八年级数学上册2.1认识无理数练习(新版)北师大版
新版北师大版八年级上册数学全册同步练习(全套)【最新】
第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为 __________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是_________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.3cm,c=3 cm,则△ABC中最小的角为______度.4.△ABC中,三边长分别为a=6 cm,b=35.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC 中AD ⊥BC 于D ,AB=3,BD=2,DC=1, 则AC 等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ). A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( ).A.210B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( ). A.1 B.3C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ). A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
2019—2020年新北师大版八年级数学上册《认识无理数》同步测试题及.docx
认识无理数一.选择题(共10小题)1.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个2.五个数中:﹣,﹣1,0,,,是无理数的有()A.0个B.1个C.2个D.3个3.下列各数中,是无理数的()A.πB.0 C.D.﹣4.下列各数中,无理数的是()A.B.C.πD.5.在实数﹣2,,,0.1122,π中,无理数的个数为()A.0个B.1个C.2个D.3个6.下列各数中,属于无理数的是()A.πB.0 C.D.﹣7.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个8.下列各数是无理数的是()A.B.C.D.169.在这6个数中,无理数共有()A.1个B.2个C.3个D.4个10.下列说法正确的是()A.带有根号的数是无理数 B.无限小数是无理数C.无理数是无限不循环小数D.无理数是开方开不尽的数二.填空题(共10小题)11.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共个.12.下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有个.13.若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:.14.在实数1.732,中,无理数的个数为.15.在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有个.16.下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有个.17.在实数、、中,无理数是.18.在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有个.19.写出两个无理数,使它们的和为有理数,;写出两个无理数,使它们的积为有理数,.20.下列各数:中,是无理数的有个.三.解答题(共10小题)21.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.1422.在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:(注:横线上填入对应的无理数)23.在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.24.国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x 是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?25.500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?26.下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是,整数是.负分数是.27.已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?28.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.29.有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.30.判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.(2)若a+1是负数,则a必小于它的倒数..参考答案与试题解析一.选择题(共10小题)1.(2016•阜宁县二模)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:,0.343343334…是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(2016•河源校级一模)五个数中:﹣,﹣1,0,,,是无理数的有()A.0个B.1个C.2个D.3个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,只有1个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(2016•安徽模拟)下列各数中,是无理数的()A.πB.0 C.D.﹣【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、π是无理数,故此选项正确;B、0是有理数,故此选项错误;C、=2,是有理数,故此选项错误;D、﹣是有理数,故此选项错误;故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(2016•集美区模拟)下列各数中,无理数的是()A.B.C.πD.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、()0是有理数,故B错误;C、π是无理数,故C正确;D、=2是有理数,故D错误;故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.(2016•义乌市模拟)在实数﹣2,,,0.1122,π中,无理数的个数为()A.0个B.1个C.2个D.3个【分析】根据无理数的三种形式解答即可.【解答】解:无理数有:,π,共2个.故选C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.(2016•海曙区一模)下列各数中,属于无理数的是()A.πB.0 C.D.﹣【分析】根据无理数的定义,即可解答.【解答】解:A、π是无理数,正确;B、0是有理数,故错误;C、=2是有理数,故错误;D、﹣是有理数,故错误;故选:A.【点评】本题考查了有理数,解决本题的关键是熟记有理数的定义.7.(2016春•阿荣旗期末)在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.【解答】解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.【点评】本题考查了无理数的定义,判断无理数的方法,要求学生对无理数的概念的理解要透彻.8.(2016•松江区二模)下列各数是无理数的是()A.B.C.D.16【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、是无理数,故B正确;C、是有理数,故C错误;D、16是有理数,故D错误;故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.9.(2016春•乌拉特前旗期末)在这6个数中,无理数共有()A.1个B.2个C.3个D.4个【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:在这6个数中,无理数有:,π共2个.故选B.【点评】此题主要考查了无理数的定义,注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.本题中是有理数中的整数.10.(2016春•枣阳市期末)下列说法正确的是()A.带有根号的数是无理数 B.无限小数是无理数C.无理数是无限不循环小数D.无理数是开方开不尽的数【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故选项错误;B、无线不循环小数是无理数,无限小数是有理数,故选项错误;C、正确;D、π不是开方开不尽的数,故选项错误.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二.填空题(共10小题)11.(2016春•宁城县期末)如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共 4 个.【分析】画出图形即可就解决问题.【解答】解:如图所示,满足条件的点C有4个.故答案为4.【点评】本题考查无理数、直角三角形、勾股定理等知识,解题的关键是画好图形,注意不能漏解,考虑问题要全面.12.(2016春•启东市月考)下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:,,﹣,2.181181118…(两个8之间1的个数逐次多1)是无理数,故答案为:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.13.(2016春•乐陵市校级月考)若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:﹣,﹣π.【分析】无理数就是无限不循环小数,依据定义即可作出解答.【解答】解:无理数有:﹣,﹣π.(答案不唯一).故答案是:﹣,﹣π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.14.(2015秋•高邮市校级期末)在实数1.732,中,无理数的个数为2 .【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,是无理数,故答案为:2.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.(2015秋•威宁县校级期中)在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数有:,,3π,0.262662666266662…共4个.故答案是:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.(2014春•黄山期末)下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有 3 个.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:π,,1.212212221…(两个1之间依次多一个2)是无理数,故答案为:3.