,已知: 1 2 , D=50 ,求 B 的度数。 (6

E A G H
2 1
B
C
D
F
树诚学校集小学.初中.高中全程式培训于一体.聘请有丰富经验与教学技巧的一线优秀教师(教学能手与学科骨干).期待你的参与. 联系电话:主校 6296326(总校) 分校:6952464 (东区分校)4967137 常年开设各学科预科与同步班
①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动; ③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动。 (A)① (B)①② (C)①②③ (D)①②③④
三、解答题(共 40 分) 21. 分) (6 (读句画图) 如图,直线 CD 与直线 AB 相交于 C,根据下列语句画图 (1)过点 P 作 PQ∥ CD,交 AB 于点 Q (2)过点 P 作 PR⊥ CD,垂足为 R 0 (3)若∠ DCB=120 ,猜想∠ PQC 是多少度?并说明理由
; 分) (4
树诚学校集小学.初中.高中全程式培训于一体.聘请有丰富经验与教学技巧的一线优秀教师(教学能手与学科骨干).期待你的参与. 联系电话:主校 6296326(总校) 分校:6952464 (东区分校)4967137 常年开设各学科预科与同步班
树诚学校精品资料.
五大板块―――1.重点。2.难点。3.考试易错点。4.提高能力点。 5.思想方法拓展点
23.(6 分)如图,已知 AB∥ CD,∠1 ∠2 .试判断 BE 与 CF 的关系,并说明你的理由.
24. 分)在方格纸上,利用平移画出长方形 ABCD 的立体图,其中点 D′是 D 的对应点. (8 (要求在立体图中,看不 到的线条用虚线表示)

B、2 个或 3 个 D、0 个或 1 个或 2 个或 3 ) B、平移前后图形的形状和大小都没有改变 D、 “直角都相等”是一个假命题
A、图形的平移指图形沿水平方向移动 C、 “相等的角是对顶角”是一个真命题

19.点 P 为直线 l 外一点,点 A、B、C 为直线 l 上三点,PA = 4 cm,PB = 5 cm, PC = 2 cm,则点到直线 l 的距离是( ) A、2cm B、小于 2cm C、不大于 2cm D、4cm 20.在以下现象中属于平移的是( )
15.如图,∠ ADE 和∠ CED 是( A.同位角
) C.同旁内角 )
D
B.内错角
D.互为补角
A
16.在下图中,∠ 1,∠ 是对顶角的图形是( 2
1 2
1
2
2 1 C C.
A.
A
B
2 1 D D.
E B C
B.
第 第 11)题 ( 15 题
17.平面内三条直线的交点个数可能有〔 A、1 个或 3 个 C、1 个或 2 个或 3 个 18.下列说法中,正确的是(
相关文档
最新文档