几何中的最值问题
几何中的最值问题
几何中的最值问题(讲义)一、知识点睛几何中最值问题包含:“面积最值”及“线段(和、差)最值” .求面积的最值,需要将面积表完成函数,借助函数性质联合取值范围求解;求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等有关定理转变办理.一般办理方法:线段和(周长)最小线段差最大线段最大(小)值平移平移转变对称对称结构三角形旋转旋转使点在线异侧使点在线同侧使目标线段与定长(以下列图)(以下列图)线段构成三角形两点之间,线段最短三角形三边关系定理垂线段最短三点共线时获得最值常用定理:两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系(已知两边长固定或其和、差固准时)BAAB'lP lPB'BPA+PB最小,|PA-PB|最大,需转变,使点在线异侧需转变,使点在线同侧二、精讲精练1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正幸亏杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁抵达蜂蜜的最短距离为______cm.1A蚂蚁AMP蜂蜜ON B第1题图 第2题图如图,点P 是∠AOB 内必定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32, 则△PMN 周长的最小值为 .如图,正方形ABCD 的边长是4,∠DAC 的均分线交DC 于点E ,若点P ,Q 分别是AD 和 AE 上的动点,则 DQ +PQ 的最小值为 .A PD ADQEKQBCBPC第3题图第4题图如图,在菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任 意一点,则PK +QK 的最小值为.5.如图,当四边形 PABN 的周长最小时, a = .y y BCP(a,0)N(a+2,0) O x D B(4,-1)A(1,-3)OEFAx第5题图第6题图26.在平面直角坐标系中,矩形OACB的极点O在座标原点,极点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D 为边OB的中点.若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,则点 F的坐标为.如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则PA PB的最大值等于.A yB AO B xM D P C N第7题图第8题图点A、B均在由面积为1的同样小矩形构成的网格的格点上,成立平面直角坐标系如图所示.若P是x轴上使得PA PB的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OPOQ=.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________.ACF DE MB P CA P B第9题图第10题图如图,已知AB=10,P是线段AB上随意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.11.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.若将△中边的长度改为22,另两边长度不变,则点P到原点的最大距离变成ABP PA_________.3几何中的最值问题yB A'CBPPOA xA QD第11题图第12题图12.着手操作:在矩形纸片ABCD中,AB=3,AD=5.以下图,折叠纸片,使点A落在BC边上的′处,折痕为,当点′在边上挪动时,折痕的端点、也随之挪动.若A PQ A BC PQ限制点P、Q分别在AB、AD边上挪动,则点A′在BC边上可挪动的最大距离为.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.(1)当P落在线段CD上时,PD的取值范围为;(2)当P落在直角梯形ABCD内部时,PD的最小值等于.D P CFA E BD C D CFP14.15.A E B A B16.17.18.在△ABC中,∠BAC=120°,AB=AC=4,M、N两点分别是边AB、AC上的动点,将△AMN沿MN翻折,A点的对应点为A′,连结BA′,则BA′的最小值是_________.4AM NA'B C几何中的最值问题(作业)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC均分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是__________.A DD CPPA EB BQ C第1题图第2题图在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连结PB、PQ,则△PBQ周长的最小值为____________cm(结果不取近似值).3.如图,一副三角板拼在一同,O为AD的中点,AB=a.将△ABO沿BO对折于△A′BO,点M为BC上一动点,则 A′M的最小值为.A60°COB DD45°A'MMBC A N第3题图第4题图4.如图,在锐角△ABC中,AB42,∠BAC=45°,∠BAC的均分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值为___________.5.6.7.8.9.在Rt△ACB中,∠ACB=90°,AC=6,BC=8,P、Q两点分别是边AC、BC上的动点,将△PCQ沿PQ翻折,C点的对应点为C',连结AC',则AC'的最小值是_________.5yABC'CPC Q B O A x第5题图第6题图6.如图,在△ABC中,∠ACB=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是.7.一次函数y1=kx-2与反比率函数y2=mA,B两错误!未找到引用源。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
几何最值问题解题技巧