【点评】本题考查了无理数,无理数是无限不循环小数.17.(2014秋•晋江市期末)在实数、、中,无理数是.【分析】根据无理数的三种形式求解.【解答】解:=2,无理数有:.故答案为:.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.18.(2014秋•泾阳县期中)在(﹣)0,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有 4 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:无理数有:0.010010001…,,,2.010101…(相邻两个1之间有1个0)共有4个.故答案是:4.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.(2014秋•宁蒗县校级月考)写出两个无理数,使它们的和为有理数2﹣,3+;写出两个无理数,使它们的积为有理数3,2.【分析】(1)先写一个无理数,根据和为4即可求出另一个无理数;(2)先写一个无理数,根据积是12即可求出另一个无理数.【解答】解:(1)可以先写出任意一个无理数如2﹣,若两个无理数的和是4,则另一个无理数是:4﹣(2﹣)=2+;(2)可以先写出任意一个无理数如3,若两个无理数的积是12,则另一个无理数是:12÷3.故答案为:2﹣,2+;3,.【点评】此题主要考查了无理数定义和性质,两个无理数的和,差,积,商不一定是无理数.并且本题答案不唯一.20.(2011秋•宁陕县校级期末)下列各数:中,是无理数的有 2 个.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数,所以无理数就是无限不循环小数,由此即可判定求解.【解答】解:下列各数:中,∵π是无限不循环小数,而是开方开不尽的数.∴他们都是无理数;而,0.010*********符合分数的概念,是有理数;,=2,是有理数.故有2个无理数.【点评】此题主要考查了无理数的定义,注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.其中是有理数中的整数;0.010*********是有限小数,是有理数.三.解答题(共10小题)21.(2016春•丰都县期末)把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.14【分析】根据有理数与无理数的定义看判定求解.【解答】解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).【点评】本题主要考查了有理数与无理数的定义.有理数是整数与分数的统称;无理数是无限不循环小数.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.开方开不尽的数也是无理数.22.(2011秋•泰顺县校级期中)在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:2表示:3(注:横线上填入对应的无理数)【分析】连接任意正方形的对角线,根据勾股定理计算出其长度,再由无理数的定义进行解答即可.【解答】解:如图所示:AB==;CD==2;EF==3.【点评】本题考查的是无理数的定义及勾股定理的应用,解答此题时要熟知无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.23.(2011秋•温州期中)在:,,0,3.14,﹣,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.【分析】根据无理数、整数、分数的定义即可作答.【解答】解:整数集合{0,﹣};分数集合{,3.14};无理数集合{,﹣,7.151551…}.【点评】此题主要考查了无理数、分数、无理数的定义注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.24.国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x 是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?【分析】根据开方运算,可得正方形的边长,根据无理数是无限不循环小数,可得答案.【解答】解:=2,这个正方形客厅的边长x不是有理数,2≈2×2.6457≈5.291.【点评】本题考查了无理数,无理数是无限不循环小数,开方运算是解题关键.25.500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?【分析】(1)根据比例中项的定义,可知x2=2,结合无理数的概念,就能得出x是不是整数的结论.(2)根据分数的定义,任何分数的平方还是分数,即能得出结论.【解答】解:(1)不是,∵1<2<4,而x2=2∴1<x2<4,若x>0,1<x<2,∴在1和2之间不存在另外的整数.(2)不是,因为任何分数的平方不可能是整数.【点评】本题主要考查无理数和勾股定理的知识点,掌握无理数的概念是解答的关键,此题是基础题,不是很难.26.(2010秋•温州期中)下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是③④⑨,整数是①⑥⑦.负分数是②⑧.【分析】无理数就是无限不循环小数.整数应包括正整数、0、负整数.分数包括正负数、负分数.由此即可判定求解.【解答】解:根据无理数的定义可知:无理数是③④⑨,根据有理数的分类可知:整数是①⑥⑦,负分数是②⑧.【点评】此题主要考查了无理数的定义,也考查了整数分数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.27.已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?【分析】根据长方体的体积公式,可得长、宽、高、根据无理数就是无限不循环小数,可得答案.【解答】解:长、宽、高不是无理数,理由如下:设长、宽、高分别为5x,4x,3x.由体积,得60x3=1620,解得x=3,长、宽、高分别为15,12,9不是无理数.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.28.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.【分析】首先用正方体的体积公式求出正方体的边长,然后根据有理数和无理数的概念进行判断.【解答】解:∵正方体的体积为3,∴正方体的边长为,是无理数,故体积为3的正方形的边长不可能是整数、分数、有理数.【点评】本题主要考查无理数和有理数的知识点,解题的关键是熟练掌握无理数和有理数的概念,本题比较基础,需要熟练掌握.29.(2015秋•河南校级月考)有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,所有无理数的和:﹣++(﹣)=﹣+2﹣=.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.30.(2013秋•萧山区校级期中)判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.×(2)若a+1是负数,则a必小于它的倒数.√.【分析】(1)根据乘法法则即可判断;(2)根据a+1是负数即可求得a的范围,即可作出判断.【解答】解:(1)任何无理数有有理数0的乘积等于0,故命题错误;(2)a+1是负数,即a+1<0,即a<﹣1,则a必小于它的倒数.故答案是:×,√.【点评】此题主要考查了无理数的运算,正确理解运算性质是关键.。
专题21认识无理数-2021-2022学年八年级数学上(解析版)【北师大版】
2021-2022学年八年级数学上册尖子生同步培优题典【北师大版】专题2.1认识无理数姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021•白云区二模)实数0,﹣1,4,π中,无理数是( ) A .4B .πC .0D .﹣1【分析】理解无理数的概念,一定要同时理解有理数的概念,整数与分数的统称有理数即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解析】A 、4是整数,属于有理数,故本选项不合题意; B 、π属于无理数,故本选项符合题意; C 、0是整数,属于有理数,故本选项不合题意; D 、﹣1是整数,属于有理数,故本选项不合题意. 故选:B .2.(2021春•普陀区期中)下列各数中,是无理数的是( ) A .﹣6.94B .337C .0D .π2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】A 、﹣6.94是有限小数,属于有理数,故本选项不合题意; B 、337是分数,属于有理数,故本选项不合题意;C 、0是整数,属于有理数,故本选项不合题意;D 、π2是无理数,故本选项符合题意.故选:D .3.(2021春•淮北月考)下列四个实数中,是无理数的是( )A .2.021B .πC .227D .3.14159265【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】A 、2.021是有限小数,属于有理数,故本选项不合题意; B 、π是无理数,故本选项符合题意; C 、227是分数,属于有理数,故本选项不合题意;D 、3.14159265是有限小数,属于有理数,故本选项不合题意; 故选:B .4.(2020秋•工业园区期末)下列各数中,不是无理数的是( ) A .πB .1327C .0.1010010001…D .π﹣3.14【分析】分别根据无理数、有理数的定义即可判定选择项. 【解析】A 、π是无理数,故本选项不合题意; B 、1327是分数,属于有理数,故本选项符合题意;C 、0.1010010001…是无理数,故本选项不合题意;D 、π﹣3.14是无理数,故本选项不合题意; 故选:B .5.(2020秋•徐州期末)下列四个数中,无理数是( ) A .237B .0C .0.12D .π【分析】分别根据无理数、有理数的定义即可判定选择项. 【解析】A 、237是分数,属于有理数,故本选项不合题意;B 、0是整数,属于有理数,故本选项不合题意;C 、0.12是有限小数,属于有理数,故本选项不合题意;D 、π是无理数,故本选项符合题意. 故选:D .6.(2020秋•常州期末)下列各数中,无理数是( )A .0.6⋅B .227C .π3D .﹣2.616116111【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】A 、0.6.是循环小数,属于有理数,故本选项不合题意; B 、227是分数,属于有理数,故本选项不合题意;C 、π3是无理数,故本选项符合题意;D 、﹣2.616116111是有限小数,属于有理数,故本选项不合题意; 故选:C .7.(2020秋•鼓楼区校级月考)在314,π,13,﹣0.23,1.131331333133331…(两个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】在314,π,13,﹣0.23,1.131331333133331…(两个1之间依次多一个3)中,无理数有π,1.131331333133331…(两个1之间依次多一个3),共2个. 故选:B .8.