2018-2019学年度第一学期九年级数学期末同步检测卷(附答案)
人教版2018-2019学年初三数学第一学期期末试卷及答案解析
![人教版2018-2019学年初三数学第一学期期末试卷及答案解析](https://img.taocdn.com/s3/m/e7a154b7dd88d0d233d46a68.png)
2018-2019学年九年级(上)期末数学试卷一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠02.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣17.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=808.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是(填“随机“或“必然”)事件.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.2017-2018学年贵州省黔西南州兴义市九年级(上)期末数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,每题4分,共40分)1.已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则()A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【点评】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故选:A.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.4.分别写有数字0,﹣3,﹣4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.B.C.D.【分析】先求出非负数的个数,再根据概率公式计算可得.【解答】解:∵0,﹣3,﹣4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是,故选:C.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,本题找到非负数的个数是关键.5.下列运动属于旋转的是()A.足球在草地上滚动B.火箭升空的运动C.汽车在急刹车时向前滑行D.钟表的钟摆动的过程【分析】根据旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转进行分析即可.【解答】解:A、足球在草地上滚动,不是旋转,故此选项错误;B、火箭升空的运动,是平移,故此选项错误;C、汽车在急刹车时向前滑行,是平移,故此选项错误;D、钟表的钟摆动的过程,是旋转,故此选项正确;故选:D.【点评】此题主要考查了生活中的旋转,关键是掌握旋转定义.6.抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,则此抛物线的对称轴为()A.直线x=0B.直线x=1C.直线x=﹣2D.直线x=﹣1【分析】由二次函数的对称性可求得抛物线的对称轴【解答】解:∵抛物线y=ax2+bx+c(a≠0)过(2,8)和(﹣6,8)两点,∴抛物线的对称轴为x==﹣2,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数图象上关于对称轴对称的点所对应的函数值相等是解题的关键.7.兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A.60(1+x)2=80B.(60+x%)2=80C.60(1+x)(1+2x)2=80D.60(1+x%)2=80【分析】2016年财政总收入=2014年财政总收入×(1+增长率)2,把相关数值代入即可.【解答】解:2015年财政总收入为60×(1+x),2016年财政总收入为60×(1+x)×(1+x)=60×(1+x)2,可列方程为60(1+x)2=80,故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A.110°B.90°C.70°D.50°【分析】先根据圆内接四边形的对角互补得出∠D+∠B=180°,即可解答.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠D+∠B=180°,∴∠D=180°﹣70°=110°,故选:A.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.为了响应“足球进校国”的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到()A.5m/s B.10m/s C.20m/s D.40m/s【分析】因为﹣5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v0.【解答】解:h=﹣5t2+v0•t,其对称轴为t=,5×()2+v0•=20,当t=时,h最大=﹣解得:v0=20,v0=﹣20(不合题意舍去),故选:C.【点评】本题考查的是二次函数的应用,关键是利用当对称轴为t=﹣时h将取到最大值.10.如图,AB,CD是⊙O的直径,⊙O的半径为R,AB⊥CD,以B为圆心,以BC为半径作CED,则CED与CAD围成的新月形ACED的面积为()平方单位.A.(π﹣1)R2B.R2C.(π+1)R2D.πR2【分析】从图中可以看出新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,弓形CED的面积又=扇形BCD面积﹣三角形BCD的面积,然后依面积公式计算即可.【解答】解:新月形ACED的面积==R2.故选:B.【点评】本题的关键是看出:新月形ACED的面积是圆O半圆的面积﹣弓形CED的面积,然后逐一求面积即可.二.填空题.(每小题3分,共30分)11.“任意打开一本154页的九年级数学书,正好翻到第127页”这是随机(填“随机“或“必然”)事件.【分析】直接利用随机事件的定义分析得出答案.【解答】解:任意打开一本154页的九年级数学书,正好翻到第127页”这是随机事件.故答案为:随机.【点评】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.12.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为y=x2+1.【分析】直接利用二次函数的平移规律得出答案.【解答】解:将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式为:y=x2+1.故答案为:y=x2+1.【点评】此题主要考查了二次函数的平移变换,正确掌握平移规律是解题关键.13.点A(﹣2,3)关于原点对称的点的坐标是(2,﹣3).【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(﹣2,3)关于原点O的对称点是P′(2,﹣3)【解答】解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.14.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=30°.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理求出∠PAB即可.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.【点评】本题主要考查了正多边形和圆、圆周角定理、弦切角定理;作出适当的辅助线,利用弦切角定理是解答此题的关键.15.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.16.为了弘扬中华传统文化,营造书香校园文化氛围,2017年12月11日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是【分析】画出树状图,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是=,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为2π(结果保留π).【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键..18.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【分析】此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.19.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20.【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.20.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线上进行两次旋转,则点B在两次旋转过程中经过的路径的长是.【分析】首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:∵AB=5,AD=12,∴BD==13,∴==,==6π,∴点B在两次旋转过程中经过的路径的长是: +6π=,故答案为.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=,是基础题目,解答时要注意旋转中心以及半径的变化.三.(本大题12分)21.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.四.(本大题12分)22.(12分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)先依据三角形的外角的性质求得∠C的度数,然后再根据圆周定理求解即可;(2)利用三角形中位线的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.五.(本大题14分)23.(14分)兴义街心花园是位于兴义老城区的商业文化购物步行街,是贵州最长最大的步行街,在贵州乃至西南都相当有名.街心花园某商场经营某种品牌童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于76元且不高于80元则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而76≤x≤80,根据二次函数的性质得到当76≤x≤80时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得76≤x≤80,w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤80时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点评】本题考查了二次函数的应用:根据实际问题列出二次函数关系式,然后利用二次函数的性质,特别是二次函数的最值问题解决实际中的最大或最小值问题.六.(本大题14分)24.(14分)如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠DOC,又∵OA=OD,∴∠DAO=∠ADO,∴∠COB=∠COD,∴=;(2)由(1)知∠DOE=∠BOE,在△COD和△COB中,CO=CO,∠DOC=∠BOC,OD=OB,∴△COD≌△COB,∴∠CDO=∠B.又∵BC⊥AB,∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.【点评】本题考查了切线的判定和圆周角定理以及圆心角、弧、弦之间的关系,注:在同圆或等圆中,圆心角、圆周角、弧、弦中有一组量相等,其余各组量也相等.七.(本大题16分)26.(16分)如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y 轴交于点C.(1)写出抛物线顶点D的坐标(﹣1,4);(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.【分析】(1)根据抛物线的顶点解析式y=﹣(x+1)2+4,即可求出抛物线顶点D的坐标是(﹣1,4);(2)先根据抛物线的解析式y=﹣(x+1)2+4,求出A、C两点的坐标,再利用待定系数法求出直线AC的解析式,根据关于y轴对称的点的坐标特征得出D1(1,4),然后代入直线AC的解析式即可判断点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),求出EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x,利用配方法化成顶点式,根据二次函数的性质即可求出最大值.【解答】解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.【点评】本题是二次函数的综合题,其中涉及到二次函数的性质,利用待定系数法求直线的解析式,函数图象上点的坐标特征等知识,难度适中.八.(本大题12分)25.(12分)铁一中分校初二年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选中的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)成绩优秀,先要从这六名学生中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有30种等可能的结果数,再找出小丽和小颖作为本班代表参赛的结果数,然后根据概率公式求解.【解答】解:(1)小明被选中的概率=;(2)画树状图为:共有30种等可能的结果数,其中小丽和小颖作为本班代表参赛的结果数为2,所以小丽和小颖作为本班代表参赛的概率==.。
2018—2019学年第一学期九年级数学期末试题(含答案)
![2018—2019学年第一学期九年级数学期末试题(含答案)](https://img.taocdn.com/s3/m/1863ac78f01dc281e53af0e6.png)
