黑龙江 解玉良 对2009江苏高考题的解答
09年高考数学卷江苏含详解
【答案】0.2
【解析】略
6.某校甲、乙两个班级各有 5 名编号为 1,2,3,4,5 的学生进行投篮练习,每人投 10 次,
投中的次数如下表:
学生
甲班
乙班
1号
6
6
则以上两组数据的方差中较小的一个为 s2 ★ .
【答案】
【解析】略
2 5
w.w.w.k.s.5.u.c.o.m
7.右图是一个算法的流程图,最后输出的W ★ .
参考公式:
样本数据 x1, x2 ,, xn 的方差 s2
1 n
n
i1
( xi
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置
上.
1.若复数 z1 4 29i, z2 6 9i ,其中 i 是虚数单位,则复数 (z1 z2 )i 的实部为★. 【答案】 20
3号
7
6
f
(m)
4号
8
7
f
5号 7 9
开始
S 0 T 1 S T2 S
S 10
Y
W S T 输出W
结束
(n) ,则 m, n 的大小
T T 2
N
关系为 ★ .
【答案】 m n
【解析】略
11.已知集合 A x | log2 x 2, B (, a) ,若 A B 则实数 a 的取值范围是
【解析】略
2.已知向量 a 和向量 b 的夹角为 30 ,| a | 2,| b | 3 ,则向量 a 和向量 b 的数量积
aAb ★ .
【答案】3
【解析】 aAb 2 3 3 3。 2
3.函数 f (x) x3 15x2 33x 6 的单调减区间为 ★ . 【答案】 (1,11)
权威专家解读2009江苏高考考试说明
权威专家解读2009江苏高考考试说明广大高三师生翘首企盼多日的《2009普通高等学校招生全国统一考试说明》语数外三科,及《2009江苏省普通高中学业水平测试说明》物理、化学、生物、政治、历史、地理六科新鲜出炉。
这也是江苏2009年高考备考中最重要的参考资料之一,代表着2009年高考的方向。
九科名师第一时间仔细研读后发现,各科的变化普遍不大,但重点难点对学生的要求依然不可忽视,要认真对待。
虽然由于高考模式的变化,九学科的位置在高考中有所变化,语数外为高考科目,其他六科则是选修科目,三门计分,按2008年的方案另六门为学测科目,计等级。
但从2008年的方案看,选修的等级发挥的作用也非常重要。
[语文] 突出文学鉴赏,考你探究能力名师分析:金陵中学高级教师、语文组副组长王奎礼新鲜出炉的2009年江苏卷的语文考试说明,较之于2008年,除了几处为使表达更科学的文字上的变更外,其值得关注的变化主要有以下两点。
一、加大了文学类文本阅读、古代诗文阅读的考查力度。
和去年相比,虽然文学类文本阅读由必考内容的第一块变成了第三块,但是,位置的退后丝毫没有降低它在语文考试中的分量。
2009年,现代文阅读里的文学类文本的阅读,试题的数量仍和去年相同,4题,但分值却由2008年的20分增加到23分。
分值的增加必然提高了对考生文学作品阅读能力的要求,应引起广大考生的高度重视。
和文学类文本阅读一样,古代诗文阅读分值也增加了3分。
文言文翻译由去年的9分提高到10分,古诗鉴赏由8分提高到10分。
这部分增加的分数,主要也是加强了对学生文学鉴赏能力的考查。
两部分增加的6分,两处:一是选考部分现代文阅读,这部分由去年的4题变成了3题,分值由18分变成15分;一是语言文字运用,此部分由去年的5题18分变成了4题15分。
二、调整充实了文学类文本阅读中探究能力的考查内容。
探究能力的考查始于去年。
今年探究能力的考查要求,最值得关注的是,增加了“探讨作者的创作背景和创作意图”的要求,并具体阐释说:“要求从作者经历、所处时代、创作动机及作品影响进行分析。
20092009年高考数学(江苏卷)
解(1)设l: y=k(x-4), 1 2 1 k 7 解出 k 0或- 24 , l : y 0或7 x 24 y 28 0 (2)设P(a,b),l1: y b k ( x a), 1 | 5 (4 a) b | |1 k (3 a) b | k 1 1 k 2 1 2 ky B2 NhomakorabeaT
M
A1
O
B1
x
F
14.设 {an }是公比为q的等比数列,|q|>1,
{b n } 有连 令 bn an 1(n 1, 2,...) ,若数列
续四项在集合{-53,-23,19,37,81}中,
则6q=
-9
.
2.解答题中容易题(三角,立几)考查教材最基
础的内容和最基本的数学方法和技能;难题
A1 , A2 , B1 , B2为椭圆 13.如图,在平面直角坐标系 xoy 中,
x2 y 2 2 1(a b 0) 的四个顶点,F为其右焦点,直线 2 a b A1 B2与直线 B1 F 相交于点T,线段OT与椭圆的交点M恰
2 7 5 为线段OT的中点,则该椭圆的离心率为_________.
15.设向量 a (4cos ,sin ), b (sin , 4sin ), c (cos , 4cos )
(1) 若 a 与b 2c 垂直,求 tan( ) 的值;
(2) 求 | b c | 的最大值;
(3)若 tan tan 16, 求证 a // b .
解析几何.江苏高考解几多考中档题,这是有别
于其他省的又一特色,在江苏<考试说明>中,双曲线,
2009江苏卷物理试题分析
8
约 20%
30 25 20 15 10 5 0 0 2 3 5 6 8 第10题
【实验题-11】分析:
11.(10分)“探究加速度与物体质量、物体受力的关 系”的实验装置如图甲所示. (1)在平衡小车与桌面之间摩擦力的过程中,打出了 一条纸袋如图乙所示。计时器打点的时间间隔为 0.02s. 从比较清晰的点起,每5个点取一个计数点,量出相邻 计数点之间的距离。该小车的加速度a=______m/s2. (结果保留两位有效数字)
错误原因:不理解“滑 动变阻器” ③或⑤连线 的关系。本题实际考察 “安培表”的“内外接” 问题。
(3)改正电路后,通过实验测得合金棒的电阻 R=6.72Ω.根据电阻定律计算电阻率为ρ、长为L、直径 分别为d和D的圆柱状合金棒的电阻分别为Rd=13.3Ω、 RD=3.38Ω.他发现:在误差允许范围内,电阻R满足 R2=Rd· RD,由此推断该圆台状合金棒的电阻R=_______. (用ρ、L、d、D表述)
(1)
正确答案: 0.15--0.16
错解分析: 1)纸带数据处理方法; 2)有效数字的选取; 3)数据的运算。
(2)平衡摩擦力后,将5个相同的砝码都放在小车上. 挂上砝码盘,然后每次从小车上取一个砝码添加到砝 码盘中,测量小车的加速度。小车的加速度 a与砝码 盘中砝码总重力F的实验数据如下表:请根据实验数 据作出a-F的关系图像.
4 L 正确答案:dD
典型错误:
4 L 2 Dd 4 L D 2
(
4 L 2 ) Dd
错误原因: (1)计算失误,表达式形式有点像; (2)根本不理解,瞎写。
4 L d 2
【实验题-10】得分情况:
得分 百分比 0
约 18%
2009年江苏高考数学试卷带详解
2009年普通高等学校招生全国统一考试(江苏卷) 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上..1.若复数 12429i,69i z z =+=+其中i 是虚数单位,则复数12()i z z -的实部为 . 【测量目标】复数的运算.【考查方式】给出两个复数,根据复数的减法,乘法运算求目标复数的实部. 【难易程度】容易 【参考答案】20-【试题解析】12220i z z -=-+,12()i z z -= (220i)i=2i 20-+--,所以实部为20-.2.已知向量a 和向量b 的夹角为°30,||2,||3==a b ,则向量a 和向量b 的数量积=a b .【测量目标】向量的运算.【考查方式】直接给出两个向量的模长和两向量的夹角,求向量的数量积. 【难易程度】容易 【参考答案】3 【试题解析】32332==a b . 3.函数32()15336f x x x x =--+的单调减区间为 .【测量目标】利用导数判断函数的单调性.【考查方式】直接给出函数解析式,利用导数求其单调区间. 【难易程度】容易 【参考答案】(1,11)- 【试题解析】2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-.4.函数sin()(,,y A x A ωϕωϕ=+为常数,0,0)A ω>>在闭区间[π,0]-上的图象如图所示,则ω= .第4题图【测量目标】函数sin()y A x ωϕ=+的图象的性质. 【考查方式】观察函数图象,得到周期. 【难易程度】容易 【参考答案】33π2T =,2π3T =,所以3ω= . 5.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 . 【测量目标】随机事件的概率.【考查方式】给出等可能事件,直接求概率. 【难易程度】中等 【参考答案】0.2【试题解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2.6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679则以上两组数据的方差中较小的一个为2s = . 【测量目标】平均数,方差.【考查方式】将统计的案例放入实际生活中,根据表格中的数据计算平均数和方差. 【难易程度】中等 【参考答案】25【试题解析】甲班的方差较小,数据的平均值为7,故方差222222(67)00(87)0255s -+++-+== 7.右图是一个算法的流程图,最后输出的W = .第7题图【测量目标】循环结构的程序框图.【考查方式】看懂程序框图,进行运算得到答案. 【难易程度】中等 【参考答案】22【试题解析】第一次循环:S =1, T =3第二次循环:S=8,T =5,第三次可以输出W=17+5=22 8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 .【测量目标】归纳推理中的类比推理.【考查方式】给出一个例子,通过类比,求体积比. 【难易程度】中等 【参考答案】1:8【试题解析】平面上面积比和边长比成平方,空间中面积比和棱长比成立方,所以体积比为1:8.9.在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 .【测量目标】导数的几何意义.【考查方式】给出解析式,利用导数的几何意义,根据该点的切线的斜率,求点坐标. 【难易程度】中等 【参考答案】(2,15)-【试题解析】231022y x x '=-=⇒=±,又点P 在第二象限内,2x ∴=-点P 的坐标为(2,15)-.10.已知512a -=,函数()xf x a =,若实数,m n 满足()()f m f n >,则,m n 的大小关系为 .【测量目标】指数函数的单调性.【考查方式】已知指数函数的底数,根据指数函数的单调性,判断自变量的大小.【难易程度】中等 【参考答案】m<n【试题解析】考查指数函数的单调性.51(0,1)2a -=∈,函数()x f x a =在R 上递减.由()()f m f n >得:m<n 11.已知集合{}2|log 2=A x x ,(,)=-∞B a 若A B ⊂则实数a 的取值范围是(,)+∞c ,其中c = .【测量目标】集合间的关系,对数不等式.【考查方式】描述法表示集合,求出对数不等式,根据集合间的关系,求参数的范围. 【难易程度】中等 【参考答案】4 【试题解析】由2log 2x得04<x ,(0,4]=A ;由A B ⊂知4>a ,所以=c 4.12.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题...的序号 (写出所有真命题的序号).【测量目标】命题的基本关系,立体几何中的直线、平面的垂直与平行判定的相关定理. 【考查方式】通过两个不重合的平面,确定命题的真假. 【参考答案】①② 【难易程度】较难【试题解析】对于①,根据面面的平行定理,平面内两条相交直线,互相平行于另一平面的两条直线,则两条直线平行;对于②,根据线面平行的判断依据,显然成立.对于③,当一条直线垂直两平面的相交直线,显然不一定使得,两平面垂直,所以为假命题;. 对于④,只满足充分条件,不满足必要条件,为假命题. 故真命题为①②.13.如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)+=>>x y a b a b的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .第13题图【测量目标】直线与椭圆的位置关系,椭圆的基本性质,直线方程.【考查方式】根据直线和椭圆的位置关系,利用椭圆的基本性质,求椭圆的离心率值. 【难易程度】中等 【参考答案】275-【试题解析】直线12A B 的方程为:1+=-x ya b; 直线1B F 的方程为:1+=-x y c b.(步骤1) 二者联立解得:2()(,)+=--ac b a c T a c a c,(步骤2) 则()(,)2()+=--ac b a c M a c a c 在椭圆22221(0)+=>>x y a b a b上, 2222222()1,1030,1030,()4()c a c c ac a e e a c a c ++=+-=+-=--(步骤3) 解得: 275=-e (步骤4)14.设{}n a 是公比为q 的等比数列,||1>q ,令1(1,2,)=+=n n b a n ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6=q . 【测量目标】等比数列的通项【考查方式】给出构造的新数列,根据列举表示出的集合,利用通项求公比进而求值. 