某高校《高等几何》期末考试试卷(含答案)说课材料

合集下载

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是欧几里得几何的公理?A. 两点之间线段最短B. 过直线外一点有且只有一条直线与已知直线平行C. 任意两条直线都相交D. 圆的周长与直径的比值是一个常数答案:B2. 球面上的最短路径是:A. 直线B. 曲线C. 大圆D. 任意路径答案:C3. 以下哪个定理是球面几何中的定理?A. 勾股定理B. 泰勒斯定理C. 球面三角形的内角和大于180度D. 三角形内角和等于180度答案:C4. 以下哪个选项是双曲几何的特征?A. 过直线外一点有且只有一条直线与已知直线平行B. 过直线外一点有无数条直线与已知直线平行C. 过直线外一点没有直线与已知直线平行D. 过直线外一点有一条直线与已知直线平行答案:B二、填空题(每题5分,共20分)1. 在欧几里得几何中,一个平面上任意两个点确定一条________。

答案:直线2. 球面几何中,球面上的两点之间的最短路径称为________。

答案:大圆3. 在双曲几何中,过直线外一点可以画出________条直线与已知直线平行。

答案:无数4. 根据球面几何的性质,球面上的三角形内角和________180度。

答案:大于三、解答题(每题15分,共30分)1. 证明:在球面几何中,任意两个大圆的交点最多有两个。

证明:假设球面上有两个大圆A和B,它们相交于点P和Q。

如果存在第三个交点R,则R必须位于大圆A和B上。

由于大圆A和B是球面上的最短路径,它们在球面上的交点必须是球面上的最短路径的端点,因此R不可能存在。

因此,任意两个大圆的交点最多有两个。

答案:证明完毕。

2. 已知球面上的三角形ABC,其内角分别为α、β、γ,且α+β+γ=180°+ε,其中ε为正数。

求证:三角形ABC的边长之和小于球面上的任意其他三角形的边长之和。

证明:设球面上的任意其他三角形为DEF,其内角分别为α'、β'、γ'。

高等几何试卷及答案

高等几何试卷及答案

《高等几何》考试试题A 卷(120分钟)一、填空题(2分⨯12=24分)1平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -24、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -19、一点列到自身的两射影变换a):21→,32→,43→; b):10→,32→,01→ 其中为对合的就是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件就是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它就是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233,'x xx x λλ==。

将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10分)证明:三点形ABC 与三点形C B A '''内接于二次曲线(C),设 AB I C B ''=D AB I C A ''=E B A ''I BC=D ' B A ''I AC=E ',则),,,(B A B A C '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B 即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线AC,B C '',A C '',BC 连同这两个点列的底AB,B A ''属于同一条二级曲线(C '),亦即三点形ABC 与三点形C B A '''的边外切一条二次曲线。

2010-2011上学期《高等几何》期末考试试卷(A卷)

2010-2011上学期《高等几何》期末考试试卷(A卷)

试卷代码:1110101801曲 靖 师 范 学 院2010─2011学年第一学期数学与应用数学专业 20071111、20071112、20071113、20071114班《高等几何》期末考试试卷(A 卷)任课教师:崔萍 负责人: (签字)注意:1.本试卷共7 页,请考生仔细检查,有错、漏、破烂及时报告监考教师更换。

2.考生班级、学号和姓名必须写在指定地点。

3.考试形式:闭卷;考试时间:120分钟。

一、填空题(共10小题,每小题2分,满分20分)1.在拓广的欧氏平面上,原点的齐次坐标方程为 ,x 轴上的无穷远点的坐标为 . 2.无穷远线的方程是 . 3.通过每一个虚点有 条实直线.4.直线1233420x x x -+=上的无穷远点的坐标是 . 5.点(-3,0,2)的齐次线坐标方程是 .6.已知共线四点(1,1,1)A -、(1,1,1)B -、(0,1,0)C 、(2,4,2)D -,则交比),(CD AB = .7.已知交比1234(,)7PP P P =,则交比),(2341P P P P= . 班级____________________ 学号____________________ 姓名____________________ ----------------------------------------密----------------------------------------封----------------------------------------线--------------------------------------8.直线(1,2-3i,-1)上的实点坐标是 . 9.用次透视仿射,可把△ABC变为△CAB.10.已知一个对合对应的二重元素为11S=-,22S=,则这个对合对应式为 .二、简答题(共4小题,第1、2、3题,每小题3分,第4题,6分,满分15分)1.仿射变换会不会把凸四边形变成凹四边形?为什么?2.线束交比的几何意义是什么?3.写出:“完全四点形的三双对边,被不通过任一顶点的一直线所截,所得三个点偶,是一个对合对应中的三个点偶”的对偶命题.4.下列概念:(1)二次曲线;(2)平行四边形;(3)直角三角形;(4)无穷远线;(5)正方形;(6)完全四线形;(7)对偶原理;(8)圆;(9)三角形的重心;(10)非平行线段的相等;(11)配极对应;(12)中心对称.哪些属于射影几何?哪些属于仿射几何?哪些专属欧氏几何?(只需写出编号).三、计算证明题(共6小题,每小题8分,满分48分)1.求射影变换1132233352x x x x x x x xρρρ-'=⎧⎪'=+⎨⎪'=⎩的二重元素.2.给定二次曲线C :22650x xy x -++=,求P (2,-1)关于C 的极线方程.3.已知二次曲线Γ通过A (1,0,0)、B (0,1,0)、C (0,0,1),并且点D(-1,1,-1)关于这条二次曲线的极线方程为1233270x x x -+-=,求这条二次曲线的方程.4.求射影对应,使点列l 上的三点3,1,2对应于点列'l 上三点3,1,2---.班级____________________ 学号____________________ 姓名____________________ ----------------------------------------密----------------------------------------封----------------------------------------线--------------------------------5.用高等几何方法证明:三角形的三中线共点.6.用高等几何知识证明:梯形两底中点,两对角线交点,两腰(所在直线)交点这四点共线.班级____________________ 学号____________________ 姓名____________________ ----------------------------------------密----------------------------------------封----------------------------------------线--------------------------------------四、作图题(共4小题,第1、2、3题,每小题4分,第4题,5分,满分17分)1.作出下列图形的对偶图形(不写作法,但标上相应字母).2.在BB A A '-'-两对点决定的对合对应中,作C 点的对应点C '。