几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。
解决这类问题需要一定的技巧和策略。
以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。
2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。
3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。
4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。
5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。
6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。
7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。
8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。
以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。
在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。
几何图形中的最值问题
几何图形中的最值问题引言:最值问题可以分为最大值和最小值。
在初中包含三个方面的问题:1.函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。
2.不等式: ①如x ≤7,最大值是7;②如x ≥5,最小值是5.3.几何图形: ①两点之间线段线段最短。
②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。
一、最小值问题例1. 如图4,已知正方形的边长是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。
解: 作点D 关于AC 的对称点D /,则点D /与点B 重合,连BM,交AC 于N ,连DN ,则DN+MN 最短,且DN+MN=BM 。
∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM=6822 =10,∴DN+MN 的最小值是10。
例2,已知,MN 是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300,B 是弧AN 的中点,P 是MN 上的一动点,则PA+PB 的最小值是解:作A 点关于MN 的对称点A /,连A /B,交MN 于P ,则PA+PB 最短。
连OB ,OA /,∵∠AMN=300,B 是弧AN 的中点, ∴∠BOA /=300, 根据对称性可知 ∴∠NOA /=600, ∴∠MOA /=900, 在Rt △A /BO 中,OA /=OB=1, ∴A /B=2 即PA+PB=2图4CDMNMMNB例3. 如图6,已知两点D(1,-3),E(-1,-4),试在直线y=x 上确定一点P ,使点P 到D 、E 两点的距离之和最小,并求出最小值。
解:作点E 关于直线y=x 的对称点M , 连MD 交直线y=x 于P ,连PE , 则PE+PD 最短;即PE+PD=MD 。
∵E(-1,-4), ∴M(-4,-1),过M 作MN ∥x 轴的直线交过D 作DN ∥y 轴的直线于N , 则MN ⊥ND, 又∵D(1,-3),则N(1,-1),在Rt △MND 中,MN=5,ND=2, ∴MD=2522+=29。
初中几何最值问题常用解法
初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。
以下将介绍9种常用的解法,帮助您更好地理解和学习。
一、轴对称法轴对称法是一种常用的解决最值问题的方法。
通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。
二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。
例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。
三、两点之间线段最短两点之间线段最短是几何学中的基本原理。
在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。
四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
利用这个关系,可以解决一些与三角形相关的最值问题。
五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。
通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。
六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。
利用这个不等式,可以解决一些与数列相关的最值问题。
七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。
例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。
八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。
例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。
九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。
利用几何变换的方法,可以解决一些与图形变换相关的最值问题。
例如,在矩形中,要使矩形的面积最大。
初中几何最值问题类型
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
初中几何最值问题解题技巧
初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。
下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。
