2012年全国统一高考数学试卷(新课标卷)(理科)

合集下载

2012年全国统一高考数学试卷(理科)(大纲版)答案与解析

2012年全国统一高考数学试卷(理科)(大纲版)答案与解析
菁优网版权所有
∴n=8 展开式的通项 = 令8﹣2r=﹣2可得r=5 此时系数为 =56 故答案为:56 【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的
2012年全国统一高考数学试卷(理科)(大纲 版)
参考答案与试题解析
一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的.) 1.(5分)复数 =( ) A.2+i B.2﹣i C.1+2i D.1﹣2i 【考点】复数代数形式的乘除运算. 【专题】计算题. 【分析】把 的分子分母都乘以分母的共轭复数,得 ,由此利用复数的代数形式的乘除运算,能求出结果. 【解答】解: = = =1+2i. 故选C. 【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认 真审题,仔细解答. 2.(5分)已知集合 ,B={1,m},A∪B=A,则m=( ) A.0或
. 故答案为: . 【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查 辅助角公式的应用与正弦函数的性质,将y=sinx﹣ cosx(0≤x<2π)化为y=2sin(x﹣ )(0≤x<2π)是关键,属于中档题. 15.(5分)若 的展开式中第3项与第7项的二项式系数相等,则该展开式中 的系数为 56 . 【考点】二项式系数的性质. 【专题】计算题;压轴题. 【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通 项可求满足条件的系数 【解答】解:由题意可得,
所有
菁优网版权
【专题】计算题. 【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数 y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等 于0,由此可求c的值. 【解答】解:求导函数可得y′=3(x+1)(x﹣1), 令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1; ∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减, ∴函数在x=﹣1处取得极大值,在x=1处取得极小值. ∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点, ∴极大值等于0或极小值等于0.

2012年高考真题——理科数学(新课标卷)解析版(1)

2012年高考真题——理科数学(新课标卷)解析版(1)

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-【解析】选C1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B +为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )【解析】选B该几何体是三棱锥,底面是俯视图,高为3此几何体的体积为11633932V =⨯⨯⨯⨯= (8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔= (9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年全国统一高考真题数学试卷(理科)(大纲版)(含答案及解析)

2012年全国统一高考真题数学试卷(理科)(大纲版)(含答案及解析)

2012年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或33.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.15.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x 10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1 11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为.14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.2012年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i【考点】A5:复数的运算.【专题】11:计算题.【分析】把的分子分母都乘以分母的共轭复数,得,由此利用复数的代数形式的乘除运算,能求出结果.【解答】解:===1+2i.故选:C.【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或3【考点】1C:集合关系中的参数取值问题.【专题】5J:集合.【分析】由题设条件中本题可先由条件A∪B=A得出B⊆A,由此判断出参数m 可能的取值,再进行验证即可得出答案选出正确选项.【解答】解:由题意A∪B=A,即B⊆A,又,B={1,m},∴m=3或m=,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求,故选:B.【点评】本题考查集合中参数取值问题,解题的关键是将条件A∪B=A转化为B⊆A,再由集合的包含关系得出参数所可能的取值.3.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】11:计算题.【分析】确定椭圆的焦点在x轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x轴上,且∴c=2,a2=8∴b2=a2﹣c2=4∴椭圆的方程为故选:C.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【考点】MI:直线与平面所成的角.【专题】11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,=S△ABD×EC=××2×2×=在三棱锥E﹣ABD中,V E﹣ABD=×2×=2在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD∴V A=×S△EBD×h=×2×h=﹣BDE∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题5.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.【考点】85:等差数列的前n项和;8E:数列的求和.【专题】11:计算题.【分析】由等差数列的通项公式及求和公式,结合已知可求a1,d,进而可求a n,代入可得==,裂项可求和【解答】解:设等差数列的公差为d由题意可得,解方程可得,d=1,a1=1由等差数列的通项公式可得,a n=a1+(n﹣1)d=1+(n﹣1)×1=n∴===1﹣=故选:A.【点评】本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的裂项求和方法的应用,属于基础试题6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.【考点】9Y:平面向量的综合题.【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB可求AD,进而可求,从而可求与的关系,进而可求【解答】解:∵•=0,∴CA⊥CB∵CD⊥AB∵||=1,||=2∴AB=由射影定理可得,AC2=AD•AB∴∴∴==故选:D.【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,向量的数量积的性质的应用.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】56:三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα=,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α【解答】解:∵sinα+cosα=,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=﹣.故选:A.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα=是关键,属于中档题.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【考点】72:不等式比较大小.【专题】11:计算题;16:压轴题.【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值.【专题】11:计算题.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;16:压轴题.【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.【解答】解:由题意,可按分步原理计数,首先,对第一列进行排列,第一列为a,b,c的全排列,共有种,再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况,当第二列一行确定时,第二列第2,3行只能有1种情况;所以排列方法共有:×2×1×1=12种,故选:A.