西南大学网络教育[0464]《高等几何》期末考试复习题及参考答案

西南大学网络教育[0464]《高等几何》期末考试复习题及参考答案

[0464]《高等几何》一、计算题(5题,共70分)1.经过A(-3,2)和B(6,1)两点的直线被直线x+3y-6=0截于P 点,求简比(ABP). (10分)解:设AP PB =λ,则点P 的坐标为P (361-+λ+λ,21+λ+λ),因为点P 在直线x +3y -6=0上,所以有361-+λ+λ+3(21+λ+λ)-6=0 ,有1=λ,1)(-=-=λABP . 2.从原点向圆(x -2)2+(y -2)2=1作切线t 1, t 2。

试求x 轴,y 轴,t 1, t 2顺这次序的交比. (10分)解:设直线y=kx 与圆相切,则12212+-=k k ,两边平方得到03832=+-k k ,3742,1±=k 因此1t 的方程为0374=--x y ,2t 的方程为0374=+-x y ,故7474),(21+-=t t xy .3.求射影变换⎪⎩⎪⎨⎧='+='+='33322211ax x x ax x x ax x ρρρ的固定元素.(15分) 解:射影变换的特征方程是100010001--+λλλ=0,即1=λ或1-=λ把1=λ代人方程组⎪⎩⎪⎨⎧=-=-=+0)1(0)1(0)1(321x x x λλλ,解得不变点是一条直线01=x把1-=λ代入上述方程组,解得不变点(1,0,0).把1=λ代人方程组⎪⎩⎪⎨⎧=-=-=+0)1(0)1(0)1(321u u u λλλ,解得不变直线是过(1,0,0)的所有直线..把1-=λ代入上述方程组,解得不变直线01=x4.已知二阶曲线(C ):221121332460x x x x x x +++=(1)求点(1,2,1)P 关于曲线的极线(2)求直线123360x x x -+=关于曲线的极点. (20分)解:(1)二阶曲线221121332460x x x x x x +++=的矩阵是⎪⎪⎪⎭⎫ ⎝⎛103002322点(1,2,1)P 关于曲线的极线方程是(1,2,1) ⎪⎪⎪⎭⎫ ⎝⎛103002322⎪⎪⎪⎭⎫ ⎝⎛321x x x =0,即0429321=++x x x(2)设直线123360x x x -+=关于曲线的极点为(a,b,c),则有⎪⎪⎪⎭⎫ ⎝⎛-613ρ=⎪⎪⎪⎭⎫ ⎝⎛103002322⎪⎪⎪⎭⎫ ⎝⎛c b a ,解得a=2,b=-30,c=37.所求极点是(2,-30,37)。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 已知直线l的方程为Ax+By+C=0,直线m的方程为Dx+Ey+F=0,若l与m平行,则以下哪个条件成立?A. A/D = B/E ≠ C/FB. A/D = B/E = C/FC. A/D = B/E ≠ C/FD. A/D ≠ B/E = C/F答案:A2. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β垂直,则以下哪个条件成立?A. AE + BF + CG = 0B. AE + BF + CG ≠ 0C. AE + BF + CG = D + HD. AE + BF + CG = D - H答案:A3. 已知点P(x1, y1, z1)在平面α:Ax+By+Cz+D=0上,则以下哪个条件成立?A. Ax1+By1+Cz1+D=0B. Ax1+By1+Cz1+D≠0C. Ax1+By1+Cz1+D>0D. Ax1+By1+Cz1+D<0答案:A4. 已知直线l的参数方程为x=x0+at,y=y0+bt,z=z0+ct,其中a、b、c为直线的方向向量,若直线l与平面α:Ax+By+Cz+D=0平行,则以下哪个条件成立?A. Aa+Bb+Cc=0B. Aa+Bb+Cc≠0C. Aa+Bb+Cc=DD. Aa+Bb+Cc=-D答案:A二、填空题(每题5分,共20分)5. 已知直线l的方程为Ax+By+Cz+D=0,直线m的方程为Ex+Fy+Gz+H=0,若l与m相交,则它们的交点坐标为__________。

答案:((BF-CE)/(AF-CD), (AG-CF)/(AF-CD), (AE-BF)/(AF-CD))6. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β相交,则它们的交线方程为__________。

答案:(Ax+By+Cz+D)(EF-GH) - (Ex+Fy+Gz+H)(AF-CD) = 07. 已知点P(x1, y1, z1)到平面α:Ax+By+Cz+D=0的距离为d,则d=__________。

《高等几何》期末试卷B答案.

《高等几何》期末试卷B答案.

2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------一、填空题(每题 3分,共计 30分 1. 0, 3, 1(- 2. -1, 3 3. 自对应 4. 仿射 5. 12 6.0≠ij a7. 1, 2-=≠a a , 椭圆形对合8. 透视中心二、判断题 (对的打√ , 错的打×, 每题 2分 , 共计 20分1. ×2. √3. √4. ×5. √6. ×7. ×8. √9. √ 10.× 三、计算题 (共计 24分 1. (10分解由于0551111112, 001111112=---=-- …………………………… 4分故 D C B A , , , 四点共线 . 以 1, 1, 1(, 1, 1, 2(--B A 为基底 , 令0, 0, 1( 1, 1, 1( 1, 1, 2(1=-+-λ即10112111λλλ+-=-=+ 得11=λ, 同理令…………………………… 6分5, 5, 1( 1, 1, 1( 1, 1, 2(2-=-+-λ2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------即515112222-+-=-=+λλλ 得 232-=λ, 所求交比为…………………………… 8分3221-=λλ …………………………… 10分 2. (8分解化为齐次方程1211:0l x k x -= 2221:0l x k x -=3231:0l x k x -= 4241:0l x k x -=…………………………… 2分取 21:0, :0a x b x ==为基线,则有11223344(, (, (, ( l a k b l a k b l a k b l a k b ----…………………………… 6分由定理 1.11的推论,得132412342314(((, ((k k k k l l l l k k k k -+-+=-+-+…………………………… 8分3. (6分解因为点 P 在二阶曲线上,即0=PP S …………………………… 2分所以切线方程为S P=12123311020203401032x x x x x ⎛⎫- ⎪⎛⎫⎪⎪-=-+= ⎪⎪⎪⎪⎝⎭- ⎪⎝⎭…………………………… 6分2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------四、 (10分证明:, E F 为自对应元素, P 与 1P 对应则有11(, (, P P EF PP EF = …………………………… 2分而111(, (,PP EF PP EF =…………………………… 4分所以111(, (, PP EF P P EF =…………………………… 6分得21(, 1PP EF = …………………………… 8分因为 1, P P 不重合故 1(, 1PP EF =- …………………………… 10分五、 (10分图形的结构及点线的标注各占 5分六、 (6分解 1. 如图,过 a 做一直线 s ,分别交 c b a . , 于点 C B A , , ; 2.在 a 上取点 G ,连接 CB , 交 c 于点 E ;3.连接 AE 交 b 于点 F ,连接 GF 交 s 于点 D ;4.连接 OD , 即为所求直线d . …………………………… 4分2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------…………………………… 6分。