例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。
2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。
例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。
利用这些不等式,可以推导出一些关于几何元素的最值关系。
3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。
例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。
对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。
4.利用几何定理:几何定理是解决几何最值问题的有力工具。
例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。
对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。
5.利用数形结合:数形结合是解决几何最值问题的常用方法。
通过将几何问题转化为代数问题,可以更容易地找到问题的解。
例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。
以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。
几何最值问题常用解法初二
几何最值问题常用解法初二几何最值问题是指在给定的几何条件下,求解出某个量的最大值或最小值。
这类问题在数学竞赛和应用问题中经常出现,对学生的综合能力和解题能力提出了要求。
下面将介绍几何最值问题常用的解法。
一、勾股定理求解最大值勾股定理是几何最值问题中应用最广泛的方法之一。
根据勾股定理,对于任意一个直角三角形,斜边的平方等于两直角边的平方和。
因此,当已知两条边的长度时,可以通过勾股定理求解另一条边的最大值或最小值。
例题1:在直角三角形ABC中,已知AB=3,BC=4,求AC的最大值。
解法:根据勾股定理,AC的平方等于AB的平方加BC的平方,即AC^2=3^2+4^2=9+16=25。
所以AC的最大值为5。
例题2:在直角三角形ABC中,已知AB=5,AC=13,求BC的最小值。
解法:根据勾股定理,BC的平方等于AC的平方减去AB的平方,即BC^2=13^2-5^2=169-25=144。
所以BC的最小值为12。
二、三角形面积法求解最大值三角形面积公式是几何最值问题中常用的方法之一。
根据三角形面积公式,三角形的面积等于底边乘以高的一半。
因此,当已知底边和高的一半时,可以通过三角形面积公式求解三角形面积的最大值或最小值。
例题3:已知一个三角形的底边长是6,高的一半是5,求这个三角形的最大面积。
解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即面积=6*5=30。
所以这个三角形的最大面积是30。
例题4:已知一个三角形的底边长是10,面积是24,求这个三角形的最小高。
解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即24=10*高/2,解得高=4.8。
所以这个三角形的最小高是4.8。
三、相似三角形属性求解最大值相似三角形属性是几何最值问题中常用的方法之一。
相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的边长之比等于对应边的比值,面积之比等于对应边长的平方的比值。
例题5:已知两个相似三角形的面积分别是16和25,求这两个相似三角形的边长之比。
几何中的最值问题
2.A、B两点在直线 l的同侧,在直线l上取一点P, 使PA+PB最小。
3.已知线段AB=5,点C是以B为圆心,以2为半径的圆 上任意一点,则线段AC的最大值是 ,最小值是 。
1、在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上, 求PE与PC的长度和的最小值。
。
4、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别 在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在 运动过程中,点B到原点的最大距离是 。
5、在Rt△ABC中,∠ACB=90°,BC=6,AC=12,点D在边AC上 (不与A,C重合)且AD=4,连结BD,,将线段AD绕点A旋转, 点F始终为BD中点,求线段CF长度的最大值和最小值。
2、已知边长是2的正三角形,两顶点分别在平面直角坐标系的x轴、 y轴的正半轴上滑动,点C在第一象限,连结 OC,则OC的长的 y C 最大值是____________
B x
O
A
2. 在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分 OB 4 别在轴、轴的正半轴上, ,D为边OB的中点.若E为OA边 OA 3, 上的一个动点,求△的周长的最小值。
3.在△ABC中,∠ACB=90°,AC=1,AB=2.将△ABC绕顶 点C顺时针旋转得到△A′B′C,取AC中点E,A′B′中点P, 连接EP,则在旋转过程中线段EP的最大是 ,最小值是
求两条线Байду номын сангаас之和最小或运动变化中的某一条线段 的最值,通常依据两点之间线段最短,借助于做对称 点或构造三角形来解决,共同点是共线时得到最大值 或最小值。
几何最值36问(附详解)
C
【解析】如图,取△AEF 的外心 O,连接 OA、OF、OE,
则 OA=OE=OF,且∠FOE=2∠FAE=60°,
∴△OEF 为等边三角形,
过 O 作 OG⊥EF 于点 G,交 AB 于点 H,
F
G
E
设 EF=2x,则 HD=GE=x,AH=4-x,而 OA=2x,
由“斜垂大法”可知 OA≥AH,
Q
∴PQ= 2PF,∴PQ+PD≥DQ=4,
∴ 2PF+PD=PQ+PD≥DQ=4.
F
或由托勒密不等式可得:
P
PF·AD+AF·PD≥AP·DF,而 AD= 2AF= 2DF,
∴ 2PF+PD≥AP=4.