【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行分析会大大简化解答过程.12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的直线方程.【专题】13:作图题;16:压轴题.【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可.【解答】解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=,第二次碰撞点为H,且DH=,作图,可以得到回到E点时,需要碰撞14次即可.故选:B.【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为﹣1.【考点】7C:简单线性规划.【专题】11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小结合图形可知,当直线z=3x﹣y过点C时z最小由可得C(0,1),此时z=﹣1故答案为:﹣1【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z 的几何意义,属于基础试题14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】11:计算题;16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx﹣cosx(0≤x<2π)取得最大值时x的值.【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).∵0≤x<2π,∴﹣≤x﹣<,∴y max=2,此时x﹣=,∴x=.故答案为:.【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin (x﹣)(0≤x<2π)是关键,属于中档题.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为56.【考点】DA:二项式定理.【专题】11:计算题;16:压轴题.【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通项可求满足条件的系数【解答】解:由题意可得,∴n=8展开式的通项=令8﹣2r=﹣2可得r=5此时系数为=56故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题.【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线AB1与BC1所成角的余弦值即可【解答】解:如图,设=,,,棱长均为1,则=,=,=∵,∴=()•()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为【点评】本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】11:计算题.【分析】由cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=1,可得sinAsinC=,由a=2c及正弦定理可得sinA=2sinC,联立可求C【解答】解:由B=π﹣(A+C)可得cosB=﹣cos(A+C)∴cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=2sinAsinC=1∴sinAsinC=①由a=2c及正弦定理可得sinA=2sinC②①②联立可得,∵0<C<π∴sinC=a=2c即a>c【点评】本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试题18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表述线面的垂直、平行关系.【专题】11:计算题.【分析】(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角【解答】解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)∴=(2,0,﹣2),=(,b,),=(,﹣b,)∴•=﹣=0,•=0∴PC⊥BE,PC⊥DE,BE∩DE=E∴PC⊥平面BED(II)=(0,0,2),=(,﹣b,0)设平面PAB的法向量为=(x,y,z),则取=(b,,0)设平面PBC的法向量为=(p,q,r),则取=(1,﹣,)∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=∴=(1,﹣1,),=(﹣,﹣,2)∴cos<,>==设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=∴θ=30°∴PD与平面PBC所成角的大小为30°【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】15:综合题.【分析】(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1,根据P(A)=0.4,P(A0)=0.16,P (A1)=2×0.6×0.4=0.48,即可求得结论;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.【解答】解:(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3 P(ξ=0)=P(A2A)=0.36×0.4=0.144P(ξ=2)=P(B)=0.352P(ξ=3)=P(A0)=0.16×0.6=0.096P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.【点评】本题考查相互独立事件的概率,考查离散型随机变量的期望,确定变量的取值,计算相应的概率是关键.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题.【分析】(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0.π],sinx∈[0,1],对a进行分类讨论,即可确定函数的单调区间;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,可得a≤,构造函数g(x)=sinx﹣(0≤x),可得g(x)≥0(0≤x),再考虑:①0≤x;②,即可得到结论.【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤.令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣当x时,g′(x)>0,当时,g′(x)<0∵,∴g(x)≥0,即(0≤x),当a≤时,有①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;②当时,=1+≤1+sinx综上,a≤.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M (1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D 的坐标,从而可求D到l的距离.【解答】解:(Ⅰ)设A(x0,(x0+1)2),∵y=(x+1)2,y′=2(x+1)∴l的斜率为k=2(x0+1)当x0=1时,不合题意,所以x0≠1圆心M(1,),MA的斜率.∵l⊥MA,∴2(x0+1)×=﹣1∴x0=0,∴A(0,1),∴r=|MA|=;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1若该直线与圆M相切,则圆心M到该切线的距离为∴∴t2(t2﹣4t﹣6)=0∴t0=0,或t1=2+,t2=2﹣抛物线C在点(t i,(t i+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③②﹣③:x=代入②可得:y=﹣1∴D(2,﹣1),∴D到l的距离为【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.【考点】8H:数列递推式;8I:数列与函数的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)用数学归纳法证明:①n=1时,x1=2,直线PQ1的方程为,当y=0时,可得;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为,当y=0时,可得,根据归纳假设2≤x k<x k+1<3,可以证明2≤x k+1<x k+2<3,从而结论成立.(Ⅱ)由(Ⅰ),可得,构造b n=x n﹣3,可得是以﹣为首项,5为公比的等比数列,由此可求数列{ x n}的通项公式.【解答】(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为当y=0时,∴,∴2≤x1<x2<3;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为当y=0时,∴∵2≤x k<x k+1<3,∴<x k+2∴x k+1<x k+2<3∴2≤x k+1即n=k+1时,结论成立由①②可知:2≤x n<x n+1<3;(Ⅱ)由(Ⅰ),可得设b n=x n﹣3,∴∴∴是以﹣为首项,5为公比的等比数列∴∴∴.【点评】本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函数入手,确定直线方程,求得交点坐标,再利用数列知识解决.。