(2020秋•杏花岭区校级期中)在3.14159,4,1.1010010001…(每两个1之间0的个数依次加1),4.21⋅⋅,π,132中,无理数有( )A .1个B .2个C .3个D .4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】3.14159是有限小数,属于有理数;4是整数,属于有理数; 4.21⋅⋅是循环小数,属于有理数;132是分数,属于有理数;无理数有1.1010010001…(每两个1之间0的个数依次加1),π共2个. 故选:B .9.(2020秋•太平区期末)下列各数:﹣1,π3,1.1212212221…(每两个1之间增加1个2),﹣3.1415,227,﹣0.3⋅,其中无理数有( ) A .1个B .2个C .3个D .4个【分析】根据无理数是无限不循环小数,可得答案. 【解析】﹣1是整数,属于有理数; ﹣3.1415是有限小数,属于有理数;227是分数,属于有理数;﹣0.3⋅是循环小数,属于有理数;无理数有π3,1.1212212221…(每两个1之间增加1个2)共2个.故选:B .10.(2020秋•张家港市期中)下列一组数:﹣8,2.7,312,π2,−0.6⋅,0,2,0.010010001…(相邻两个1之间依次增加一个0)其中是无理数有( ) A .0 个B .1 个C .2个D .3个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】﹣8,0,2是整数,属于有理数; 2.7是有限小数,属于有理数; 312是分数,属于有理数; −0.6⋅是循环小数,属于有理数;无理数有π2,0.010010001…(相邻两个1之间依次增加一个0)共2个.故选:C .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2020秋•泰兴市期末)在π2,3.14,0.02002…,﹣3,23中,无理数有 2 个.【分析】根据无理数的概念即可得出答案.【解析】在所列实数中,无理数的有π2,0.02002…这2个,故答案为:2.12.(2020秋•东台市期末)下列各数中:3.1415926,0.171171117……,﹣π,−17,0,0.5.,无理数有 2 个.【分析】根据无理数的概念求解即可.【解析】在所列实数中无理数有0.171171117……,﹣π这2个, 故答案为:2.13.(2020秋•沭阳县期末)写出一个无理数,使这个无理数的绝对值小于4: π(答案不唯一) . 【分析】根据无理数的概念求解即可(答案不唯一). 【解析】无理数π的绝对值小于4, 故答案为:π(答案不唯一).14.(2020秋•高邮市期末)在数0、π、﹣0.1010010001,5.6⋅、227中,无理数有 1 个.【分析】根据无理数的概念求解即可. 【解析】在所列实数中,无理数的是π, 故答案为:1.15.(2021春•包河区期中)若|2a ﹣7|=7﹣2a ,则a = √2 .(请写出一个符合条件的正无理数) 【分析】根据绝对值的性质可得2a ﹣7≤0,据此可得a 的取值范围,再根据无理数的定义求解即可. 【解析】因为|2a ﹣7|=7﹣2a , 所以2a ﹣7≤0, 所以a ≤72, 所以a 可以是√2.故答案为:√2(答案不唯一).16.(2021•雁塔区校级模拟)在下列各数13,π,√2−1,0.1212中,无理数是 π,√2−1 .【分析】根据无理数的定义求解即可.【解析】13,0.1212是有理数;π,√2−1是无理数.故答案为:π,√2−1.17.(2020秋•北海期末)在0,5,π,−227这些数中,无理数是 π . 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】0,5是整数,属于有理数; −227是分数,属于有理数; 无理数π. 故答案为:π.18.(2020秋•浦口区期中)在﹣0.5,π,−227,1.3⋅,1.2121121112…(每两个2之间依次多1个1)中,无理数有 2 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数. 【解析】﹣0.5是有限小数,属于有理数; π是无理数;−227是分数,属于有理数; 1.3⋅是循环小数,属于有理数;1.2121121112…(每两个2之间依次多1个1)是无理数.所以无理数有π,1.2121121112…(每两个2之间依次多1个1)共2个. 故答案为:2.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•兴化市月考)将下列各数填在相应的集合里:227,1﹣π,﹣0.2020020002…,0,﹣(﹣200%),﹣|﹣5|,﹣(﹣1)2,3.14159负数集合( 1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2 …) 正分数集合(227,3.14159 …)自然数集合( 0,﹣(﹣200%) …) 无理数集合( 1﹣π,﹣0.2020020002… …) 【分析】根据实数的分类,可得答案.【解析】负数集合( 1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2 …) 正分数集合(227,3.14159 …)自然数集合( 0,﹣(﹣200%)…) 无理数集合( 1﹣π,﹣0.2020020002……),故答案为:1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2;227,3.14159;0,﹣(﹣200%);1﹣π,﹣0.2020020002….20.(2020秋•句容市月考)请将下列各数:12,7,﹣0.01,﹣3.2020020002…,﹣15,2.95⋅,0,π2;填入相应的括号内.(1)整数集合{ 7,﹣15,0 …}; (2)分数集合{12,﹣0.01,2.95⋅…};(3)负有理数集合{ ﹣0.01,﹣15 …}; (4)无理数集合{ ﹣3.2020020002…,π2 …}.【分析】根据整数,分数,负有理数,无理数的定义即可求解. 【解析】(1)整数集合{7,﹣15,0…}; (2)分数集合{12,﹣0.01,2.95⋅⋯};(3)负有理数集合{﹣0.01,﹣15…}; (4)无理数集合{﹣3.2020020002…,π2⋯}.故答案为:7,﹣15,0;12,﹣0.01,2.95⋅;﹣0.01,﹣15;﹣3.2020020002…,π2.21.(2020秋•清江浦区期中)把下列数按照要求填入相应的集合内:+8.5,﹣325,0.35,0,3.14,12,0.3,π,10%,﹣2.626626662…无理数集合:{ π,﹣2.626626662… …};负数集合:{ ﹣325,﹣2.626626662… …}.【分析】根据实数的定义及其分类求解可得. 【解析】无理数集合:{π,﹣2.626626662……}; 负数集合:{﹣325,﹣2.626626662……}.故答案为:π,﹣2.626626662…;﹣325,﹣2.626626662….22.(2020秋•亭湖区期中)请将下列各数填入相应的集合内: −74,0,π,311,﹣1.010010001…,0.5⋅有理数集合:{ 74,0,311,0.5⋅…};无理数集合:{ π,﹣1.010010001… …}; 非负数集合:{ 0,π,311,0.5⋅…}.【分析】根据实数的定义及其分类求解可得.【解析】有理数集合:{−74,0,311,0.5⋅⋯};无理数集合:{π,﹣1.010010001……}; 非负数集合:{0,π,311,0.5⋅⋯}.故答案为:−74,0,311,0.5⋅;π,﹣1.010010001…; 0,π,311,0.5⋅.23.将下列这些数按要求填入相应的集合中:0.010010001…,4,﹣212,3.2,0,﹣1,﹣(﹣5),﹣|﹣5|,−π2.负数集合:{ −212,﹣1,﹣|﹣5|,−π2 …}; 非负整数集合:{ 4,0,﹣(﹣5) …}; 分数集合:{ ﹣212,3.2 …};无理数集合:{ 0.010010001…,π2…}.【分析】直接利用负数,非负整数,分数,无理数的定义分别分析得出答案. 【解析】负数集合:{−212,﹣1,﹣|﹣5|,−π2⋯}; 非负整数集合:{4,0,﹣(﹣5)…};分数集合:{﹣212,3.2 …};无理数集合:{ 0.010010001……,−π2⋯}.故答案为:−212,﹣1,﹣|﹣5|,−π2;4,0,﹣(﹣5);﹣212,3.2;0.010010001……,−π2.24.将下列各实数填入相应的集合内:−83,|−67|,4,0,﹣27,0.36,+(﹣1.78),0.303003000…,π2,﹣8.整数集合:{ 4,0,﹣27,﹣8 …}; 负分数集合:{ −83,+(﹣1.78) …}; 负数集合:{ −83,+(﹣1.78),﹣27,﹣8 …}; 非负整数:{ 4,0 …};非负数集合:{ |−67|,4,0,0.36,0.303003000…,π2 …};无理数集合:{ 0.303003000…,π2 …}.【分析】根据整数,负数,负分数,无理数,非负整数,非正整数的定义分类填入即可. 【解析】整数集合:{4,0,﹣27,﹣8 …}; 负分数集合:{−83,+(﹣1.78)…}; 负数集合:{−83,+(﹣1.78),﹣27,﹣8…}; 非负整数:{4,0 …};非负数集合:{|−67|,4,0,0.36,0.303003000…,π2⋯};无理数集合:{0.303003000…,π2…}.故答案为:4,0,﹣27,﹣8;−83,+(﹣1.78);−83,+(﹣1.78),﹣27,﹣8;4,0;|−67|,4,0,0.36,0.303003000…,π2;0.303003000…,π2.。
八年级数学上册2.1认识无理数练习题(新版)北师大版
无理数班级:___________姓名:___________得分:__________一、选择题(每小题6分,共36分)1、在下列实数中,无理数是( )A.2B.0C.D.A. B.1.732 C.- D.0.3,117,0.31311311136.一个长方形的长与宽分别是6、3,它的对角线的长可能是()A.整数 B.分数 C.有理数D.无理数二、填空题(每小题6分,共24分)1、面积为3的正方形的边长_____有理数;面积为4的正方形的边长_____有理数.(填“是”或“不是”)2、试举一例,说明“两个无理数的差仍是无理数”是错误的:_____.3、直角三角形两直角边长为2和5,以斜边为边的正方形的面积是,此正方形的边长(填“是”或者“不是”)有理数.4、有六个数:0.123,(﹣1.5)3,3.1416,227,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=______.三、解答题(每小题20分,40分)1、500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?2、如图:(1)x,y,z,w中哪些是有理数哪些是无理数?它们的值分别是多少?(2)你发现了斜边长度的表示规律了吗?求第n次作出的斜边的长度是多少?参考答案一、选择题1、答案:C【解析】∵无理数是无限不循环小数,∴是无理数,2,0,是有理数.故选C.2、答案: B【解析】根据无理数的定义,结合各项进行判断即可.①无限循环小数不是无理数,故①错误;②无理数是无限不循环的小数,故②正确;③无理数包括正无理数、负无理数,0是有理数,故③错误;④无理数都可以用数轴上的点来表示,故④正确.综上可得②④正确,共2个.故选B.3、答案:D【解析】根据无理数的定义对四个选项进行逐一分析即可.A、是有理数,不是无理数,故本选项错误;B、是有理数,不是无理数,故本选项错误;C、是无理数,故本选项正确;D、是有理数,不是无理数,故本选项错误;故选C.4、答案:C【解析】无理数就是无限不循环小数.无理数应满足三个条件:①是小数;②是无限小数;③不循环.如圆周率π=3.141592653…,=1.414…,0.010010001000001….根据概念即可判定选择.A、无理数包括正无理数、负无理数,故选项错误;B、π是无理数,故选项错误;C、不是所有的带根号的数都是无理数,如等,故选项错误;D、无理数是无限不循环小数,故选项正确;故选D.5、答案:D【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.∵,∴在实数,,π,,,0.3131131113…中,有理数有,,共3个;无理数有,π,0.3131131113…共3个;故选A.6、答案:D【解析】∵ ==3,∴对角线长是无理数.故选D.二、填空题1、答案:不是是【解析】:首先用正方形的面积公式求出正方形的边长,然后根据有理数和无理数的概念进行判断.∵正方形的面积为3,∴正方形的边长为,∴面积为3的正方形的边长不是有理数,∵正方形的面积为4,∴正方形的边长为2,故面积为4的正方形的边长是有理数,故答案为不是、是.2、答案:π-π=0【解析】:由于两个相等的无理数的差就是0,是有理数,由此根据无理数定义即可求解.例如:π-π=0.(答案不唯一).3、答案:29 不是【解析】:设直角三角形的两直角边是a和b,斜边是c,由勾股定理得:a2+b2=c2,则分别以a、b为边长的两个正方形的面积之和为:a2+b2=4+25=29,以斜边c为边长的正方形的面积S=c2=a2+b2=29是无理数.故答案为:29,不是.4、答案::6次作出的斜边的长是x==,y==;z==2w==(次作出的斜边的长是.(。