2018—2019学年度第一学期期末考试九年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.关于x的方程ax2-3x+2=0是一元二次方程,则A.a>0 B.a≠0 C.a=1 D.a≥02.用配方法解方程3x2-6x+1=0,则方程可变形为A.(x-3)2=13B.3(x-1)2=13C.(x-1)2=23D.(3x-1)2=13.在平面直角坐标系中,将抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是A.(-2,6)B.(2,-6)C.(-2,8)D.(2,-8)4.下列事件中,是必然事件的是A.将油滴入水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.掷一枚质地均匀的硬币,一定正面向上D.如果a2=b2,那么a=b5.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复以A.20 B.25 C.30 D.356.下列两个图形一定相似的是A.两个矩形B.两个等腰三角形 C .两个正方形 D .两个菱形 7.下列每张方格纸上都有一个三角形,只用圆规就能作出这个三角形的外接圆的是A .①②B .①③C .②④D .③④ 8.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是 A.∠ADC =12∠AEC B.∠ADC =∠ABC C .AE >BE D .AD =BC9.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC =65°,则∠EFD 的度数是 A .15° B .20° C .25° D .30° 10.如图,在平面直角坐标系中,已知点A (-3,6)、B (-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点B 的对应点B ′的坐标是 A .(-3,-1)B .(-1,2)C .(-9,1)或(9,-1)D .(-3,-1)或(3,1)11.在函数21a y x--=(a 为常数)的图象上有三点(-3,y 1),(1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是 A .y 2<y 3<y 1 B .y 3<y 2<y 1 C .y 3<y 1<y 2D .y 1<y 2<y 312.2则下面对于该函数性质的判断①该二次函数有最大值; ②不等式y >-1的解集是x <0或x >2;(第8题图) (第9题图) (第10题图)③方程ax 2+bx +c =0的两个实数根分别位于12-<x <0之间和2<x <52之间; ④当x >0时,函数值y 随x 的增大而增大.其中正确的是 A .②③ B .②④ C .①③D .③④第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点M (a,N (2,b )关于原点对称,则ab = . 14.已知圆内接正六边形的边长是1,则这个圆的内接正方形的边长是 . 15.关于x 的方程x 2-2x +3=0的根的情况是 . 16.已知一个两位数,它的十位数字比个位数字小3,个位数字的平方恰好等于这个两位数.如果设它的个位数字是x ,则列得方程为 . 17.两个相似三角形的面积比为4∶25,则它们的相似比为 .18.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口时都是绿灯,但实际这样的概率是 .19.若75°的圆心角所对的弧长是2.5πcm ,则此弧所在圆的半径是 cm . 20.如图,在Rt △ABC 中,∠A =60°,AB =2,以点B 为圆心,BC 为半径的弧交AB 于点D ,以点A 为圆心,AC 为半径的弧交AB 于点E ,则图中阴影部分的面积为 . 21.如图,某水渠的横截面呈抛物线形,当水面宽8m 时,水深4m ,当水面下降1m 时,水面宽为 m .22.如图,在反比例函数10y x=(x >0)的图象上,有点P 1,P 2,P 3,P 4,…,它们的横坐标依次为2,4,6,8,…,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S 1,S 2,S 3,…,n S ,则123n S S S S ++++ = (用含n 的代数式表示)三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.如图,有一段15m 长的旧围墙AB ,现打算利用 该围墙的一部分(或全部)为一边,再用32m 长 的篱笆围成一块长方形场地CDEF .(1)怎样围成一个面积为126m 2的长方形场地?(第22题图)(第21题图) (第20题图)(第23题图)(2)长方形场地面积能达到130m 2吗?如果能,请给出方案,如果不能,请说明理由. 24.在一个箱子中有三个分别标有数字1,2,3的材质、大小都相同的小球,从中任意摸出一个小球,记下小球的数字x 后,放回箱中并摇匀,再摸出一个小球,又记下小球的数字y ,以先后记下的两个数字(x ,y )作为点P 的坐标. (1)求点P 的横坐标与纵坐标的和为4的概率;(2)求点P25.如图,□ABCD 中,E 为BC 边上一点,连接DE ,F 为线段DE 上一点,∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD=AF=DE 的长.26.如图,在矩形OABC 中,OA =3,OC =2,点F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积最大,最大面积是多少?27.如图,点E 在x 轴正半轴上,以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,直线AB 与⊙E 相切于点D ,已知点A 的坐标为(3,0),点B 的坐标为(0,4). (1)求线段AD 的长;(2)连接BE 、CD ,求证:BE ‖CD .28.如图,过点A (-1,0)、B (3,0)的抛物线2y x bx c =-++与y 轴交于点C ,它的对称轴与x 轴交于点E . (1)求抛物线解析式; (2)求抛物线顶点D 的坐标;(3)若抛物线的对称轴上存在点P 使3PCBPOC SS=,求此时DP 的长.(第25题图)(第26题图)(第28题图) (第27题图)2018—2019学年第一学期九年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.13; 14 15.无实数根 ; 16.210(3)x x x =-+;17.2∶5; 18. 18; 19.6; 20;21. 22.1010n -.三、解答题:(共74分)23. 解:(1)设CD =x m ,则DE =(32﹣2x )m ,依题意得:x (32﹣2x )=126,…………………………………………………2分 整理得 x 2﹣16x +63=0,解得 x 1=9,x 2=7, …………………………………………………4分 当x 1=9时,(32﹣2x )=14当x 2=7时 (32﹣2x )=18>15 (不合题意舍去)∴能围成一个长14m ,宽9m 的长方形场地. ………………………5分 (2)设CD =y m ,则DE =(32﹣2y )m ,依题意得 y (32﹣2y )=130 …………………………………………………7分 整理得 y 2﹣16y +65=0△=(﹣16)2﹣4×1×65=﹣4<0故方程没有实数根, …………………………………………………9分 ∴长方形场地面积不能达到130m 2.…………………………………………10分 24. 解:(1…………………5分则点M 坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),和为4的有(1,3)、(2,2)、(3,1)这3种, ……………………………………7分故P (和为4)=31=93. ……………………………………8分(2)∵点M∴x 2+y 2<10,这样的点M 有4种形式(1,1)、(1,2)、(2,1)、(2,2), ……………………………………10分∴点M P =49.……………………………………12分25. (1)证明:∵四边形ABCD 是平行四边形,∴AB ‖DC ,AD ‖BC , ……………………………………2分∴∠C +∠B =180°,∠ADF =∠DEC .……………………………………4分 ∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C , ………………………………………………………6分 ∴△ADF ∽△DEC .………………………………………………………7分 (2)∵四边形ABCD 是平行四边形,AB =8,∴CD =AB =8, ………………………………………………………8分 ∵△ADF ∽△DEC , ∴AD DEAF DC =, ………………………………………………………10分又CD =8,AD =AF =∴=12AD CD DE AF ⋅==. ………………………………………12分 26.解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B (3,2), ………………………………………………………2分 ∵F 为AB 的中点,∴F (3,1), ………………………………………………………3分∵点F 在反比例函数ky x=的图象上, ∴k =3, ………………………………………………………5分∴该函数的解析式为3y x=; ………………………………………6分(2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k),………7分∴111(3)2232EFA kS AF BE k ∆==⨯- ………………………………9分=2133)124k --+( ………………………………11分 当k =3时,△EF A 的面积最大,最大面积是34. ………………13分27.(1)解:∵A 的坐标为(3,0),点B 的坐标为(0,4),∴OA =3,OB =4,…………………………………………………………2分∴AB ,………………………………………………………3分 ∵以点E 为圆心,OE 为半径的⊙E 与x 轴相交于点C ,且BO ⊥OC , ∴OB 与⊙E 相切于点O ,………………………………………………4分 又直线AB 与⊙E 相切于点D ,∴DB =OB = 4, ………………………………………………………6分 ∴AD =5-4=1. ………………………………………………………7分(2)证明:连接ED 、OD . ∵AB 与⊙E 相切于点D , OB 切⊙E 于点O ,∴OB =BD ,∠OBE =∠DBE ,………9分 ∴BE ⊥OD , ………………………10分 ∵OC 为直径,∴∠ODC =90°,……………………11分 ∴CD ⊥OD ,………………………12分 ∴BE ‖CD . …………………………13分28. 解:(1)将A (﹣1,0),B (3,0)代入2y x bx c =-++得10930b c b c --+=⎧⎨-++=⎩, ………………………………2分解得 b =2,c =3,∴抛物线解析式为y =﹣x 2+2x +3. ………………………………4分 (2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4). ………………………………6分 (3)设BC 与抛物线的对称轴交于点F ,如图所示:则点F 的横坐标为1, ∵y =﹣x 2+2x +3当x =0时,y =3,∴OC =3, ……………………………………………7分∴△POC 的面积=12×3×1=32,……8分又△PCB 的面积=△PCF 的面积+△PBF 的面积=12PF (1+2)=32PF , ∴32PF =3×32, 解得 PF =3, ………………………………9分设直线BC 的解析式为y =kx +a ,则 330a k a =⎧⎨+=⎩, ………………………………10分 解得 a =3,k =-1,∴直线BC 的解析式为y =-x +3, ……………………………11分 当x =1时,y =2, ∴F 的坐标为(1,2),∴EF =2, ……………………………………12分 当点P 在F 的上方时,PE =PF +EF =5,∴DP =5-4=1; ……………………………………13分 当点P 在F 的下方时,PE =PF -EF =3-2=1, ∴DP =4+1=5;(第28题答案图)综上所述,DP的长为1或5.…………………………………14分。
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)
![人教版2018-2019学年九年级上学期期末考试数学试题(解析版)](https://img.taocdn.com/s3/m/68d6bf34caaedd3383c4d3a2.png)
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。
2018-2019学年上学期期末考试 九年级数学试题(含答案)
![2018-2019学年上学期期末考试 九年级数学试题(含答案)](https://img.taocdn.com/s3/m/724c385a0a1c59eef8c75fbfc77da26925c596ca.png)
2018-2019学年上学期期末考试九年级数学试题(含答案)2018-201年第一学期期末考试九年级数学注意事项:1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名,再用2B铅笔把对应的卡号的标号涂黑。
2.选择题和判断题的每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号,不能答在试卷上。
3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔和签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡,题目指定区域内的相应位置上改动,原来的答案也不能超出指定的区域,不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生可以使用计算器,必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的。