【难易程度】中等 【参考答案】9- 【试题解析】{}n a 有连续四项在集合{}53,23,19,37,82--,四项24,36,54,81--成等比数列,公比为3,69.2=-=-q q 二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值; (2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b .【测量目标】向量的运算,同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式.【考查方式】给出以三角函数表示的坐标向量,根据向量的线性运算求正切值;求两向量和的模长最大值;在通过已经得到的关系和条件证明向量的平行. 【难易程度】中等【试题解析】(1)由a 与2b c -垂直,(2)20-=-=a b c a b a c ,(步骤1) 即4sin()8cos()0αβαβ+-+=,tan()2αβ+=;(步骤2) (2)(sin cos ,4cos 4sin )ββββ+=+-b c (步骤3)222||sin 2sin cos cos ββββ+=+++b c 2216cos 32cos sin 16sin ββββ-+1730sin cos ββ=-1715sin 2β=-,最大值为32,(步骤4) 所以||+b c 的最大值为42.(步骤5)(3)由tan tan 16αβ=得sin sin 16cos cos αβαβ=,(步骤6) 即4cos 4cos sin sin 0αβαβ-=(步骤7) 所以a ∥b .(步骤8) 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,E,F 分别是11A B,A C 的中点,点D 在11B C 上,11A D B C ⊥求证:(1)EF ∥ABC 平面 (2)111A FD BB C C ⊥平面平面第16题图【测量目标】线面平行的判定,线面垂直,面面垂直的判定.【考查方式】直三棱柱中点,线位置关系,利用线线,线面,面面之间的位置关系和定理进行证明.【难易程度】容易【试题解析】(1)因为E,F 分别是11A B,A C 的中点,所以EF BC ,(步骤1) 又EF ABC ⊄面,BC ABC ⊂面, 所以EFABC 平面;(步骤2)(2)因为直三棱柱111ABC A B C -,所以1111BB A B C ⊥面,11BB A D ⊥,(步骤3) 又11A D B C ⊥,所以111A D BB C C ⊥面,(步骤4)又11A D A FD ⊂面,所以111A FD BB C C ⊥平面平面(步骤5) 17.(本小题满分14分)设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足2222234577a a a a ,S +=+=(1)求数列{}n a 的通项公式及前n 项和n S ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{}n a 中的项. 【测量目标】等差数列的性质,通项,前n 项和.【考查方式】给出数列项数之间的关系,求出通项及前n 项和;求满足条件的等差数列的项. 【难易程度】中等【试题解析】(1)以430a a +=,即1250a d +=,(步骤1) 又由77S =得176772a d ⨯+=,(步骤2) 解得15a =-,2d =(步骤3)所以{}n a 的通项公式为27n a n =-,前n 项和26n S n n =-.(步骤4)(2)12272523m m m a a (m )(m )a (m )++--=-,令23m t -=, 1242m m m a a (t )(t )a t ++--=86t t=+-,(步骤6) 因为t 是奇数,所以t 可取的值为1±, 当1t =,2m =时,863t t+-=,2573⨯-=,是数列{}n a 中的项;(步骤7) 1t =-,1m =时,8615t t+-=-,数列{}n a 中的最小项是5-,不符合. (步骤8)所以满足条件的正整数2m =.(步骤9) 18.(本小题满分16分)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线12l l 和,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.第18题图【测量目标】直线与圆的方程、点到直线的距离公式,直线与圆的位置关系.【考查方式】根据直线和圆的位置关系,以及圆的方程,求直线方程给出两垂直直线与两圆 的位置关系,求满足条件的点坐标. 【难易程度】较难【试题解析】(1)设直线l 的方程为: (4)y k x =-,即40kx y k --=,(步骤1) 由垂径定理,得:圆心1C 到直线l 的距离22234()12d =-=,(步骤2) 结合点到直线距离公式,得231411k kk ---=+(步骤3)化简得:272470,0,24k k k k +===-或(步骤4) 求直线l 的方程为:0y =或7(4)24y x =--.(步骤5) (2) 设点P 坐标为(,)m n ,直线1l 、2l 的方程分别为:1(),()y n k x m y n x m k-=--=--即110,+0kx y n km x y n m k k-+-=--+=(步骤6) 因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等.由垂径定理,得:圆心1C 到直线1l 与2C 直线2l 的距离相等.故有: 2241531111n mk n km k kk k --++--+-=++,(步骤7)化简得:(2)3,m n k m n --=--(8)5m n k m n -+=+-或(步骤8) 关于k 的方程有无穷多解,有:2080,3050m n m n m n m n ⎧--=-+=⎧⎨⎨--=+-=⎩⎩或 (步骤9) 解之得:点P 坐标为313(,)22-或51(,)22-.(步骤10) 19.(本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a +;如果他买进该产品的单价为n 元,则他的满意度为nn a+.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交易的综合满意12h h 现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙 (1)求h 甲和h 乙关于A m 、B m 的表达式;当35A B m m =时,求证:h 甲=h 乙; (2)设35A B m m =,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h 甲和0h h 乙同时成立,但等号不同时成立?试说明理由.【测量目标】基本不等式的实际应用.【考查方式】给出实际例子,列出不等式,根据不等式性质,进行证明;利用基本不等式求恰当值.根据所有条件证明同时取到问题. 【难易程度】较难 【试题解析】(1)=,=,125320A B A BA B A B m m m m h h m m m m ++++甲乙([3,12],[5,20])A B m m ∈∈(步骤1)当35A B m m =时,512B B m hm =+甲203B B m h m =+乙(步骤2)显然=h h 乙甲(步骤3)(2)当35A Bm m =时, h ==甲(步骤4)由111[5,20][,]205B B m m ∈∈得,(步骤5)故当1120B m =即20,12B A m m ==时, (步骤6) (3)(方法一)由(2)知: 0h =由0101255B B m h h m =+甲得:12552AB A B m m m m ++,(步骤7) 令35,,A B x y m m ==则1,[,1]4x y ∈,即:5(14)(1)2x y ++.(步骤8) 同理,由10=5h h 乙甲得:5(1)(14)2x y ++(步骤9) 另一方面,1,[,1]4x y ∈,51414[2,5],11[,2]2x y x y ++∈++∈、、(步骤10) 55(14)(1),(1)(14),22x y x y ++++(步骤11)当且仅当14x y ==,即A B m m =时,取等号. (步骤12)所以不能否适当选取,A B m m 的值,使得h h 甲0和h h 乙0同时成立,但等号不同时成立.(步骤13)方法二:由(2)知023h =,因为20125+320y x h h y x y =++甲乙204,100915y y=++(步骤7) 所以,当23h 甲,23h 乙时,有2==3h h 甲乙(步骤8) 因此,不能取到,A B m m 的值, 使得h h 甲0和h h 乙0同时成立,但等号不同时成立. (步骤9)20.(本小题满分16分)设a 为实数,函数2()2()||f x x x a x a =+--. (1) 若(0)1f ,求a 的取值范围;(2) 求()f x 的最小值;(3)设函数()(),(,)h x f x x a =∈+∞,直接写出....(不需给出演算步骤)不等式()1h x 的解集.【测量目标】分段函数,解不等式,函数的值域,函数的最值.【考查方式】直接给出含参数的函数解析式,根据函数值的大小,求参数的取值范围;根据分段函数,分段讨论,得到函数的最值;定义新函数,解不等式. 【难易程度】较难 【试题解析】 (1)若(0)1f ,则||1a a -(步骤1)2011a aa <⎧⇒⇒-⎨⎩(步骤2)(2)当xa 时,22()32,f x x ax a =-+22min(),02,0()2(),0,033f a a a a f x a a f a a ⎧⎧⎪⎪==⎨⎨<<⎪⎪⎩⎩(步骤3)当xa 时,22()2,f x x ax a =+-2min2(),02,0()(),02,0f a a a a f x f a a a a ⎧--⎧⎪==⎨⎨<<⎪⎩⎩(步骤4)综上22min2,0()2,03a a f x a a ⎧-⎪=⎨<⎪⎩(步骤5)(3) (,)x a ∈+∞时,()1h x 得223210x ax a -+-,(步骤6)222412(1)128a a a ∆=--=-(步骤7)当6622aa -或时,0,(,)x a ∆∈+∞;(步骤8) 当6622a -<<时,0,∆>得223232()()033a a a a x x x a⎧--+-⎪--⎨⎪>⎩(步骤9)1)26(,)22a ∈时,(,)x a ∈+∞ 2)22[,]22a ∈-时,232[,)3a a x +-∈+∞ 3)62(,]22a ∈--时,223232(,][,)33a a a a x a --+-∈+∞(步骤10)数学Ⅱ(附加题)参考公式:2222(1)(21)1+2+3++.6n n n n ++=…21.[选做题]在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤. A.选修4-1:几何证明选讲如图,在四边形ABCD 中,ABC BAD △≌△. 求证:ABCD .第21题【测量目标】四边形、全等三角形.【考查方式】观察平面图形,根据全等三角形的性质进行证明. 【难易程度】容易 【试题解析】证明:由ABC BAD △≌△得ACB BDA ∠=∠,故A B C D 、、、四点共圆,从而CBA CDB ∠=∠.再由ABC BAD △≌△得CAB DBA ∠=∠.因此DBA CDB ∠=∠,所以ABCD .B. 选修4-2:矩阵与变换 求矩阵3221⎡⎤=⎢⎥⎣⎦A 的逆矩阵. 【测量目标】矩阵初步. 【难易程度】容易【考查方式】给出二乘二矩阵,根据矩阵的的基础知识求逆矩阵. 【试题解析】设矩阵A 的逆矩阵为x y z w ⎡⎤⎢⎥⎣⎦则3210,2101x y z w ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(步骤1) 即3232102201x z y w x z y w ++⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦故321320,2021x z y w x z y w +=+=⎧⎧⎨⎨+=+=⎩⎩(步骤2) 解得:1,2,2,x z w =-==-,(步骤3)从而A 的逆矩阵为11223--⎡⎤=⎢⎥-⎣⎦A .(步骤4)C. 选修4-4:坐标系与参数方程已知曲线C的参数方程为13()x y t t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数,0t >).求曲线C 的普通方程.【测量目标】坐标系和参数方程.【考查方式】给出曲线的参数方程,求出参数值,得到一般方程. 【难易程度】容易【试题解析】因为212x t t=+-所以212,3yx t t +=+=(步骤1) 故曲线C 的普通方程为:2360x y -+=.(步骤2) D. 选修4 - 5:不等式选讲0ab >,求证:23223232a b a b ab ++.【测量目标】不等式比较大小.【考查方式】给出不等式,利用不等式比较大小直接进行证明. 【难易程度】中等 【试题解析】证明:2322222232(32)3()2()(32)()a b a b ab a a b b b a a b a b +-+=-+-=--.(步骤1)因为0ab >,所以220,320a b a b -->(步骤2),从而22(32)()0a b a b --.(步骤3)即23223232a ba b ab ++.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.第22题图(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D 、E 两点,ME =2DM ,记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式.【测量目标】两点距离公式,抛物线方程,直线方程,直线和抛物线的位置关系.【考查方式】已知一点过抛物线,求抛物线的标准方程;进而求出过抛物线焦点的直线方程;根据直线与抛物线的位置关系,利用两点间的距离公式,求表达式. 【难易程度】较难【试题解析】(1)由题意知,可设抛物线C 的标准方程22y px =。