川师大-高等几何-2013-2014(上)期末试卷

川师大-高等几何-2013-2014(上)期末试卷

四川师范大学-数学与软件科学学院《高等几何》2013-2014(上)期末试卷一、解答题(10*5分)1、求出曲线2y x =上的无穷远点。

2、菱形在仿射变换下的像是什么图形?为什么?3、判断摄影平面上三点(1,0,2),(2,1,1),(0,0,1),是否共线,说明理由。

4、当a 满足什么条件时,射影变换3''10a λλλλ-++=是对合,并判断该对合类型。

5、已知直线上四点,,,a b c d 的一维坐标分别为1,0,3,∞,求四点交比。

6、已知命题:二阶曲线切线的集合构成二阶曲线。

写出该命题的对偶命题。

7、求一维射影变换1122'10'21P λλλλ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的不懂元。

8、已知配极112233*********x P x x ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,写出点(1,2,0)在该配极下的像直线的坐标。

9、求直线123360x x x -+=关于222123320x x x +-=的极点。

10、一维射影变换将坐标1,2,0的点分别变成坐标0,1,∞的点,求该射影变换。

二、计算题(3*9分)1、求直线变换1122333',','x x x x x x x ρρρ==+=-的不动点和不动直线。

2、求双曲线2245440x xy y x y +-+-=的中心和渐近线。

3、已知二次曲线过()()()1,2,0,1,1,0,0,1,1a b c -,且与直线23120,0x x x x +=-=相切,(1)求该二次曲线;(2)判断其是否退化,若非退化则求它的一个自极三点形。

三、证明题(23分)1、证明:若一射影对应使一点列上无穷远点对应另一点列上的无穷远点,则该对应使点列对应线段之值成定比。

2、如图所示,二阶曲线T 有内接四点形abcd 且()()()(),x b c a d y b d a c =⨯⨯⨯=⨯⨯⨯。

《高等几何》考试练习题及参考答案

《高等几何》考试练习题及参考答案

《高等几何》考试练习题及参考答案一、单选题1. 菱形的仿射对应图形是()A 、菱形B 、平行四边形C 、正方形D 、不等边四边形答案:B2. 圆经过中心射影之后的对应图形是()A 、圆B 、椭圆C 、二次曲线D 、二共点直线答案:C3. 射影平面上所有射影变换的集合构成群,称为射影变换群,它是()A 、8维群B 、6维群C 、4维群D 、3维群答案:A4. 正六边形经过中心射影后的对应图形是()A 、正六边形B 、二次曲线C 、二平行直线D 、内接于二次曲线的六边形答案:D5. 在射影平面上,两条相交直线可以把平面分成几个区域?()A 、1B 、2C 、3D 、4答案:B6. 欧式平面内所有正交变换的集合构成群,称为正交变换群,它是()A 、3维群B 、4维群C 、6维群D 、8维群答案:A7. 双曲型曲线与无穷远直线的关系是()A 、相交B 、相切C 、相离D 、相割答案:A8. 下面属于欧式几何学的是()A 、梯形B 、离心率C 、重心D 、塞瓦定理和麦尼劳斯定理答案:B9. 直角三角形经过中心射影后的对应图形是()A 、三角形B 、等腰三角形C 、直角三角形D 、四边形答案:A10. 共点的直线经过中心射影之后的对应图形是()A 、二直线B 、二垂直直线C 、共点的直线D 、二平行直线答案:C11. 在射影平面上二阶曲线可共分为()类.A 、2B 、3C 、4D 、5答案:D12. 双曲线有几条主轴?()A 、1B 、2C 、3D 、4答案:B13. 已知两点A(2,-1,1),B(3,1,-2),下列哪一个点与它们共线?()A 、(7 ,-1 ,0)B 、(7 ,-1 ,1)C 、(5 ,0 ,2)D 、(0 ,0 ,1)答案:A14. 等腰梯形的仿射对应图形是:()A 、等腰梯形B 、梯形C 、四边形D 、平行四边形答案:B15. 对于非恒等二维射影变换下列说法错误的是()A 、是非奇线性对应B 、保持共线四点的交比不变C 、不变直线不能超过三条D 、不共线的不变点至多有三个答案:C16. 下列哪些图形具有射影性质?()A 、平行直线B 、三点共线C 、两点间的距离D 、两直线的夹角答案:B17. 圆的仿射对应图形是:()A 、梯形B 、四边形C 、椭圆D 、平行四边形答案:C18. 矩形的仿射对应图形是:()A 、四边形B 、平行四边形C 、梯形D 、圆答案:B19. 下列名称或者定理不属于仿射几何学的是A 、三角形的垂心B 、梯形C 、在平面内无三线共点的四条直线有六个交点D 、椭圆答案:A二、判断题1. 一维基本形间的射影对应不保持对应四元素的交比. ()A 、正确B 、错误答案:错误2. 两全等三角形经仿射对应后得两全等三角形()A 、正确B 、错误答案:错误3. 射影平面的不共点三直线将平面分成四部分.()A 、正确B 、错误答案:正确4. 一个角的内外角平分线调和分离角的两边()A 、正确B 、错误答案:正确5. 共线三点的单比经中心射影后不变. ()A 、正确B 、错误答案:错误6. 二直线所成角度是相似群的不变量.()A 、正确B 、错误答案:正确7. 射影平面上的一直线能将射影平面剖分成两部分. ()A 、正确B 、错误答案:错误8. 三点形经中心射影之后还是三点形.()A 、正确B 、错误答案:正确9. 在一维射影变换中,若已知一对对应元素(非自对应元素)符合对合条件,则此射影变换一定是对合. ()A 、正确B 、错误答案:正确10. 在仿射变换下,等腰三角形的对应图形是三角形. ()A 、正确B 、错误答案:正确11. 仿射变换的基本不变量是单比. ()A 、正确B 、错误答案:正确12. 抛物线有一对主轴. ()A 、正确B 、错误答案:错误13. 三角形的垂心属于仿射几何学的范畴()A 、正确B 、错误答案:错误14. 在仿射变换下,正方形的对应图形是正方形.()A 、正确B 、错误答案:错误15. 共线点的极线必共点,共点线的极点必共线()A 、正确B 、错误答案:正确16. 椭圆和双曲线的四个焦点中有二实点二虚点.()A 、正确B 、错误答案:正确17. 配极变换是一种非奇线性对应,()A 、正确B 、错误答案:正确18. 两个三角形的面积之比是仿射不变量. ()A 、正确B 、错误19. 德萨格定理属于射影几何学的范畴. ()A 、正确B 、错误答案:正确20. 二阶曲线上任一点向曲线上四定点作直线,四直线的交比为常数. ()A 、正确B 、错误答案:正确21. 菱形的仿射对应图形是四边形. ()A 、正确B 、错误答案:错误22. 两点列的底只要相交构成的射影对应就是透视对应. ()A 、正确B 、错误答案:错误23.A 、正确B 、错误答案:正确24. 两个不同的无穷远点所决定的直线上可以含有有穷远点.()A 、正确B 、错误答案:错误三、名词解释1. 图形的仿射性质答案:图形经过任何仿射变换后都不变的性质称为图形的仿射性质.2. 二次曲线的直径答案:无穷远点关于二次曲线的有穷极线称为此二次曲线的直径.3. 二次曲线的中心答案:无穷远直线关于二次曲线的极点称为此二次曲线的中心.4. 配极原则答案:如果P点的极线通过Q点,则Q点的极线也通过P点.5. 二阶曲线答案:在射影平面上,成射影对应的两个线束对应直线的交点的集合称为二阶曲线.6. 二次曲线的渐近线答案:二次曲线上的无穷远点的切线,如果不是无穷远直线,则称为二次曲线的渐近线.7. 对偶原则答案:在射影平面里,如果一个命题成立,则它的对偶命题也成立.8. 完全四点形答案:由四个点(其中无三点共线)以及连结其中任意两点的六条直线所组成的图形称为完全四点形.四、问答题1. 下列图形的仿射对应图形是什么?(1)圆;(2)等腰三角形;(3)三角形的内心;(4)两个合同的矩阵;(5)三角形的重心;(6)相似三角形;(7)三角形的垂心;(8)矩形。