2012年全国高考理科数学试题及答案-全国卷[1]

2012年全国高考理科数学试题及答案-全国卷[1]

绝密*启用前2012年普通高等学校招生全国统一考试(全国卷)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动。

用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3。

回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效· 4.考试结束后.将本试卷和答且卡一并交回.第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012全国高考数学(理科)新课标解析版

2012全国高考数学(理科)新课标解析版

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考真题——理科数学(新课标卷)解析版(1)

2012年高考真题——理科数学(新课标卷)解析版(1)

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( ) 【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-【解析】选C1i-+,1:p z =,22:2p z i =,3:p z 的共轭复数为4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( ) 【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) 【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) 【解析】选B该几何体是三棱锥,底面是俯视图,高为3此几何体的体积为11633932V =⨯⨯⨯⨯= (8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( ) 【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共 小题,每小题 分,在每小题给同的四个选项中,只有一项是符合题目要求的..( 分)已知集合✌ , , , , ❝, (⌧,⍓) ⌧∈✌,⍓∈✌,⌧﹣⍓∈✌❝,则 中所含元素的个数为()✌. . . ..( 分)将 名教师, 名学生分成 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 名教师和 名学生组成,不同的安排方案共有()✌. 种 . 种 . 种 . 种.( 分)下面是关于复数 的四个命题:其中的真命题为(),☐ : ,☐ : ♓,☐ : 的共轭复数为 ♓,☐ : 的虚部为﹣ .✌.☐ ,☐ .☐ ,☐ .☐ ,☐ .☐ ,☐.( 分)设☞ 、☞ 是椭圆☜: (♋>♌> )的左、右焦点, 为直线⌧上一点,△☞ ☞ 是底角为 的等腰三角形,则☜的离心率为()✌. . . ..( 分)已知 ♋⏹❝为等比数列,♋ ♋ ,♋ ♋ ﹣ ,则♋ ♋ ()✌. . .﹣ .﹣.( 分)如果执行右边的程序框图,输入正整数☠(☠≥ )和实数♋ ,♋ ,⑤,♋⏹,输出✌, ,则()✌.✌为♋ ,♋ ,⑤,♋⏹的和.为♋ ,♋ ,⑤,♋⏹的算术平均数.✌和 分别是♋ ,♋ ,⑤,♋⏹中最大的数和最小的数.✌和 分别是♋ ,♋ ,⑤,♋⏹中最小的数和最大的数.( 分)如图,网格纸上小正方形的边长为 ,粗线画出的是某几何体的三视图,则此几何体的体积为()✌. . . . .( 分)等轴双曲线 的中心在原点,焦点在⌧轴上, 与抛物线⍓ ⌧的准线交于点✌和点 , ✌ ,则 的实轴长为()✌. . . ..( 分)已知▫> ,函数♐(⌧) ♦♓⏹(▫⌧)在区间☯,⇨上单调递减,则实数▫的取值范围是()✌. . . .( , .( 分)已知函数♐(⌧) ,则⍓♐(⌧)的图象大致为()✌. . . . .( 分)已知三棱锥 ﹣✌的所有顶点都在球 的表面上,△✌是边长为 的正三角形, 为球 的直径,且 ,则此三棱锥的体积为()✌. . . ..( 分)设点 在曲线上,点✈在曲线⍓●⏹( ⌧)上,则 ✈最小值为()✌. ﹣●⏹ . . ●⏹ .二.填空题:本大题共 小题,每小题 分..( 分)已知向量夹角为 ,且,则 . .( 分)设⌧,⍓满足约束条件:;则 ⌧﹣ ⍓的取值范围为..( 分)某个部件由三个元件按下图方式连接而成,元件 或元件 正常工作,且元件 正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布☠( ,  ),且各个元件能否正常相互独立,那么该部件的使用寿命超过 小时的概率为..( 分)数列 ♋⏹❝满足♋⏹ (﹣ )⏹♋⏹ ⏹﹣ ,则 ♋⏹❝的前 项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤..( 分)已知♋,♌,♍分别为△✌三个内角✌, , 的对边,♍♋♦♓⏹﹣♍♍☐♦✌.( )求✌;( )若♋,△✌的面积为,求♌,♍..( 分)某花店每天以每枝 元的价格从农场购进若干枝玫瑰花,然后以每枝 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.( )若花店一天购进 枝玫瑰花,求当天的利润⍓(单位:元)关于当天需求量⏹(单位:枝,⏹∈☠)的函数解析式.( )花店记录了 天玫瑰花的日需求量(单位:枝),整理得如表:     日需求量⏹频数  以 天记录的各需求量的频率作为各需求量发生的概率.(♓)若花店一天购进 枝玫瑰花,✠表示当天的利润(单位:元),求✠的分布列,数学期望及方差;(♓♓)若花店计划一天购进 枝或 枝玫瑰花,你认为应购进 枝还是 枝?请说明理由..( 分)如图,直三棱柱✌﹣✌ 中,✌✌✌ , 是棱✌✌ 的中点,  ⊥ ( )证明:  ⊥ ;( )求二面角✌ ﹣ ﹣ 的大小..( 分)设抛物线 :⌧ ☐⍓(☐> )的焦点为☞,准线为●,✌∈ ,已知以☞为圆心,☞✌为半径的圆☞交●于 , 两点;( )若∠ ☞ ,△✌的面积为,求☐的值及圆☞的方程;( )若✌, ,☞三点在同一直线❍上,直线⏹与❍平行,且⏹与 只有一个公共点,求坐标原点到❍,⏹距离的比值..