新北师大版数学八上(教案):2.1.认识无理数
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《认识无理数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如圆的周长与直径的比值π)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索无理数的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调无理数的定义和表示方法这两个重点。对于难点部分,如无理数的估算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与无理数相关的实际问题,如估算√2的大小。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量一个正方形的对角线长度,验证√2的无理性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是指不能表示为两个整数之比的数,它们通常以无限不循环小数的形式出现。无理数在数学中具有重要地位,如在几何、物理等学科中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以圆的周长与直径的比值π为例,解释π是一个无理数,并探讨其在实际中的应用。
举例:计算√9和√16,解释其结果为3和4,强调开平方运算的结果可能是有理数,也可能是无理数。
(3)无理数在几何中的应用:学生可能难以理解无理数在几何图形中的应用,如勾股定理。教师应通过具体图形和实例,引导学生理解无理数在几何中的意义。
举例:直角三角形中,边长为1、√2、1的三角形的勾股定理应用,说明√2是无理数。
在讲授过程中,我注意到一些学生在理解无理数表示方法时显得有些困惑,特别是根号的使用。我通过重复解释和举例,让学生看到无理数表示的直观性,并强调它与有理数的区别。此外,通过小ቤተ መጻሕፍቲ ባይዱ讨论和实验操作,学生们有了更直观的感受,这有助于他们深化对无理数的认识。
八年级数学上册 2.1 认识无理数同步测试 (新版)北师大版-(新版)北师大版初中八年级上册数学试题
认识无理数一、选择题(共28小题)1.在下列实数中,无理数是()A.2 B.3.14 C.D.2.四个数﹣1,0,,中为无理数的是()A.﹣1 B.0 C.D.3.下列实数是无理数的是()A.﹣1 B.0 C.D.4.实数π,,0,﹣1中,无理数是()A.πB.C.0 D.﹣15.在下列实数中,无理数是()A.0 B.C.D.66.下列实数属于无理数的是()A.0 B.πC.D.﹣7.下列选项中,属于无理数的是()A.2 B.πC.D.﹣28.下列各数中是无理数的是()A.B.﹣2 C.0 D.9.下列实数是无理数的是()A.﹣1 B.0 C.πD.10.下列实数是无理数的是()A.B.1 C.0 D.﹣111.下列实数是无理数的是()A.﹣2 B.C.D.12.下列实数中,是无理数的为()A.﹣1 B.﹣ C.13.实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.414.下列四个实数中,是无理数的为()A.0 B.﹣3 C.D.15.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个B.2个C.3个D.4个16.下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.17.下列实数中,是无理数的为()A.B.C.0 D.﹣318.在实数0,π,,,中,无理数的个数有()A.1个B.2个C.3个D.4个19.下列各数中,属于无理数的是()A.B.﹣2 C.0 D.20.下列各数是无理数的是()A.B.C.πD.﹣121.下列实数中,为无理数的是()A.0.2 B.C.D.﹣522.下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()023.实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.324.下列四个实数中,无理数是()A.2 B.C.0 D.﹣125.下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°26.下列实数中,无理数是()A.﹣1 B.C.5 D.27.下列实数是无理数的是()A.5 B.0 C.D.28.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个二、填空题(共2小题)29.实数中的无理数是______.30.请你写出一个无理数______.答案一、选择题(共28小题)1.D;2.D;3.D;4.A;5.C;6.B;7.B;8.A;9.C;10.A;11.D;12.C;13.B;14.C;15.B;16.D;17.A;18.B;19.A;20.C;21.C;22.C;23.D;24.B;25.D;26.D;27.D;28.B;二、填空题(共2小题)29.;30.π;。
21 认识无理数(备作业)-2021-2022学年八年级数学上(北师大版)(解析版)
2.1认识无理数建议先做2.2-2.3再回来做此篇一、单选题1.下列实数中,为无理数的是()A B.5 C.0 D.2 3【答案】A【解析】略2.下列说法正确的是()A.所有无限小数都是无理数B.所有无理数都是无限小数C.有理数都是有限小数D.不是有限小数的不是有理数【答案】B【解析】根据无理数的定义,以及无限小数的定义分析各选项即可作出判断.解:A、0.1是无限小数,不是无理数,故A错误;B、所有无理数都是无限小数,故B正确;C、有理数5是整数,不是有限小数,故C错误;D、有理数5是整数,不是有限小数,是有理数,故D错误.故选:B.【点睛】本题考查了实数中无理数的定义,以及无限小数的定义,是基础题型,比较简单.3.下列各数:60,0.3030030003102π︒⋅⋅⋅(每两个之间依次多个( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据无理数的定义,无理数就是无限不循环小数,根据定义即可作出判断.【详解】解:03=是整数,不是无理数, 0.23是循环小数,不是无理数,1cos 602︒=是分数,不是无理数,2π,0.3030030005==3个, 故选:B .【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.3030030003…(每两个3之间依次多1个0)等形式.4.在实数11,,0,27π- )个. A .1个B .2个C .3个D .4个 【答案】B【解析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:2=-,∴无理数有:2π,共2个, 故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5.下列说法错误的是( )A .π是无理数B .面积为2的正方形的边长是无理数C .有限小数是有理数D .无限小数是无理数【答案】D【解析】直接利用无理数的定义分析得出答案.【详解】A .π是无理数,正确,不合题意;B .面积为2C .有限小数是有理数,正确,不合题意;D .无限不循环小数是无理数,故此选项错误,符合题意.故选D .【点睛】本题考查了实数,正确掌握无理数的定义是解题的关键.6.已知a 为有理数,b 、c 为无理数,下列各数:-a b 、ab 、b c +、bc 中一定是无理数的有( ) A .4个B .3个C .2个D .1个【答案】D【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:已知a 为有理数,b 、c 为无理数,则-a b 一定是无理数;ab 不一定是无理数,例如00=;b c +(0=;bc 4=.故-a b 、ab 、b c +、bc 中一定是无理数的只有-a b 共1个.故选:D .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.7.下列说法正确的有( )(1)有理数包括整数、分数和零;(2)不带根号的数都是有理数;(3)带根号的数都是无理数;(4)无理数都是无限小数;(5)无限小数都是无理数.A .1B .2C .3D .4【答案】A【解析】根据有理数的分类,结合相关概念进行判断即可,整数包括正整数、负整数和0;分数包括正分数和负分数;有理数包括正有理数、负有理数和0;0不是正数也不是负数.【详解】整数包含0,故错误;Π不带根号,但是是无理数,错误;3能开方开的尽的是有理数,错误;无理数都是无限不循环小数,都属于无限小数,正确;无理数都是无限不循环小数,不是全部的无限小数,错误;总共1个正确,故选A【点睛】考查有理数的概念,理解有理数的分类中各自的含义是解题的关键.8.实数,00.10.3133133314π-⋯,(每两个1之间依次增加一个3),其中无理数共有( ) A .2个B .3个C .4个D .5个 【答案】A【解析】无限不循环小数是无理数,根据定义解答.【详解】 符合无理数定义的有:0.3133133314π-⋯, ,故选:A .【点睛】此题考查无理数定义,熟记定义是解题的关键.9.下列说法错误的是( )A .无限不循环小数是无理数B .面积为5cm 2的正方形的边长是一个无理数C .π2是一个分数,所以也是有理数D .任何有限小数或无限循环小数都不是无理数【答案】C【解析】【解析】根据无理数的定义对以下选项进行一一分析、并作出判断.【详解】A. 无限不循环小数是无理数,符合定义,正确;B. 面积为5cm 2的正方形的边长是√5,是一个无理数,正确;C. π2是一个无限不循环小数,是无理数,错误;D. 任何有限小数或无限循环小数都不是无理数,是有理数,正确.故选:C【点睛】考核知识点:无理数.理解无理数定义是关键.10.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是()A.②③B.①③C.①④D.