A
B
D
(14)若∠CAE=30°,AD=4,过 E 作 EF∥AD 交 AC 于点 F,求 EF 的最小值;
【答案】2 6+2 2
C
【解析】如图,把△DPC 绕点 D 顺时针旋转 60°至△DQR,连接 PQ,AR,
则 QR=PC,且△PDQ 为等边三角形,
∴PQ=PD,
R
Q
∴PA+PD+PC=PA+PQ+QR≥AR,
P
过 R 作 RS⊥AB 于点 S,
则 RS=12RD=2,DS= 3RS=2 3,
A
D
过点 E 作 EG⊥CF 于 G,过点 A 作 AS⊥CF 于 S,则 EG=12CE,
∴AS+EG≤AE,
∴AE-EG≥AS,
I
H
G
∴ID=3 = 43 3,
∴AI=AD-ID=6-43
∴AS=
3
AI=3
2
D
A
∵AD=6,CD=4,
初中几何最值问题归纳
初中几何中的最值问题主要涉及到求解图形的最大值或最小值,以下是一些常见的几何最值问题的归纳:
1.矩形最大面积:给定一定的周长,求解能够构成的矩形中面积最大的情况。
这个
问题可以通过对矩形的边长关系进行分析和求导来解决。
2.三角形最大面积:给定一条固定的边长和该边对应的高,求解能够构成的三角形
中面积最大的情况。
通常使用面积公式和高度相关的关系进行求解。
3.圆内接多边形最大面积:给定一个圆,求解能够内接于该圆的正多边形中面积最
大的情况。
通过分析正多边形的边长和面积的关系,可以求解最值。
4.直线与曲线的最短距离:给定一条直线和一条曲线,求解离直线最近的曲线上的
点。
这个问题可以通过计算点到直线的距离并求最小值来解决。
5.圆与线段的最大面积:给定一条线段,求解能够与该线段构成的圆中面积最大的
情况。
这个问题可以通过计算圆的面积与半径的关系进行求解。
这些是初中几何中常见的最值问题的归纳,每个问题都有不同的解题方法和技巧。
在解决这些问题时,需要灵活运用几何知识和数学推理,结合具体的题目条件进行分析和求解。
几何最值问题
几何最值问题【知识梳理】“最值”问题:就是求一个变量在某范围内取最大或最小值的问题。
与几何有关的最小值(或最大值)问题,是几何计算问题的重要题型.由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.1.求最值问题的基本方法:(1)特殊位置与极端位置法;(2)利用函数模型求最值(3)几何定理(公理)法;①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。
【典型例题】【例1】如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD 和AB上的动点,则BM+MN的最小值是____.【牛刀小试】如图,锐角△ABC的边AC=6,△ABC的面积为15,AD平分∠BAC交BC于D,M,N分别是AD和AB上的动点,则BM+MN的最小值是.【例2】如图所示,正方形ABCD的面积为12,ABE△是等边三角形,点E在正方形ABCD内,在对的和最小,则这个最小值为()角线AC上有一点P,使PD PEA.23B.26C.3 D.6A DPEB C【牛刀小试】1、如图,已知△ABC为等腰直角三角形,AC=BC=8,点D在BC上,CD=2,E为AB 边上的动点,则△CDE周长的最小值是.2、如图,在Rt△ABC中,AB=BC=6,点E,F分别在边AB,BC上,AE=3,CF=1,P是斜边AC上的一个动点,则△PEF周长的最小值为.【例3】如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________;若将△2,另两边长度不变,则点P到原点的最大距离变为________.ABP的PA边长改为2【牛刀小试】如图6,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,两顶点A、B分别在直角坐标系的X 轴、Y轴的正半轴上滑动,点C在第一象限,连接OC,已知OC的长最大值存在,则这个最大值的数值 .【例4】如图8,梯形ABCD 中,AD//BC ,BE 平分∠ABC,且BE⊥CD 于E ,P 是BE 上一动点。
解析几何中的最值问题
x6 是动点(x, y)与 定点(6,12)两点连 线的斜率
x y 36 (x 0)
2 2
y
P(6,12)
o
A(0,6)
x
解法小结:数形结合法
y 12 1 、 已知实数x, y满足 x 36 y 0, 则 3 x6 6 4 的最大值为 _______, 2 x y的最大值为 ________ 。
x
x y 例3.设实数x,y满足 1 16 9 12 2 , 则3x 4 y的最大值是 ______
12 2 . 最小值是 _______
2
2
y
O
x
解1 :换元法。 设x 4 cos , y 3 sin , 则
知识迁移
若将椭圆换成 双曲线、抛物线 又如何进行换元 呢?
3x 4 y 12(cos sin )
方法:数形结合法
Q1
| AF 1 | 16
7,
.
Y
.
F
O
. .
A
| QF | 。
X
F1
总结规律:延长线段AF1(F1为另一焦点)与 椭圆的交点Q就是所求的点。AQ过另一焦点F1!