( 分)已知函数♐(⌧)满足♐(⌧) ♐( )♏⌧﹣ ﹣♐( )⌧⌧ ;( )求♐(⌧)的解析式及单调区间;( )若,求(♋ )♌的最大值.四、请考生在第 , , 题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号..( 分)如图, ,☜分别为△✌边✌,✌的中点,直线 ☜交△✌的外接圆于☞,☝两点,若 ☞∥✌,证明:( ) ;( )△ ∽△☝..选修 ﹣ ;坐标系与参数方程已知曲线 的参数方程是(▫为参数),以坐标原点为极点,⌧轴的正半轴为极轴建立坐标系,曲线 的坐标系方程是▫,正方形✌的顶点都在 上,且✌, , , 依逆时针次序排列,点✌的极坐标为( ,).( )求点✌, , , 的直角坐标;( )设 为 上任意一点,求 ✌    的取值范围..已知函数♐(⌧) ⌧♋⌧﹣ ( )当♋﹣ 时,求不等式♐(⌧)≥ 的解集;( )若♐(⌧)≤ ⌧﹣ 的解集包含☯ , ,求♋的取值范围.年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共 小题,每小题 分,在每小题给同的四个选项中,只有一项是符合题目要求的..( 分)(  ❿新课标)已知集合✌ , , , , ❝, (⌧,⍓) ⌧∈✌,⍓∈✌,⌧﹣⍓∈✌❝,则 中所含元素的个数为()✌. . . .【分析】由题意,根据集合 中的元素属性对⌧,⍓进行赋值得出 中所有元素,即可得出 中所含有的元素个数,得出正确选项【解答】解:由题意,⌧时,⍓ , , , ,⌧ 时,⍓ , , ,⌧ 时,⍓ , ,⌧时,⍓综上知, 中的元素个数为 个故选.( 分)(  ❿新课标)将 名教师, 名学生分成 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 名教师和 名学生组成,不同的安排方案共有()✌. 种 . 种 . 种 . 种【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有 种选法;第二步,为甲地选两个学生,有 种选法;第三步,为乙地选 名教师和 名学生,有 种选法故不同的安排方案共有 × × 种故选 ✌.( 分)(  ❿新课标)下面是关于复数 的四个命题:其中的真命题为(),☐ : ,☐ : ♓,☐ : 的共轭复数为 ♓,☐ : 的虚部为﹣ .✌.☐ ,☐ .☐ ,☐ .☐ ,☐ .☐ ,☐【分析】由  ﹣ ﹣♓,知,,☐ : 的共轭复数为﹣ ♓,☐ : 的虚部为﹣ ,由此能求出结果.【解答】解:∵  ﹣ ﹣♓,∴,,☐ : 的共轭复数为﹣ ♓,☐ : 的虚部为﹣ ,故选 ..( 分)(  ❿新课标)设☞ 、☞ 是椭圆☜: (♋>♌> )的左、右焦点, 为直线⌧上一点,△☞ ☞ 是底角为 的等腰三角形,则☜的离心率为()✌. . . .【分析】利用△☞ ☞ 是底角为 的等腰三角形,可得 ☞ ☞ ☞ ,根据 为直线⌧上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△☞ ☞ 是底角为 的等腰三角形,∴ ☞ ☞ ☞∵ 为直线⌧上一点∴∴故选 ..( 分)(  ❿新课标)已知 ♋⏹❝为等比数列,♋ ♋ ,♋ ♋ ﹣ ,则♋ ♋ ()✌. . .﹣ .﹣【分析】由♋ ♋ ,及♋ ♋ ♋ ♋ ﹣ 可求♋ ,♋ ,进而可求公比❑,代入等比数列的通项可求♋ ,♋ ,即可【解答】解:∵♋ ♋ ,由等比数列的性质可得,♋ ♋ ♋ ♋ ﹣∴♋ ,♋ ﹣ 或♋ ﹣ ,♋当♋ ,♋ ﹣ 时,,∴♋ ﹣ ,♋ ,∴♋ ♋ ﹣当♋ ﹣ ,♋ 时,❑ ﹣ ,则♋ ﹣ ,♋∴♋ ♋ ﹣综上可得,♋ ♋ ﹣故选.( 分)(  ❿新课标)如果执行右边的程序框图,输入正整数☠(☠≥ )和实数♋ ,♋ ,⑤,♋⏹,输出✌, ,则()✌.✌为♋ ,♋ ,⑤,♋⏹的和.为♋ ,♋ ,⑤,♋⏹的算术平均数.✌和 分别是♋ ,♋ ,⑤,♋⏹中最大的数和最小的数.✌和 分别是♋ ,♋ ,⑤,♋⏹中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出♋ ,♋ ,⑤,♋⏹中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出♋ ,♋ ,⑤,♋⏹中最大的数和最小的数其中✌为♋ ,♋ ,⑤,♋⏹中最大的数, 为♋ ,♋ ,⑤,♋⏹中最小的数故选: ..( 分)(  ❿新课标)如图,网格纸上小正方形的边长为 ,粗线画出的是某几何体的三视图,则此几何体的体积为()✌. . . . 【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为 ;底面三角形斜边长为 ,高为 的等腰直角三角形,此几何体的体积为✞× × × .故选 ..( 分)(  ❿新课标)等轴双曲线 的中心在原点,焦点在⌧轴上, 与抛物线⍓ ⌧的准线交于点✌和点 , ✌ ,则 的实轴长为()✌. . . .【分析】设等轴双曲线 :⌧ ﹣⍓ ♋ (♋> ),⍓ ⌧的准线●:⌧﹣ ,由 与抛物线⍓ ⌧的准线交于✌, 两点,,能求出 的实轴长.【解答】解:设等轴双曲线 :⌧ ﹣⍓ ♋ (♋> ),⍓ ⌧的准线●:⌧﹣ ,∵ 与抛物线⍓ ⌧的准线●:⌧﹣ 交于✌, 两点,∴✌(﹣ , ), (﹣ ,﹣ ),将✌点坐标代入双曲线方程得 ,∴♋, ♋ .故选 ..( 分)(  ❿新课标)已知▫> ,函数♐(⌧) ♦♓⏹(▫⌧)在区间☯,⇨上单调递减,则实数▫的取值范围是()✌. . . .( , 【分析】法一:通过特殊值▫、▫ ,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导▫的范围即可.【解答】解:法一:令:不合题意 排除( )合题意 排除( )( )法二:,得:.故选✌..( 分)(  ❿新课标)已知函数♐(⌧) ,则⍓♐(⌧)的图象大致为()✌. . . .【分析】考虑函数♐(⌧)的分母的函数值恒小于零,即可排除✌, ,由♐(⌧)的定义域能排除 ,这一性质可利用导数加以证明【解答】解:设则♑(⌧)∴♑(⌧)在(﹣ , )上为增函数,在( , ∞)上为减函数∴♑(⌧)<♑( ) ∴♐(⌧) <得:⌧> 或﹣ <⌧< 均有♐(⌧)< 排除✌, ,又♐(⌧) 中,,能排除 .