)1.下列图形是中心对称而不是轴对称的图形是( )。
2.下列事件是必然事件的是()。
A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x²-x=0必有实数根3.对于二次函数y=(x-1)²+2的图像,下列说法正确的是()。
A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点4.若函数的图像y=x经过点(2,3),则该函数的图像一定不经过()。
A.(1,6)B.(-1,6)C.(2,-3)D.(3,-2)5.Rt ABC中,∠C=90º,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是( )。
A.相切B.相交C.相离D.无法确定6.下列一元二次方程中,两个实数根之和为1的是()。
A.x²+x+2=0B.x²+x-2=0C.x²-x+2=0D.x²-x-2=07.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()。
2018~2019学年度第一学期九年级数学期末考试卷
![2018~2019学年度第一学期九年级数学期末考试卷](https://img.taocdn.com/s3/m/c2bdc7cf0975f46527d3e149.png)
试卷类型:A(新人教版)2018——2019学年度第一学期期末教学检测九年级数学试题(卷)注意事项:1、本试卷共6页,满分120分,时间120分钟,学生在试题上答卷;2、答卷前将装订线内的项目填写清楚。
题号一二三总分得分得分评卷人一.选择题(共10小题,满分30分,每小题3分)1.下列说法正确的是()A.x2+kx+1是完全平方式,则常数k=±2 B.相等的角是对顶角C.在一个只装有白球和黑球的口袋,摸出一个球为红球是必然事件D.两边及一角对应相等的两个三角形全等2.下列图形中,是中心对称图形的是()A .B .C .D .3.用配方法解方程x2﹣4x=0,下列配方正确的是()A.(x+2)2=0B.(x﹣2)2=0C.(x+2)2=4D.(x﹣2)2=4 4.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′,若∠CC′B′=33°,则∠B的大小是()A.33°B.45°C.57°D.78°5.一个布袋里装有2个红球,3个白球,每个球除颜色外均相同,从中任意模出一个球,则摸出的球是白球的概率是()A .B .C .D .6.二次函数y=4(x﹣3)2+7的顶点为()A.(﹣3,﹣7)B.(3,7)C.(﹣3,7)D.(3,﹣7)7.如图,C、D是以线段AB为直径的⊙O上两点,若∠ADC=70°,则∠CAB=()A.10°B.20°C.30°D.40°8.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k <且k≠﹣2B.k C.k≤且k≠﹣2D.k9.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是()A.10B.5C.10D.2010.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(﹣1,0),(3,0)两点,则下列说法:①abc<0;②a﹣b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且﹣1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是()A.①⑤B.②④C.②③④D.②③⑤二.填空题(共2小题,满分6分,每小题3分)11.把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线为.12.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅均后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是.13.已知点P的坐标为(﹣2,3),将其绕原点顺时针旋转90°后得到的点的坐标是.14.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为.三.解答题(共11小题,计78分,解答应写出过程)15.(5分).解方程:x(x+2)=3x+6.16.(5分)已知抛物线y=ax2+bx﹣3(a≠0)经过点A(﹣1,0),B(2,﹣3),请求出该抛物线的顶点坐标.17.(5分)如图所示,要把残破的轮片复制完整,已知弧上的三点A,B,C.用尺规作图法找出所在圆的圆心;(保留作图痕迹,不写作法)18.(5分)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,求BD的长.19.(7分)已知关于x的方程x2﹣2(m+1)x+m2+2=0.(1)若方程总有两个实数根,求m的取值范围;(2)若方程有一个实数根为1,求m的值和另一个根.20.(7分)已知二次函数y=﹣2x2+8x﹣6,完成下列各题:(1)写出它的顶点坐标C;(2)它的图象与x轴交于A,B两点(点A在点B的左侧),顶点为C,求S△ABC.21.(7分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O 上.(1)若∠AOD=52°,求∠DEB的度数;(2)若CD=2,AB=8,求半径的长.22.(7分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(8分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,销售单价定为25元时,月销售量为1050件;当销售单价每上涨1元,月销售量就减少50件.设销售单价为x(元),月销售量为y(件),月获利(月获利=月销售额﹣月进价)为w(元).(1)试写出y与x之间的函数关系式(不必写出x的取值范围);(2)试写出w与x之间的函数关系式(不必写出x的取值范围);并求当销售单价为多少时,月获利最大,最大月获利为多少?24.(10分)如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P 是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.。
2018-2019学年九年级上期末数学试卷(含答案解析)
![2018-2019学年九年级上期末数学试卷(含答案解析)](https://img.taocdn.com/s3/m/0f83ecabd0d233d4b14e693f.png)
2018-2019学年九年级上期末数学试卷(含答案解析)一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:33.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣34.在下图中,反比例函数的图象大致是()A.B.C.D.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=1212.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.713.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.516.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为.18.抛物线y=ax2经过点(3,5),则a=.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x 个队参赛,根据题意列出的方程是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?2018-2019学年九年级上期末数学试卷(含答案解析)参考答案与试题解析一、选择题(本大题共16个小题,1-10题每小题3分,11-16每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形是天气预报使用的图标,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.图中的两个三角形相似,且AB=2,A′B′=1,则△A′B′C′与△ABC的相似比是()A.1:2B.2:1C.3:1D.1:3【分析】根据相似三角形相似比等于对应边的比解答.【解答】解:∵AB=2,A′B′=1,∴△A′B′C′与△ABC的相似比=A′B′:AB=1:2.故选:A.【点评】本题考查了相似三角形的性质,求两三角形的相似比时要注意两个相似三角形的先后顺序.3.抛物线y=﹣2(x+3)2+1对称轴是()A.直线x=3B.直线x=1C.直线x=﹣1D.直线x=﹣3【分析】根据抛物线的顶点式方程y=﹣2(x+3)2+1可以直接写出它的对称轴直线方程.【解答】解:∵抛物线y=﹣2(x+3)2+1的对称轴直线是该图象的顶点坐标的横坐标,∴抛物线的对称轴是直线x=﹣3;故选:D.【点评】本题考查了二次函数的性质.抛物线的顶点式方程为y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.4.在下图中,反比例函数的图象大致是()A.B.C.D.【分析】由于y=,比例系数4>0,根据反比例函数的性质,可得图象在第一和第三象限.【解答】解:∵k=4,可根据k>0,反比例函数图象在第一、三象限;∴在每个象限内,y随x的增大而减小.故选:D.【点评】本题考查了反比例函数图象的性质:①k<0,反比例函数图象在第二、四象限,在每个象限内,y随x的增大而增大;②k>0,反比例函数图象在第一、三象限,在每个象限内,y随x的增大而减小.5.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选:C.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A.点A B.点B C.点C D.点D【分析】直接利用旋转的性质结合等边三角形的性质进而分析得出答案【解答】解:如图所示:菱形M绕点D经过顺时针旋转60°变换能得到菱形N,故选:D.【点评】此题主要考查了旋转的性质以及等边三角形的性质,正确把握旋转的性质是解题关键.7.已知A(﹣1,y1),B(2,y2)是抛物线y=﹣(x+2)2+3上的两点,则y1,y2的大小关系为()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y【分析】抛物线的对称轴为直线x=﹣2,根据二次函数的性质,抛物线开口向下,在对称轴的右侧y随x的增大而减小,即可判定.【解答】解:∵y=﹣(x+2)2+3,∴抛物线的对称轴为直线x=﹣2,抛物线开口向下,∴当x>﹣2,y随x的增大而减小,∵﹣2<﹣1<2,所以y1>y2.故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.8.如果圆O是△ABC的外接圆,AC=BC,那么下列四个选项中,直线l必过圆心O的是()A.l⊥AC B.l平分AB C.l平分∠C D.l平分【分析】根据等腰三角形三线合一的性质即可得出结论.【解答】解:∵圆O是△ABC的外接圆,∴点O在三边的垂直平分线上.∵AC=BC,∴当l平分∠C时,l也是AB边的垂直平分线.故选:C.【点评】本题考查的是三角形的外接圆与外心,熟知三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心是解答此题的关键.9.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=【分析】利用反比例函数的性质可解.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小;故选:D.【点评】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是本题的关键.10.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A.108°B.60°C.54°D.27°【分析】本题实质上还是一道利用弧长公式计算的题.【解答】解:,解得n=54度.故选:C.【点评】本题是一道弧长公式的实际应用题,学生平时学习要紧密联系实际,学以致用,不可死学.11.(2分)将方程x2﹣6x+3=0左边配成完全平方式,得到的方程是()A.(x﹣3)2=﹣3B.(x﹣3)2=6C.(x﹣3)2=3D.(x﹣3)2=12【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:移项,得x2﹣6x=﹣3,等式两边同时加上一次项系数一半的平方(﹣3)2,得x2﹣6x+(﹣3)2=﹣3+(﹣3)2,即(x﹣3)2=6.故选:B.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.(2分)如图,⊙O中,弦AB⊥AC,OE⊥AB,垂足为E,OF⊥AC,垂足为F,若AB+AC=10,则四边形OEAF的周长为()A.10.B.9C.8D.7【分析】先判断出四边形OEAF的形状,再根据垂径定理得出AF+AE的长,进而可得出结论.【解答】解:∵AB⊥AC,OE⊥AB,OF⊥AC,∴四边形OEAF是矩形,∴四边形OEAF的周长=2(AF+AE)=2×(AB+AC)=10.故选:A.【点评】本题考查的是垂径定理,熟知垂直于弦的直径平分线是解答此题的关键.13.(2分)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚【分析】利用已知提供的数据求出黑棋子的比例,进而假设出白棋子个数,列出方程,解方程即可得出白棋子个数.【解答】解:根据试验提供的数据得出:黑棋子的比例为:(1+3+0+2+3+4+2+1+1+3)÷100=20%,所以白棋子比例为:1﹣20%=80%,设白棋子有x枚,由题意,得=80%,x=0.8(x+10),x=0.8x+8,0.2x=8,所以x=40,经检验,x=40是原方程的解,即袋中的白棋子数量约40颗.故选:C.