Q
例3备
知识迁移
x2 y2 1的右焦点,P是其上一点,定点B(2,1). 变 F是 25 9 17 式 5 | PB | | PQ | 4 题 则 | PB | | PF | 的最小值 _______; 4 37 10 37 最大值 10 | PB | | PF | 的最小值 ________, _______
几何法、换元法
3 表示点P (cos , sin )与A( ,2)连线斜率的一半. 2 3 2 2 即圆x y 1上点与A( ,2)连线斜率的一半. 2 y A 3 设切线方程y 2 k ( x ), 2 圆心O(0,0)到切线的距离等于半径1 可解得 k 12 2 21 , k 12 2 21 O 5 5 x
初中数学几何最值问题(将军饮马、将军过河、费马点、隐圆、瓜豆、胡不归、阿氏圆)
1、如图,在直线上找一点P使得PA+PB最小?2、【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B3、【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
BB4、【一定两动之点线】在OA、OB上分别取M、N使得PM+MN最小。
BB【将军过桥】1.已知将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?2.已知A 、B 两点,MN 长度为定值,求确定M 、N 位置使得AM +MN +NB 值最小?军营河1.如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.x2.如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CDEFM几何图形中的将军饮马正方形中的将军饮马1. 如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值是___________.NMD CBA2.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)3.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( )PDCBAA .4B .5C .6D .7三角形中的将军饮马1.如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.A BCDMN2. 如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( )E AFCDBA .3B .4C .33D .233. 如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( )NMDCBAA .3B .2C .23D .44.如图,△ABC 中,∠BAC =75°,∠ACB =60°,AC =4,则△ABC 的面积为_;点D ,点E ,点F 分别为BC ,AB ,AC 上的动点,连接DE ,EF ,FD ,则△DEF 的周长最小值为 .矩形、菱形中的将军饮马1. 如图,在菱形ABCD 中,AC=BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( )EPDCBAMA .6 B.C.D .4.52.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)33.如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB的最小值为( )DCBAPA. B.C.D4.如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )H FGEDCB AA.B. C. D.特殊角的对称1. 如图,∠AOB =60°,点P 是∠AOB 内的定点且OPM 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )ABMOPNABC .6D .32. 如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .x3. 如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为____________.求两线段差的最大值问题基本图形解析:在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A-P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