故选 .( 分)(  ❿新课标)已知三棱锥 ﹣✌的所有顶点都在球 的表面上,△✌是边长为 的正三角形, 为球 的直径,且 ,则此三棱锥的体积为()✌. . . .【分析】根据题意作出图形,利用截面圆的性质即可求出  ,进而求出底面✌上的高 ,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为 ,过✌三点的小圆的圆心为 ,则  ⊥平面✌,延长  交球于点 ,则 ⊥平面✌.∵  ,∴  ,∴高  ,∵△✌是边长为 的正三角形,,∴△✌.∴✞三棱锥 ﹣✌故选: ..( 分)(  ❿新课标)设点 在曲线上,点✈在曲线⍓●⏹( ⌧)上,则 ✈最小值为()✌. ﹣●⏹ . . ●⏹ .【分析】由于函数与函数⍓●⏹( ⌧)互为反函数,图象关于⍓⌧对称,要求 ✈的最小值,只要求出函数上的点到直线⍓⌧的距离为的最小值,设♑(⌧) ,利用导数可求函数♑(⌧)的单调性,进而可求♑(⌧)的最小值,即可求.【解答】解:∵函数与函数⍓●⏹( ⌧)互为反函数,图象关于⍓⌧对称,函数上的点到直线⍓⌧的距离为,设♑(⌧) (⌧> ),则,由≥ 可得⌧≥●⏹,由< 可得 <⌧<●⏹,∴函数♑(⌧)在( ,●⏹)单调递减,在☯●⏹, ∞)单调递增,∴当⌧●⏹时,函数♑(⌧)❍♓⏹ ﹣●⏹,,由图象关于⍓⌧对称得: ✈最小值为.故选 .二.填空题:本大题共 小题,每小题 分..( 分)(  ❿新课标)已知向量夹角为 ,且,则 .【分析】由已知可得, ,代入   可求【解答】解:∵,∴∴  解得故答案为:.( 分)(  ❿新课标)设⌧,⍓满足约束条件:;则 ⌧﹣ ⍓的取值范围为.【分析】先作出不等式组表示的平面区域,由 ⌧﹣ ⍓可得,⍓,则﹣表示直线⌧﹣ ⍓﹣ 在⍓轴上的截距,截距越大, 越小,结合函数的图形可求 的最大与最小值,从而可求 的范围【解答】解:作出不等式组表示的平面区域由 ⌧﹣ ⍓可得,⍓,则﹣表示直线⌧﹣ ⍓﹣ 在⍓轴上的截距,截距越大, 越小结合函数的图形可知,当直线⌧﹣ ⍓﹣ 平移到 时,截距最大, 最小;当直线⌧﹣ ⍓﹣ 平移到✌时,截距最小, 最大由可得 ( , ),由可得✌( , )∴☪❍♋⌧ ,☪❍♓⏹ ﹣则 ⌧﹣ ⍓∈☯﹣ ,故答案为:☯﹣ ,.( 分)(  ❿新课标)某个部件由三个元件按下图方式连接而成,元件 或元件 正常工作,且元件 正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布☠( ,  ),且各个元件能否正常相互独立,那么该部件的使用寿命超过 小时的概率为.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过 小时的概率为,而所求事件❽该部件的使用寿命超过 小时❾当且仅当❽超过 小时时,元件 、元件 至少有一个正常❾和❽超过 小时时,元件 正常❾同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布☠( ,  )得:三个电子元件的使用寿命超过 小时的概率为设✌超过 小时时,元件 、元件 至少有一个正常❝, 超过 小时时,元件 正常❝该部件的使用寿命超过 小时❝则 (✌) , ( )( ) (✌) (✌) ( ) ×故答案为.( 分)(  ❿新课标)数列 ♋⏹❝满足♋⏹ (﹣ )⏹♋⏹ ⏹﹣ ,则 ♋⏹❝的前 项和为  .【分析】由题意可得 ♋ ﹣♋ ,♋ ♋ ,♋ ﹣♋ ,♋ ♋ ,♋ ﹣♋ ,♋ ♋ ,⑤♋ ﹣♋  ,变形可得 ♋ ♋ ,♋ ♋ ,♋ ♋ ,♋ ♋  ,♋ ♋ ,♋ ♋ ,♋  ♋ ,♋ ♋  ,⑤利用数列的结构特征,求出 ♋⏹❝的前 项和【解答】解:∵♋⏹ (﹣ )⏹ ♋⏹ ⏹﹣ ,∴有♋ ﹣♋ ,♋ ♋ ,♋ ﹣♋ ,♋ ♋ ,♋ ﹣♋ ,♋ ♋ ,⑤♋ ﹣♋  .从而可得♋ ♋ ,♋ ♋ ,♋ ♋ ,♋ ♋  ,♋ ♋ ,♋ ♋ ,♋  ♋ ,♋ ♋  ,⑤从第一项开始,依次取 个相邻奇数项的和都等于 ,从第二项开始,依次取 个相邻偶数项的和构成以 为首项,以 为公差的等差数列.∴ ♋⏹❝的前 项和为 × ( × )  ,故答案为:  .三、解答题:解答应写出文字说明,证明过程或演算步骤..( 分)(  ❿新课标)已知♋,♌,♍分别为△✌三个内角✌, , 的对边,♍♋♦♓⏹﹣♍♍☐♦✌.( )求✌;( )若♋,△✌的面积为,求♌,♍.【分析】( )由正弦定理有:♦♓⏹✌♦♓⏹﹣♦♓⏹♍☐♦✌﹣♦♓⏹,可以求出✌;( )有三角形面积以及余弦定理,可以求出♌、♍.【解答】解:( )♍♋♦♓⏹﹣♍♍☐♦✌,由正弦定理有:♦♓⏹✌♦♓⏹﹣♦♓⏹♍☐♦✌﹣♦♓⏹,即♦♓⏹❿(♦♓⏹✌﹣♍☐♦✌﹣ ) ,又,♦♓⏹≠ ,所以♦♓⏹✌﹣♍☐♦✌﹣ ,即 ♦♓⏹(✌﹣) ,所以✌;( )♌♍♦♓⏹✌,所以♌♍ ,△✌♋,由余弦定理得:♋ ♌ ♍ ﹣ ♌♍♍☐♦✌,即 ♌ ♍ ﹣♌♍,即有,解得♌♍..( 分)(  ❿新课标)某花店每天以每枝 元的价格从农场购进若干枝玫瑰花,然后以每枝 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.( )若花店一天购进 枝玫瑰花,求当天的利润⍓(单位:元)关于当天需求量⏹(单位:枝,⏹∈☠)的函数解析式.( )花店记录了 天玫瑰花的日需求量(单位:枝),整理得如表:     日需求量⏹频数  以 天记录的各需求量的频率作为各需求量发生的概率.(♓)若花店一天购进 枝玫瑰花,✠表示当天的利润(单位:元),求✠的分布列,数学期望及方差;(♓♓)若花店计划一天购进 枝或 枝玫瑰花,你认为应购进 枝还是 枝?请说明理由.【分析】( )根据卖出一枝可得利润 元,卖不出一枝可得赔本 元,即可建立分段函数;( )(♓)✠可取 , , ,计算相应的概率,即可得到✠的分布列,数学期望及方差;(♓♓)求出进 枝时当天的利润,与购进 枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:( )当⏹≥ 时,⍓ ×( ﹣ ) ;当⏹≤ 时,⍓⏹﹣ ( ﹣⏹) ⏹﹣ ,得:( )(♓)✠可取 , , ,当日需求量⏹ 时,✠,⏹ 时,✠ ,其他情况✠ ,(✠) , (✠ ) , (✠ ) ﹣  ﹣  ,✠的分布列为✠   ☜✠×  ×  × ✠ ×   ×  ×  (♓♓)购进 枝时,当天的利润的期望为⍓( × ﹣ × )×  ( × ﹣ × )× ( × ﹣ × )×   × ×  ∵  > ,∴应购进 枝.