完整word版2009年江苏省高考数学试卷答案与解析
2009年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2009?江苏)若复数z=4+29i,z=6+9i,其中i是虚数单位,则复数(z﹣z)i2112的实部为﹣20.【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把复数z=4+29i,z=6+9i,代入复数(z﹣z)i,化简,按多项式乘法法则,展2112开,化简为a+bi(a,b∈R)的形式,即可得到实部.【解答】解:∵z=4+29i,z=6+9i,21∴(z﹣z)i=(﹣2+20i)i=﹣20﹣2i,21∴复数(z﹣z)i 的实部为﹣20.21故答案为:﹣20【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.0,则向量,江苏)已知向量和和向量的夹角为2.(5分)(2009?30.3向量的数量积=【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】向量数量积公式的应用,条件中给出两个向量的模和向量的夹角,代入公式进行计算即可.×=3,【解答】解:由题意知:=2故答案为:3.【点评】本题是向量数量积的运算,条件中给出两个向量的模和两向量的夹角,代入数量积的公式运算即可,两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积.32).的单调减区间为(﹣1,11=x(5分)2009?江苏)函数f(x)﹣15x﹣33x+6.3(【考点】利用导数研究函数的单调性.【专题】函数的性质及应用.的不等式求出解,并令其小于零得到关于x′(x)f【分析】要求函数的单调减区间可先求出集即可.22﹣11)(30x﹣33=3x﹣10x﹣(【解答】解:f′x)=3x ,)<x﹣110(=3(x+1)).,<1<x11,故减区间为(﹣111解得﹣,111)(﹣故答案为:此题考查学生利用导数研究函数的单调性的能力.【点评】14.(5分)(2009?江苏)函数y=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[﹣π,0]的图象如图所示,则ω=3.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】根据函数图象求出函数的周期T,然后求出ω.【解答】解:由图中可以看出:=,T=πT=π,∴∴ω=3.故答案为:3【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查逻辑思维能力,是基础题.5.(5分)(2009?江苏)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为0.2.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】由题目中共有5根竹竿,我们先计算从中一次随机抽取2根竹竿的基本事件总数,及满足条件的基本事件个数,然后代入古典概型计算公式,即可求出满足条件的概率.【解答】解:从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数有2.5和2.8,2.6和2.9,共2个∴所求概率为0.2.故答案为:0.2.【点评】本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.6.(5分)(2009?江苏)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:学7 7 8 7 6甲班7 6 7 9 6乙班2.0.4则以上两组数据的方差中较小的一个为S=【考点】极差、方差与标准差.【专题】概率与统计.先写出两组数据的平均数,再求出两组数据的方差,把根据表中所给的两组数据,【分析】方差进行比较,方差小的一个是甲班,得到结果.,8,7,,,解:由题意知甲班的投中次数是【解答】677 ,这组数据的平均数是72,甲班投中次数的方差是,6,7,9乙班的投中次数是6,7,,这组数据的平均数是7这组数据的方差是,∴两组数据的方差中较小的一个为0.40.4故答案为:这种问题一旦出现是比较两组数据的方差的大小,是一个基础题,【点评】本题考查方差,一个必得分题目,注意运算过程中不要出错..江苏)如图是一个算法的流程图,最后输出的W=227.(5分)(2009?【考点】循环结构.【专题】算法和程序框图.,不满足则循环,直到满足就跳10,判定是否满足S≥S【分析】根据流程图可知,计算出值即可.出循环,最后求出W10≥S=1;不满足S【解答】解:由流程图知,第一次循环:T=1,210≥;不满足ST=3,S=3﹣1=8第二次循环:210 S≥S=5﹣8=17,满足T=5第三次循环:,W=5+17=22.此时跳出循环,∴22故答案为当型循环结构和直到型循循环结构有两种形式:本题主要考查了直到型循环结构,【点评】环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.,则它们的面积比为:21分)(2009?江苏)在平面上,若两个正三角形的边长的比为.8(5 则它们的体积比8,:若两个正四面体的棱长的比为类似地,41:,在空间内,12【考点】类比推理.立体几何.【专题】3【分析】根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由平面图形面积类比立体图形的体积,结合三角形的面积比的方法类比求四面体的体积比即可.【解答】解:平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,由平面图形面积类比立体图形的体积,得出:在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为1:8故答案为:1:8.【点评】本题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).3上,且在10x+3y=x﹣P在曲线C:(5分)(2009?江苏)在平面直角坐标系xOy中,点9..2,15)P处的切线斜率为2,则点P的坐标为(﹣C第二象限内,已知曲线在点【考点】导数的几何意义.【专题】导数的概念及应用.处的)在x=xf(x)y(x<0),根据导数的几何意义求出函数【分析】先设切点P(x,0000导数,从而求出切线的斜率,建立方程,解之即可.2,=3x﹣10=20),由题意知:y′|x=x<【解答】解:设P(x,y)(x000002.∴x=40,=﹣2∴x0.∴y=150.15)∴P点的坐标为(﹣2,),15故答案为:(﹣2本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,【点评】本题属于基础题.x)(m,n满足f,函数f(x)=log,若正实数200910.(5分)(?m江苏)已知a>f(n),则m,n的大小关系为m<n.【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.x在=logx)<1,故函数f(【分析】,即因为已知条件中对数函数的底数0<a a(0,+∞)上为减函数,根据函数的单调性,结合足f(m)>f(n),不难判断出m,n的大小关系.解:∵【解答】∴0<a<1x∴f(x)=log在(0,+∞)上为减函数a若f(m)>f(n)则m<n故答案为:m<n4x时,指数函数和对数函数在其定义域上均1,在底数a>【点评】函数y=a和函数y=logx a)x 时,指数函数和对数函数在其定义域上均为减函数,而f(﹣0<a<1为增函数,当底数x﹣,在底x)轴对称,其单调性相反,故函数y=a和函数y=log(﹣与f(x)的图象关于Y a时,指数函数1时,指数函数和对数函数在其定义域上均为减函数,当底数0<a<a数>1 和对数函数在其定义域上均为增函数.的取aA?B则实数,≤2},B=(﹣∞a),若(11.5分)(2009?江苏)已知集合A={x|logx2.c= 4值范围是(c,+∞),其中集合的包含关系判断及应用.【考点】集合.【专题】A 先化简集合,然后根据子集的定义求出集合B的取值范围,总而求出所求.【分析】【解答】解:A={x|logx≤2}={x|0<x≤4} 2而B=(﹣∞,a),∵A?B∴a>4即实数a的取值范围是(4,+∞),故答案为:4【点评】本题属于以对数不等式为依托,考查集合子集的基础题,也是高考常会考的题型.12.(5分)(2009?江苏)设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上面命题,真命题的序号是(1)(2)(写出所有真命题的序号)【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用.【专题】空间位置关系与距离.【分析】从线面平行、垂直的判定定理,判断选项即可.【解答】解:由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对于(3)来说,α内直线只垂直于α和β的交线l,得不到其是β的垂线,故也得不出α⊥β.对于(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不一定垂直于α.【点评】本题考查空间中直线与平面之间的位置关系,理解定理是判断的前提,是中档题.13.(5分)(2009?江苏)如图,在平面直角坐标系xoy中,A,A,B,B为椭圆2112的四个顶点,F为其右焦点,直线AB与直线BF相交于点T,112.OTMOT线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 5【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.,联立的方程为,直线B【分析】解法一:可先直线ABF的方程为112的坐标,代入椭圆的方程即可解出离的坐标,进而表示出中点M两直线的方程,解出点T 心率的值;'2'2根),F'.(解法二:,对椭圆进行压缩变换,0,,椭圆变为单位圆:x+y=1 轴交点的横坐标就是该椭圆的离心率.T与x据题设条件求出直线BT方程,直线直线B11的方程为,的方程为直线BF【解答】解法一:由题意,可得直线AB112(M)T(,则),由于此点在椭圆两直线联立则点上,故有22=0﹣c10ac,整理得3a﹣2 +10e﹣,解得3=0即e故答案为解法二:对椭圆进行压缩变换,,,'2'2.,0+y=1,F')(椭圆变为单位圆:x ,TM=MO=ON=1,AB斜率为1,交圆延长TOO于N,易知直线21′+1,′),则,y′=x,T设(x′y,×TN由割线定理:TB×TA ,=TM12,(负值舍去)方程:T1(B0,﹣),直线B易知:11=0令y′F,即横坐标6e=.即原椭圆的离心率故答案:.【点评】本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答.14.(5分)(2009?江苏)设{a}是公比为q的等比数列,|q|>1,令b=a+1(n=1,2,…),nnn若数列{b}有连续四项在集合{﹣53,﹣23,19,37,82}中,则6q=﹣9.n【考点】等比数列的性质;数列的应用.【专题】等差数列与等比数列.【分析】根据B=A+1可知A=B﹣1,依据{Bn}有连续四项在{﹣53,﹣23,19,37,82}nnnn中,则可推知则{A}有连续四项在{﹣54,﹣24,18,36,81}中,按绝对值的顺序排列上述n数值,相邻相邻两项相除发现﹣24,36,﹣54,81是{A}中连续的四项,求得q,进而求n得6q.【解答】解:{Bn}有连续四项在{﹣53,﹣23,19,37,82}中B=A+1 A=B﹣1nnnn则{A}有连续四项在{﹣54,﹣24,18,36,81}中n{A}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项n等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值18,﹣24,36,﹣54,81相邻两项相除﹣=﹣=﹣=﹣=很明显,﹣24,36,﹣54,81是{A}中连续的四项n﹣(|q|>1,∴此种情况应舍)q= ﹣或q=﹣q= ∴∴6q=﹣9故答案为:﹣9【点评】本题主要考查了等比数列的性质.属基础题.二、解答题(共6小题,满分90分)15.(14分)(2009?江苏)设向量与垂直,求tan(α+β)的值;1()若的最大值;2()求7∥.,求证:)若tanαtanβ=16(3【考点】平面向量数量积坐标表示的应用;平行向量与共线向量;两向量的和或差的模的最值.【专题】平面向量及应用.与与先根据向量的线性运算求出,的再由【分析】(1)垂直等价于数量积等于0可求出α+β的正余弦之间的关系,最后可求正切值.||,然后根据向量的求模运算得到的关系,最后根据正(2)先根据线性运算求出弦函数的性质可确定答案.∥β,正是α)?(4cosβ)=sinαsin(3)将tanαtanβ=16化成弦的关系整理即可得到(4cos 的充要条件,从而得证.垂直,β,4cosβ+8sinβ)与(【解答】解:1,)∵=(sinβ﹣2cos∴4cosα(sinβ﹣2cosβ)+sinα(4cosβ+8sinβ)=0,即sinαcosβ+cosαsinβ=2(cosαcosβ﹣sinαsinβ),∴sin(α+β)=2cos(α+β),cos(α+β)=0,显然等式不成立∴tan(α+β)=2.)