【点评】此题主要考查了利用频率估计概率,根据试验次数得出黑棋子的比例,从而得出白棋子个数是解决问题的关键.14.(2分)如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B 为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,﹣1)D.(1,0)【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.15.(2分)在正六边形ABCDEF的中,若BE=10,则这个正六边形外接圆半径是()A.B.5C.D.5【分析】根据正六边形的性质解答即可.【解答】解:因为正六边形ABCDEF的中,BE=10,所以这个正六边形外接圆半径是,故选:B.【点评】此题考查了正六边形的性质.此题难度适中,注意掌握数形结合思想的应用.16.(2分)如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.【点评】本题考查了相似多边形对应边成比例的性质,准确表示出小长方形的长和宽是解题的关键.二、填空题(本大题共3个小题,19小题4分,17、18每小题3分,共计10分.)17.若3是一元二次方程x2+bx+3=0的一个根,则常数b的值为﹣4.【分析】已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出b的值.【解答】解:∵3是一元二次方程x2+bx+3=0的一个根,∴32+3b+3=0,∴b=﹣4.故答案为﹣4.【点评】此题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.将方程的根代入方程即可得到关于b的一元一次方程,解此一元一次方程即可.18.抛物线y=ax2经过点(3,5),则a=.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.【点评】本题考查了点与函数的关系,考查了用待定系数法,难度不大.19.(4分)参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,设有x个队参赛,根据题意列出的方程是x(x﹣1)=28.【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行一场比赛,共要比赛28场,可列出方程.【解答】解:设有x个队参赛,x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(9分)若点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,求a,b的值.【分析】根据关于原点对称的点的坐标特点进行解答即可.【解答】解:∵点A(a﹣2,3)和点B(﹣1,2b+2)关于原点对称,∴a﹣2=﹣(﹣1),3=﹣(2b+2),解得a=3,b=﹣.【点评】本题考查的是关于原点对称的点的坐标特点,即关于原点对称的点的坐标,横、纵坐标均互为相反数.21.(9分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y(度)是镜片焦距x(厘米)(x>0)的反比例函数,调查数据如表:(1)求y与x的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.【分析】(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;(2)在解析式中,令y=500,求出x的值即可.【解答】解:(1)根据题意得:与x之积恒为10000,则函数的解析式是y=;(2)令y=500,则500=,解得:x=20.即该镜片的焦距是20cm.【点评】考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.22.(9分)在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于放回实验.23.(9分)已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.【分析】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围;(2)找出k范围中的整数解确定出k的值,再将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解法.24.(10分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE•DF.【分析】(1)根据题意可得∠B+∠A=90°,∠A+∠F=90°,则∠B=∠F,从而得出△ADF∽△EDB;(2)由(1)得∠B=∠F,再CD是Rt△ABC斜边AB上的中线,得出CD=DB,根据等边对等角得∠DCE=∠F,则可证明△CDE∽△FDC,从而得出=,化为乘积式即可CD2=DF•DE.【解答】证明:(1)在Rt△ABC中,∠B+∠A=90°∵DF⊥AB∴∠BDE=∠ADF=90°∴∠B=∠F,∴△ADF∽△EDB;(2)由(1)可知△ADF∽△EDB ∴∠B=∠F,∵CD是Rt△ABC斜边AB上的中线∴CD=AD=DB,∴∠DCE=∠B,∴∠DCE=∠F,∴△CDE∽△FDC,∴=,∴CD2=DF•DE.【点评】本题考查了相似三角形的判定和性质,以及直角三角形斜边上的中线等于斜边的一半.25.(10分)如图,P是⊙O的切线FA上的点,点A为切点,连接OP,OP的垂直平分线FE交OA于点E,连接EP,过点P作PC⊥EP(1)已知OA=8,AP=4,求OE的长(2)求证:PC与⊙O相切.【分析】(1)由AP是⊙O的切线,得到∠OAP=90°,根据勾股定理列方程即可得到结论;(2)过O作OG⊥PC于G,根据余角的性质得到∠OPE+∠OPC=90°=∠AOP+∠OPA,等量代换得到∠OPC=∠OPA,推出△AOP≌△GOP,根据全等三角形的性质得到OG=OA,即可得到结论.【解答】(1)解:∵AP是⊙O的切线,∴PE2﹣AE2=AP2,∵OA=8,AP=4,∵OP的垂直平分线FE交OA于点E,∴OE=PE,∴OE2﹣(8﹣OE)2=42,∴OE=5;(2)证明:过O作OG⊥PC于G,∵CE垂直平分OP,∴∠AOP=∠OPE,∴∠OPE+∠OPC=90°=∠AOP+∠OPA,∴∠OPC=∠OPA,在△AOP与△POG中,,∴△AOP≌△GOP(AAS),∴OG=OA,∴PC与⊙O相切.【点评】本题考查了切线的判定和性质.全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形的是解题的关键.26.(12分)某造纸厂生产甲、乙两种生活用纸的相关信息如下表,其中x(吨)表示甲、乙两种生活用纸的月产量,请根据表中的信息解答后面的问题:(1)设该造纸厂每月生产甲、乙两种生活用纸的利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入﹣总支出);(2)若某月要生产甲、乙两种生活用纸共300吨,求该月生产甲、乙两种生活用纸各多少吨,获得的总利润最大?最大利润是多少?【分析】(1)根据:总利润=每吨净利润﹣每月设备管理、维护费,分别列出函数解析式即可;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,由(1)中函数关系式将甲、乙两种生活用纸的利润y1+y2列出W关于m的函数关系式,配方可得函数的最值情况.【解答】解:(1)依题意得:y1=(4800﹣2200﹣200)x﹣20000=2400x﹣20000y2=(7000﹣10x﹣1600﹣400)x=﹣10x2+5000x;(2)设该月生产乙种生活用纸m吨,则生产甲种生活用纸(300﹣m)吨,总利润为W 元,依题意得:W=2400(300﹣m)﹣20000﹣10m2+5000m=720000﹣2400 m﹣20000﹣10 m2+5000m=﹣10 m2+2600 m+700000∵W=﹣10(m﹣130)2+869000.∵﹣10<0∴当m=130时,W最大=869000即生产甲、乙生活用纸分别为170吨和130吨时总利润最大,最大利润为869000元.【点评】本题主要考查二次函数的实际应用能力,弄清题意抓住相等关系列出函数关系式是解题的关键.。
2018-2019期末九年级数学参考答案
![2018-2019期末九年级数学参考答案](https://img.taocdn.com/s3/m/fa06425fd15abe23492f4d08.png)
2018——2019学年度第一学期期末教学质量检查九 年 级 数 学 科 参. 考. 答. 案.(说明:全卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BDBBCACCBA二、填空题(本大题6小题,每小题4分,共24分) 11. 4,421-==x x 12.3113. (-4,-5) 14.如:1)2(22++-=x y 15. 相离 16.3434+π 三、解答题(一)(本大题3小题,每小题6分,共18分)17.解:01322=+-x x …………………1分()11243422=⨯⨯--=-ac b …………………2分413242±=-±-=a ac b b x …………………4分 11=x 212=x …………………6分18.解: (1) 作图 …………………3分如图所示:△A 1B 1C 1即为所求,……4分(2) C 1的坐标为 (1,-4) ……………6分19、证明: 过点O 作OE ⊥AB 于点E …………1分 ∵ 在⊙O 中 OE ⊥CD∴CE=DE …………………3分 ∵OA=OB ,∴AE=BE , …………………4分∴AE-CE=BE-DE …………………5分 ∴AC=BD …………………6分EA 1C 1B 120.解:(1)∵方程有两个不相等的实数根 ∴042>-ac b …………………1分 即:()042422>--k …………………2分 解得:25<k …………………3分(2)当x =2时,得4+4+2k-4=0解得k =-2 …………………4分 ∴方程为:0822=-+x x解得:21=x 42-=x …………………6分∴方程的另一根为-4 …………………7分21、解:(1) 3 ; 3 …………………2分(2)画树状图如下:黄 黄 白黄 白 黄 白 黄 黄 …………………4分共有6种等可能的结果,其中摸到的2个球都是黄球的有2种可能,…………………5分 ∴P(2个球都是黄球)=503162≠=%.…………………6分 ∴该设计方案不符合老师的要求…………………7分22.证明:(1)由旋转的性质得,CD=CF ,∠DCF=90°,…………………1分∴∠DCE+∠ECF=90°, ∵∠ACB=90°, ∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF , …………………2分 在△BDC 和△EFC 中,,∴△BDC ≌△EFC (SAS ); …………………4分 (2)∵EF ∥CD ,∴∠F+∠DCF=180°,…………………5分 ∵∠DCF=90°,∴∠F=90°,…………………6分 ∵△BDC ≌△EFC ,∴∠BDC=∠F=90°.…………………7分23.解:(1)设每次下降的百分率为x …………………1分 根据题意得:50(1﹣x )2=32 …………………2分解得:x 1=0.2,x 2=1.8(不合题意舍去)…………………3分 答:平均下降的百分率为20% …………………4分(2)设每千克应涨价m 元, 每天的利润为W 元 …………………5分W=(50-40+m )(500﹣20m ) …………………6分 = -20m 2+300m+5000 …………………7分5.7)20(23002=-⨯-=-=a b m ∵a =-20<0∴当m =7.5时函数有最大值 …………………8分答:每千克应涨价7.5元才能使每天盈利最大.…………………9分24、解:(1)连接OM ,过点O 作ON ⊥CD 于N ,…………………1分 ∵⊙O 与BC 相切于点M ,∴OM ⊥BC ,OM 是⊙O 的半径 …………………2分 ∵AC 是菱形ABCD 的对角线,∴AC 平分∠BCD …………………3分 ∵ON ⊥CD OM ⊥BC∴ON=OM =r …………………4分 ∴CD 与⊙O 相切; …………………5分 (2)∵四边形ABCD 是菱形,∴AB=BC , ∵∠ABC=60°,∴△ACB 是等边三角形,∴AC=AB=2 …………………6分 设半径为r .则OC=2﹣r ,OM=r , ∵∠ACB=60°,∠OMC=90°,∴∠COM=30°,MC=22r -…………………7 分在Rt △OMC 中,∠OMC=90° ∵OM 2+CM 2=OC 2∴()222222r r r -=⎪⎭⎫ ⎝⎛-+ …………………8分 解得346±-=r (负值舍去)∴⊙O 的半径为346+- …………………9分25、解:(1)∵二次函数y=ax 2+bx-3经过点A (﹣3,0)、B (1,0)∴{ 解得{…………………1分所以二次函数的解析式为:322-+=x x y …………………2分 (2)设直线AE 的解析式为y=kx+b ∵过点A (﹣3,0),E (0,1)∴{解得 31=k可求AE 所在直线解析式为131+=x y …………………3分 过点D 作DG ⊥x 轴,交AE 于点F ,垂足为G ,如图 设D (m ,322-+m m )则点F (m ,131+m ),∴4351313222+--=+++--=m m m m m DF …………………4分∴S △ADE =S △ADF +S △EDF =×DF ×AG+DF ×OG =×DF ×(AG+OG ) =×3×DF =)435(232+--m m =625232+--m m …………………5分=24169)65(232++-m∴当65-=m 时,△ADE 的面积取得最大值为24169.…………………6分(3)P 点的坐标为:()4,1- ;()2,1--;()6,1--;()6,1-;()1,1-- …………………9分9a-3b-3=0a+b-3=0a=1b=2-3k+b=0b=1 b=1{GF。
2018-2019学年(人教版)九年级数学上册期末测试卷(含答案)
![2018-2019学年(人教版)九年级数学上册期末测试卷(含答案)](https://img.taocdn.com/s3/m/06f5af5e336c1eb91a375da7.png)