( 分)(  ❿新课标)如图,直三棱柱✌﹣✌ 中,✌✌✌ , 是棱✌✌ 的中点,  ⊥ ( )证明:  ⊥ ;( )求二面角✌ ﹣ ﹣ 的大小.【分析】( )证明  ⊥ ,只需证明  ⊥面 ,即证明  ⊥,  ⊥ ;( )证明 ⊥面✌ ✌ ,可得 ⊥✌取✌ 的中点 ,过点 作 ☟⊥ 于点☟,连接 , ☟,可得点☟与点 重合且∠ 是二面角✌ ﹣ ﹣ 的平面角,由此可求二面角✌ ﹣ ﹣ 的大小.【解答】( )证明:在 ♦△ ✌中,✌✌,∴∠✌ 同理:∠✌  ,∴∠  ∴  ⊥ ,  ⊥ ∵ ∩ ∴  ⊥面 ∵ ⊂面 ∴  ⊥ ( )解:∵  ⊥ ,  ⊥ ,  ∩   ,∴ ⊥面✌ ✌ ,∵✌⊂面✌ ✌ ,∴ ⊥✌取✌ 的中点 ,过点 作 ☟⊥ 于点☟,连接 , ☟∵✌  ,∴ ⊥✌ ,∵面✌ ⊥面✌ ,面✌ ∩面✌ ✌ ,∴ ⊥面✌ 而 ⊂面✌ ∴ ⊥ ,∵ ☟⊥ , ∩ ☟,∴ ⊥面 ☟∴ ☟⊥ ,∴点☟与点 重合且∠ 是二面角✌ ﹣ ﹣ 的平面角设✌♋,则,,∴♦♓⏹∠ ∴∠  即二面角✌ ﹣ ﹣ 的大小为 .( 分)(  ❿新课标)设抛物线 :⌧ ☐⍓(☐> )的焦点为☞,准线为●,✌∈ ,已知以☞为圆心,☞✌为半径的圆☞交●于 , 两点;( )若∠ ☞ ,△✌的面积为,求☐的值及圆☞的方程;( )若✌, ,☞三点在同一直线❍上,直线⏹与❍平行,且⏹与 只有一个公共点,求坐标原点到❍,⏹距离的比值.【分析】( )由对称性知:△ ☞是等腰直角△,斜边 ☐点✌到,知准线●的距离,由△✌的面积△✌,由此能求出圆☞的方程.( )由对称性设,则点✌, 关于点☞对称得:,得:,由此能求出坐标原点到❍,⏹距离的比值.【解答】解:( )由对称性知:△ ☞是等腰直角△,斜边 ☐点✌到准线●的距离,∵△✌的面积,△✌∴ ,解得☐,所以☞坐标为( , ),∴圆☞的方程为⌧ (⍓﹣ ) .( )由题设,则,∵✌, ,☞三点在同一直线❍上,又✌为圆☞的直径,故✌, 关于点☞对称.由点✌, 关于点☞对称得:得:,直线,切点直线坐标原点到❍,⏹距离的比值为..( 分)(  ❿新课标)已知函数♐(⌧)满足♐(⌧) ♐( )♏⌧﹣ ﹣♐( )⌧⌧ ;( )求♐(⌧)的解析式及单调区间;( )若,求(♋ )♌的最大值.【分析】( )对函数♐(⌧)求导,再令自变量为 ,求出♐( )得到函数的解析式及导数,再由导数求函数的单调区间;( )由题意,借助导数求出新函数的最小值,令其大于 即可得到参数♋,♌ 所满足的关系式,再研究(♋ )♌的最大值【解答】解:( )令⌧ 得:♐( )∴令⌧,得♐( ) ♐( )♏﹣ 解得♐( ) ♏故函数的解析式为令♑(⌧) ♐(⌧) ♏⌧﹣ ⌧∴♑(⌧) ♏⌧ > ,由此知⍓♑(⌧)在⌧∈ 上单调递增当⌧> 时,♐(⌧)>♐( ) ;当⌧< 时,有♐(⌧)<♐( ) 得:函数的单调递增区间为( , ∞),单调递减区间为(﹣∞, )( )得♒(⌧) ♏⌧﹣(♋ )①当♋ ≤ 时,♒(⌧)> ⇒⍓♒(⌧)在⌧∈ 上单调递增,⌧❼﹣∞时,♒(⌧)❼﹣∞与♒(⌧)≥ 矛盾②当♋ > 时,♒(⌧)> ⇔⌧>●⏹(♋ ),♒(⌧)< ⇔⌧<●⏹(♋ )得:当⌧●⏹(♋ )时,♒(⌧)❍♓⏹ (♋ )﹣(♋ )●⏹(♋ )﹣♌≥ ,即(♋ )﹣(♋ )●⏹(♋ )≥♌∴(♋ )♌≤(♋ ) ﹣(♋ ) ●⏹(♋ ),(♋ > )令☞(⌧) ⌧ ﹣⌧ ●⏹⌧(⌧> ),则☞(⌧) ⌧( ﹣ ●⏹⌧)∴当时,即当时,(♋ )♌的最大值为四、请考生在第 , , 题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号..( 分)(  ❿新课标)如图, ,☜分别为△✌边✌,✌的中点,直线 ☜交△✌的外接圆于☞,☝两点,若 ☞∥✌,证明:( ) ;( )△ ∽△☝.【分析】( )根据 ,☜分别为△✌边✌,✌的中点,可得 ☜∥ ,证明四边形✌☞是平行四边形,即可得到结论;( )证明两组对应角相等,即可证得△ ~△☝.【解答】证明:( )∵ ,☜分别为△✌边✌,✌的中点∴ ☞∥ ,✌∵✌∥ ☞,∴四边形 ☞是平行四边形∴ ☞∥ , ☞∴ ☞∥✌, ☞✌∴四边形✌☞是平行四边形∴✌☞∵,∴ ✌☞,∴ .( )由( )知,所以.所以∠ ☝∠ .因为☝☞∥ ,所以∠ ☝∠✌☞∠ ∠ .所以△ ~△☝..(  ❿新课标)选修 ﹣ ;坐标系与参数方程已知曲线 的参数方程是(▫为参数),以坐标原点为极点,⌧轴的正半轴为极轴建立坐标系,曲线 的坐标系方程是▫,正方形✌的顶点都在 上,且✌, , , 依逆时针次序排列,点✌的极坐标为( ,).( )求点✌, , , 的直角坐标;( )设 为 上任意一点,求 ✌    的取值范围.【分析】( )确定点✌, , , 的极坐标,即可得点✌, , , 的直角坐标;( )利用参数方程设出 的坐标,借助于三角函数,即可求得 ✌    的取值范围.【解答】解:( )点✌, , , 的极坐标为点✌, , , 的直角坐标为( )设 (⌧ ,⍓ ),则为参数)♦✌    ⌧ ⍓  ♦♓⏹ ▫∵♦♓⏹ ▫∈☯,∴♦∈☯ , .(  ❿新课标)已知函数♐(⌧) ⌧♋⌧﹣ ( )当♋﹣ 时,求不等式♐(⌧)≥ 的解集;( )若♐(⌧)≤ ⌧﹣ 的解集包含☯ , ,求♋的取值范围.【分析】( )不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.( )原命题等价于﹣ ﹣⌧≤♋≤ ﹣⌧在☯ , 上恒成立,由此求得求♋的取值范围.【解答】解:( )当♋﹣ 时,♐(⌧)≥ 即 ⌧﹣ ⌧﹣ ≥ ,即①,或②,或③.解①可得⌧≤ ,解②可得⌧∈∅,解③可得⌧≥ .把①、②、③的解集取并集可得不等式的解集为 ⌧⌧≤ 或⌧≥ ❝.( )原命题即♐(⌧)≤ ⌧﹣ 在☯ , 上恒成立,等价于 ⌧♋﹣⌧≤ ﹣⌧在☯ , 上恒成立,等价于 ⌧♋≤ ,等价于﹣ ≤⌧♋≤ ,﹣ ﹣⌧≤♋≤ ﹣⌧在☯ , 上恒成立.故当 ≤⌧≤ 时,﹣ ﹣⌧的最大值为﹣ ﹣ ﹣ , ﹣⌧的最小值为 ,故♋的取值范围为☯﹣ , .。