几何学概论期末试题及答案

几何学概论期末试题及答案

《几何学概论》试题(1)1. 试确定仿射变换,使y 轴,x 轴的象分别为直线01=++y x ,01=--y x ,且点(1,1)的象为原点.(51')2. 利用仿射变换求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知A (1,2,3),B (5,-1,2),C (11,0,7),D (6,1,5),验证它们共线,并求(CD AB ,)的值.(8')6. 设1P (1,1,1),2P (1,-1,1),4P (1,0,1)为共线三点,且(4321,P P P P )=2,求3P 的坐标.(21')7. 叙述并证明帕普斯(Pappus)定理.(01')8.一维射影对应使直线l 上三点P (-1),Q (0),R (1)顺次对应直线l '上三点P '(0),Q '(1),R '(3),求这个对应的代数表达式.(01')9.试比较射影几何、仿射几何、欧氏几何的关系.(01')《高等几何》试题(2)1.求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 叙述笛沙格定理,并用代数法证之.(51')3.求证a (1,2,-1) ,b (-1,1,2),c (3,0,-5)共线,并求l 的值,使).3,2,1(=+=i mb la c i i i (01')4.已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x ,01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 5.试比较欧氏、罗氏、黎氏几何的关系. (01')6.试证两个点列间的射影对应是透视对应的充要条件是它们底的交点自对应. (01')7.求两对对应元素,其参数为121→,0→2,所确定对合的参数方 程. (01')8.两个重叠一维基本形B A B A λλ'++,成为对合的充要条件是对应点的参数λ与λ'满足以下方程:)0(0)(2≠-=+'++'b ad d b a λλλλ (51')《高等几何》试题(3)1. 求仿射变换424,17++='+-='y x y y x x 的不变点和不变直线. (51')2. 求椭圆的面积.(01')3. 写出直线12x +23x -3x =0,x 轴,y 轴,无穷远直线的齐次线坐标.(01')4. 叙述笛沙格定理,并用代数法证之.(51')5. 已知直线421,,l l l 的方程分别为02321=-+x x x ,0321=+-x x x ,01=x ,且=),(4321l l l l 32-,求2l 的方程.(51') 6. 在一维射影变换中,若有一对对应元素符合对合条件,则这个射影变换一定是对合. (51') 7. 试比较射影几何、仿射几何、欧氏几何的关系, 试比较欧氏、罗氏、黎氏几何的关系. (02')[2005—2006第二学期期末考试试题] 《高等几何》试题(A ) 一、 填空题(每题3分共15分)1、 是仿射不变量, 是射影不变量2、 直线30x y +=上的无穷远点坐标为3、 过点(1,i,0)的实直线方程为4、 二重元素参数为2与3的对合方程为5、 二次曲线22611240x y y -+-=过点(1,2)P 的切线方程 二、 判断题(每题2分共10分)1、两全等三角形经仿射对应后得两全等三角形 ( )2、射影对应保持交比不变,也保持单比不变 ( )3、一个角的内外角平分线调和分离角的两边 ( )4、欧氏几何是射影几何的子几何,所以对应内容是射影几何对应内容的子集 ( )5、共线点的极线必共点,共点线的极点必共线 ( )三、(7分)求一仿射变换,它使直线210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2)四、(8分)求证:点 (1,2,1),(1,1,2),(3,0,5)A B C --三点共线,并求,t s使,(1,2,3)i i i c ta sb i =+=五、(10分)设一直线上的点的射影变换是/324x x x +=+证明变换有两个自对应点,且这两自对应点与任一对对应点的交比为常数。