②④【答案】A【解析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;② 是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A.【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.二、填空题11.在﹣1、0、227___.【解析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【详解】解:-1,0是整数,属于有理数;227是分数,属于有理数;【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.12.下列一组数:22,7π---_______个. 【答案】2【解析】 有理数概念:能够改写成n m形式的数为有理数,判断出有理数;无理数的特点是无限不循环的小数;根据这两点判断上面的数即可找出无理数.【详解】有理数有:-8,2.6,22 7 -无理数有:π-故答案为:2【点睛】本题主要考查有理数、无理数的概念,熟记概念和特殊字母符号是解决问题的关键.13.写出一个小于2的无理数:____.【解析】根据无理数的大小判断即可;【详解】∵2;【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.14.若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:__.【答案】﹣π【解析】本题答案不唯一,这样的无理数很多,如:π-.15.把下列各数填入相应的集合中: 3.14-,2π,13-,0.618,227,0,1-,6%,3+,3.010010001…(每相邻两个1之间依次多一个0).分数集合{____________…};无理数集合{____________…}. 【答案】 3.14-,13-,0.618,227,6%;2π,3.010010001…(每相邻两个1之间依次多一个0) 【解析】根据分数、无理数的定义分别填空即可.【详解】分数集合{ 3.14-,13-,0.618,227,6%…} 无理数集合{2π,3.010010001…(每相邻两个1之间依次多一个0)…}.故答案为: 3.14-,13-,0.618,227,6%;2π,3.010010001…(每相邻两个1之间依次多一个0) 【点睛】本题主要考查了有理数和无理数的相关概念及其分类方法,是基础题,熟记概念是解题的关键.16.数:13-、0.32、2π、0.01020304…中,是无理数的有_____个. 【答案】3【解析】【解析】根据无理数是无限不循环小数,可得答案.【详解】20.01020304…是无理数,共3个. 故答案为3.【点睛】本题考查了无理数,利用了无理数的定义.17.有六个数:0.123,(﹣1.5)3,3.1416,227,﹣2π,0.1020020002…,若其中无理数的个数为x ,整数的个数为y ,非负数的个数为z ,则x+y+z=______.【答案】6【解析】试题解析:无理数有:-2π,0.1020020002…共2个,则x=2;没有整数:则y=0;非负数有:0.123,3.1416,227,0.1020020002…共4个; 则z=4.则x+y+z=6.点睛:根据无理数的定义、整数的定义、非负数的定义即可判定x 、y 、z 的值18.现有下列说法:①有限小数一定是有理数;②无限小数一定是无理数;③无限不循环小数叫做无理数;④任何一个有理数的绝对值一定是正数;⑤倒数等于本身的数是±1.其中正确说法的是______.【答案】①③⑤【解析】试题解析:①有限小数一定是有理数,故①正确;②无限不循环小数一定是无理数,故②错误;③无限不循环小数叫做无理数,故③正确;④任何一个有理数的绝对值一定是非负数,故④错误;⑤倒数等于本身的数是±1,故⑤正确.其中正确说法的是 ①③⑤,三、解答题19.请将下列各数填入相应的集合内:74-,0,π,311,-1.010010001···(每两个1之间多一个0),0.5• 有理数集合:{ ···}; 无理数集合:{ ···}; 非负数集合:{ ···}. 【答案】有理数集合:{74-,0,311,0.5•···};无理数集合:{π,-1.010010001···(每两个1之间多一个0)···};非负数集合:{0,π,311,0.5•···}. 【解析】根据有理数的概念、无理数及非负数的概念可直接进行求解.【详解】有理数集合:{74-,0,311,0.5•···}; 无理数集合:{π,-1.010010001···(每两个1之间多一个0)···};非负数集合:{0,π,311,0.5•···}. 【点睛】本题主要考查有理数的概念、无理数及非负数,熟练掌握有理数的概念、无理数及非负数是解题的关键. 20.把下列各数填入表示它所在的数集的大括号:-2.4,3,-2020,-103,0.1010010001…,-..0.15,0,-(-30%),3π,-|-4| (1)正数集合:{ …}(2)无理数集合:{ …};(3)分数集合:{ …};(4)非正整数集合:{ …};【答案】(1)3,0.1010010001…,-(-30%),3π;(2)0.1010010001…,3π;(3)-2.4,-103,-..0.15,-(-30%);(4)-2020,0,-|-4|【解析】 (1)先化简-(-30%)与-|-4|,再根据正数都大于0解答;(2)根据无理数的定义:无限不循环小数叫无理数解答;(3)根据有理数的分类解答;(4)非正整数是0与负整数,据此解答即可.【详解】解:(1)-(-30%)=30%,-|-4|=﹣4;正数集合:{3,0.1010010001…,-(-30%),3π,…} (2)无理数集合:{0.1010010001…,3π, …};(3)分数集合:{-2.4,-103,-..0.15,-(-30%),…}; (4)非正整数集合:{-2020,0,-|-4|,…}.【点睛】本题考查了有理数的分类和无理数的概念,属于基础题目,熟练掌握有理数和无理数的概念是关键.21.下列各数中:①17,②π-,③④0,⑤0.3,⑥⑧0.3131131113……(两个3之间依次多一个“1”).(1)属于有理数的有:(填序号)(2)属于无理数的有(填序号).【答案】(1)①,④,⑤,⑥;(2):②,③,⑦,⑧.【解析】(1)根据有理数定义直接写即可;(2)根据无理数的定义直接写即可.【详解】(1)5-,属于有理数的有:①,④,⑤,⑥;(2)属于无理数的有:②,③,⑦,⑧.【点睛】本题是对有理数,无理数知识的考查,熟练掌握有理数,无理数的定义是解决本题的关键.。
北师大版八年级数学上册:2.1《认识无理数》
解析:如图,俯视图小正方形中的数字代表此处小正方体的个数, 可知小正方体共有6个.
答案:6
规律方法探究
命题点1
命题点2
命题点3
规律方法探究
命题点1
命题点2
命题点3
变式训练如图是一个几何体的三视图,其中主视图、左视图都是 腰为13 cm,底为10 cm的等腰三角形,则这个几何体的侧面积是 ( )
A.6π cm2 B.65π cm2 C.70π cm2 D.75π cm2 解析:由三视图确定该几何体是圆锥,它的侧面展开图是一个扇 10 形,所以S侧=πrl=π× ×13=65π(cm2). 2 答案:B
几何体 圆柱 圆锥 球
主视图 长方形 三角形 圆
左视图 长方形 三角形 圆
俯视图 圆 圆和圆心 圆
3.三视图的画法 (1)长对正;(2)高平齐;(3)宽相等.
基础自主导学
考点梳理
自主测试
考点二 由视图到立体图形 由视图想象实物图形时不像由实物到视图那样唯一确定,由一个 视图往往可以想象出多种物体. 由视图描述实物时,需了解简单的、常见的、规则物体的视图, 能区分类似的物体视图的联系与区别,如主视图是长方形,可想象 出是四棱柱、三棱柱、圆柱等;俯视图是圆形,可想象出是球、圆 柱等.
规律方法探究
命题点1
命题点2
命题点3
命题点3 投影 【例3】 (1)一木杆按如图①的方式直立在地面上,请在图中画出 它在阳光下的影子(用线段CD表示); (2)图②是两根标杆及它们在灯光下的影子.请在图中画出光源 的位置(用点P表示),并在图中画出人在此光源下的影子(用线段EF 表示).
A.2
B.π
3 C. 2
( B )
D.-2
八年级数学上册 2.1 认识无理数课时练 (新版)北师大版
认识无理数【教材训练】 5分钟1.无理数的概念无限不循环小数称为无理数,如π是无限不循环小数,故它是无理数;0.4656656665…(相邻的两个5之间6的个数逐次加1)是无限不循环小数,也是无理数;a2=3中,a是无限不循环小数,故a也是无理数.2.无理数与有理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化成分数的形式,而无理数则不能.3.估算法在探索x2=a(a≥0)中x的值时,先估计x的整数部分,看它在哪两个连续整数之间,较小数即为其整数部分.其次,确定x的十分位上的数,同样寻找它在哪两个连续整数之间.按照上述方法依次确定x的百分位、千分位……的值,从而确定x的值.4.判断训练(打“√”或“×”)(1)无限小数包括无限循环小数与无限不循环小数. (√)(2)面积为5cm2的正方形边长b是一个有理数. (×)(3)边长为4的正方形的对角线的长度一定是无理数. (√)(4)无理数一定是无限不循环小数. (√)【课堂达标】 20分钟训练点一:有理数和无理数的概念及辨析1.(2分)下列说法正确的是( )A.有理数都是有限小数B.-π是无理数C.不循环小数是无理数D.有理数是整数,无理数是分数【解析】选B.根据有理数和无理数的概念可知,-π是无理数.2.(2分)下列各数中:-3,,π,,0.536,2. 4&,1.52552555255552…(相邻两个2之间5的个数逐次加1),无理数有( )A.2个B.3个C.4个D.5个【解析】选B.所有分数、整数、无限循环小数都是有理数,π是无理数,所以无理数有π,和1.52552555255552…(相邻两个2之间5的个数逐次加1),共3个.3.(2分)面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定【解析】选C.设宽为x,则长为2x.即有2x2=6,x2=3.而没有任何有理数的平方等于3.所以x 为无理数.4.(6分)把下列各数填在相应的括号里.0,3,2.75,-6,,1.,,-1.010010001.自然数{ …};有理数{ …};整数{ …};分数{ …};无理数{ …}.【解析】由自然数、有理数、整数、分数和无理数的概念知自然数{0,3,…};有理数{0,3,2.75,-6,1.,,-1.010010001,…};整数{0,3,-6,…};分数{2.75,1.,,-1.010010001,…};无理数{,…}.训练点二:估计无理数的近似值1.(2分)正数m满足m2=39,则m的整数部分为( )A.6B.7C.8D.9【解析】选A.因为62<m2<72,所以6<m<7.故m的整数部分为6.2.(2分)已知Rt△ABC中,∠C=90°,AC=1,BC=3,则AB的取值范围是( )A.3.0<AB<3.1B.3.1<AB<3.2C.3.2<AB<3.3D.3.3<AB<3.4【解析】选B.在Rt△ABC中,由勾股定理得AB2=AC2+BC2=12+32=10.因为32<10<42,所以3<AB<4.而3.12=9.61,3.22=10.24.所以3.1<AB<3.2.3.(6分)面积为7的正方形的边长为x.请你回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?并说明理由.【解析】设正方形的面积为S,则S=x2=7.当2<x<3时,4<S<9;当2.6<x<2.7时,6.76<S<7.29;当2.64<x<2.65时,6.9696<S<7.0225;当2.645<x<2.646时,6.996025<S<7.001316.