2018-2019学年第一学期期末水平测试试卷九年级数学(测试时间:100分钟,满分:120分)一、单项选择题(共10个小题,每小题3分,满分30分) 1.下列图形中既是中心对称图又是轴对称图形的是 ( )A .B .C .D .2.从数据21-,—6,1.2,π,—2中任取一个数,则该数为无理数的概率为( ) A .51 B .52 C .53 D .543.若关于x 的方程01)2(2=-+-mx x m 是一元二次方程,则m 的取值范围是( ) A .m ≠2B .m =2C .m ≥2D .m ≠04.若反比例函数()0≠=k xky 的图象过点(2,1),则这个函数的图象一定过点 ( ) A .(2,—1) B .(1,—2) C .(—2,1) D .(—2,—1) 5.商场举行抽奖促销活动,对于宣传语“抽到一等奖的概率为0.1”,下列说法正确的是( )A .抽10次奖必有一次抽到一等奖B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 6.如果一个扇形的弧长是π34,半径是6,那么此扇形的圆心角为 ( ) A .40° B .45° C .60° D .80° 7.抛物线3)1(22---=x y 与y 轴交点的横坐标为( ) A .—3 B .—4 C .—5D .—18.直角三角形两直角边长分别为3-和1,那么它的外接圆的直径是( )A .1B .2C .3D .49.如图,过⊙O 上一点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠D =40°,则∠A 的度数为( )A .20°B .25°C .30°D .40°10.二次函数y =a (x +m )2+n 的图象如图所示,则一次函数y =mx +n 的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限二、填空题(共6个小题,每小题4分,满分24分)11.如图,在△ABC 中, ∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE = 度.12.已知方程032=++mx x 一个根是1,则它的另一个根是 .13.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是白球的概率为41”,则这个袋中白球大约有 个. 14.如图,已知点P (1,2)在反比例函数xky =的图象上,观察图象可知,当x <1时,y的取值范围是 .15.如图,二次函数y =ax 2+bx +c 的图象经过点(—1,0)、(3,0)和(0,2),当x =2时,y 的值为 .第9题图第10题图第11题图第14题图第15题图 第16题图16.如图,等边三角形ABC 的内切圆的面积为9π,则△ABC 的周长为 .三、解答题(一)(共3个小题,每小题6分,满分18分) 17.(6分)解方程:122=+x x .18.(6分)已知:二次函数m x m x y ---=)1(2.(1)若图象的对称轴是y 轴,求m 的值;(2)若图象与x 轴只有一个交点,求m 的值. 19.(6分)在如图所示的直角坐标系中,解答下列问题:(1)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△A 1B 1C 1; (2)求经过A 1B 1两点的直线的函数解析式.四、解答题(二)(共3个小题,每小题7分,满分21分) 20.(7分)如图,⊙O 的半径为10cm ,弦AB ∥CD ,AB =16cm ,CD =12cm ,圆心O 位于AB 、CD 的上方,求AB 和CD 间的距离.21.(7分)将分别标有数字1,3,5的三张卡牌洗匀后,背面朝上放在桌面上. (1)随机抽取一张卡片,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析,随机地抽取一张作为十位数上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率.22.(7分)反比例函数xky =在第一象限的图象如图所示,过点A (1,0)作x 轴的垂线, 交反比例函数xky =的图象于点M ,△AOM 的面积为3. (1)求反比例函数的解析式; (2)设点B 的坐标为(t ,0),其中t >1,若以AB 为一边的正方形有一个顶点在反比例函第19题图C D 第20题图数xky的图象上,求t 的值.五、解答题(三)(共3个小题,每小题9分,满分27分) 23.(9分)如图,O 为正方形ABCD 对角线AC 上的一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于点M .(1)求证:CD 与⊙O 相切;(2)若⊙O 的半径为1,求正方形ABCD 的边长. 24.(9分)将一条长度为40cm 的绳子剪成两段,并以每一段绳子的长度为周长围成一个正方形.(1)要使这两个正方形的面积之和等于58cm 2,那么这段绳子剪成两段后的长度分别是多少?(2)求两个正方形的面积之和的最小值,此时两个正方形的边长分别是多少? 25.(9分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =—1,且抛物线经过A (1,0),C (0,3)两点,与x 轴相交于点B . (1)求抛物线的解析式;(2)在抛物线的对称轴x =—1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴x =—1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.MA第22题图 C D A B O 第23题图M第25题图2018—2019学年度上学期期末水平测试九年级数学参考答案及评分建议一、1.C ; 2.B ; 3.A ; 4.D ; 5.C ; 6.A ; 7.C ; 8.B ; 9.B ; 10.C . 二、11.100; 12.3; 13.2 ; 14. 0<y <2; 15.2. ; 16.318 三、17.解 :0122=-+x x (1)分02122=-++x x …………………………………………………………2分2122=++x x ………………………………………………………3分2)1(2=+x ………………………………………………………… 4分21,2121--=+-=x x ………………………………………… 6分18.解:(1)若图象的对称轴是y 轴,∴=-a b 2021=-m ,………………………………………………………………………………………… 2分∴m=1; …………………………………………………………………………………… 3分(2)若图象与x 轴只有一个交点,则△=0,……………………………………………………………………4分即0)(14)1(2=-⨯⨯--m m , ............................................................ 5分 ∴m =﹣1. (6)分19. 解:(1)(图略) ………………………………………………………………………… 3分(2)设线段B 1A 所在直线l 的解析式为:)0(≠+=k b kx y ,…………………………………… 4分∵B 1(﹣2,3),A (2,0), ∴⎩⎨⎧=+=+-0232b k b k , ………………………………………………………………………………………… 5分23,43=-=b k , ……………………………………………………………………………………… 6分∴线段B 1A 所在直线l 的解析式为:2343+-=x y , ……………………………………………………7分20.解:过点O 作弦AB 的垂线,垂足为E ,延长OE 交CD 于点F ,连接OA ,OC , 1分∵AB ∥CD ,∴OF ⊥CD , (2)分∵AB =16cm ,CD =12cm , ∴AE =21AB =21×16=8cm , CF =21CD =21×12=6cm ,…………………………………… 3分在Rt △AOE 中,OE =22AE OA -=22810-=6cm ,………………………………………… 4分在Rt △OCF 中,OF=22CF OC -=22610-=8cm , ......... ...... (5)分∴EF =OF ﹣OE =8﹣6=2cm .∴AB 和CD 的距离为2cm . …………………………………………………………… …… 6分21.解:(1)∵卡片共有3张,“1”有一张,∴抽到数字恰好为1的概率31=P ;……………………………………………………………3分 (2)画树状图:………………………………………6分由树状图可知,所有等可能的结果共有6种,其中两位数恰好是“35”有1种. ∴组成两位数恰好是35的概率P=61. …………………………………………… 7分 22. 解:(1)∵△AOM 的面积为3,∴|k |=3,而k >0,∴k =6,∴反比例函数解析式为xy 6=; ………………………… 2分 (2)当以AB 为一边的正方形ABCD 的顶点D 在反比例函数xy 6=的图象上,则D 点与M 点重合,即AB =AM ,6,61===y xy x 得代入把,∴M 点坐标为(1,6),∴AB =A M =6, 761=+=t ; ……………………………………………………… 4分 当以AB 为一边的正方形ABCD 的顶点C 在反比例函数xy 6=的图象上, )1,(,1-∴-==t t C t BC AB 点坐标为则,∴6)1(=-t t , ……………………………………………………………………………………… 5分062=--t t 整理得,)(2,321舍去解得-==t t ,∴3=t , ………………………………………………………………………………………………… 6分 ∴以AB 为一边的正方形有一个顶点在反比例函数xy 6=的图象上时,t 的值为7或3. (7)分 23.(1)证明:过O 作ON ⊥CD 于N ,连接OM ,……………………………………… 1分∵⊙O 与BC 相切于点M , ∴OM ⊥BC ,∵AC 为正方形ABCD 对角线, ∴∠BAC =∠ACB =45°, ………………………………………………………………………………………………… 2分 ∵四边形ABCD 为正方形, ∴∠B =90°,AB ∥CD ∴AB ∥OM ∥DC ,∴∠NOC =∠NCO =∠MOC =∠MCO =45°, 且OC 为公共边,易知△OMC ≌△ONC (SAS ) ………………………………………………………………………… 3分 ∴ON =OM ,且ON ⊥CD∴CD 与⊙O 相切; ………………………………………………………………………………………………… 4分 (2)解:由(1)易知△MOC 为等腰直角三角形,OM 为半径, ∴1==MC OM ,∴211222=+=+=MC OM OC , ∴2=OC , ……………………………………………………………………………………………… 5分∴21+=+=OC AO AC ,………………………………………………………………… 6分 在R t △ABC 中,BC AB =,222BC AB AC +=,∴222AC AB =, ……………………………………………………………………………………… 7分 ∴222221+=+=AB . 故正方形ABCD 的边长为222+.………………………………………………………………………………… 9分24. 解:(1)设其中一个正方形的边长为xcm ,则另一个正方形的边长为(10﹣x )cm ,………………………………… 1分依题意列方程得58)10(22=-+x x , …………………………………………………………………………… 3分整理得:021102=+-x x ,解方程得7,321==x x , ……………………………………………………………………………… 4分.1228-402874,281240,1243cm cm cm cm ==⨯=-=⨯,或因此这段绳子剪成两段后的长度分别是12cm 、28cm ; ……………………………………… 5分 (2)设两个正方形的面积和为y ,则50)5(2)10(222+-=-+=x x x y , …………………………………… 7分.5,50,55-105052cm cm cm y x 都为此时两个正方形的边长最小值是即两个正方形的面积和,此时的最小值时,当===∴……………9分25.解:⎪⎪⎩⎪⎪⎨⎧==++-=-3012)1(c c b a a b依题意得,⎪⎩⎪⎨⎧=-=-=321c b a 解得:,∴抛物线解析式为322+--=x x y . ……………………………………… 2分分别代入直线、把)3,0()0,3(C B - n mx y +=, ⎩⎨⎧-==+-303n n m 得,⎩⎨⎧==31n m 解得:, 3+=∴x y 直线解析式为;……………………………………………… 3分(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小.,231=+=-=y x y x ,得代入直线把∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);……… 5分)3,0(),0,3(),,1()3(C B t P --又设 ,1061)3(,4)31(,182********+-=+-=+=++-==t t t PC t t PB BC2:,106418,22222-=+-=++=+t t t t PC PB BC B 解得即:为直角顶点,则若点 ………………………………… 6分;4:,410618,22222=+=+-+=+t t t t PB PC BC C 解得即:为直角顶点,则若点 (7)分.2173,2173:,181064,2122222-=+==+-++=+t t t t t BC PC PB P 解得即:为直角顶点,则若点)21731-21731-4,1-2-1--+,)或(,)或()或(,的坐标为(综上所述P (9)分。
2018—2019学年度九年级数学第一学期期末质量检测试卷及答案
![2018—2019学年度九年级数学第一学期期末质量检测试卷及答案](https://img.taocdn.com/s3/m/cf32d6d0fab069dc50220183.png)