∵=(sinβ+cosβ,4cosβ﹣(24sinβ),||=∴,=.||1β=﹣时,取最大值,且最大值为sin2∴当,即sinαsin β=16,∴β=16cosαcosβ,α(3)∵tantan 4cosα∴(4cos)?(β)=sin,sinβα)共线,,sinsin,α=)与(β4cosβα(即=4cos∥.∴求模运算、向量垂直和数量积之间的关系.向量和【点评】本题主要考查向量的线性运算、三角函数的综合题是高考的热点,要强化复习.的分别是ABA,CFE中,CB﹣江苏)如图,在直三棱柱2009分)(16.14(?ABCA,11111在中点,点DB⊥.求证:BCDA上,C1111(∥平面EF1);ABC 2()平面CBB⊥平面FD.AC1118直线与平面平行的判定;平面与平面垂直的判定.【考点】立体几何.【专题】即可;∥BCEF ∥平面ABC,证明EF【分析】(1)要证明即可,利用平面与平面CBBC,通过证明AD⊥面)要证明平面(2AFD⊥平面BBCC111111垂直的判定定理证明即可.C的中点,A分别是B,A 【解答】证明:(1)因为E,F11 ABC;ABC,所以EF∥平面EF?面ABC,BC?面所以EF∥BC,又D,BB⊥A,所以BB⊥面ABC,ABC(2)因为直三棱柱﹣ABC111111111⊥FD所以平面A,D?面AFD⊥面BC=B,所以ADBBCC,又AB又AD⊥C,BB∩11111111111.CC平面BB11本题考查直线与平面平行和垂直的判断,考查学生空间想象能力,逻辑思维能力,【点评】是中档题.项和,满足为其前nS?江苏)设a是公差不为零的等差数列,17.(14分)(2009nn2222=7,Sa+a=a+a72435 S;的通项公式及前n项和(1)求数列a nn中的项.,使得为数列(2)试求所有的正整数ma n数列的求和;等差数列的性质.【考点】等差数列与等比数列.【专题】代入等差数列的通项da,)先把已知条件用a及d表示,然后联立方程求出【分析】(111 n项和公式可求.公式及前ma2的通项公式可寻求)先把已知化简可得,然后结合数列(n满足的条件.)由题意可得【解答】解:(1d=2 ﹣5,=联立可得a1,×)2=2n﹣71n5+=a∴﹣(﹣n(2中的项a=1)由()知若使其为数列n9为正整数必需为整数,且m则;,m=1m=2 是最小值)故舍去.﹣5时不满足题意,(a=m=11.所以m=2解题的重点是要熟练掌握项和的公式,本题主要考查了等差数列的通项公式及前n【点评】基本公式,并能运用公式,还要具备一定的运算能力.22和﹣1)=4C:(x+3)+(y18.(16分)(2009?江苏)在平面直角坐标系xoy中,已知圆122=4 ﹣5)x﹣4)+(yC圆:(2,求直线l0),且被圆C的方程;截得的弦长为I()若直线l过点A(4,1的斜,l)为平面上的点,满足:存在过点P的两条互相垂的直线l与l(II)设P(a,b112截得C被圆C截得的弦长与直线l被圆相交,率为2,它们分别与圆C和圆C且直线l212121的关系式.的弦长相等,试求满足条件的a,b直线的一般式方程;直线和圆的方程的应用.【考点】直线与圆.【专题】的点斜式方程,又由直线被圆,故可以设出直线l4,0)I 【分析】()因为直线l过点A(,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,截得的弦长为C1lk值,代入即得直线即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出的方程.的圆心到直C与ll的点斜式方程,分析可得圆(II)根据题意,可以设出过P点的直线112的方程,整理ba、的距离相等,即可以得到一个关于l的距离和圆C的圆心到直线l线212变形可得答案.不相交,与圆C (Ⅰ)若直线l的斜率不存在,则直线x=4【解答】解:1),x﹣4l故直线l的斜率存在,不妨设为k,则直线的方程为y=k()到直线的距离,C圆心(﹣3,1圆﹣即kxy﹣4k=01=1,则,l直线被圆C截得的弦长为1k=0联立以上两式可得,或故所求直线.y=0方程为l或10:,l x﹣a),(Ⅱ)依题意直线的方程可设为l:y﹣b=2(21因为两圆半径相等,且分别被两直线截得的弦长相等,l的距离相等,l的距离和圆C的圆心到直线的圆心到直线故圆C2112即,解得:a﹣3b+21=0或3a+b﹣7=0.【点评】在解决与圆相关的弦长问题时,我们有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k,直线与圆联立消去y后得到一个关于x的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.本题所用方法就是第三种方法.19.(16分)(2009?江苏)照某学者的理论,假设一个人生产某产品单件成本为a元,如果元,则他的满意度为;如果他买进该产品的单价为n他卖出该产品的单价为m元,则.如果一个人对两种交易(卖出或买进)的满意度分别为h和他的满意度为h,则他21.对这两种交易的综合满意度为现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为m元和m元,甲买进A与卖出B BA的综合满意度为h,乙卖出A与买进B的综合满意度为h.乙甲=m时,求证:h的表达式;当m=h;(1)求h和h关于m、m BAAB乙甲甲乙=m,当mm、m分别为多少时,甲、乙两人的综合满意度均最大?最大的综(2)设BBAA合满意度为多少?(3)记(2)中最大的综合满意度为h,试问能否适当选取m、m的值,使得h≥h和00AB甲h≥h 同时成立,但等号不同时成立?试说明理由.0乙【考点】函数模型的选择与应用.【专题】函数的性质及应用.=mm时,表示出要证【分析】(1)表示出甲和乙的满意度,整理出最简形式,在条件BA明的相等的两个式子,得到两个式子相等.(2)在上一问表示出的结果中,整理出关于变量的符合基本不等式的形式,利用基本不等式求出两个人满意度最大时的结果,并且写出等号成立的条件.≤,不能取到m,m=h)知hh=.因为h的值,使)先写出结论:不能由((32B0A0乙甲同时成立,但等号不同时成立.h 和≥hh≥h得00乙甲=;hB=的满意度为)甲:买进(【解答】解:1Ah,卖出的满意度为B1A111=;h= 所以,甲买进A与卖出B的综合满意度为甲=;=,买进B的满意度为:乙:卖出A的满意度为:hh B2A2=;= A与买进B的综合满意度h所以,乙卖出乙=,所以hh,=h当m=m时,BA甲甲乙=h乙=m时,0),当mm(2)设=x(其中x>BAB≤;= =h=h乙甲=×10=6m时,=10时,上式“=”成立,即m当且仅当,x=,即x=10AB甲、乙两人的综合满意度均最大,最大综合满意度为;≤h =.因为(3)不能由(2)知hh0乙甲同时成立,但等号不同时成立.h≥hm的值,使得h≥h和因此,不能取到m,0BA0乙甲【点评】本题考查函数模型的选择和应用,本题解题的关键是理解题意,这是最主要的一点,题目中所用的知识点不复杂,只要注意运算就可以.2.﹣a|x﹣a)|x江苏)设a为实数,函数f(x)=2x+(1620.(分)(2009? a的取值范围;10)≥,求(1)若f(x)的最小值;2)求f((的解集.)≥1)+∞,求不等式h(x,h3)设函数(x)=f(x)x∈(a,(二次函数的性质;一元二次不等式的解法.【考点】函数的性质及应用;不等式的解法及应用.【专题】a再去绝对值求的取值范围,﹣a|a|≥1≥【分析】(1)f(0)1?借助二次函数的a两种情况来讨论去绝对值,再对每一段分别求最小值,和x<≥(2)分xa 对称轴及单调性.最后综合即可.22,因为不等式的解集由对应方程的根决定,所以再0﹣﹣2ax+a1≥转化为x3()h()≥13x 对其对应的判别式分三种情况讨论求得对应解集即可. 1 ≤?≥,则﹣≥0f1解:【解答】()若()1a|a|1?a﹣1222,∴,﹣2ax+a xx≥a时,f()=3x2()当如图所示:22﹣af(x)=x,+2ax≤当xa时,∴.综上所述:.1,h(x)≥a(3)x∈(,+∞)时,22222﹣8a(a﹣1)=12△得3x﹣2ax+a1﹣≥0,=4a12﹣);∞(0≤,x∈a,+△a≤当a﹣或≥时,>时,<当﹣a<△0,得:13即2类讨论:进而分<时,a,当﹣<a<﹣;+,∞,]∪)[a此时不等式组的解集为(a;≤<时,<x当﹣≤).此时不等式组的解集为,[+∞综上可得,);,+∞+,∞当a∈(﹣∞,﹣)∪()时,不等式组的解集为(a);[,+∈当a∞(﹣,﹣)时,不等式组的解集为(a,]∪.+,∞)时,不等式组的解集为[a当∈﹣,][分段函数的最值的求法是先对每一段分别求最值,【点评】本题考查了分段函数的最值问题.最后综合最大的为整个函数的最大值,最小的为整个函数的最小值.14。
2009年江苏省高考数学真题(解析版)
绝密★启用前2009年普通高等学校招生全国统一考试(江苏卷)数学参考公式:样本数据1x,2x,,nx的标准差(ns x x=++-其中x为样本平均数柱体体积公式V Sh=其中S为底面积,h为高一、填空题:本大题共1小题,每小题5分,共70分.1.若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1−z2)i的实部为▲.【答案】−20.【解析】z1−z2=−2+20i,故(z1−z2)i=−20−2i.【说明】考查复数的四则运算.2.已知向量a和向量b的夹角为30︒,|a|=2,|b|=3,则向量a和向量b的数量积a·b= ▲.【答案】3.【解析】cos23θ===a b a b.【说明】考查向量的数量积(代数)运算.锥体体积公式13V Sh=其中S S为底面积,h为高球的表面积、体积公式24S Rπ=,343V Rπ=3. 函数f (x )=x 3−15x 2−33x +6的单调减区间为 ▲ . 【答案】(1,11)-.【解析】2()330333(11)(1)f x x x x x =--=-+',由(11)(1)0x x -+<得单调减区间为(1,11)-.【说明】考查函数的单调性,考查导数在研究函数性质中的应用.4. 函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)2π3-在闭区间[−π,0]上的图象如图所示,则ω= ▲ . 【答案】3.【解析】如图,2π3T =,所以3ω=.【说明】考查三角函数的图象和性质,考查周期性的概念.5. 现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 ▲ . 【答案】0.2 【解析】随机抽取2根竹竿的取法有10种,而长度恰好相差0.3m 的取法有2种,所以概率为0.2. 【说明】考查古典概型.6. 某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个2s 为 ▲ .【答案】25.【解析】第一组数据7x =甲,212(10010)55S =++++=甲;第二组数据7x =乙,245S =乙.【说明】考查总体特征数的估计.实际上,根据数据的分布,知甲班的数据较为集中(甲班极差为2,众数为7,乙班极差为3,众数为6,7). 7. 右图是一个算法的流程图,最后输出的W = ▲ . 【答案】22. 【解析】追踪表:故出循环时,S =17,T =5,故W=22.【说明】本题考查算法初步,考查流程图(循环结构).值得注意的是,本题的循环结构并非是教材中所熟悉的当型或直到型,因此该流程图是一个非结构化的流程图,对学生的识图能力要求较高.8. 在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4.类似地,在空间中,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ . 【答案】1:8【解析】由题意知,面积比是边长比的平方,由类比推理知:体积比是棱长比的立方. 【说明】本题考查合情推理之类比推理.9. 在平面直角坐标系xOy 中,点P 在曲线C :y =x 3−10x +3上,且在第二象限内,已知曲线C在点P 处的切线的斜率为2,则点P 的坐标为 ▲ . 【答案】(2,15)-.【解析】设点P 的横坐标为x 0,由2310y x '=-知203102x -=,又点P 在第二象限,02x =-,所以(2,15)P -.【说明】本题考查导数的几何意义——曲线切线的斜率.10. 已知a =f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为 ▲.【答案】m n <【解析】由01<<知01a <<,函数()x f x a =是减函数,由()()f m f n >知m n <.【说明】本题考查函数的单调性,指数函数的性质等概念.11. 已知集合A ={x |log 2x ≤2},B =(−∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =▲ . 【答案】4【解析】由log 2x ≤2得0<x ≤4,(0,4]A =;由A B ⊆知4a >,所以c =4.【说明】本题考查对数函数的性质,集合间的基本关系(子集)等概念. 12. 设α 和β为不重合的两个平面,给出下列命题:(1)若α 内的两条相交直线分别平行于β内的两条直线,则α 平行于β; (2)若α 外一条直线l 与α 内的一条直线平行,则l 和α 平行;(3)设α 和β相交于直线l ,若α 内有一条直线垂直于l ,则α 和β垂直; (4)直线l 与α 垂直的充分必要条件是l 与α 内的两条直线垂直. 上面命题中,真命题的序号 ▲ .(写出所有真命题的序号). 【答案】(1)(2)【解析】由线面平行的判定定理知,(2)正确;相应地(1)可转化为一个平面内有两相交直线分别平行于另一个平面,所以这两个平面平行.【说明】本题考查空间点、线、面的位置关系.具体考查线面、面面平行、垂直间的关系与转化. 13. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)y x a b a b +=>>的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段O T 的中点,则该椭圆的离心率为 ▲ .【答案】5【解析】直线12A B 的方程为1y x a b +=-,直线1B F 的方程为1yx c b+=-,两方程联立方程组得T 2(,)ac ab bc a c a c+--,则点M (,)2()ac ab bc a c a c +--,由点M 在椭圆上,代入整理得:223100a ac c --=,23100e e --=,又 0e >,所以离心率为5.【说明】本题考查椭圆的概念、标准方程与几何性质.14. 设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…)若数列{b n }有连续四项在集合{−53,−23,19,37,82}中,则6q = ▲ . 【答案】9-【解析】由条件知数列{a n }中连续四项在集合{}54,24,18,36,81--中,由||1q >,所以{a n }中连续四项可能为(1)24-,36,54-,81,32q =-,69q =-;(2)18,24-,36,54-,不合;其它情形都不符合.【说明】本题考查等比数列的概念与通项公式.在本题中,如果将集合中的各数均除以3,得到集合{}232323,2,23,32,3-⨯-⨯⨯,再从其中选出四个数进行适当地排列,这样的解法更利于看清问题本质.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15. (本小题满分14分)设向量a =(4cos α ,sin α ),b =(sin β,4cos β),c =(cos β,−sin β), (1)若a 与b −2c 垂直,求tan(α +β)的值; (2)求+b c 的最大值;(3)若tan α tan β=16,求证:a ∥b . 【解析】(1)∵a ⊥b −2c ,∴(2)20⋅-=⋅-⋅=a b c a b a c .即4sin()8cos()0αβαβ+-+=,∴tan()2αβ+=. (2)(sin cos ,4cos 4sin )ββββ+=+-b c ,()()222sin cos 16cos sin ββββ+=++-b c 1730sin cos ββ=-1715sin 2β=-,∴当sin2β=−1时,2+b c 最大值为32,所以+b c的最大值为(3)∵tan tan 16αβ=,∴sin sin 16cos cos αβαβ=,即4cos 4cos sin sin 0αβαβ⋅-=, 所以a ∥b .16. (本小题满分14分)如图,在直三棱柱ABC −A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .【解析】(1)因为E ,F 分别是A 1B ,A 1C 的中点,所以EF ∥BC ,又EF ⊄平面ABC ,BC ⊂平面ABC ,∴EF ∥平面ABC ; (2)在直三棱柱ABC −A 1B 1C 1中,1111BB A BC ⊥面,AB CA 1B 1C 1 EF D第16题图∵A 1D ⊂平面A 1B 1C 1,∴11BB AD ⊥. 又11AD BC ⊥,BB 1 B 1C =B 1,∴111AD BC C ⊥面B . 又11AD AFD ⊂面,所以平面A 1FD ⊥平面BB 1C 1C .17. (本小题满分14分)设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足22225234a a a a +=+,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{S n }中的项. 【解析】(1)设公差为d ,则22225243a a a a -=-,由性质得43433()()d a a d a a -+=+,因为0d ≠,所以430a a +=,即1250a d +=,又由77S =得176772a d ⨯+=,解得15a =-,2d =所以{}n a 的通项公式为27n a n =-,前n 项和26n S n n =-. (2)12(27)(25)(23)m m m m m a a a m ++--=-,令23m t -=,12(4)(2)m m m t t a a a t++--=86t t =+-,因为t 是奇数,所以t 可取的值为1±,当1t =,2m =时,863t t +-=,2573⨯-=,是数列{}n a 中的项;1t =-,1m =时,8615t t +-=-,数列{}n a 中的最小项是5-,不符合.所以满足条件的正整数2m =. 18. (本小题满分16分)在平面直角坐标系xOy 中,已知圆C 1∶(x +3)2+(y −1)2=4和圆C 2∶(x −4)2+(y −5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.【解析】(1) 0y =或7(4)24y x =--,(2)法一)设点P (,)a b ,1l :()y b k x a -=-,则2l :1()y b x a k -=--由截得的弦长相等可得1C 到1l 与2C 到2l 的距离相等,即第18题图11|4()5()|a bk k----+=,即|31||45|k ka b k a kb---+=--++,整理得:222222(3)2(3)(1)(1)(5)2(4)(5)(4)a k ab k b b k a b k a+++-+-=-+--+-因为有无数组解,所以对应项系数相等,解得:32a=-,132b=;或52a=,12b=-.所以满足条件的点P坐标为313(,)22-或51(,)22-.法二)依题意点P在线段1C2C的中垂线上,且与1C、2C构成等腰直角三角形,设点P(,)a b,则713()42b a-=--,又120PC PC⋅=,即22670a b a b+---=,解得:32a=-,132b=;或52a=,12b=-.满足条件的点P坐标为313(,)22-或51(,)22-.19.(本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为mm a+;如果他买进该产品的单价为n元,则他的满意度为nn a+.如果一个人对两种交易(卖出或买进)的满意度分别为h1和h2,现假设甲生产A,B两种产品的单件成本分别为12元和5元,乙生产A,B两种产品的单件成本分别为3元和20元,设产品A,B的单价分别为m A元和m B元,甲买进A与卖出B的综合满意度为h甲,乙卖出A与买进B的综合满意度为h乙.(1)求h甲和h乙关于m A,m B的表达式;当35A Bm m=时,求证:h甲=h乙;(2)设35A Bm m=,当m A,m B分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为h0,试问能否适当选取m A,m B的值,使得0h h甲≥和h h乙≥同时成立,但等号不同时成立?试说明理由.【解析】h=甲h=乙当35A Bm m=时,h=甲h=乙h甲=h乙.当35A Bm m=时,h==甲,而520Bm≤≤,所以当20Bm=时,甲、乙两人的综合满意度均最大,此时12Am=.(3≥即31024120A B A B m m m m ≥++ ①且3406120A B A B m m m m ≥++ ②, 由①及520B m ≤≤得:24120310B A B m m m +≥-,又241202008[12,48]310310B B B m m m +=+∈--, 只有当12A m =,20B m =时,不等式①成立. 由②及312A m ≤≤得:4012036A B A m m m +≥-,又4012040200[20,80]36336A A A m m m +=+∈--, 只有当20B m =,12A m =时,不等式②成立.综上,不存在满足条件的A m 、B m 的值.20. (本小题满分16分)设a 为实数,函数f (x )=2x 2+(x −a )|x −a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集. 【解析】(1)若(0)1f ≥,即||1a a -≥,则{21a a <≥,所以1a ≤-. (2)当x a ≥时,22()32,f x x ax a =-+22min(),02,0()2(),0,033f a a a a f x a a f a a ≥≥⎧⎧⎪⎪==⎨⎨<<⎪⎪⎩⎩当x a ≤时,22()2,f x x ax a =+-{{2min2(),02,0()(),02,0f a a a a f x f a a a a -≥-≥==<<综上22min2,0()2,03a a f x a a -≥⎧⎪=⎨<⎪⎩. (3)x a ≥时,()1h x ≥得223210x ax a -+-≥,222412(1)128a a a ∆=--=-,①当a a ≤≥时,0∆≤,不等式的解集为(,)a +∞;②当a <<0,∆>得(0x x x a⎧⎪≥⎨>⎪⎩, ia <<时,不等式的解集为(,)a +∞; ii)a ≤≤)+∞;iii)a <<时,不等式的解集为3([)3a a +-+∞.数学Ⅱ(附加题)参考公式:2222(1)(21)123.6n n n n ++++++=21. [选做题]在A 、B 、C 、D 四小题中只能选做两题........ A.选修4 - 1:几何证明选讲如图,在四边形ABCD 中,△ABC ≌△BAD .求证:AB ∥CD .证明:由△ABC ≌△BAD 得∠ACB =∠BDA ,故A 、B 、C 、D 四点共圆,从而∠CBA =∠CDB .再由△ABC ≌△B AD 得∠CAB =∠DBA .因此∠DBA =∠CDB ,所以AB ∥CD . B. 选修4 - 2:矩阵与变换,求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵. 解:设矩阵A 的逆矩阵为,x y z w ⎡⎤⎢⎥⎣⎦则3210,2101x y z w ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即323210,2201x z y w x z y w ++⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦故321,320,20,21,x z y w x z y w +=+=⎧⎧⎨⎨+=+=⎩⎩ 解得1,2,2,3x z y w =-===-, 从而A 的逆矩阵为11223A --⎡⎤=⎢⎥-⎣⎦.C. 选修4 - 4:坐标系与参数方程已知曲线C 的参数方程为1,13()x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数,0t >).求曲线C 的普通方程.解:因为212,x t t=+-所以212,3y x t t +=+= 故曲线C 的普通方程为:2360x y -+=. D. 选修4 - 5:不等式选讲设a ≥b >0,求证:3332a b +≥2232a b ab +.证明:3322222232(32)3()2()(32)().a b a b ab a a b b b a a b a b +-+=-+-=--因为a ≥b >0,所以a b -≥0,2232a b ->0,从而22(32)()a b a b --≥0,即3332a b +≥2232a b ab +.22. 在平面直角坐标系xOy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x轴上(如图).(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D 、E 两点,ME =2DM ,记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式.23. 对于正整数n ≥2,用n T 表示关于x 的一元二次方程220x ax b ++=有实数根的有序数组(,)a b 的组数,其中{},1,2,,a b n ∈(a 和b 可以相等);对于随机选取的{},1,2,,a b n ∈(a 和b 可以相等),记n P 为关于x 的一元二次方程220x ax b ++=有实数根的概率。
2009年全国高考化学江苏卷解析
2009年全国高考化学江苏卷解析一、09高考化学江苏卷试卷结构2009年全国高考化学科江苏卷结合全省化学选修科目的教学实际,遵循《考试说明》的有关具体规定,以测试化学科学素养和综合能力为主导,以化学的“四基”(基础知识、基本技能、基本观点和基本方法)为及其应用为主要考查内容,重点考查学生信息获取与加工、化学实验探究、从化学视角分析解决问题和创新思维等能力。
1.题型结构试卷总题量21题,1~20题为所有考生必考题,占108分;21题为选做题,分A、B两题,分别对应于“物质结构与性质”和“实验化学”两个选修课程模块的内容,每题12分,学生只需任选其中一题作答,给了学生一个自由选择的空间。
考试时间为100分钟,总分120分。
选择题两大题共14小题,48分,分值比例40%;主观题分7大题,共72分,分值比例60%。
包括,一个实验题(15题,侧重考查化学实验基础),一个无机题综合题(16题,考查元素化合物性质的综合题,08以框图形式出现、09流程图形式出现),明年或以后是框图还说流程图,我想这些可能与考查的题材如何呈现更科学,更有利于考查学生的思维有关,作为一种呈现形式不需要化太多精力研究,框图题因其很强的综合性,能有效地考查学生的思维能力一直备受命题者的青睐。