则(1)x的整数部分是2.(2)把x的值精确到十分位时,x≈2.6.精确到百分位时,x≈2.65.(3)x不是有理数.理由是:由计算可知,x是无限不循环小数.4.(8分)如图,在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?你能估算出来吗?(结果保留3位有效数字)【解析】因为BC2=BD2+CD2=42+42=32,所以AC2=AB2+BC2=42+32=48.而6.932≈48.025,6.922≈47.886,所以6.92<AC<6.93.设能放进的玻璃棒的最大长度为l,则l2不能超过48,所以l≈6.92(cm).答:能放进的玻璃棒的最大长度约为6.92cm.【课后作业】 30分钟一、选择题(每小题4分,共12分)1.下列说法正确的有( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④0既不是无理数,也不是有理数;⑤6.010060006是无理数.A.1个B.2个C.3个D.4个【解析】选A.有理数与无理数的差都是无理数,故①错误;无限不循环小数是无理数,所以无理数都是无限小数,故②错误,③正确;0是有理数,故④错误;6.010060006是有限小数,所以是有理数,故⑤错误.2.一个正方形的面积是15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间【解析】选B.设正方形的边长为x,则有x2=15,因为9<15<16,所以3<x<4.3.如图所示的正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A.0B.1C.2D.3【解析】选C.因为AB2=52+12=26,BC2=32+22=13,AC2=42+32=25,所以AB和BC的长为无理数.二、填空题(每小题4分,共12分)4.写出一个比4小的正无理数__________.【解析】此题答案不唯一,如3.030030003…(每两个3之间的0依次增加1个)等.答案:3.030030003…(每两个3之间的0依次增加1个)(答案不唯一)5.有六个数:0.1427,(-0.5)3,3.1416,,-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),其中是无理数的有________;若无理数的个数为x,整数的个数为y,非负数的个数为z,那么x+y+z等于________.【解析】(-0.5)3=-0.125,所给的数中无理数有-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),共有2个,所以x=2,没有整数,所以y=0,非负数有0.1427,3.1416,,0.1020020002…(相邻两个2之间0的个数逐次加1),共有4个,所以z=4.所以x+y+z=2+0+4=6.答案:-2π,0.1020020002…(相邻两个2之间0的个数逐次加1) 66.如图,正方形面积(阴影部分)为______,正方形边长是______(精确到个位).【解析】设三角形斜边长为c,则c2=42+52=41,故正方形面积(阴影部分)为41.又6.42=40.96,6.52=42.25,所以6.42<c2<6.52,即6.4<c<6.5,故c≈6.答案:41 6三、解答题(共26分)7.(8分)如图,在△ABC中,AB=AC,AD是底边上的高,若AC=6cm,AD=5cm,求BD的值(精确到0.01cm).【解析】因为AB=AC,AD是底边上的高,AC=6cm,所以AB=6cm,△ABD是直角三角形.在Rt△ABD 中,BD2=AB2-AD2=62-52=11.利用计算器可得3.3162=10.995856,3.3172=11.002489,而10.995856<11<11.002489,所以BD≈3.32cm.8.(8分)如图是由边长为1的小正方形拼成的.(1)把图中各阴影部分分别剪拼成大正方形,这些大正方形的面积一样大吗?(2)这些大正方形的边长是有理数吗?说明理由.(3)试画出同样的网络,并在上面画出甲阴影部分剪拼成的“大正方形”.【解析】(1)不一样大.甲、乙、丙中阴影剪拼成的正方形的面积依次为5,6,7.(2)这些大正方形的边长都不是有理数.设大正方形的边长为x,当x2=5时,x不是整数;因为分数的平方为分数,所以x不是分数.所以x既不是整数,也不是分数,即x不是有理数.同理,当x2=6,x2=7时,x均不是有理数.综上所述,这些正方形的边长都不是有理数.(3)如图:9.(10分)(能力拔高题)乔迁新居,小明家买了一张边长是1.3m的正方形新桌子,原有的边长是1米的两块台布都不适用了,丢掉又太可惜了.如图,小明的姥姥按下列方法,将两张台布拼成一块正方形大台布,你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?【解析】设大台布边长为xm,则x2=2.又1.32=1.69<2,即x2>1.32,故x>1.3,即大台布的边长大于新桌子的边长,所以大台布能盖住现在的新桌子.。
北师版八年级数学上册作业课件(BS) 第二章 实数 认识无理数 (3)
11.如图,在3×3的方格中,阴影部分为正方形,设每一个小方格的边长为1 个单位.请解决下面的问题:
(1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间? 解:(1)阴影正方形的面积是5 (2)根据正方形的面积是边长的平方可知,边长介于2和3之间
12.下列各数:-23 ,0.7,4π,3.141 59,2.303 003 000 3…(相邻两个 3 之间 0 的个数逐次加 1),其中,无理数有( B )
A.1 B.4 C.14
D.12
15.如图,每个小正方形的边长都是1,点A,B,C,D均为小正方形的顶点, 下列说法:①△ACD的面积是有理数;②四边形ABCD的四条边的长度都是无理 数;③四边形ABCD的三条边的长度是无理数,一条边的长度是有理数.其中正 确的有( C )
A.0个 B.1个 C.2个 D.3个
19.小明家新买了一张边长是1.3 m的正方形桌子,原有的边长是1 m的两块台 布都不适用了,丢掉又太可惜了,小明的姥姥按下列方法(如图),将两块台布拼 成一块正方形大台布,你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子 吗?(不考虑损耗)
解:能,理由:设新台布的边长为a,则a2=2 ,探索可得1.4<a<1.5,因为1.4 >1.3,所以能盖住
16.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形,其中边长是有 理数的正方形有3_____个,边长是无理数的正方形有_6____个.
北师大版八年级数学上册--第二单元 2.1 《认识无理数》同步练习题(含答案)
1.下列数中是无理数的是( )A. 0.1223&&B.2πC.0D.722 2.下列说法中正确的是( )A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数3.下列语句正确的是( )A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数4.在直角△ABC 中,∠C =90°,AC =23,BC =2,则AB 为( ) A.整数 B.分数 C.无理数D.不能确定 5.面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定 6.在0.351,23-,4.969696…,6.751755175551…,0, -5.2333,5.411010010001…中,无理数的有 。
7.以下各数:-1,23,3.14,-π,3.⋅3,2,27,24,-0.2020020002……(相邻两个2之间0的个数逐次加1),-5,4π,0.878878887…,1911,0. 其中,是有理数的是_________________________,是无理数的是___________________________. 在上面的有理数中,分数有__________________________,整数有__________________________.8.______小数或______小数是有理数,______小数是无理数.9.x 2=8,则x ______分数,______整数,______有理数.(填“是”或“不是”)10.如图是面积分别为1,2,3,4,5,6,7,8,9的正方形,边长是有理数的正方形有________个,边长是无理数的正方形有________个。
参考答案1、 B2、D3、D4、B5、C6、6.751755175551…,5.4110100100017.有理数:-1,23,3.14,3.⋅3,2,27,24,-5,,1911,0。
八年级数学上册 2.1 认识无理数练习(新版)北师大版
2.1 认识无理数1、在实数3.14,25,3.3333,3,0.412⋅⋅…,π,256- 中,有〔 〕个无理数? A .2个 B .3个 C .4个 D .5个2、以下说法中,正确的选项是〔 〕 A .带根号的数是无理数 B .无理数都是开不尽方的数 C .无限小数都是无理数 D .无限不循环小数是无理数3.以下命题中,正确的个数是〔 〕①两个有理数的和是有理数; ②两个无理数的和是无理数; ③两个无理数的积是无理数;④无理数乘以有理数是无理数; ⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。
A .0个B .2个C .4个D .6个4.判断〔正确的打“√〞,错误的打“×〞〕①带根号的数是无理数;〔 〕 ②a -一定没有意义;〔 〕 ③绝对值最小的实数是0;〔 〕④平方等于3的数为3;〔 〕 ⑤有理数、无理数统称为实数;〔 〕 ⑥1的平方根与1的立方根相等;〔 〕⑦无理数与有理数的和为无理数;〔 〕 ⑧无理数中没有最小的数,也没有最大的数。
〔 〕5.a 为正的有理数,那么a 一定是〔 〕A .有理数B .正无理数C .正实数D .正有理数6.以下四个命题中,正确的选项是〔 〕A .倒数等于本身的数只有1B .绝对值等于本身的数只有0C .相反数等于本身的数只有0D .算术平方根等于本身的数只有17.以下说法不正确的选项是〔 〕A .有限小数和无限循环小数都能化成分数B .整数可以看成是分母为1的分数C .有理数都可以化为分数D .无理数是开方开不尽的数8.代数式21a +x y ,()21a -中一定是正数的有〔 〕 A .1个 B .2个 C .3个 D .4个9m -是有理数时,一定有〔 〕A .m 是完全平方数B .m 是负有理数C .m 是一个完全平方数的相反数D .m 是一个负整数10.a 为有理数,b 为无理数,那么a+b 为〔 〕 A .整数 B .分数 C .有理数 D .无理数 11.2,3,215的大小关系是〔 〕 A .22315<< B .21235<< C .22135<< D .23125<< 12、35-的绝对值与532-+的相反数之和的倒数的平方为 。
2.1 认识无理数(第2课时) 八年级上册北师大版
D
2.一块面积为10的正方形草坪,其边长( ) A.小于3 B. 等于3C.在3与4之间 D.大于4
边长a
面积S
1<a<2
1<S<4
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.9881<S<2.0164
1.414<a<1.415
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
【归纳总结】a 是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.