2018—2019学年度九年级数学第一学期期末质量检测试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若OA .1B .2CD.6.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2,则AB 的长为 A .2 B .3 C .4 D .522D EC BA第6题图第8题图 第2题图第4题图第5题图A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为 A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是 .14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 .15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为 米.16.在平面直角坐标系xOy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =. 求:a bb+.18.计算:2cos30-4sin 45︒︒211题图13题图CB A(1)将y = x 2-2x -3化成y = a (x -h )2 + k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB=BC =7,sin 2B =,求AC 的长.21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5. 求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P , 使得△P AC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ;E DCBA ABC④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);⑤连接线段AD交BC于点P.所以点P就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明: ∵CD=AC,∴CD= .∴∠=∠.又∵∠=∠,∴△P AC∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy中,直线y=x+2与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=P A时.直接写出点P的坐标.24. 如图,AB是O的直径,过点B作O的切线BM,点A,C,D分别为O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.(1)求证://CD BM;(2)连接OE,若DE=m,求△OBE的周长.B25. 在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y,y与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计算结果.........) A BDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个9.下10.3411. m712.32π13.sin∠BAC>sin∠DAE14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:∵53ab=,∴1a b ab b+=+=53+1=83.………………………5分=22⨯18.解:原式………………………3分4分5分19.解:(1)y=x2-2x-3=x2-2x+1-1-3……………………………2分=(x-1)2-4.……………………3分(2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵sin2B=∴∠B=∠BAD=45°.………………2分∵AB=∴AD=BD=3.…………………………3分∵BC=7,∴DC=4.∴在Rt△ACD中,5AC=.…………………………5分21.(1)证明:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=90°.∴∠A=∠B.………………2分∵AD=1,AE=2,BC=3,BE=1.5,∴121.53=.∴AD AEBE BC=∴△ADE∽△BEC.∴∠3=∠2.………………3分∵∠1+∠3=90°,∴∠1+∠2=90°.∴∠DEC=90°.………………5分22.(1)补全图形如图所示:………………2分B(2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,…………………4分 ③在Rt △OBE 中,由勾股定理得出………………………………5分 ④计算出△OB E 周长为2………………………………6分25.(1)3.00…………………………………1分∴(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方.由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=.所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分(3)点p 的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分 (2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分 (3)求解思路如下:A BCDP HQa.在△ABH中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP中,由∠A HP=120°,AH=PH,解得∠PA H=30°.c.在△ADB中,由∠A DB=∠A BD= 30°,解得∠BAD=120°.由a、b、c可得∠DAP=21°.在△DAP中,由∠A DP= 60°,∠DAP=21°,AD=1,可解△DAP,从而求得DP长.…………………………………7分28.解:(1)∵A(1,0),AB=3∴B(1,3)或B(1,-3)∵12 QA QB=∴Q(1,1)或Q(1,-1)………………3分(2)点A(1,0)关于直线y= x的对称点为A′(0,1)∴Q A =Q A′∴QBA Q'21=………………5分(3)-4≤t≤4………………7分x。
人教版2018—2019学年度九年级数学上册期末试卷及答案
![人教版2018—2019学年度九年级数学上册期末试卷及答案](https://img.taocdn.com/s3/m/59f467cc551810a6f4248625.png)
2018—2019学年度九年级数学上期末试卷(满分:120分,时间:100分钟)一、选择题(每小题3分,共30分)1. 已知二次函数y =2(x ﹣3)2+1,下列说法: 其中说法正确的有 ( ) ①其图象的开口向下;②其图象的对称轴为直线x =﹣3;③其图象顶点坐标为(3,﹣1); ④当x <3时,y 随x 的增大而减小. A .1个 B .2个 C .3个 D .4个2.对于函数,使得随的增大而增大的的取值范围是 ( )A.B.C.D.3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根, ( ) 那么k 的取值范围是 A .14k >-B .14k >-且0k ≠C .14k <-D .14k ≥-且0k ≠ 4.定义:如果关于x 的一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这 个方程为“凤凰”方程.已知20(0)ax bx c a ++=≠是“凤凰”方程,且有两个相等的实数根, 则下列结论正确的是 A .a c = B .a b = C .b c = D .a b c == ( ) 5.如图所示,将正方形图案绕中心旋转180°后,得到的图案是 ( )6. “a 是实数,|a |≥0”这一事件是 ( ) A.必然事件 B.不确定事件 C.不可能事件 D.随机事件7.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取( ) 到白球的可能性较大,那么袋中白球的个数可能是 A.3个B.不足3个C.4个D.5个或5个以上 8.在△中,∠°,,以为圆心作和相切,则的半径长为A.8 B.4 C.9.6 D.4.8 ( )9.如图所示,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为 ( ) A .2 B .4 C .8 D .1610.如图所示,已知扇形的半径为,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为 ( ) A.B.C.D.二、填空题(每小题3分,共21分)11 ,已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =(x 1)2+1的图象上,若x 1>x 2>1, 则y 1 y 2(填“>”“=”或“<”). 12.如果,那么的数量关系是________.13.已知点关于原点对称的点在第一象限,那么的取值范围是________.14.已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________. 15.如图所示,ABC △内接于,,30ABC ∠=, 则CAD ∠=______.16.如图所示,小方格都是边长为1的正方形,则以格 点为圆心,半径为1和2的两种弧围成 的“叶状”阴影图案的面积为 . 17.如图所示,已知在Rt ABC △中,,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于__________.三、解答题(共69分)18、用适当的方法解方程(每小题5分,共20分)(1)2(x+2)2-8=0; (2)x (x -3)=x ;(32=6x(4)(x+3)2+3(x+3)-4=0.第15题图第17题图CAS 1S 219.(7分)有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字. (1)请用列表或画树形图的方法,表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x ,第二次抽出的数字作为点的纵坐标y ,求点(x ,y )落在双曲线2y x上的概率.20.(8分)如图所示,正方形中,点在边上,点在边的延长线上.(1)若△按顺时针方向旋转后恰好与△重合,则旋转中心是点________ ,最少旋转了_______度;(2)在(1)的条件下,若求四边形的面积.21.(8分)已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2. (1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数? 如果存在,求出a 的值;如果不存在,说明理由.22.(8分)如图,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A .与大 圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分∠ACB . (1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC ,AD ,BC 之间的数量关系,并说明理由;DCFBEA第19题23.(8分)如图所示,AC 与O ⊙相切于点C ,线段AO 交O ⊙于点B .过点B 作BD AC ∥交O ⊙于点D ,连接CD OC 、,且OC 交DB 于点E.若30CDB DB ∠=︒=,. (1)求O ⊙的半径长; (2)求由弦CD BD 、与弧BC 所围成的阴影部分的面积.(结果保留π)24.(10分)如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线为y=-x 2+bx+c .点D 为线段AB 上一动点, 过点D 作CD ⊥x 轴于点C ,交抛物线于点E . (1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB 的面积.(3)连接BE ,是否存在点D ,使得△DBE 和△DAC 相似?若存在,直接写出 点D 坐标;若不存在,说明理由.期末检测题参考答案1. A 解析:①∵ 2>0,∴ 图象的开口向上,故①错误; ②图象的对称轴为直线=3,故②错误; ③其图象顶点坐标为(3,1),故③错误; ④当<3时,随的增大而减小,故④正确. 综上所述,说法正确的有1个.2.D 解析:由于函数图象开口向下,所以在对称轴左侧随的增大而增大,由对称轴为直线,知的取值范围是.3.B 解析:依题意得,2220(21)410k k k ⎧≠⎪⎨+-⨯>⎪⎩,,解得14k >-且0k ≠.故选B . 4.A 解析:依题意得,2040a b c b ac ++=⎧⎨-=⎩,,代入得2()4a c ac +=,∴2()0a c -=,∴a c =.故选A .5.D 解析:图中的两个阴影三角形关于中心对称;阴影圆绕中心旋转180°后,位置在右下角,所以选D.6.A 解析:因为任何一个实数的绝对值都是一个非负数,所以a 是实数,|a |≥0是必然事件.7. D 解析:随机掷两枚硬币,有四种可能:(正,正),(正,反),(反,正),(反,反),落地后全部正面朝上的情况只有(正,正),所以落地后全部正面朝上的概率是14.8.D 解析:当袋中只有红、白两种颜色的球时,若随机取一个球,可能性大的数量就多,故白球的个数大于4个.故选D. 9.D 解析:在△中,∠°,,所以 过点则的半径长为.10.D 解析:∵ O 1O 2=8 cm ,⊙O 1以1 cm/s 的速度沿直线l 向右运动,7 s 后停止运动,∴ 7 s 后两圆的圆心距为1 cm ,两圆的半径的差为3-2=1(cm ),∴ 此时两圆内切,∴ 移动过程中没有内含这种位置关系,故选D . 11.A 解析:过点因为130AB C =∠=,°,所以O ⊙的直径为,所以O ⊙的内接正方形的边长为12.D 解析:.13. > 解析:∵ a =1>0,对称轴为直线x =1,∴ 当x >1时,y 随x 的增大而增大.故由x 1>x 2>1可得y 1>y 2.14.解析:原方程可化为[]24()50x y -+=,∴.15.