初中几何中的最值问题
初中几何中的最值问题初中几何中的最值问题是指在几何图形中寻找某个量的最大值或最小值的问题。
这些问题通常涉及到面积、周长、角度等几何量。
一般来说,解决初中几何中的最值问题需要掌握以下基本方法:1. 利用代数方法求解有时候,我们可以将几何图形转换为代数式,然后通过求导或者求平方等方法来求解。
例如,在矩形中,当周长一定时,面积最大;当面积一定时,周长最小。
我们可以设矩形的长为x,宽为y,则周长为2(x+y),面积为xy。
当周长一定时,即2(x+y)=k(k为常数)时,可以将y表示成x的函数:y=k/2-x,则面积S=x(k/2-x)=kx/2-x^2。
对S求导得到S'=k/2-2x=0,则x=k/4。
因此,在周长一定时,矩形的长和宽相等时面积最大。
2. 利用平均值不等式平均值不等式是一个重要的不等式,在初中几何中也经常被使用。
该不等式表明对于任意两个正实数a和b,有(a+b)/2>=sqrt(ab)。
例如,在三角形ABC中,如果要求最小的边长,则可以利用平均值不等式:设三角形边长分别为a、b、c,则有a+b>c,b+c>a,c+a>b。
将这三个不等式相加得到2(a+b+c)>a+b+c,则a+b+c>0。
因此,(a+b+c)/3>=sqrt(abc),即(a+b+c)>=3sqrt(abc)。
因此,当三角形的面积一定时,其边长之和最小。
3. 利用相似性质有时候,在几何图形中,我们可以利用相似性质来求解最值问题。
例如,在等腰三角形ABC中,如果要求最大的高,则可以利用相似三角形的性质:设高线AD与BC交于点E,则有AE/ED=BE/EC=AB/BC=2/1。
因此,AE=2ED,BE=2EC。
又因为AD是等腰三角形的高线,所以BD=DC。
则DE=BD-BE=(1/3)BC。
因此,在等腰三角形ABC中,高线对应底边的比值为2:1时,高线最大。
综上所述,在初中几何中解决最值问题需要掌握代数方法、平均值不等式和相似性质等基本方法,并且需要在实际问题中灵活应用这些方法来求解各种复杂的问题。
动点产生的几何最值问题大全
动点产生的几何最值问题大全
动点产生的几何最值问题是数学中一类比较有挑战性的问题,通常涉及到几何图形中的动点以及与之相关的最值情况。
以下是一些常见的动点产生的几何最值问题类型:
1. 最短路径问题:在给定的几何图形中,寻找动点到某个点或线段的最短路径。
这可以涉及到直线、圆、多边形等图形。
2. 最大面积问题:确定动点在几何图形中移动时,如何使形成的图形面积最大。
例如,求动点构成的三角形、矩形等的最大面积。
3. 最长线段问题:找到在特定条件下,动点所形成的最长线段。
4. 最短时间问题:考虑动点在移动过程中,如何以最短时间到达目标点。
5. 最优位置问题:确定动点在几何图形中的最优位置,使得某个目标函数达到最大或最小值。
6. 角度最值问题:探究动点在运动过程中,相关角度的最大或最小值。
7. 对称问题:利用对称性质来解决与动点相关的最值问题。
这些只是一些常见的类型,实际问题可能更加复杂和多样化。
解决动点产生的几何最值问题通常需要结合几何学的知识、定理和方法,以及对运动轨迹和约束条件的分析。
具体的解决方法会根据问题的具体情况而有所不同。
高三数学立体几何中的最值问题四则
立体几何中的最值问题四则1. 用配方法求距离的最值例1. 如图1,正方形ABCD 、ABEF 边长都是1,且平面ABCD 、ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM BN a a ==<<()02。
试求当a 为何值时,MN 的值最小。
图1分析:此题的解题关键是想用含a 的代数式表示距离,再用配方法求最值。
解:过M 作MH AB ⊥,垂足为H ,连结NH ,如图1所示。
在正方形ABCD 中,AB CB ⊥, 所以BC MH //,因为平面AC ⊥平面AE ,所以MH ⊥平面AE ,即MH NH ⊥。
因为CM BN a AB CB BE =====,1,所以AC BF ==2 即AM a =-2, MH AH a BH a ==-=12222,, 由余弦定理求得NH a =22。
所以MN MH NH =+22=-+=-+=-+<<()()()()12222212212022222a a a a a a当a =22时,MN =22,即M 、N 分别移到AC 、BF 的中点时,MN 的值最小,最小值为222. 结合实际找最值位置例2. 在一X 硬纸上,抠去一个半径为3的圆洞,然后把此洞套在一个底面边长为4,高为6的正三棱锥A —BCD 上,并使纸面与锥面平行,则能穿过这X 纸面的棱锥的高的最大值是________。