临沂大学高等几何期末考试试卷级参考答案

临沂大学高等几何期末考试试卷级参考答案

高等几何2021年12月期末考试试卷(1)一、单选题(共30题,60分)1、无穷远直线是()的集合A、直线上的无穷远点B、平面上的无穷远点C、空间中的无穷远点D、所有的无穷远点正确答案:B2、一个圆在平面上的射影图形是()A、圆B、椭圆C、线段D、圆或椭圆或线段正确答案:D3、直线上无穷远点的透视称为直线的()A、迹点B、主点C、站点D、灭点正确答案:D4、仿射几何的基本不变量是()A、交比B、单比C、距离D、角度正确答案:B5、欧式平面R2上的下列变换不是保距变换的是()A、平移变换B、轴对称变换C、旋转变换D、投影变换正确答案:D6、加上复元素以后的射影平面叫()A、实欧氏平面B、复欧氏平面C、实射影平面D、复射影平面正确答案:D7、射影平面上,一条n次曲线和一条m次曲线相交的点数(切点重复计算)恰好是()个。

这就是著名的Bezout定理。

A、m nnC、n/mC 、 1-iD 、1+i正确答案:c19、 任何代数曲线(也就是黎曼曲面)都可以投影到射影平面上,使得投影出来 的曲线最多只含有通常二重点作为()。

A 、 切点B 、 中心C 、 圆心D 、 奇点正确答案:D20、 在一个几何元素上为了能用直线或圆弧插补逼近该几何元素而人为分割的 点称为()正确答案:C21、 ()为仿射性质A 、 任何正交变换下保持不变的性质B 、 任何仿射变换下保持不变的性质C 、 任何射影变换下保持不变的性质D 、 任何仿射变换下保持不变的量正确答案:B22、 共轴复数相乘等于()A 、 常数B 、 纯虚数C 、 复数D 、 不能确定正确答案:A23、 不同平面坐标系统间常采用相似变换,其变换一般需要转换参数,求解转 换参数的个数以及至少需要公共点坐标的个数是()A 、 4、2B 、 4、4C 、 3、3D 、 2、2正确答案:A24、 欧式平面R2上的下列变换不是保距变换的是( )A 、 平移变换B 、 轴对称变换C 、 旋转变换D 、 投影变换正确答案:D断基节交 、 、 、、A B c D25、经过()且垂直于切线的直线必经过圆心.A、半径B、公共点C、圆心D、切点正确答案:D26、在使用节点电压法和回路电流法时,不改变互为()的元件的值,将会得到形式完全一样的对偶方程,从而得到相同的一组解。

高等几何测试题及答案

高等几何测试题及答案

高等几何测试题及答案一、选择题(每题5分,共20分)1. 在三维空间中,以下哪个几何体的体积是最小的?A. 正方体B. 球体C. 圆柱体D. 圆锥体答案:D2. 以下哪个定理是关于直线与平面关系的?A. 勾股定理B. 泰勒斯定理C. 毕达哥拉斯定理D. 欧拉定理答案:B3. 在欧几里得几何中,以下哪个图形是不可测量的?A. 线段B. 角度C. 面积D. 体积答案:B4. 以下哪个几何概念与曲面的曲率有关?A. 向量B. 张量C. 标量D. 矢量答案:B二、填空题(每题5分,共20分)1. 一个球体的表面积公式是_______。

答案:4πr²2. 一个圆柱体的体积公式是_______。

答案:πr²h3. 欧拉特征数对于一个球体的值是_______。

答案:24. 一个圆锥体的侧面积公式是_______。

答案:πrl三、解答题(每题15分,共30分)1. 证明:在三维空间中,任何两个不同平面的交线都是一条直线。

答案:略2. 解释并证明高斯-博内定理在曲面上的适用性。

答案:略四、计算题(每题15分,共30分)1. 计算半径为3的球体的体积。

答案:4/3π(3)³ = 36π2. 计算底面半径为4,高为5的圆柱体的表面积。

答案:2π(4)² + 2π(4)(5) = 32π + 40π = 72π结束语:以上为高等几何测试题及答案,希望同学们通过这些题目能够更好地理解和掌握高等几何的基本概念和定理。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案试题一:已知三角形ABC中,AB = AC,D为BC边中点,AD的延长线交BC于点E,且DE = DC。

证明:∠ABC = ∠ACD。

解析:首先,根据已知条件可得到以下几个等式:AB = ACDE = DC我们需要证明∠ABC = ∠ACD。

为了证明这个等式,我们可以利用三角形的相似性。

设∠ABC = α,∠ACD = β。

根据三角形ABC中的角度和为180°,我们可以得到∠BAC = 180°- 2α。

同样地,根据三角形ACD中的角度和为180°,我们可以得到∠CAD = 180° - 2β。

接下来,我们分别观察三角形ABD和三角形ACD。

在三角形ABD中,根据角度和的性质可得∠BAD = 180° - ∠BDA - ∠ABD = 180° - (180° - 2α) - α = α。

同时根据三角形ABD中的角度和为180°,我们可以得到∠ADB = 180° - ∠ABD - ∠BAD = α。

在三角形ACD中,根据角度和的性质可得∠CAD = 180° - ∠CDA - ∠ACD = 180° - (180° - 2β) - β = β。

同时根据三角形ACD中的角度和为180°,我们可以得到∠ACD = 180° - ∠ACD - ∠ACD = β。

由于 DE = DC,根据等腰三角形的性质可知三角形ACD和三角形CDE相似。

因此,我们可以得到以下等式:AC/CD = CD/DEAC/BC = BC/DC将已知条件代入上述等式,得到:AB/BC = BC/DCAB = AC由于 AB = AC,且 BC = BC,根据全等三角形的性质可知三角形ABC和三角形ACD全等。