2.1 认识无理数(第2课时)
北师大版 数学 八年级 上册
思考导入
1.有理数如何分类?
有理数
整数(如-1,0,2,3,… ):都可看成有限小数
分数(如-,,… ):如何化成小数?可不可能都化成有限小数或无限循环小数?
2.上节课了解到一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?
想一想
讨论二 把下列各数表示成小数,你发现了什么? 3,, ,-,
解:3=3.0,
分数化成小数,最终此小数的形式有哪几种情况?
分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.
新版北师大版八年级上册数学全册同步练习(全套)【最新】
第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为 __________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是_________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.3cm,c=3 cm,则△ABC中最小的角为______度.4.△ABC中,三边长分别为a=6 cm,b=35.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ). A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( ).A.210B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( ). A.1 B.3C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ). A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
北师大版八年级上册数学习题练习及参考答案 2.1《认识无理数》
2.1 认识无理数一、选择题1.下列数中是无理数的是( )A. 0.1223B.2πC.0D.722 2.下列说法中正确的是( )A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数3.下列语句正确的是( )A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数4.在直角△ABC 中,∠C =90°,AC =23,BC =2,则AB 为( ) A.整数 B.分数 C.无理数 D.不能确定5.面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定二、填空题 6.在0.351,23-,4.969696…,6.751755175551…,0, -5.2333,5.411010010001…中,无理数的个数有______.7.______小数或______小数是有理数,______小数是无理数.8.x 2=8,则x ______分数,______整数,______有理数.(填“是”或“不是”)9.面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”)10.一个高为2米,宽为1米的大门,对角线大约是______米(精确到0.01).三、解答题11.已知:在数-43, 1.42∙∙-,π, 3.1416, 32, 0,42, (-1)2n,-1.424224222…中, (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.12.我们知道,无限不循环小数叫无理数.试根据无理数的意义,请你构造写出两个无理数.13.体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.14.如图,在△ABC 中,CD ⊥AB ,垂足为D ,AC =6,AD =5,问:CD 可能是整数吗?可能是分数吗?可能是有理数吗?15.设面积为5π的圆的半径为y ,请回答下列问题:(1)y 是有理数吗?请说明你的理由;(2)估计y 的值(结果精确到十分位),并用计算器验证你的估计.参考答案一、1.B 2.D 3.D 4.B 5.C二、6.2 7.有限小数 无限循环小数 无限不循环小数 8.不是 不是 不是9.不是 是 10.2.24三、11.(1)-43, 1.42∙∙-,3.1416,32 0, 42 ,(-1)2n (2)π,-1.424224222…(3 1.42∙∙-<-1.424224222…<-43<0<32<(-1)2n <π<3.1416<4212.略13.不可能 不可能 不可能 略不可能 不可能 不可能 (1)不是 略 (2)。
2.1.2 认识无理数 北师大版 八年级 数学 上
第二章 实数
2.1.2 认识无理数
常乐中学 八年级(1)班
冯洋
4,-3,10,12
是 整数 数
4,5, 8 ,18 , 2 , 5 5 9 45 4 3 3
是 分数 数
有理数
4 = 0.8
5
5
=
·
0.55555……=0.5
9
8
·
= - 0.17777……=-0.17
❤ 一个直角三角形两条直角边的长分别是3
和5,则斜边a是有理数吗?
解:由勾股定理得:
a2=32+52,即a2=34.
因为34不是完全平方数,
所以a不是有理数.
5
a
3
❤ 下图是一个由16个边长为1的小正方形拼成的大正 方形,任意连接这些小正方形的若干顶点,可得到一 些线段,试找出3条长度不是有理数的线段,并以其 中一条为例说明理由。
0.585885888588885888885……(相邻两个514,π 0
,0, 22
7
-234.10101010……
. . , 1.2 ,3.14 ,0.4583
0.101001000100001……(两个1之间依次多1个0中)
❤ 判断下列说法是否正确:
❤ 请你在方格纸上按照如下要求设计直角三角形:
(1)使它的三边中有一边边长不是有理数; (2)使它的三边中有两边变成不是有理数; (3)使它的三边边长都不是有理数。
❤ 课堂小结:
1.无理数的定义. 2.数的分类.
(按小数的形式来分)
有理数:有限小数或无限循环小数 数
无理数:无限不循环小数
整数 分数
1、无理数是无限小数。 2、无限小数都是无理数。 3、有理数都是有限小数。 4、有限小数都是有理数。 5、 是分数。
2.1认识无理数(新教案)-2023-2024学年八年级上册数学(北师大版)
2.教学难点
-难点内容:无理数的概念理解、估算方法掌握、运算规则应用及与有理数的区别。
-难点突破:
a.无理数概念理解:解释无理数为何不能表示为分数形式,引导学生理解无限不循环小数的含义。
2.培养学生的数感和符号意识,深入理解无理数的概念及其与有理数的区别,形成对数学符号的敏感性和运用能力。
-能够理解无理数的定义,识别并运用不同的符号表示无理数。
3.提高学生的推理能力和抽象思维能力,通过无理数的运算规则探讨,使学生掌握逻辑推理和数学证明的基本方法。
-能够运用逻辑推理分析无理数运算的结果,理解其性质和规律。
b.无理数的性质,如与有理数的区别、不可比性等。
c.无理数的估算方法,包括逼近法和夹逼法,并通过实例进行讲解。
d.无理数的分类,介绍代数无理数和超越无理数的特点。
e.无理数的运算规则,强调与有理数运算的异同,以及运算结果的性质判断。
f.无理数在实际问题中的应用,如计算圆的周长和面积、黄金分割点等。
-举例解释:
五、教学反思
在今天的教学中,我们探讨了无理数的概念及其在实际问题中的应用。回顾整个教学过程,我觉得有几个地方值得反思。
首先,关于无理数的定义,我尝试用简单易懂的语言解释,但发现部分学生对无限不循环小数的概念仍然感到困惑。在以后的教学中,我需要寻找更多贴近生活的例子,帮助学生更好地理解无理数的内涵。
其次,在新课讲授环节,我发现学生在理解无理数估算方法时,对逼近法和夹逼法的掌握程度有所不同。针对这个问题,我考虑在后续课程中增加一些实际操作环节,让学生动手实践,以便更深入地掌握这些估算方法。
八年级数学上册 2.1 认识无理数练习 (新版)北师大版
第二章 实数2.1 认识无理数基础题知识点1 无理数的发现1.下列各数中,是有理数的是( )A .面积为3的正方形的边长B .体积为8的正方体的棱长C .两直角边分别为2和3的直角三角形的斜边长D .长为3,宽为2的长方形的对角线长2.一个长方形的长与宽分别为6 cm 和3 cm ,它的对角线的长的值是一个( )A .整数B .分数C .有理数D .无限不循环小数3.如图,图中是16个边长为1的小正方形拼成的大正方形,连接CA 、CB 、CD 、CE 四条线段,其中长度既不是整数也不是分数的有________条.4.把两个长均为1的正方形纸片重新剪拼成一个大的正方形,则大正方形的面积是________,其边长________有理数(填“是”或“不是”).知识点2 无理数的概念5.(呼和浩特中考)下列数是无理数的是( )A .-1B .0C .π D.136.下列各数:π2,0,0.23·,173,0.303 003 000 3…(每个3后增加1个0)中,无理数的个数为( ) A .2个 B .3个C .4个D .5个7.半径是2的圆的周长的值是一个( )A .整数B .分数C .有理数D .无理数8.下列说法中,正确的个数为( ) ①无限小数都是无理数;②不循环小数都是无理数;③无理数都是无限小数;④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A .1B .2C .3D .4知识点3 用有理数估计无理数9.(嘉兴中考)与无理数31最接近的整数是( )A .4B .5C .6D .710.(丹东中考)已知a <6<b ,且a 、b 是两个连续的整数,则a b=________.11.已知直角三角形的两条直角边长分别是9 cm 和5 cm ,斜边长是x cm.(1)估计x 在哪两个整数之间;(2)如果把x 的结果精确到十分位,估计x 介于哪两个数之间.如果精确到百分位呢?用计算器验证你的估计值.中档题12.