图2解:如图2所示,假设硬纸上的圆洞刚好卡在B'C'D'处。
设正三棱锥A BCD -的顶点A 在平面BCD 上的射影为A',在平面B'C'D'上的射影为O 。
连结BA'、B'O 并延长分别交CD 、C'D'于E 、E'点,则平面B C D '''//平面BCD ,所以B E BE BC BC''''=, B E B O BE BA ''''==3232,, 即B O BA B C BC ''''=。
几何最值问题的常用解法
几何最值问题的常用解法
x
一、几何最值问题
几何最值问题是指:在一定的几何约束条件下,找出可以达到最大值或最小值的所有结果的问题。
它实际上是数学分析中的一类特殊的最优化问题。
二、常用解法
1、极值法:
极值法称为求解几何最值问题的一种最常见的方法,它是利用函数的数学性质,对函数的参数变量进行变化,来求解函数中极值点的位置的方法。
2、数学最优化法:
数学最优化法是指使用约束条件,或者对几何最值问题常用的的数学解法,比如拉格朗日乘子法、Kuhn–Tucker条件、Dantzig–Wolfe 以及模型等方法,通过数学的推理,求解出最优解的方法。
3、迭代方法:
迭代方法是指在不断逼近理想解的过程中,不断重复求解,最终求得几何最值问题最优解的方法。
该方法也可以称之为“贪心法”,经过迭代求解,最终使函数的最优解处于一个最佳的状态。
4、最小二乘法:
最小二乘法是从经验数据出发,利用最小二乘的方法建立的数学模型并应用最优方法求出参数的一种方法,可以用来求出满足给定约
束条件下的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何中的最值问题
作为一门重要的数学学科,几何中有许多重要的概念和方法,其中最值问题是一个广泛研究的内容。
在几何中,最值问题是指在某些条件下,某个几何量(如长度、面积、体积等)的最大值或最小值问题。
本文将从不同角度介绍几何中的最值问题及其应用。
一、最值问题的基础概念
在几何问题中,最值问题最常见的便是一些面积、长度和体积的最值问题。
最常见的方法是使用微积分的极值定理,通过计算导数为0的点来找到函数的最大值和最小值。
此外,还有最大和最小的边界问题。
这些问题需要考虑的是给定条件下的最大可行解或最小可行解。
例如,给定一个面积固定的矩形,我们需要求出其长度和宽度的最大或最小值。
这些问题与微积分密切相关,但在解决这些问题时需要更多的几何知识和直觉。
二、平面几何中的最值问题
在平面几何中,最值问题通常涉及三角形、四边形和圆形等形状。
这些形状的特性可以用来求解最值问题,通常需要使用各种几何知识和技巧。
例如,对于一个给定面积的三角形,在其周长恒定的情况下,需要求出该三角形的最大或最小长度。
为解决这类问题,我们可以利用三角形的海涅定理或余弦定理,通过微积分的极值定理得到最优解。
对于圆形,最值问题可能涉及到面积和周长问题,这些需要用到圆相关的特点和公式,如半径、直径、周长和面积等,通常需要通过微积分的方法求解。
另一方面,对于四边形最值问题,我们需要利用它们的对角线和相邻边的关系来解决,这通常需要将四边形划分为三角形或矩形来计算。
三、空间几何中的最值问题
在空间几何中,最值问题通常涉及立体体积,包括长方体、正方体、棱锥和棱柱等。
这些问题需要利用空间几何的特点和公式来求解,常用的方法包括微积分的极值定理和立体几何的体积计算公式。
例如,对于一个矩形长方体,在其表面积固定的情况下,需要求出其有最大或最小的体积。
如果我们设该矩形长方体的长、宽和高分别为x、y和z,那么该矩形长方体的体积可以表示为V(x,y,z)=xyz。
通过微积分的方法,可以证明只有当
x=y=z时,该方体的体积最大。
类似的,对于一个包含在一个球形表面的正方体,要求最大的正方体的体积。
我们可以将该问题转换为一个单变量问题,既求长、宽和高与外圆半径的函数。
通过微积分的方法,可以求出最大正方体的体积为⅔(半径)^3。
四、最值问题的现实应用
除了在纯数学中的应用,最值问题还被广泛应用于实际情景中,如优化设计、工程优化、系统分析和金融建模等。
以下是一些实际问题的示例:
1、车辆路线问题:求解最短时间或最短路径,从开始到结束,以尽可能少的成本或时间通过一组位置或节点。
2、产品设计问题:对于给定的材料成本和生产成本,需要求出最佳的设计并最大化利润。
3、股票交易问题:通过对历史股票数据进行分析,确定最佳买入和卖出时机以最大化利润。
4、供应链问题:确定合理的库存、物流和优化生产计划,以提高供应链效率并降低成本。
结语:
几何中的最值问题是数学中一个重要的研究领域,其在理论研究和实际应用中都扮演着重要角色。
通过对几何中的常见形状和基础概念的深入理解,我们可以更好地解决最值问题,并应用到我们生活和工作中的实际问题中。