因此,我们可以得到∠ABC = ∠ACD。

综上所述,已证明∠ABC = ∠ACD。

最新《高等几何》期末试卷B卷资料

最新《高等几何》期末试卷B卷资料

一、填空题(每空3分,共计30分)1.直线023321=-+x x x 上的无穷远点的坐标为 .2.射影变换'230λλλ--=自对应元素的参数为 .3.若两个线束间的对应是透视对应,则它们顶点的连线 .4.单比是 不变量.5.若交比(,)2AB CD =,则(,)AD BC = .6.若 ,则二阶曲线),(31,不全为零且ij ji ij j i j i ij a a a x x a S ==∑=为非退化的.7.直线上的点变换02)1(=-'+-'-x ax x x a 是射影变换时参数a 应满足的条件是 ,是对合时参数a 应满足的条件是 ,此时对合的类型是 .8.如果两个三点形的对应顶点连线共点,则这个点叫做 .二、判断题(对的打√,错的打×,每题2分,共计20分)1.已知两个线束的三对对应线,则可确定一个透视对应. ( )2.简单四点形的对偶图形为简单四线形. ( )3.一个角的两边与这个角的内外角分线调和共轭. ( )4.若两个点列的底相交,则这两个点列一定是透视点列. ( )5.两个三点形对应边的交点在一条线上.则对应顶点的连线交于一点.( )6.一角的平分线上的点到角的两边等距既是仿射性质又是射影性质.( )7.射影平面上的点的坐标有两种形式,即齐次形式与非齐次形式. ( )8.若二阶曲线的方程的左边可分解为两个一次因式的乘积. 则该二阶曲线是一定退化的. ( )9.一维射影变换包括双曲型、椭圆型及抛物型射影变换. ( )10.在仿射坐标系下,经过两点111222(,),(,)p x y p x y 的直线方程为1122x x y y x x y y --=--. ( )三、计算题(共计24分)1.(10分)证明四点)5,5,1(),0,0,1(),1,1,1(),1,1,2(---D C B A 共线,并求),(CD AB .2.(8分)求共点四线11:l y k x =,22:l y k x =,33:l y k x =,44:l y k x =的交比.3.(6分)求二阶曲线03231232221=-+-x x x x x 过点⎪⎪⎭⎫ ⎝⎛1,25,2P 的切线方程.四、(10分)试证:双曲型对合的任何一对对应元素 'P P →,与其两个二重元素E,F 调和共轭即(',PP EF )=-1.五、(10分)作出下列图形的对偶图形.六、(6分)已知线束中三直线,,a b c ,求作直线d ,使(,,,)1a b c d =-。

学历自考模拟试卷(专升本)《高等几何》期末考试试卷【附答案】

学历自考模拟试卷(专升本)《高等几何》期末考试试卷【附答案】

…………○…………内…………○…………装…………○…………订…………○…………线…………○………5.( B.1C.装订线内不许答题15.().A.B.C.D.16.().A. B.C.D.17.().A.B.C.D.18.().A.B.1C.D.19.()A. B.C.D.20.() A.B.C. D.二、填空题(本题共10小题,每题3分,共30.0分)21.直线=22.已知OX 轴上的射影变换式为,则原点的对应点为23.求射影变换的自对应元素的参数24.过点的实直线的齐次方程为25.ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则A(BC,DE)=26.平行四边形的仿射对应图形为27.两个线束点列成透视的充要条件是28.已知29.求点(1,-1,0)关于二阶曲线的极线方程30.直线上无穷远点坐标为三、问答题(本题共3小题,每题10.0分,共30.0分)1.求通过平面4x-y+3z-1=0与x+5y-z+2=0的交线且与平面垂直的平面方程(10.0分)2.(10分)3.试求L1与L2间的距离与它们的公垂线方程。

(10分)得分评卷人得分评卷人高等几何参考一、1-10 DACAD CACAD 11-20 BBBCB DDDDD二、填空1.答案:1.2.答案:-1/3. 3.答案:1.4.答案:.5.答案:-1.6.答案:平行四边形7.答案:底的交点自应8.答案:3,-29.答案:. 10.答案:(5,-1,0)三、1.2.3.。

某高校《高等几何》期末考试试卷(含答案)

某高校《高等几何》期末考试试卷(含答案)

某高校《高等几何》期末考试试卷(120分钟)一、填空题( 分⨯ 分)、平行四边形的仿射对应图形为: 平行四边形 ; 、直线0521=+x x 上无穷远点坐标为: ( , , )、已知3),(4321=l l l l 则=),(1234l l l l =),(4231l l l l 、过点 i - 的实直线的齐次方程为: 0231=-x x、方程065222121=+-u u u u 表示的图形坐标 ( ) ( )、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 31、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A、一点列到自身的两射影变换 ):21→,32→,43→; ):10→,32→,01→ 其中为对合的是:、求射影变换012'=+-λλλ的自对应元素的参数 、两个线束点列成透视的充要条件是 底的交点自对应、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC二、求二阶曲线的方程,它是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233,'x x x x λλ==。

将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

( 分)证明:三点形 和三点形C B A '''内接于二次曲线( ),设 C B '' C A '' B A '' D 'B A '' E ',则),,,(B A B AC '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线 ,B C '',A C '' 连同这两个点列的底,B A ''属于同一条二级曲线(C '),亦即三点形 和三点形C B A '''的边外切一条二次曲线。

52曲阜师范大学2020年成人高等教育 《微分几何》复习资料 期末考试试题及参考答案

52曲阜师范大学2020年成人高等教育 《微分几何》复习资料 期末考试试题及参考答案

《微分几何》复习资料1一判断题1. 曲面的结构方程指的是Gauss-Bonnet公式()。

2. 任何曲面上的直线都是测地线()。

3. 曲面的第一基本形式与参数的选取无关( )。

4. 圆柱面上的直线都是测地线()。

5. 两曲面的第二基本形式不同则其Gauss 曲率不同( )。

6. 如果一个一一对应保持两张曲面间的任意曲线的长度不变,则称该对应为这两个曲面的等距变换()。

7. 曲面的第一、二基本形式都与参数的选取无关( )。

8. 两曲面的第二基本形式与其主曲率没有关系( )。

9. 可以作为曲面的第一基本形式()。

0. 曲面的协变微分是平面上普通微分的推广( )。

二计算题1. 求曲面上曲线的曲率、沿此曲线切方向曲面的法曲率、以及此曲线的测地曲率.2. 求二次曲面的法曲率。

3. 求曲线在原点的密切平面、法平面、从切面、切线、主法线、副法线。

三问答题证明如果曲线的切线过定点,则该曲线一定是直线。

答案一判断题1-5 FTTTF 6-10 TFFFT二计算题1. 求曲面上曲线的曲率、沿此曲线切方向曲面的法曲率、以及此曲线的测地曲率.2. 求二次曲面的法曲率。