(安顺中考)下列各数:3.141 59,4.2·1·,π,227,1.010 010 001…中,无理数有( ) A .1个 B .2个C .3个D .4个13.若方程x 2=m 的解是有理数,则m 不能取下列四个数中的( )A .1B .4 C.14 D.1214.下列说法正确的是( )A .分数是无理数B .无限小数是无理数C .不能写成分数形式的数是无理数D .不能在数轴上表示的数是无理数15.下列4×4的网格中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不相等的无理数.16.设面积为5π的圆的半径为a.(1)a 是有理数吗?说说你的理由;(2)估计a 的值(精确到十分位,并利用计算器验证你的估计);(3)如果精确到百分位呢?17.用200块大小一样的正方形地板砖正好可以铺满一间面积为100平方米的客厅,问:(1)该正方形地板砖的边长是什么数?说明理由;(2)估计正方形地板砖边长的范围(精确到百分位).综合题18.阅读下列材料:设x =0.3·=0.333…①,则10x =3.333…②.由②-①得9x =3,即x =13.所以0.3·=0.333…=13. 根据上述提供的方法,把0.7·和1.3·化成分数,并想一想是不是任何无限小数都可以化成分数.参考答案1.B2.D3.34.2 不是5.C6.A7.D8.B9.C 10.811.(1)根据条件,得x 2=106,因为100<106<121,所以100<x 2<121.所以10<x <11,即x 在整数10和11之间.(2)因为10.12=102.01,10.22=104.04,10.32=106.09,所以10.22<106<10.32,所以精确到十分位时,x在10.2与10.3之间.又因为10.292=105.884,10.302=106.09,所以10.292<x 2<10.302,所以当x 精确到百分位时,x 在10.29与10.30之间.12.B 13.D 14.C 15.图略.16.(1)因为πa 2=5π,所以a 2=5.则a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.(2)估计a≈2.2.(3)a≈2.24.17.(1)由题意,得一块正方形地板砖的面积为100200=0.5(m 2),因为没有任何一个有理数的平方为0.5,所以该正方形地板砖的边长是无理数.(3)设正方地板砖的边长为x m ,因为0.702=0.49,0.712=0.504 1,所以0.70<x <0.71.18.设x =0.7·=0.777…①,则10x =7.777…②.由②-①得9x =7,即x =79.所以0.7·=0.777…=79.根据已知条件0.3·=0.333…=13,可以得到1.3·=1+0.3·=1+13=43.不是任何无限小数都可以化成分数,只有无限循环小数才能化成分数.。
八年级数学上册 2.1 认识无理数练习(无答案)(新版)北师大版
2.1 认识无理数1、在实数3.14,25,3.3333,0.412⋅⋅,0.10110111011110…,π,中,有( )个无理数?A .2个B .3个C .4个D .5个2、下列说法中,正确的是( )A .带根号的数是无理数B .无理数都是开不尽方的数C .无限小数都是无理数D .无限不循环小数是无理数 3.下列命题中,正确的个数是( )①两个有理数的和是有理数; ②两个无理数的和是无理数; ③两个无理数的积是无理数;④无理数乘以有理数是无理数; ⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。
A .0个B .2个C .4个D .6个4.判断(正确的打“√”,错误的打“×”)①带根号的数是无理数;( ) 一定没有意义;( ) ③绝对值最小的实数是0;( )④平方等于3;( ) ⑤有理数、无理数统称为实数;( ) ⑥1的平方根与1的立方根相等;( )⑦无理数与有理数的和为无理数;( ) ⑧无理数中没有最小的数,也没有最大的数。
( )5.a 一定是( )A .有理数B .正无理数C .正实数D .正有理数6.下列四个命题中,正确的是( )A .倒数等于本身的数只有1B .绝对值等于本身的数只有0C .相反数等于本身的数只有0D .算术平方根等于本身的数只有17.下列说法不正确的是( ) A .有限小数和无限循环小数都能化成分数 B .整数可以看成是分母为1的分数C .有理数都可以化为分数D .无理数是开方开不尽的数8.代数式21a +,y ,()21a -中一定是正数的有( ) A .1个 B .2个 C .3个 D .4个9是有理数时,一定有( )A .m 是完全平方数B .m 是负有理数C .m 是一个完全平方数的相反数D .m是一个负整数10.已知a 为有理数,b 为无理数,则a+b 为( )A .整数B .分数C .有理数D .无理数11,215的大小关系是( )A 215<< B .215<< C 215<<215<<12-的相反数之和的倒数的平方为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 实数
2.1 认识无理数
基础题
知识点1 无理数的发现
1.下列各数中,是有理数的是( )
A .面积为3的正方形的边长
B .体积为8的正方体的棱长
C .两直角边分别为2和3的直角三角形的斜边长
D .长为3,宽为2的长方形的对角线长
2.一个长方形的长与宽分别为6 cm 和3 cm ,它的对角线的长的值是一个( )
A .整数
B .分数
C .有理数
D .无限不循环小数
3.如图,图中是16个边长为1的小正方形拼成的大正方形,连接CA 、CB 、CD 、CE 四条线段,其中长度既不是整数也不是分数的有________条.
4.把两个长均为1的正方形纸片重新剪拼成一个大的正方形,则大正方形的面积是________,其边长________有理数(填“是”或“不是”).
知识点2 无理数的概念
5.(呼和浩特中考)下列数是无理数的是( )
A .-1
B .0
C .π D.13
6.下列各数:π2,0,0.23·,173
,0.303 003 000 3…(每个3后增加1个0)中,无理数的个数为( ) A .2个 B .3个
C .4个
D .5个
7.半径是2的圆的周长的值是一个( )
A .整数
B .分数
C .有理数
D .无理数
8.下列说法中,正确的个数为( )
①无限小数都是无理数;②不循环小数都是无理数;③无理数都是无限小数;④无理数也有负数;⑤无理数分为正无理数、零、负无理数.
A .1
B .2
C .3
D .4
知识点3 用有理数估计无理数
9.(嘉兴中考)与无理数31最接近的整数是( )
A .4
B .5
C .6
D .7
10.(丹东中考)已知a <6<b ,且a 、b 是两个连续的整数,则a b
=________.
11.已知直角三角形的两条直角边长分别是9 cm 和5 cm ,斜边长是x cm.
(1)估计x 在哪两个整数之间;
(2)如果把x 的结果精确到十分位,估计x 介于哪两个数之间.如果精确到百分位呢?用计算器验证你的估计值.
中档题
12.(安顺中考)下列各数:3.141 59,4.2·1·,π,227
,1.010 010 001…中,无理数有( ) A .1个 B .2个
C .3个
D .4个 13.若方程x 2=m 的解是有理数,则m 不能取下列四个数中的( )
A .1
B .4 C.14 D.12
14.下列说法正确的是( )
A .分数是无理数
B .无限小数是无理数
C .不能写成分数形式的数是无理数
D .不能在数轴上表示的数是无理数
15.下列4×4的网格中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不相等的无理数.
16.设面积为5π的圆的半径为a.
(1)a 是有理数吗?说说你的理由;
(2)估计a 的值(精确到十分位,并利用计算器验证你的估计);
(3)如果精确到百分位呢?
17.用200块大小一样的正方形地板砖正好可以铺满一间面积为100平方米的客厅,问:
(1)该正方形地板砖的边长是什么数?说明理由;
(2)估计正方形地板砖边长的范围(精确到百分位).
综合题
18.阅读下列材料:
设x =0.3·=0.333…①,则10x =3.333…②.由②-①得9x =3,即x =13.所以0.3·=0.333…=13
. 根据上述提供的方法,把0.7·和1.3·化成分数,并想一想是不是任何无限小数都可以化成分数.
参考答案
1.B
2.D
3.3
4.2 不是
5.C
6.A
7.D
8.B
9.C 10.8
11.(1)根据条件,得x 2=106,因为100<106<121,所以100<x 2<121.所以10<x <11,即x 在整数10和11之
间.(2)因为10.12=102.01,10.22=104.04,10.32=106.09,所以10.22<106<10.32,所以精确到十分位时,x
在10.2与10.3之间.又因为10.292=105.884,10.302=106.09,所以10.292<x 2<10.302,所以当x 精确到百分
位时,x 在10.29与10.30之间.
12.B 13.D 14.C 15.图略.
16.(1)因为πa 2=5π,所以a 2=5.则a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.(2)
估计a≈2.2.(3)a≈2.24.
17.(1)由题意,得一块正方形地板砖的面积为100200
=0.5(m 2),因为没有任何一个有理数的平方为0.5,所以该正方形地板砖的边长是无理数.(3)设正方地板砖的边长为x m ,因为0.702=0.49,0.712
=0.504 1,所以0.70<x <0.71.
18.设x =0.7·=0.777…①,则10x =7.777…②.由②-①得9x =7,即x =79.所以0.7·=0.777…=79
.根据已知条件0.3·=0.333…=13,可以得到 1.3·=1+0.3·=1+13=43
.不是任何无限小数都可以化成分数,只有无限循环小数才能化成分数.。