解析:点关于原点对称的点的坐标为,且在第一象限,所以所以.16. 解析:因为, ,所以.17.34解析:从长度为的四条线段中任取三条有四种情况:.其中不能组成三角形,所以从中任取三条线段能组成三角形的概率是34. 18.解析:,所以∠∠=60°.19.2π 4 解析:如图所示,连接AB , 则根据轴对称和旋转对称的性质,从图中可知: 阴影图案的面积=2(S 扇形AOB -S △ABO )=2×2×220.2π 解析:由勾股定理知所以1S +2S=ππ21.解:将整理得.因为抛物线向左平移2个单位,再向下平移1个单位得,所以将向右平移2个单位, 再向上平移1个单位即得,故.函数示意图如图所示.22.解:(1) ;90. (2)∵ △旋转后恰好与△重合, ∴ △≌△ ∴又∴∴23.解:设方程230x x m -+=的两根分别为1x ,2x ,且不妨设122x x =. 则由一元二次方程根与系数的关系可得代入122x x =,得∴24.解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简整理,得解这个方程,得∴ .∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴ 舍去,∴.答:该地区年到年高效节能灯年销售量的平均增长率为25. 分析:(1)设抛物线的表达式为y =ax 2+b (a ≠0),将(0,11)和(8,8)代入即可求出a ,b ; (2)令h =6,解方程(t 19)2+8=6得t 1,t 2,所以当h ≥6时,禁止船只通行的时间为|t 2-t 1|. 解:(1)依题意可得顶点C 的坐标为(0,11),设抛物线表达式为y =ax 2+11. 由抛物线的对称性可得B (8,8), ∴ 8=64a +11,解得a =,抛物线表达式为y =x 2+11.(2)画出h = (t -19)2+8(0≤t ≤40)的图象如图所示.当水面到顶点C 的距离不大于5米时, h ≥6,当h =6时,解得t 1=3,t 2=35.由图象的变化趋势得,禁止船只通行的时间为|t 2-t 1|=32(小时). 答:禁止船只通行的时间为32小时.点拨:(2)中求出符合题意的h 的取值范围是解题的关键,本题考查了二次函数在实 际问题中的应用.26.解:(1)BC 所在直线与小圆相切.理由如下: 如图,过圆心O 作OE BC ⊥,垂足为点E . ∵AC 是小圆的切线,AB 经过圆心O ,∴ OA AC ⊥.又∵CO 平分ACB OE BC ∠⊥,,∴ OE OA =. ∴ BC 所在直线是小圆的切线. (2)AC +AD =BC .理由如下:如图,连接OD .∵AC 切小圆O 于点A ,BC 切小圆O 于点E ,∴ CE CA =.∵ 在Rt OAD △与Rt OEB △中,90OA OE OD OB OAD OEB ==∠=∠=,,,∴ Rt Rt OAD OEB △≌△,∴ EB AD =. ∵ BC CE EB =+,∴ BC AC AD =+. 27.分析:本题考查了概率的求法和游戏的公平性. (1)根据概率的计算公式计算即可; (2)可通过举反例判断游戏是否公平;(3)要想公平地选出10位学生参加某项活动,即设计的规定要使每一位学生被选到的概率相同.解:(1)设取到的卡片上序号是20的倍数或能整除20为事件A,在序号中,是20的倍数或者能整除20的数有7个,则P(A)=.(2)不公平.无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为P=1,而很明显其他序号的学生被抽中的概率不为1.(3)将学生按序号每5人一组进行分组,如第一组序号为1~5,第二组序号为6~10等,共分成10组.再从编有学生序号的打乱的卡片中任意抽取1张卡片,取到的卡片上的序号是k(k是50张卡片中的任意一张的序号),看此序号在分组的第几位,如抽中6,则在分组的第一位,则每一组的第一位同学参加活动.如此规定,能公平抽出10位学生参加活动.点拨:(1)概率的计算公式为:P(E)=;(2)“规定”的公平性问题经常和概率结合在一起考查,通常通过比较各个成员被选中的概率是否相等来确定“规定”是否公平.。
2018-2019学年九年级(上)期末数学试卷(有答案和解析)
![2018-2019学年九年级(上)期末数学试卷(有答案和解析)](https://img.taocdn.com/s3/m/64d3c2296bd97f192379e908.png)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
2018-2019学年度第一学期九年级数学期末同步检测卷(附答案)
![2018-2019学年度第一学期九年级数学期末同步检测卷(附答案)](https://img.taocdn.com/s3/m/55279c5100f69e3143323968011ca300a6c3f610.png)
2018-2019学年度第一学期九年级数学期末同步检测卷(附答案)广东省东莞市可园中学2018-2019学年度第一学期九年级数学期末考前检测卷一、选择题(每小题3分,共 30 分)1.下列方程中是一元二次方程的是()A.x2=0B.x2-5x=(x-2)2C.D.(a-1)x2+bx+c=02. 已知关于x的方程有实数根,则m的取值范围是( )A.m≥1B.m>1C.m≥1 且m≠2D.m>1且m≠23. 将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+34. 下列图形中既是轴对称图形又是中心对称图形的是( ) A.B.C.D.5. 在平面直角坐标系中,原点为O,点A的坐标是(4,4) ,点B 与点A关于y轴对称,把线段OA绕点O逆时针旋转,使点A与点B重合,则旋转的角度应为( )A.90°B.45°C.60°D.135°6. 如图,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是( )A.19°B.38°C.52°D.76°7. 在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个8.已知如图,抛物线交x轴于A、B两点,顶点为C,CH⊥A B交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.9. 如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P 是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB.则△PAB面积的最大值是( )A.8B.12C.D.10.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<="">二、填空题(每小题3分,共18分)11. 抛物线与x轴有两个公共点,请写出一个符合条件的表达式.12.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长为m.13. 已知函数,当时,,则实数的取值范围是.14. 如图,在△ABC中,∠C=90°,AC=BC=1,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=15. 如图所示,某学习小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,则小桥所在圆的半径为米.16. 如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三、解答题(共 72 题)17.(6 分)解方程:(1) (2)2x2-1=3x.18.(10 分)为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:(1)填空:a = ,b= ;(2)求这所学校平均每班贫困学生人数;(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.19.(6 分)某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.20.(8 分)小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的花圃围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为1米的通道(属于花圃一部分)及在左右花圃各留一个1米宽的门(其他材料).设花圃与围墙平行的一边长为x米,(1)花圃与围墙垂直的一边长为米(用x表示).(2)如何设计才能使花圃的面积最大?21.(8 分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD 延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.22.(8 分)如图,在边长为1的正方形网格中,已知点O和格点△ABC.(1)画出与△ABC关于点O成中心对称的△A′B′C′;(2)连接AC′、CA′,求四边形AC′A′C的面积.23.(12 分)如图,已知D,E是劣弧AB的三等分点,C是圆O外一点,连接AC,OC,和BD,若∠CAD=∠B.(1)求证:CA是圆O的切线;(2)连接CD,CD也是圆O的切线吗?说明理由;(3)若圆O的半径是3,AC=4,求弦AD,BD的长度(提示:在同圆或等圆中,等弧所对的弦相等).24.(14 分)抛物线与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)求点C、点D的坐标;(2)如图1,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是,当的值最大时,求四边形周长的最小值;(3)如图2,在(2)中的值最大时,作PH⊥AC,将△PHC绕点P旋转一周,在旋转的过程中,点H、C的对应点分别是点H1、C1,直线H1C1分别与直线AC,x轴交于点M,N.那么,在△PHC的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段HM的长;若不存在,请说明理由.参考答案:1.A2.A3.D4.C5.A6.B7.D8.D9.C10.D11.略12.713.14.15.516.﹣2<k<< p="">17. (1)(x﹣2) (x﹣2+2x)=0(x﹣2)(3x﹣2)=0x1=2,x2=(2)2x2﹣3x﹣1=0△=(﹣3)2﹣4×2×(﹣1)=17,18. 解:(1)填空:a=2,b=10;(2)答:这所学校平均每班贫困学生人数为2;(3)设有2名贫困家庭学生的2个班级分别记为A班和B班,树状图:准确画出树状图∴P(两名学生来自同一班级)=.19. (1)(2)即y因为提价前包房费总收入为100×100=10000.当x=50时,可获最大包房收入11250元,因为11250>10000.又因为每次提价为20元,所以每间包房晚餐应提高40元或60元.20. (1);(2)花圃面积为:S=?x=∴当x<时S随x的增大而增大,∵0< p="">21. (1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又OA=OC,∴∠OAC=∠OCA=30°.∵AP=AC,∴∠P=∠ACP=30°∴∠OAP=∠AOC﹣∠P=90°.∴OA⊥P A.∵点A在⊙O上,∴PA是⊙O的切线.(2)解:在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=.∴⊙O的直径是.22. 解:(1)画△A′B′C′和△ABC关于点O成中心对称的图形如下:(2).23. (1)证明:∵E,D分别是弧AB的三等分点∴OC⊥AD,连接OA,有∠B=∠AOE又∵∠CAD=∠B∴∠CAD=∠AOE∵∠AOE+∠OAD=90°∴∠OAD+∠CAD=90°,即∠OAC=90°∴CA是圆O的切线(2)解:CD是圆O的切线,连接OD,∵OC垂直平分AD ∴CA=CD∴△CAO≌△CDO∴∠CDO=∠CAO=90°∴CD也是圆O的切线(3)解:由(1)(2)可知△CAO为直角三角形24.(1)∵对称轴,当时,∴∵当x=0时,∴(2)∵当时,解得:,∴A(-3,0),B(1,0),∵,易得直线AC的解析式为:设、,其中∴,Rt△ACO中,AO=3,OC=,∴AC=,∴∠CAO=30°,∴AE=2EF=,∴∴当的值最大时,,此时,∴PC∥AB,且..5分∵,∴要使四边形周长的值最小,只需的值最小即可.如图1,将点P向右平移1个单位长度得点,连接,则,再作点关于x轴的对称点,则,∴,∴连接与x轴的交点即为使的值最小时的点,此时∴四边形周长的最小值为.(3)在△PHC的整个旋转过程中,存在恰当的位置,使△AMN是以MN为腰的等腰三角形;HM的长为或或或<></k<<></t。
2018-2019学年九年级上学期期末数学试题(解析版)
![2018-2019学年九年级上学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/f94ec265e53a580217fcfe32.png)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年九年级(上)期末数学试卷(含解析)
![2018-2019学年九年级(上)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/b024e149b84ae45c3b358c5c.png)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。
人教版2018-2019学年上学期九年级数学期末测试卷含答案
![人教版2018-2019学年上学期九年级数学期末测试卷含答案](https://img.taocdn.com/s3/m/a3f4e5b4e87101f69f319561.png)
九年级数学期末摸拟测试题(一) 2018~2019学年度第一学期期末检测
九年级数学试卷 2019.1
(考试时间120分钟满分120分)
考试须知
1.本试卷共8页,共三道大题,29道小题.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
3.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)
第1-10题均有四个选项,符合题意的选项只有一个.