3. 求曲线在原点的密切平面、法平面、从切面、切线、主法线、副法线。

三问答题证明如果曲线的切线过定点,则该曲线一定是直线。

《微分几何》 复习资料2一、计算题1、在曲线x = cos αcost ,y = cos αsint , z = tsin α的副法线的正向取单位长,求其端点组成的新曲线的密切平面。

2、已知曲线}2cos ,sin ,{cos 33t t t r =ρ,⑴求基本向量γβαρρρ,,;⑵曲率和挠率。

3、求出抛物面)(2122by ax z +=在(0,0)点沿方向(dx:dy)的法曲率。

4、求曲面(cos ,sin ,)r u u v =r上曲线u v =的曲率、沿此曲线切方向曲面的法曲率、以及此曲线的测地曲率. 二、证明题1、证明曲面234212(,2,)33r u v u uv u u v =+++r是可展曲面。

高等几何试题及参考答案

高等几何试题及参考答案
5. (6分)求由两个射影线束 , , 所构成的二阶曲线的方程。
6. (8分)试求二次曲线Γ: +2x1x3-4x2x3=0的中心与渐近线。
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉
填空题(每小题4分,共20分)
1(4分)
如果两个三线形对应边的交点在一条直线上,则对应顶点的连线交于一点。(4分)
2(4分)
射影群包含仿射群,仿射群包含相似群,相似群包含正交群(4分)
(4分)
选择题(每小题2分,共10分)
1.( D),2.( C),3.(B),4.( A),5.( B)
判断题(每小题2分,共10分)
1.(×),2.(√),3.(×),4.(√),5.(√)
作图题(8分)

1


4

作法过程:
1、设a,b,c交于点A,在c上任取一点C,(2分)
四、作图题(8分)
已知线束中三直线a,b,c,求作直线d,使(ab,cd)=-1。(画图,写出作法过程和根据)
五、证明题(10分)
如图,设FGH是完全四点形ABCD对边三点形,过F的两直线TQ与SP分别交AB,BC,CD,DA于T,S,Q,P.试利用德萨格定理(或逆定理)证明:TS与QP的交点M在直线GH上。
(3) (2分)
(8分)
解:笛氏坐标0 2 3 x
射影坐标:P*P0Eλ
(i)由定义λ=(P*P0,EP)=(2 0,3x)=
(4分)
(ii)若有一点它的两种坐标相等,即x=λ则有 ,即3x2-7x=0,
∴当x=0及x= 时两种坐标相等。(4分)
(8分)
设射影变换的方程为: (2分)

高等几何期末考试试卷

高等几何期末考试试卷

北京师范大学珠海分校期末考试试卷开课单位:应用数学学院课程名称:高等几何任课教师:hj考试类型:闭卷考试时间:120分钟学院___________班级____________姓名___________学号______________题号一二三总分得分阅卷人试卷说明:(本试卷共4页,满分100分)------------------------------------------------------------------------------------------------------一、填空题:(每题4分,共20分.请把答案填在题中横线上.)1.正交变换的基本不变量是.仿射变换的基本不变量是.射影变换的基本不变量是.射影变换的基本不变形是.2.若(P1P2,P3P4)=3,则(P1P2,P4P3)=.(P1P3,P2P4)=.(P2P3,P1P4)=.(P3P1,P2P4)=________.3.两个射影点列成透视对应充要条件是.两个射影线束成透视对应充要条件是.4.“若两个完全四线形的五对对应顶点连线通过同一点,则其第六对对应顶点的连线也通过此点,其四对对应边交点必共线”的对偶命题为.5.直线3x-y+3=0上无穷远点的坐标,其方程为.二、作图题,要求写出简单步骤。

(每题5分,共10分.)1.做出下列图形的对偶图形.2.已知两个射影点列的三对对应点,求作其他对应点。

三、计算题:要求写出主要计算步骤(每题10分,共60分)1.已知四点A(1,2,3),B(5,-1,2),C(11,0,7),D(6,1,5),验证它们共线,并求(AB,CD)的值.2.设直线l上的点P(-1),Q(0),R(1)经射影对应,顺次对应l’上的点P’(0),Q’(1),R’(3)求射影对应式。

.3.已知对合的两对对应点的参数为1→21,0→2,求对合的方程和二重点的参数.4.求射影变换{{{332211'''x px x px x px ﹣﹣﹣===的不变点坐标.5.求由两个射影对应02'λλ3'λλ=++-的线束x1-0'2,0331==x x x x λλ--所构成的二阶曲线的方程.6.求二阶曲线0232232212=++x x x x x -经过P(1,1,0)的切线方程.四、证明题:要求写出详细的推理证明步骤.任意四边形各对对边中点的连线与二对角线中点的连线相交于一点.。