一个化学反应原理综合题(17题,侧重考查反应原理),一个综合探究题(18题,侧重考查学生的化学学习能力,包括实验探究、信息素养、问题解决等能力),一个有机题(19题,考查有机物常见官能团的性质,考查有机化学知识的融会贯通能力),还有一个计算题(20)和一个选做题(21A物质结构与性质、21B实验化学)。
2.知识结构(1)模块结构《化学1》人类对海、陆、空资源的利用及性质研究, 44分,占有百分比为36%;《化学2》物质结构初步及基础有机化学,8分,占有百分比为7%;《化学反应原理》38分,占有百分比为31.5%;《有机化学基础》18分,占有百分比为15%;选考《物质结构与性质》12分,占10%;《实验化学》12分,占10%3.考点分析(PPT表4到表5)从上我们可以看出,09高考化学江苏卷的试卷结构与08年江苏卷基本相同。
2009年江苏高考语文试卷分析摘要逐题解析
2009年江苏高考语文试卷分析摘要逐题解析第一大题(语言文字运用题,共15分)第1题,考查语音(选择题,3分)。
此题难度有所降低。
考查的还是一字多音的辨析。
每个选项3组。
共涉及到12个字。
分别是“调、降、塞、省、拓、纤、圈、薄、重、否、乐、屏”。
没有什么冷僻的字,都是平时生活中常用的字。
预计,明年语音题还会考,也还会沿续这样的例题思路。
因此复习时,以多音字的辨析为重点。
第2题,辨析病句(选择题,3分)。
语病类型涉及到:1、成分残缺。
A中“飓风、洪水、干旱等极端气象事件的频率和强度正在增加”中“事件”后缺“发生”。
D中“由于青少年心智尚未成熟,好奇心又强,对事物缺乏分辨力,容易被大众媒介中的不良信息诱导,从而产生思想上、行为上的偏差”,“由于”放在“青少年”前面,使句子主语残缺。
2、搭配不当。
A中“飓风、洪水、干旱等极端气象事件的频率和强度正在增加”句中“频率”“增加”搭配不当。
3、不合逻辑。
B中“存在的最大问题就是要克服彼此间的同质化倾向”,“存在的问题”是“彼此间的同质化倾向”,而不是“要克服彼此间的同质化倾向”。
该题难度适中,病体也不怪诞。
只要考生达到训练要求,都能得分。
以后复习辨析病句,不要做偏怪的题,要把重点放在语法水平的提高上,做到从理性上认识病句。
单纯的多练,学生负担重,效果不明显。
第3、4题,是语言运用题。
语言运用,是命题者的“自留地”。
可以在考试大纲的范围(扩展语句、压缩语段;选用、仿用、变换句式;正确运用常见的修辞手法;语言表达简明、连贯、得体,准确、鲜明、生动)内,较自由地创新。
形式活泼多样,往往有新题型。
第3题(4分)是根据提供的材料,提取信息,给“洼地效应”下定义。
属于“压缩语段”中的下定义。
题意是综合环境好,资金、项目、技术这些生产要素就会向这里集中,就像“洼地”由于地势低,四周的水就向这里集中一样。
看懂题目做起来也不难。
第4题(5分),根据语境(参观地震博物馆后对自然和生命的感悟)和运用修辞手法(排比)的要求,写一段话。
江苏省2009年高考命题例题集解
D熨帖 tiē /熨烫 着落 熨帖yù 不着边际bù zhuó biān jì 慰藉 熨烫 着落zhuóluò/不着边际 不着边际
wèi jiè/声名狼藉 声名狼藉shēng míng láng jí) ) 声名狼藉 解说: 中第一组都读jiào,B 中第二组都读 中第二组都读xiù,D 中第二组都读 解说:A 中第一组都读 zhuó
江苏省2009年高考 江苏省2009年高考 2009 命题例题集解1 命题例题集解1
读音
1.下列每对读音都不相同的一组 下列每对读音都不相同的一组¬ 下列每对读音都不相同的一组 A校对 校正 角逐 钩心斗角 参加 参差不齐 校对/校正 角逐/钩心斗角 参加/参差不齐 校对 B湖泊 淡泊 铜臭 乳臭未干 毒蛇 虚与委蛇 湖泊/淡泊 铜臭/乳臭未干 毒蛇/虚与委蛇 湖泊 C宝藏 矿藏 呼吁 长吁短叹 曾祖 曾经沧海 宝藏/矿藏 呼吁/长吁短叹 曾祖/曾经沧海 宝藏 D熨帖 熨烫 着落 不着边际 慰藉 声名狼藉 熨帖/熨烫 着落/不着边际 慰藉/声名狼藉 熨帖
练一练
1、下列词语中加点的字,每对的读音全不相同的一组是 、下列词语中加点的字,
A. 垃圾 / 汲水 惩罚 / 驰骋 着火 / 不着边际 B. 粘连 / 占星 簇拥 / 箭镞 薜荔 / 穷乡僻壤 C. 道行 / 行头 范蠡 / 妯娌 擂台 / 危若累卵 D. 框架 / 诓骗 杂烩 / 教诲 打颤 / 颤颤巍巍 答案及解析】 垃圾 垃圾( ) 汲水 汲水( )惩罚( 【答案及解析】A.垃圾(jī)/汲水(jí)惩罚(chéng)/ ) 驰骋( 不着边际( 驰骋(chěng)着火(zháo)/不着边际(zhuó) )着火( ) 不着边际 ) B“粘(zhān)连/占(zhān)星”相同,簇(cù)拥/箭 相同, 粘 ) 占 ) ) 箭 ),薜 穷乡僻壤( ) 镞(zú),薜(bì)荔/穷乡僻壤(pì) ), ) 穷乡僻壤 C“范蠡(lǐ)/妯娌(lǐ)”相同,道行(héng)/行 范蠡( ) 妯娌 妯娌( ) 相同,道行( 范蠡 )行 擂台( ) 危若累 危若累( ) (xíng)头,擂台(lèi)/危若累(lěi)卵 ) D“杂烩(huì)/教诲(huì)”相同,框(kuàng)架/ 杂烩( ) 教诲 教诲( ) 相同, 杂烩 ) 打颤( 诓(kuāng)骗,打颤(zhàn)/颤(chàn)颤巍巍 ) )颤 )
2009年普通高等学校招生全国统一考试数学(江苏卷)全解全析
绝密★启用前2009年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将本卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.6.请保持答题卡卡面清洁,不要折叠、破损.参考公式:样本数据x 1,x 2,…,x n 的方差()2211ni i s x x n ==-∑,其中11ni i x x n ==∑.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1. 若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1−z 2)i 的实部为 ▲ . 2. 已知向量a 和向量b 的夹角为30︒,|a |=2,|b |=3,则向量a和向量b 的数量积a ·b = ▲ .3. 函数f (x )=x 3−15x 2−33x +6的单调减区间为 ▲ . 4. 函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)2π3-在闭区间[−π,0]上的图象如图所示,则ω= ▲ .5. 现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 ▲ .6. 某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个2s 为 ▲ . 7. 右图是一个算法的流程图,最后输出的W = ▲ .8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4.类似地,在空间中,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ .9. 在平面直角坐标系xOy 中,点P 在曲线C :y =x 3−10x +3上,且在第二象限内,已知曲线C在点P 处的切线的斜率为2,则点P 的坐标为 ▲ . 10. 已知a =f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为 ▲. 11. 已知集合A ={x |log 2x ≤2},B =(−∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =▲ . 12. 设α 和β为不重合的两个平面,给出下列命题:(1)若α 内的两条相交直线分别平行于β内的两条直线,则α 平行于β; (2)若α 外一条直线l 与α 内的一条直线平行,则l 和α 平行;(3)设α 和β相交于直线l ,若α 内有一条直线垂直于l ,则α 和β垂直; (4)直线l 与α 垂直的充分必要条件是l 与α 内的两条直线垂直. 上面命题中,真命题的序号 ▲ .(写出所有真命题的序号). 13. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)y x a b a b +=>>的四个顶点,F 为其右焦点,直线A 1B2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段O T 的中点,则该椭圆的离心率为 ▲ .14. 设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…)若数列{b n }有连续四项在集合{−53,−23,19,37,82}中,则6q = ▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15. (本小题满分14分)设向量a =(4cos α ,sin α ),b =(sin β,4cos β),c =(cos β,−sin β), (1)若a 与b −2c 垂直,求tan(α +β)的值; (2)求+b c 的最大值;(3)若tan α tan β=16,求证:a ∥b .16. (本小题满分14分)如图,在直三棱柱ABC −A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .ABC A1B 1C 1 EF D第16题图17. (本小题满分14分)设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足22225234a a a a +=+,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{S n }中的项.18. (本小题满分16分)在平面直角坐标系xOy 中,已知圆C 1∶(x +3)2+(y −1)2=4和圆C 2∶(x −4)2+(y −5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.19. (本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a +;如果他买进该产品的单价为n 元,则他的满意度为n n a+.如果一个人对两种交易(卖出或买进)的满意度分别为h 1和h 2,现假设甲生产A ,B 两种产品的单件成本分别为12元和5元,乙生产A ,B 两种产品的单件成本分别为3元和20元,设产品A ,B 的单价分别为m A 元和m B 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙.(1)求h 甲和h 乙关于m A ,m B 的表达式;当35A B m m =时,求证:h 甲=h 乙;(2)设35A B m m =,当m A ,m B 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为h 0,试问能否适当选取m A ,m B 的值,使得0h h 甲≥和0h h 乙≥同时成立,但等号不同时成立?试说明理由.20. (本小题满分16分)设a 为实数,函数f (x )=2x 2+(x −a )|x −a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.2009年普通高等学校招生全国统一考试(江苏卷)全解全析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1−z2)i的实部为▲.【答案】−20.【解析】z1−z2=−2+20i,故(z1−z2)i=−20−2i.【说明】考查复数的四则运算.2.已知向量a和向量b的夹角为30︒,|a|=2,|b|=3,则向量a和向量b的数量积a·b= ▲.【答案】3.【解析】cos 23θ===a b a b.【说明】考查向量的数量积(代数)运算.3.函数f (x)=x3−15x2−33x+6的单调减区间为▲.【答案】(1,11)-.【解析】2()330333(11)(1)f x x x x x=--=-+',由(11)(1)0x x-+<得单调减区间为(1,11)-.【说明】考查函数的单调性,考查导数在研究函数性质中的应用.4.函数y=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)2π3-在闭区间[−π,0]上的图象如图所示,则ω= ▲.【答案】3.【解析】如图,2π3T=,所以3ω=.【说明】考查三角函数的图象和性质,考查周期性的概念.5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为▲.【答案】0.2【解析】随机抽取2根竹竿的取法有10种,而长度恰好相差0.3m的取法有2种,所以概率为0.2.【说明】考查古典概型.6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个2s为▲.【答案】25.【解析】第一组数据7x =甲,212(10010)55S =++++=甲;第二组数据7x =乙,245S =乙.【说明】考查总体特征数的估计.实际上,根据数据的分布,知甲班的数据较为集中(甲班极差为2,众数为7,乙班极差为3,众数为6,7). 7. 右图是一个算法的流程图,最后输出的W = ▲ . 【答案】22.W =22.【说明】本题考查算法初步,考查流程图(循环结构).值得注意的是,本题的循环结构并非是教材中所熟悉的当型或直到型,因此该流程图是一个非结构化的流程图,对学生的识图能力要求较高.8. 在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4.类似地,在空间中,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲ . 【答案】1:8 【解析】由题意知,面积比是边长比的平方,由类比推理知:体积比是棱长比的立方.【说明】本题考查合情推理之类比推理.9. 在平面直角坐标系xOy 中,点P 在曲线C :y =x 3−10x +3上,且在第二象限内,已知曲线C在点P 处的切线的斜率为2,则点P 的坐标为 ▲ . 【答案】(2,15)-.【解析】设点P 的横坐标为x 0,由2310y x '=-知203102x -=,又点P 在第二象限,02x =-,所以(2,15)P -.【说明】本题考查导数的几何意义——曲线切线的斜率.10. 已知a =f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为 ▲.【答案】m n <【解析】由01<<知01a <<,函数()x f x a =是减函数,由()()f m f n >知m n <.【说明】本题考查函数的单调性,指数函数的性质等概念.11. 已知集合A ={x |log 2x ≤2},B =(−∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =▲ . 【答案】4【解析】由log 2x ≤2得0<x ≤4,(0,4]A =;由A B ⊆知4a >,所以c =4. 【说明】本题考查对数函数的性质,集合间的基本关系(子集)等概念. 12. 设α 和β为不重合的两个平面,给出下列命题:(1)若α 内的两条相交直线分别平行于β内的两条直线,则α 平行于β; (2)若α 外一条直线l 与α 内的一条直线平行,则l 和α 平行;(3)设α 和β相交于直线l ,若α 内有一条直线垂直于l ,则α 和β垂直; (4)直线l 与α 垂直的充分必要条件是l 与α 内的两条直线垂直. 上面命题中,真命题的序号 ▲ .(写出所有真命题的序号). 【答案】(1)(2)【解析】由线面平行的判定定理知,(2)正确;相应地(1)可转化为一个平面内有两相交直线分别平行于另一个平面,所以这两个平面平行.【说明】本题考查空间点、线、面的位置关系.具体考查线面、面面平行、垂直间的关系与转化. 13. 如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆22221(0)y x a b a b +=>>的四个顶点,F 为其右焦点,直线A 1B2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段O T 的中点,则该椭圆的离心率为 ▲ .【答案】5【解析】直线12A B 的方程为1yx a b+=-,直线1B F 的方程为1y x c b +=-,两方程联立方程组得T 2(,)ac ab bc a c a c+--,则点M (,)2()ac ab bc a c a c +--,由点M 在椭圆上,代入整理得:223100a ac c --=,23100e e --=,又 0e >,所以离心率为5. 【说明】本题考查椭圆的概念、标准方程与几何性质.14. 设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…)若数列{b n }有连续四项在集合{−53,−23,19,37,82}中,则6q = ▲ . 【答案】9-【解析】由条件知数列{a n }中连续四项在集合{}54,24,18,36,81--中,由||1q >,所以{a n }中连续四项可能为(1)24-,36,54-,81,32q =-,69q =-;(2)18,24-,36,54-,不合;其它情形都不符合.【说明】本题考查等比数列的概念与通项公式.在本题中,如果将集合中的各数均除以3,得到集合{}232323,2,23,32,3-⨯-⨯⨯,再从其中选出四个数进行适当地排列,这样的解法更利于看清问题本质.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15. (本小题满分14分)设向量a =(4cos α ,sin α ),b =(sin β,4cos β),c =(cos β,−sin β), (1)若a 与b −2c 垂直,求tan(α +β)的值; (2)求+b c 的最大值;(3)若tan α tan β=16,求证:a ∥b . 【解析】(1)∵a ⊥b −2c ,∴(2)20⋅-=⋅-⋅=a b c a b a c .即4sin()8cos()0αβαβ+-+=,∴tan()2αβ+=. (2)(sin cos ,4cos 4sin )ββββ+=+-b c ,()()222sin cos 16cos sin ββββ+=++-b c 1730sin cos ββ=-1715sin 2β=-,∴当sin2β=−1时,2+b c 最大值为32,所以+b c的最大值为(3)∵tan tan 16αβ=,∴sin sin 16cos cos αβαβ=,即4cos 4cos sin sin 0αβαβ⋅-=, 所以a ∥b .16. (本小题满分14分)如图,在直三棱柱ABC −A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .【解析】(1)因为E ,F 分别是A 1B ,A 1C 的中点,所以EF ∥BC ,又EF ⊄平面ABC ,BC ⊂平面ABC ,∴EF ∥平面ABC ; (2)在直三棱柱ABC −A 1B 1C 1中,1111BB A BC ⊥面,∵A 1D ⊂平面A 1B 1C 1,∴11BB AD ⊥. 又11AD BC ⊥,BB 1 B 1C =B 1,∴111AD BC C ⊥面B . 又11AD AFD ⊂面,所以平面A 1FD ⊥平面BB 1C 1C .17. (本小题满分14分)设{a n }是公差不为零的等差数列,S n 为其前n 项和,满足22225234a a a a +=+,S 7=7. (1)求数列{a n }的通项公式及前n 项和S n ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{S n }中的项. 【解析】(1)设公差为d ,则22225243a a a a -=-,由性质得43433()()d a a d a a -+=+,因为0d ≠,所以430a a +=,即1250a d +=,又由77S =得176772a d ⨯+=,解得15a =-,2d =所以{}n a 的通项公式为27n a n =-,前n 项和26n S n n =-. (2)12(27)(25)(23)m m m m m a a a m ++--=-,令23m t -=,12(4)(2)m m m t t a aa t++--=86t t =+-, 因为t 是奇数,所以t 可取的值为1±,当1t =,2m =时,863t t +-=,2573⨯-=,是数列{}n a 中的项;1t =-,1m =时,8615t t +-=-,数列{}n a 中的最小项是5-,不符合.所以满足条件的正整数2m =. 18. (本小题满分16分)在平面直角坐标系xOy 中,已知圆C 1∶AB CA1B 1C1 EF D第16题图(x +3)2+(y −1)2=4和圆C 2∶(x −4)2+(y −5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.【解析】(1) 0y =或7(4)24y x =--,(2)法一)设点P (,)a b ,1l :()y b k x a -=-,则2l :1()y b x a k-=--由截得的弦长相等可得1C 到1l 与2C 到2l 的距离相等,即11|4()5()|a b k k ----+=,即 |31||45|k ka b k a kb ---+=--++,整理得:222222(3)2(3)(1)(1)(5)2(4)(5)(4)a k ab k bb k a b k a +++-+-=-+--+- 因为有无数组解,所以对应项系数相等,解得:32a =-,132b =;或52a =,12b =-.所以满足条件的点P 坐标为313(,)22-或51(,)22-.法二)依题意点P 在线段1C 2C 的中垂线上,且与1C 、2C 构成等腰直角三角形,设点P (,)a b , 则713()42b a -=--,又120PC PC ⋅=,即22670a b a b +---=,解得:32a =-,132b =;或52a =,12b =-. 满足条件的点P 坐标为313(,)22-或51(,)22-.19. (本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为m m a +;如果他买进该产品的单价为n 元,则他的满意度为n n a+.如果一个人对两种交易(卖出或买进)的满意度分别为h 1和h 2,现假设甲生产A ,B 两种产品的单件成本分别为12元和5元,乙生产A ,B 两种产品的单件成本分别为3元和20元,设产品A ,B 的单价分别为m A 元和m B 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为h 乙.(1)求h 甲和h 乙关于m A ,m B 的表达式;当35A B m m =时,求证:h 甲=h 乙;(2)设35A B m m =,当m A ,m B 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为h 0,试问能否适当选取m A ,m B 的值,使得0h h 甲≥和0h h 乙≥同时成立,但等号不同时成立?试说明理由.【解析】h =甲h =乙当35A B m m =时,h =甲,h =乙h 甲=h 乙.当35A B m m =时,h =甲,而520B m ≤≤, 所以当20B m =时,甲、乙两人的综合满意度均最大,此时12A m =.(3≥即31024120A B A B m m m m ≥++ ①且3406120A B A B m m m m ≥++ ②, 由①及520B m ≤≤得:24120310B A B m m m +≥-,又241202008[12,48]310310B B B m m m +=+∈--, 只有当12A m =,20B m =时,不等式①成立. 由②及312A m ≤≤得:4012036A B A m m m +≥-,又4012040200[20,80]36336A A A m m m +=+∈--, 只有当20B m =,12A m =时,不等式②成立.综上,不存在满足条件的A m 、B m 的值.20. (本小题满分16分)设a 为实数,函数f (x )=2x 2+(x −a )|x −a |. (1)若f (0)≥1,求a 的取值范围; (2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集. 【解析】(1)若(0)1f ≥,即||1a a -≥,则{21a a <≥,所以1a ≤-. (2)当x a ≥时,22()32,f x x ax a =-+22min(),02,0()2(),0,033f a a a a f x a a f a a ≥≥⎧⎧⎪⎪==⎨⎨<<⎪⎪⎩⎩ 当x a ≤时,22()2,f x x ax a =+-{{2min 2(),02,0()(),02,0f a a a a f x f a a a a -≥-≥==<<综上22min2,0()2,03a a f x a a -≥⎧⎪=⎨<⎪⎩. (3)x a ≥时,()1h x ≥得223210x ax a -+-≥,222412(1)128a a a ∆=--=-,①当a a ≤≥时,0∆≤,不等式的解集为(,)a +∞;②当a <<0,∆>得(0x x x a ⎧⎪≥⎨>⎪⎩,i a <<时,不等式的解集为(,)a +∞;ii )a ≤≤)+∞;iii )a <<时,不等式的解集为3([)3a a +-+∞.。
2009年普通高校招生统一考试江苏卷(详解)
2009年普通高校招生统一考试江苏卷化学试题可能用的相对原子质量:H 1 C 12 N 14 O16 Na 23 Mg 24 Al 27 S 32 Cl 35.5 Ca 40 Fe 56 Cu 64 Ag 108 I 127选择题单项选择题:本题包括8小题,每小题3分,共计24分。
每小题只有一个....选项符合题意。
1. 《中华人民共和国食品安全法》于2009年月1日起实施。
下列做法不利于平安全的是A .用聚氯乙烯塑料袋包装食品B. 在食品盐中添加适量的碘酸钾C .在食品加工中科学使用食品添加剂D .研发高效低毒的农药,降低蔬菜的农药残留量【标准答案】A【解析】A 项,聚氯乙烯有毒,不能用于塑料袋包装食品,要用只能用聚乙烯,故选A 项;B 项,碘单质有毒而且易升华,碘化钾有苦味而且不稳定,容易被氧化成有毒的碘单质,碘酸钾是一种稳定易吸收的盐,故选择碘酸钾才作为最理想的添加剂,我们食用的食盐通常加的都是碘酸钾;C 项,我国食品卫生法规定,食品添加剂是指为改善食品品质和色、香、味以及为防腐和加工工艺的需要而加入食品中的化学合成或天然物质。
食品营养强化剂也属于食品添加剂。
食品添加剂的好处首先是有利于食品保藏,防止食品腐烂变质。
食品添加剂还能改善食品的感官性状,满足人们口感的要求。
适当使用着色剂、食用香料以及乳化剂、增稠剂等食品添加剂,可明显提高食品的感官质量。
保持、提高食品的营养价值是食品添加剂又一重要作用。
国内外对食品添加剂都有严格规定和审批程序。
只要严格按照国家批准的品种、范围、计量使用添加剂,安全才有保障 。
D 项,高效、低毒、低残留农药是现代农药发展的一个方向。
【考点分析】本题考查了如下知识点①化学物质与生活得关系。
②食品添加剂。