2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

 2012年全国统一高考数学试卷(理科)(新课标)(含解析版)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x 对称得:|PQ |最小值为.故选:B .【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分. 13.(5分)已知向量夹角为45°,且,则= 3.【考点】9O :平面向量数量积的性质及其运算;9S :数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题. 【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得 故答案为:3【点评】本题主要考查了向量的数量积 定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x ,y 满足约束条件:;则z=x ﹣2y 的取值范围为 .【考点】7C :简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y﹣z=0在y 轴上的截距,截距越大,z 越小,结合函数的图形可求z 的最大与最小值,从而可求z 的范围【解答】解:作出不等式组表示的平面区域 由z=x ﹣2y 可得,y=,则﹣表示直线x ﹣2y ﹣z=0在y 轴上的截距,截距越大,z 越小结合函数的图形可知,当直线x ﹣2y ﹣z=0平移到B 时,截距最大,z 最小;当直线x ﹣2y ﹣z=0平移到A 时,截距最小,z 最大由可得B (1,2),由可得A (3,0)∴Z max =3,Z min =﹣3则z=x ﹣2y ∈[﹣3,3] 故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【考点】CP :正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为 15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii )购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD ﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD ∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln (a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.祝福语祝你考试成功!。

2012年新课标全国高考数学卷(理)-附详解

2012年新课标全国高考数学卷(理)-附详解

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1. 已知集合{1,2,3,4,5},{(,)|,,}A B x y x A Y A X Y A ==∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .10【答案】D【解析】{(5,4),(5,3),(5,2),(5,1),(4,3),(4,2),(4,1),(3,2),(3,1),(2,1)}B =,所含元素个数为10.2. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有A .12种B .10种C .9种D .8种【答案】A【解析】122412C C ⋅=种安排方案。

3. 下面是关于复数21z i=-+的四个命题: 1P :||2z =; 2P :22z i =;3P :z 的共轭复数为1i +; 4P : z 的虚部为-1.其中的真命题为A .2P ,3PB .1P , 2PC .2P ,4PD .3P ,4P【答案】C【解析】211z i i==---+,则||z 1P 是假命题;22(1)2z i i =--=,2P 是真命题;1z i =-+,3P 是假命题;z 的虚部为-1,4P 是真命题。

故选C 。

4. 设12,F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为A .12B .23C .34D .45【答案】C【解析】设P 在x 轴上的射影为Q 。

2012年高考数学试题及答案(全国卷理数2套)

2012年高考数学试题及答案(全国卷理数2套)
2012 年全国统一高考数学试卷(理科)(新课标)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符
合题目要求的.
1.(5 分)(2012•新课标)已知集合 A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A}, 则 B 中所含元素的个数为( )
A.
B.
C.
D.
12.(5 分)(2012•新课标)设点 P 在曲线
上,点 Q 在曲线 y=ln(2x)上,则|PQ|
最小值为( )
A.1﹣ln2
B.
C.1+ln2
二.填空题:本大题共 4 小题,每小题 5 分.
13.(5 分)(2012•新课标)已知向量
夹角为 45°,且


D. ,则
14.(5 分)(2012•新课标)设 x,y 满足约束条件:
A.A+B 为 a1,a2,…,an 的和 B. 为 a1,a2,…,an 的算术平均数
C.A 和 B 分别是 a1,a2,…,an 中最大的数和最小的数 D.A 和 B 分别是 a1,a2,…,an 中最小的数和最大的数 7.(5 分)(2012•新课标)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的 三视图,则此几何体的体积为( )
21.(12 分)(2012•新课标)已知函数 f(x)满足 f(x)=f′(1)ex﹣1﹣f(0)x+ x2;
(1)求 f(x)的解析式及单调区间;
(2)若
,求(a+1)b 的最大值.
四、请考生在第 22,23,24 题中任选一题作答,如果多做,则按所做的第一题计分,作答 时请写清题号. 22.(10 分)(2012•新课标)如图,D,E 分别为△ABC 边 AB,AC 的中点,直线 DE 交△

2012吉林省高考数学理科(全国新课标)

2012吉林省高考数学理科(全国新课标)

2012年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为A.3B.6C.8D.102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有A.12种B.10种C.9种D.8种(3)下面是关于复数z=21i-+的四个命题P1:z=2 p2: 2z=2iP3:z的共轭复数为1+I P4 :z的虚部为-1其中真命题为A P2 ,P3B P1 ,P2C P2,P4D P3 P4(4)设F1,F2是椭圆E:22xa+22yb=1 (a>b>0)的左、右焦点,P为直线x=23a上的一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为A 12B23C34D45(5)已知{a n}为等比数列,a4+a1=2 a5a6=-8 则a1+a10 =A.7B.5 C-5 D.-7(6)如果执行右边的程序图,输入正整数N(N≥2)和实数a1.a2,…a n,输入A,B,则(A)A+B 为a 1a 2,…,a n 的和(B )2A B 为a 1a 2.…,a n 的算式平均数 (C )A 和B 分别是a 1a 2,…a n 中最大的数和最小的数(D )A 和B 分别是a 1a 2,…a n 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6 (B)9 (C)12 (D)18(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y ²=16x 的准线交于A ,B 两点,,则C 的实轴长为(A )(B )C )4(D )8(9)已知w >0,函数在2ππ⎛⎫ ⎪⎝⎭,单调递减,则w 的取值范围是(A )(B )(C )(D )(0,2](10)已知函数,则y=f (x )的图像大致为(11)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为O 的直径,且SC=2,则此棱锥的体积为(A )6(B )6(C )3(D )2(12)设点P 在曲线上,点Q 在曲线y=ln (2x )上,则|PQ|的最小值为(A )1-ln2(B )(C )1+ln2(D )第Ⅱ卷本卷包括必考题和选考题两部分。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i+-+- 【考点】复数的计算 【难度】容易 【答案】C 【解析】13(13)(1)24121(1)(1)2i i i ii i i i -+-+-+===+++-.【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3.},B ={1,m } ,A B =A , 则m =A. 0或B. 0或 3C. 1或D. 1或3 【考点】集合【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

在高考精品班数学(文)强化提高班中有对圆锥曲线相关知识的总结讲解。

(4)已知正四棱柱ABCD- A1B1C1D1中,AB=2,=E为CC1的中点,则直线AC1与平面BED的CC距离为C. D. 1A. 2B.【考点】立体几何【难度】容易【答案】CAC,BD, 得【解析】因为底面的边长为2,高为到了交点为O,连接EO,EO∥AC,则点1C到平面BDE的距离等于C到平面BDE的距离,过C作CH⊥OE,则:CH.即为所求在三角形OCE中,利用等面积法,可得CH(5)已知等差数列{}na 的前n 项和为nS ,555,15a S==,则数列11}n n a a +{的前100项和为 A.100101B. 99101C.99100D.101100【考点】数列 【难度】中等 【答案】A【解析】因为已知等差数列{ na }中,5a =5,515()5152a a S +⨯==∴1a =1 ∴d=111111=(1)(1)n n n a n a a n n n n +==-++∴∴100111111100=(1-)(-)...()1223100101101101S +++-=-=∴.【点评】本题考查数列的前n 项和求解方法。