《高等几何》期末试卷B卷

《高等几何》期末试卷B卷

此卷使用班级为:数学系2011级数学与应用数学专业本科班-----------------------------装-------------------------------------订------------------------------- 一、填空题(每空3分,共计30分)1.直线023321=-+x x x 上的无穷远点的坐标为 .2.射影变换'230λλλ--=自对应元素的参数为 .3.若两个线束间的对应是透视对应,则它们顶点的连线 .4.单比是 不变量.5.若交比(,)2AB CD =,则(,)AD BC = .6.若 ,则二阶曲线),(31,不全为零且ij ji ij j i j i ij a a a x x a S ==∑=为非退化的.7.直线上的点变换02)1(=-'+-'-x ax x x a 是射影变换时参数a 应满足的条件是 ,是对合时参数a 应满足的条件是 ,此时对合的类型是 . 8.如果两个三点形的对应顶点连线共点,则这个点叫做 .二、判断题(对的打√,错的打×,每题2分,共计20分)1.已知两个线束的三对对应线,则可确定一个透视对应. ( )2.简单四点形的对偶图形为简单四线形. ( )3.一个角的两边与这个角的内外角分线调和共轭. ( )4.若两个点列的底相交,则这两个点列一定是透视点列. ( )5.两个三点形对应边的交点在一条线上.则对应顶点的连线交于一点.( )6.一角的平分线上的点到角的两边等距既是仿射性质又是射影性质.( )7.射影平面上的点的坐标有两种形式,即齐次形式与非齐次形式. ( )8.若二阶曲线的方程的左边可分解为两个一次因式的乘积. 则该二阶曲线是一定退化的. ( )9.一维射影变换包括双曲型、椭圆型及抛物型射影变换. ( )10.在仿射坐标系下,经过两点111222(,),(,)p x y p x y 的直线方程为1122x x y y x x y y --=--. ( )此卷使用班级为:数学系2011级数学与应用数学专业本科班-----------------------------装-------------------------------------订-------------------------------线----------------------------姓名: 班级: 三、计算题(共计24分)1.(10分)证明四点)5,5,1(),0,0,1(),1,1,1(),1,1,2(---D C B A 共线,并求),(CD AB .2.(8分)求共点四线11:l y k x =,22:l y k x =,33:l y k x =,44:l y k x =的交比.3.(6分)求二阶曲线03231232221=-+-x x x x x 过点⎪⎪⎭⎫ ⎝⎛1,25,2P 的切线方程. 四、(10分)试证:双曲型对合的任何一对对应元素 'P P →,与其两个二重元素E,F 调和共轭即(',PP EF )=-1.五、(10分)作出下列图形的对偶图形.六、(6分)已知线束中三直线,,a b c ,求作直线d ,使(,,,)1a b c d =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某高校《高等几何》期末考试试卷
(120分钟)
一、填空题(2分⨯12=24分)
1、平行四边形的仿射对应图形为: 平行四边形 ;
2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)
3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -2
4、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x
5、方程0652
2
2121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-=
x x x ,则原点的对应点 -3
1
7、求点)0,1,1(-关于二阶曲线0547533231212
322
21=+++++x x x x x x x x x 的极线方程063321=++x x x
8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -1 9、一点列到自身的两射影变换a ):21→,32→,43→; b ):10→,32→,
01→ 其中为对合的是: b
10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件是 底的交点自对应
12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1
二、求二阶曲线的方程,它是由下列两个射影线束所决定的:
130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233
,'x x x x λλ=
=。

将它们代入射影对应式并化简得,
2
122313320x x x x x x x +-+=
此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10分)
证明:三点形ABC 和三点形C B A '''内接于二次曲线(C ),设 AB I C B ''=D AB I C A ''=E B A ''I BC=D ' B A '
'I AC=E ',则),,,(B A B A C '''∧),,,(B A B A C ''所以,
),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B
即),E ,D ,(B A ∧)D ,,,E (''''A B
这两个点列对应点的连线AC ,B C '',A C '',BC 连同这两个点列的底AB ,
B A ''属于同一条二级曲线
(C '),亦即三点形ABC 和三点形C B A '''的边外切一条二次曲线。

四、已知四直线1l ,2l ,3l ,4l 的方程顺次为12x -2x +3x =0,13x +2x -32x =0, 17x -2x =0,
15x -3x =0, 求证四直线共点,并求(1l 2l ,3l 4l )的值。

(10分)
解:因为
1
7213
112---=0且1
5
01
7213---=0
所以1l ,2l ,3l ,4l 共点。

四直线与x 轴(2x =0)的交点顺次为A(1,0,-2),B(2,0,3),C(0,0,1),D(1,0,5),非齐次坐标为A(-21,0),B(32,0),C(0,0),D(51
,0), 所以 (1l 2l ,3l 4l )=(AB ,CD )=
)
2
151)(320()
3251)(210(+--+=21
五、求两对对应元素,其参数为12
1

,0→2,所确定的对合方程。

(10分)
解 设所求为
a λλ'+b(λ+λ')+d=0 ①
将对应参数代入得:
21a+(1+2
1
)b+d=0 ②
(0+2)b+d=0 ③
从①②③中消去a,b,d 得
1
2
0123211
λλλλ'+'=0
即λλ'+λ+λ'-2=0为所求
六、求直线32163x x x +-=0关于212
2212x x x x -++231x x -632x x =0之极点。

(12分)
解:设0p (030201,,x x x )为所求,则
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----031311111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡03020
1x x x =⎥⎥
⎥⎦⎤

⎢⎢⎣⎡-613解线性方程组
⎪⎪⎩
⎪⎪⎨⎧=--=-+-=+-6133020103020
10
30201x x x x x x x x 得即,1,1,3030201-=-==x x x (3,-1,-1)为
所求极点的坐标
七、叙述帕萨卡定理的内容并证明其定理。

(12分)
定理:内接于二阶曲线的简单六点形,三对对应边的交点在同一直线上。

证明:设简单六点形654321A A A A A A ,其三对对边的交点分别为L ,M ,N ,
L= 21A A I 54A A ,M=32A A I 65A A ,N=43A A I 16A A 以1A ,3A 为中心,分别连接其他四点,则由定理得到()65421A A A A A ∧()65423A A A A A 设P A A A A =5421I ,
Q A A A A =4365I
则()65421A A A A A ∧()P A A L 54,,,()65423A A A A A ∧()65,,A A Q M
所以,()P A A L 54,,∧()65,,A A Q M 由于两个点列底的交点5A →5A ,故有 ()P A A L 54,,∧()65,,A A Q M
所以LM ,Q A 4,5PA 三点共点,但Q A 4I 5PA =N, 即L ,M ,N 三点共线。

八、用两种方法求双曲线042322
2
=-+-+y x xy y x 的渐近线方程。

(12分)
解:方法一
设渐近线的方程为
0)3
23
2
22
1
12
3
13
2
12
1
11
(=+++++x a x a x a k x a x a x a
根据公式得 01232=++-k k
解之,得3
1
,121-==k k ,所以渐近线方程为
0)23(1=--+++y x y x 和
0)23(3
1
1=---++y x y x
化简,得所求为
2x-2y-1=0 和2x+6y+5=0
方法二
先求出中心,因为
131=A ,332=A ,433-=A
所以中心为⎪⎭

⎝⎛--43,41C 代入公式得渐近线方程
03433434124
3412
2
=-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛
++⎪⎭
⎫ ⎝
⎛+⎪⎭
⎫ ⎝⎛+y x y y x
分解因式得
⎪⎭⎫ ⎝⎛
+41x -⎪⎭⎫ ⎝⎛+43y =0
⎪⎭⎫ ⎝

+41x +⎪⎭

⎝⎛+
433y =0 化简,得所求为
2x-2y-1=0 和2x+6y+5=0。

相关文档
最新文档