③化肥,农药对人类生活的影响2. 下列有关化学用语使用正确的是A. 硫原子的原子结构示意图:B .NH 4Cl 的电子式:C .原子核内有10个中子的氧原子:O 188D .对氯甲苯的结构简式:【标准答案】C【解析】A 项,硫原子的原子结构示意图应为所以A 项错误,B 项, 4NH Cl 是由4NH+和Cl -是阴离子,必须写出电子式,C 项,188O 表示质量数为18,质子数为8的氧原子,所以该原子核内有10个中子D 项,该结构简式是邻氯甲苯,因为氯原子和甲基的位置在相邻的碳原子上。
历年江苏卷数学 2009年普通高等学校招生全国统一考试(江苏卷)数学试题及详细解答
绝密★启用前2009年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ试题参考公式:样本数据12,,,n x x x L 的方差221111(),n n i i i i s x x x x n n ===-=∑∑其中一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应的位置........上.. 1.若复数12429,69,z i z i =+=+其中i 是虚数单位,则复数12()z z i -的实部为 ▲ 。
【解析】考查复数的减法、乘法运算,以及实部的概念。
-202.已知向量a r 和向量b r 的夹角为30o,||2,||3a b ==r r ,则向量a r 和向量b r 的数量积a b ⋅r r = ▲。
【解析】 考查数量积的运算。
3233a b ⋅=⋅⋅=r r3.函数32()15336f x x x x =--+的单调减区间为 ▲ . w.w.w.k.s.5.u.c.o.m【解析】 考查利用导数判断函数的单调性。
2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-。
亦可填写闭区间或半开半闭区间。
注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2009年高考物理(江苏卷)试卷分析
2009年高考物理(江苏卷)试卷分析汤秀云张国远2009年江苏高考物理试题考查内容覆盖面较广,涵盖了光、热、原及近代物理内容。
其中力学部分35 % ;电磁学部分45% ;选修3~3、3~4、3~5各占10% ,试题立意新颖有深度,物理试卷在试题结构和题量等方面都与往年类似,未出现怪题、偏题,也未出现数学计算上的繁杂,但在新颖和深度方面超越了以往,质量很高。
背景与现代科技发展现状结合紧密,体现了物理学科的特点。
试题难、中、易的比例大概为:2:7:1。
今年的物理试题在题型结构上并不陌生,电学、力学、光学等物理知识点考察全面,所以这是一个考生相对较能接受的试卷。
总的来说,2009年高考物理试卷(江苏卷)有利于高等学校选拔录取人才,有利于推进中学素质教育。
有利于高等学校人才的选拔,对中学物理教学和改革具有良好的指导作用,是一份有教改思想的试卷。
这份试卷能够引导中学物理教学突破题海战术,强化综合能力和科学素养的培养。
一、2009物理试卷整体结构2009年普通高等学校招生全国统一考试物理(江苏卷)试题结构沿袭了08年江苏高考试卷模式,也与平时各校考试,摸底考试结构完全一致;分第一卷(选择题)和第二卷(非选择题)两部分;第一卷9小题31分,第二卷6道题89分。
第一卷前5题为单项选择题记15分,6~9题为多项选择题记16分;第二卷6小题,第10题、11题2道为实验题,计18分;第12题为选做模块题,有A、B、C三模块,要求考生选做其中两个模块,共24分。
其余3道为计算题,计47分。
2009年的高考物理难度系数比2008年略大,试题难度稳定和试卷难度更趋于合理。
图表1:试题结构:二、试题考核的内容相对较全面,知识面分布较广从试题考核的内容来看,试题考查了物理学科中的力学、热学、电磁学、光学、近代物理等五个方面的知识。
具体的讲,考查的知识点涉及到力学中的:三力平衡问题、连接体临界加速度、机械波、探究牛顿第二定律问题、万有引力定律、牛顿第二定律的典型应用、圆周运动、运动合成分解原理、动量定理、能量守恒定律、简谐运动等知识点;涉及到热学中的:分子动理论、气体内能、热力学第一定律、理想气体膨胀做功、热传递、摩尔质量等知识点;涉及到电学中的:库仑力、电场强度电势概念、带电粒子在电场中的受力加速、电阻定律、含电容电路、闭合电路欧姆定律、交流电变压器、带电粒子在磁场中的偏转、电磁感应中的动生电动势、能量守恒等知识点;涉及到光学和近代物理中的:光的折射、光的全反射、狭义相对论,质能方程、核反应方程、微观粒子中的正电子、中微子、德布罗意波等知识点。
2009年高等学校招生统一考试理综卷(江苏卷有答案)-【2009年高考真题】
2009年普通高等学校招生全国统一考试(江苏卷)化学试题可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cl 35.5Ca 40 Fe 56 Cu 64 Ag 108 I 127选择题单项选择题:本题包括8小题,每小题3分,共计24分。
每小题只有一个选项符合题意。
1.《中华人民共和国食品安全法》于2009年6月1日起实施。
下列做法不利于食品安全的是A.用聚氯乙烯塑料袋包装食品B.在食用盐中添加适量的碘酸钾C.在食品加工中科学使用食品添加剂D.研发高效低毒的农药,降低蔬菜的农药残留量2.下列有关化学用语使用正确的是A.硫原子的原子结构示意图:B.NH4Cl的电子式:OC.原子核内有10个中子的氧原子:188D.对氯甲苯的结构简式:3.下表所列各组物质中,物质之间通过一步反应就能实现如图所示转化的是4.用N A表示阿伏加德罗常数的值。
下列叙述正确的是A.25℃时,pH=13的1.0 L Ba(OH)2溶液中含有的OH-数目为0.2 N AB.标准状况下,2.24 L Cl2与过量稀NaOH溶液反应,转移的电子总数为0.2 N AC.室温下,21.0 g乙烯和丁烯的混合气体中含有的碳原子数目为1.5 N AD.标准状况下,22.4 L甲醇中含有的氧原子数为1.0 N A5.化学在生产和日常生活中有着重要的应用。
下列说法不正确的是A.明矾水解形成的Al(OH)3胶体能吸附水中悬浮物,可用于水的净化B.在海轮外壳上镶入锌块,可减缓船体的腐蚀速率C.MgO 的熔点很高,可用于制作耐高温材料D.电解MgCl 2饱和溶液,可制得金属镁6.下列有关实验操作的叙述正确的是A. 实验室常用右图所示的装置制取少量的乙酸乙酯B. B.用50 mL 酸式滴定管可准确量取25.00 mL KmnO 4溶液C. 用量筒量取5.00 mL1.00 mol ·L -1盐酸于50 mol 容量瓶中,加水稀释至刻度,可配制0.100 mol ·L -1盐酸D. 用苯萃取溴水中的溴,分液时有机层从分液漏斗的下端放出 7.在下列各溶液中,离子一定能大量共存的是 A.强碱性溶液中:K +、、Al 3+、Cl -、SO 2-4B.含有0.1 mol ·L -1 Fe 3+的溶液中:K +、Mg 2+、I -、NO -3C.含有0.1 mol ·L -1Ca 2+的溶液中:Na +、K +、CO 2-3、Cl -E. 室温下,Ph=1的溶液中:Na +、Fe 3+、NO -3、SO 2-48.X 、Y 、Z 、W 、R 是5种短周期元素,其原子序数依次增大。
2009年江苏高考英语试题及答案
ZGX高考网2009年江苏高考英语试卷及答案2009年普通高等学校招生全国统一考试(江苏卷)英语第一部分:听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上.第一节(共5小题;每小题1分,满分5分)听下面5段对话.每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置.听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题.每段对话仅读一遍.例:How much is the shirt?A.£19。
15.B.£9。
15.C.£9.18.答案是B。
1.What do the speakers need to buy?A.A fridge.B.A dinner table.C.A few chairs.2.Where are the speakers?A.In a restaurant.B.In a hotel.C.In a school.3.What does the woman mean?A.Cathy will be at the party.B.Cathy is too busy to come.C.Cathy is going to be invited.4.Why does the woman plan to go to town?A.To pay her bills in the bank.B.To buy books in a bookstore.C.To get some money from the bank.5.What is the woman trying to do?A.Finish some writing.B.Print an article.C.Find a newspaper.第二节(共15小题;每小题1分,满分15分)听下面5段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
2009年高考试题——语文(江苏卷)精析版
2009年普通高等学校招生全国统一考试(江苏解析卷)语文江苏省淮安市阳光学校一、语言文字运用(15分)⒈下列词语中加点的字,读音完全正确的一组是()(3分)A.调.度/宏观调.控降.解/降.龙伏虎搪塞./敷衍塞.责B.省.视/省.吃俭用拓.本/落拓.不羁纤.绳/纤.尘不染C.圈.养/可圈.可点喷薄./厚古薄.今重.申/老成持重.D.臧否./否.极泰来乐.府/乐.不思蜀屏.蔽/屏.气凝神【参考答案】B项“省视/省吃俭用,拓本/落拓不羁,纤绳/纤尘不染”。
【考点】识记现代汉语普通话常用字的字音,考查要求识记字音,不要求拼写,重点考查声母和韵母,注意读音与意义的相关性。
【解析】延续近两年命题思路,完全落实在多音多义词的辨读上,应当说没有难度。
ào/tiáo jiàng/xiáng sèǐng/shěng tà/tuò qiàn/xiāàn/quān bó chóng/zhòǐ yuè/lè píng/bǐng⒉下列各句中,没有语病的一句是()(3分)A.随着全球气温升高,飓风、洪水、干旱等极端气象事件的频率和强度正在增加,气候变暖已成为全人类必须共同面对的挑战。
B.对“80后”作家来说,存在的最大问题就是要克服彼此间的同质化倾向,张扬自己的艺术个性才是他们的发展之路。
C.尽管国际金融危机的影响还在蔓延,但随着一系列经济刺激计划的逐步落实,中国经济出现回暖迹象,人们对经济复苏的信心开始回升。
D.由于青少年心智尚未成熟,好奇心又强,对事物缺乏分辨力,容易被大众媒介中的不良信息诱导,从而产生思想上、行为上的偏差。
【参考答案】C A项“极端气象事件”后缺少成分“发生”致搭配不当;B项不合逻辑,“存在的最大问题就是要克服彼此间的同质化倾向”表意费解;D项为滥用介词“由于”致使主语缺少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对一道2009年江苏高考物理选择题的解答及分析
黑龙江大庆铁人中学 解玉良(163411)
2009年普通高等学校招生全国统一考试(江苏卷)物理试题:第9题。
如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。
弹簧开始时处于原长,运动过程中始终处在弹性限度内。
在物块A 上施加一个水平恒力,A 、B 从静止开始运动到第一次速度相等的过程中,下列说法中正确的有:
A .当A 、
B 加速度相等时,系统的机械能最大
B .当A 、B 加速度相等时,A 、B 的速度差最大
C .当A 、B 的速度相等时,A 的速度达到最大
D .当A 、B 的速度相等时,弹簧的弹性势能最大
此题乍看似曾相识,但又区别于常见的两端受大小相等方向相反两个力的情况。
题目一变给解答带来很大的困惑。
下面结合函数关系,通过图象来解答此题共大家参考。
设运动中弹簧伸长量为X 由牛顿第二定律:
对A 有,1ma Kx F =-; 对B 有,2ma Kx =
联立得:)(21a a m F +=; 可见: m F a a =
+21 为定值,即1a 减少多少2a 就增加多少,所以A 、B 的a-t 图线一定是对称的。
由此定性画出a-t 图象如图,对各选项分析解答如下:
1、A 选项的困惑点是:在此过程中物块A
的速度是否有反向。
分析:由图象可见,图线与t 轴包围的面积数值为速度大小,物体
A 的速度始终为正值,在加速度相等以后F 还要继续做正功,机械
能还要增加。
因此A 选项错。
2、B 选项的困惑点是:在此过程中物块A 、B 不是匀变速运动
无法定量确定速度差。
分析:由图可见A 图线包围的面积减去B 图线包围的面积即为A 、
B 的速度差(ΔS ),当A 、B 加速度相等时,A 、B 的速度差(ΔS )最大。
即B 选项正确。
3、C 选项的困惑点是:当 A 、B 的速度相等时,物块A 的加速度是否为零。
分析:因为A 图线和B 图线完全对称,若要A 、B 的速度(图线与t 轴包围面积)相等,必有A 的加速度减为零B 的加速度增为F/m 才行。
由图可见当A 、B 的速度相等时,物块A 的加速度为零,物块A 的速度达到最大。
即C 正确。
4、D 选项的困惑点是: 当A 、B 的速度相等时,弹簧是否伸的最长。
分析:由图可见在物块A 、B 的速度(图线与t 轴包围面积)相等前,A 的速度始终大于B 的速度,相等的时间内A 的位移始终大于B 的位移,所以当A 、B 的速度相等时,弹簧的伸长最长所以弹性势能最大。
即D 正确。
这是一道较难的创新题,特别是对C 选项的判断是最难的。
由以上解答可见找到科学的函数关系,画出定性的关系图象,借助图象进行分析,可使困惑的问题明朗化,抽象问题形象化。
发表于<<中学物理>>2010。
1期。