2012年高考数学试题

2012年高考数学试题

2012年全国统一高考数学试卷(新课标版)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种考点:排列、组合及简单计数问题.专题:计算题.分析:将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果解答:解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A点评:本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4考点:复数的基本概念;命题的真假判断与应用.专题:计算题.分析:由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.解答:解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:计算题.分析:利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.解答:解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.点评:本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题5.(5分)已知{a n} 为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣7考点:等比数列的性质;等比数列的通项公式.专题:计算题.分析:由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可解答:解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D点评:本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数考点:循环结构.专题:计算题.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n 中最大的数和最小的数.解答:解:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选C.点评:本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12 D.18考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.解答:解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选B.点评:本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.8考点:圆锥曲线的综合.专题:计算题.分析:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.解答:解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)(2012•黑龙江)已知ω>0,函数在上单调递减.则ω的取值范围是()A.B.C.D.(0,2]考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.解答:解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.点评:本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数;则y=f(x )的图象大致为()A.B.C.D.考点:对数函数图象与性质的综合应用;对数函数的图像与性质.专题:计算题.分析:考虑函数f(x )的分母的函数值恒小于零,即可排除A,C,D,这一性质可利用导数加以证明解答:解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,D故选B点评:本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径,∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.考点:点到直线的距离公式;反函数.专题:计算题.分析:由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求解答:解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称函数上的点到直线y=x的距离为设g(x)=,(x>0)则由≥0可得x≥ln2,由<0可得0<x<ln2∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增∴当x=ln2时,函数g(x)min=1﹣ln2由图象关于y=x对称得:|PQ|最小值为故选B点评:本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•黑龙江)已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1∴=∴|2|====解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为[﹣3,3].考点:简单线性规划.专题:计算题.分析:先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围解答:解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A 时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]点评:平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.考点:解三角形.专题:计算题.分析:(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA 可求b+c,进而可求b,c解答:解:(1)∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin(A﹣30°)=∴A﹣30°=30°∴A=60°(2)由由余弦定理可得,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA即4=(b+c)2﹣3bc=(b+c)2﹣12∴b+c=4解得:b=c=2点评:本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.考点:概率的应用;离散型随机变量的期望与方差.专题:综合题.分析:(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.解答:解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7X的分布列为X 60 70 80P 0.1 0.2 0.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4 ∵76.4>76,∴应购进17枝点评:本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.考点:二面角的平面角及求法;空间中直线与直线之间的位置关系.专题:综合题.分析:(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.解答:(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.考点:圆锥曲线的综合;圆的标准方程;抛物线的简单性质.专题:综合题.分析:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD 的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.解答:解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线切点直线坐标原点到m,n距离的比值为.点评:本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;探究型;转化思想.分析:(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值解答:解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b ∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为点评:本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,难度较大,计算量也大,易马虎出错四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•黑龙江)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.考点:综合法与分析法(选修).专题:证明题.分析:(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,根据等弧对等角,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.解答:证明:(1)∵AB∥CF,∴∠DAE=∠ECF.根据等弧对等角可知,,∴∠BDC=∠ADF.∵D,E分别为△ABC边AB,AC的中点∴DE∥BC∴∠ADF=∠DBC.∴∠BDC=∠DBC∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.点评:本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.考点:椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:综合题.分析:(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解答:解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]点评:本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.考点:绝对值不等式的解法;带绝对值的函数.专题:计算题.分析:(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.解答:解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:吕静;qiss;席泽林;邢新丽;刘长柏;xintrl;caoqz;minqi5;zlzhan(排名不分先后)菁优网2013年5月30日。

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y ∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D2.(5分)(2012•新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A3.(5分)(2012•新课标)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.5.(5分)(2012•新课标)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.8.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.9.(5分)(2012•新课标)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.10.(5分)(2012•新课标)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选B11.(5分)(2012•新课标)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,=,∴S△ABC∴V==.三棱锥S﹣ABC故选:C.12.(5分)(2012•新课标)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:314.(5分)(2012•新课标)设x,y满足约束条件:;则z=x﹣2y的取值范围为.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]15.(5分)(2012•新课标)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为16.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前60项和为15×2+(15×8+)=1830,故答案为:1830.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S=bcsinA=,所以bc=4,△ABCa=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝19.(12分)(2012•新课标)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D 是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的=,知距离,由△ABD的面积S△ABD=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,=,∵△ABD的面积S△ABD∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.21.(12分)(2012•新课标)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

绝密*启用前2012年普通高等学校招生全国统一考试(全国卷)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考真题——理科数学(全国卷)Word版含答案

2012年高考真题——理科数学(全国卷)Word版含答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年高考试题:理科数学(全国卷)——含答案及解析

2012年高考试题:理科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I 卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. },B ={1,m } ,A B =A , 则m =A. 0B. 0或3C. 1D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m ⋃=∴⊆==∴∈∴=====或舍去Q .【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国统一高考数学试卷(新课标卷)(理科)2012年全国统一高考数学试卷(新课标卷)(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师3.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为.C D.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则().A+B为a1,a2,…,a n的和为a1,a2,…,a n的算术平均数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,.C9.(5分)已知ω>0,函数在上单调递减.则ω的取值范围是()D10.(5分)已知函数;则y=f(x)的图象大致为().11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC 是边长为1的正三角形,SC为球O的直径,.C D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()C.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=_________.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为_________.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为_________.16.(5分)数列{a n}满足,则{a n}的前60项和为_________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(新课标卷)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师=23.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共=,,==∴,4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为.C D.x=上一点∴∴6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()为a1,a2,…,a n的算术平均数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()此几何体的体积为8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,.C两点,)点坐标代入双曲线方程得9.(5分)已知ω>0,函数在上单调递减.则ω的取值范围是().C D,.10.(5分)已知函数;则y=f(x)的图象大致为().<11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,.C D.的外接圆的半径的距离的距离为棱锥的体积为12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()C.由于函数只要求出函数到直线的距离为的最小值,函数上的点到直线的距离为最小值为二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=3.,代入=可求解:∵,∴|2=||=14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为[﹣3,3].,则﹣表示直线y=表示直线,由15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.小时的概率为,,=×=故答案为16.(5分)数列{a n}满足,则{a n}的前60项和为1830.解:∵∴∴三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.sinAcosC+sinAsinC=sinB+sinC=sinS=acosC+asinCsinAcosC+sinAsinCsinAcosC+sinAsinC=sinB+sinC=sin∴=)由18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.,得:19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.,则20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.的距离,知=)由对称性设,则,得:的距离∴)由题设,则对称得:,直线切点距离的比值为21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.)由题意)∴故函数的解析式为的单调递增区间为(∴时,四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.的极坐标为为参数)24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.)不等式等价于,或,或,或参与本试卷答题和审题的老师有:吕静;qiss;席泽林;邢新丽;lcb001;xintrl;caoqz;minqi5;zlzhan(排名不分先后)菁优网2012年10月15日。

相关文档
最新文档