2.下列事件中,是必然事件的是
(A) 明天太阳从东方升起;
(B) 射击运动员射击一次,命中靶心;
(C) 随意翻到一本书的某页,这页的页码是奇数;
(D) 经过有交通信号灯的路口,遇到红灯.
4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是
(A) 1:3 (B) 1:4
(C) 1:9 (D) 1:16
5. 已知点A(1,a)与点B(3,b)都在反比例函数的图象上,则a与b之间的关系是。
2018-2019九年级数学上学期期末试题及答案
![2018-2019九年级数学上学期期末试题及答案](https://img.taocdn.com/s3/m/0a3e580c7e21af45b307a8db.png)
3 α1 2 3 4 B初三第一学期期末学业水平调研数学2019.01学校___________________姓名________________ 准考证号__________________注意事项1. 本调研卷共 8 页,满分 100 分,考试时间 120 分。
2. 在调研卷和答题纸上准确填写学校名称,姓名和准考证号。
3. 调研卷答案一律填涂或书写在答题纸上,在调研卷上作答无效。
4. 在答题卡上,选择题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 调研结束,请将本调研卷和答题纸一并交回。
一、选择题(本题共 16 分,每小题 2 分)1.抛物线 y = (x - 1)2 + 3 的顶点坐标为A . (1,3)B . (- 1,3)C . (- 1,- 3)D . (3,1)2.如图,在平面直角坐标系 xOy 中,点 P (4,) ,OP 与 x 轴正半轴的夹角为α ,则 tan 的值为y3 2PA .C .3 5 3 4B .D .4 5 4 31O x3.方程 x 2 - x +3 = 0 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根4.如图,一块含 30°角的直角三角板 ABC 绕点 C 顺时 针旋转到△ A ⅱ C ,当 B ,C , A 在一条直线上时, 三角板 ABC 的旋转角度为AB'A .150° C .60°B .120° D .30°B C A'25.如图,在平面直角坐标系 xOy 中,B 是反比例函数 y = ( x > 0) 的图象x上的一点,则矩形 OABC 的面积为yCOBA x若 AD : AB =2 : 3 ,则△ ADE 和△ ABC 的面积之比等于1 0 0A .1B . 2C . 3D . 46.如图,在 △ABC 中, DE ∥BC ,且 DE 分别交 AB ,AC 于点 D ,E ,..AA . 2:3B . 4:9C . 4:5D . 2 : 3DBEC7.图 1 是一个地铁站入口的双翼闸机.如图 2,它的双翼展开时,双翼边缘的端点 A 与 B 之间的距离为 10cm ,双翼的边缘 AC =BD = 54cm ,且与闸机侧立面夹角 ∠PCA = ∠BDQ = 30°.当双翼收起时,可以通过闸机的物体的最大宽度为PA BQ30°30°CD闸机箱闸机箱图 1图 2A . (54 3+10) cmB . (54 2+10) cmC .64cmD . 54cm8.在平面直角坐标系 xOy 中,四条抛物线如图所示,其解析式中的二次项系数一定小于 1 的是A . y B. y12y 1y 2y 3y5 4 3 2 1y 4C . y3D. y4–6 –5 –4 –3 –2 –1O 1 2 3 4 x–1二、填空题(本题共 16 分,每小题 2 分)–2 –3–49.方程 x 2 - 3x = 0 的根为.10.半径为 2 且圆心角为 90°的扇形面积为.11.已知抛物线的对称轴是 x = n ,若该抛物线与 x 轴交于(,),(3,)两点,则 n 的值为.12.在同一平面直角坐标系 xOy 中,若函数 y = x 与 y =取值范围是.k x (k ≠ 0) 的图象有两个交点,则 k 的4 0 B 0 013.如图,在平面直角坐标系 xOy 中,有两点 A (2,) , B (4,) ,以原点 O 为位似中心,把△ O AB 缩小得到△ OA ⅱ .若 B ' 的坐标为 (2,) ,则点 A ' 的坐标为.y5 43 21OAB'1 2 3B4 5 x14.已知 (- 1,y ) , (2,y ) 是反比例函数图象上两个点的坐标,且 y > y ,请写出一个符合12 1 2条件的反比例函数的解析式.y15 .如图, 在平面直 角坐 标系 xOy 中, 点 A (3,) ,判断在M , N , P , Q 四点中,满足到点 O 和点 A 的距离都小于 2 的点是.21O–1 PM 1 2 NA3 4 5x–2Q16.如图,在平面直角坐标系 xOy 中, P 是直线 y = 2 上的一个动点,⊙ P 的半径为 1,直线 OQ 切⊙ P 于点 Q ,则线 段 OQ 的最小值为.Qy P 32 1–3 –2 –1 O123 x三、解答题(本题共 68 分,第 17~22 题,每小题 5 分;第 23~26 题,每小题 6 分;第 27~28题,每小题 7 分)17.计算: cos45o - 2sin30 o +(- 2)0 .18.如图, AD 与 BC 交于 O 点, ? A ? C , AO = 4 , CO = 2 , CD =3 ,求 AB 的长.AOCBD19.已知 x = n 是关于 x 的一元二次方程 mx 2 - 4x - 5 = 0 的一个根,若mn 2 - 4n + m = 6 ,求 m的值.20.近视镜镜片的焦距 y (单位:米)是镜片的度数 x (单位:度)的函数,下表记录了一组数据:x(单位:度)…100250400500…y(单位:米)… 1.000.400.250.20…(1)在下列函数中,符合上述表格中所给数据的是_________;A.y=1100x B.y=100x 13C.y=-x+2002x21319 D.y=-x+400008008(2)利用(1)中的结论计算:当镜片的度数为200度时,镜片的焦距约为________米.21.下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.已知:如图,⊙O及⊙O上一点P.求作:过点P的⊙O的切线.作法:如图,AO PO P①作射线OP;②在直线OP外任取一点A,以点A为圆心,AP为半径作⊙A,与射线OP交于另一点B;③连接并延长BA与⊙A交于点C;④作直线PC;则直线PC即为所求.根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:∵BC是⊙A的直径,∴∠BPC=90°(____________)(填推理的依据).∴OP⊥PC.又∵OP是⊙O的半径,∴PC是⊙O的切线(____________)(填推理的依据).22.2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景大桥.主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥AC段垂直的方向航行,到达P点时观测两个人工岛,分别测得P A,PB与观光船航向PD的夹角∠DP A=18°,∠DPB=53°,求此时观光船到大桥AC段的距离PD的长.参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.23.在平面直角坐标系xOy中,已知直线y=(1)求k的值;1kx与双曲线y=的一个交点是A(2,a).2x(2)设点P(m,n)是双曲线y=kx上不同于A的一点,直线P A与x轴交于点B(b,0).①若m=1,求b的值;②若PB=2A B,结合图象,直接写出b的值.y54321–5–4–3–2–1O12345x–1–2–3–4–524.如图,A,B,C为⊙O上的定点.连接AB,AC,M为AB上的一个动点,连接CM,将(1)通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:射线 MC 绕点 M 顺时针旋转 90 ,交⊙O 于点 D ,连接 BD .若 AB =6cm ,AC =2cm ,记 A ,M 两点间距离为 x cm , B ,D 两点间的距离为 y cm .CDAOMB小东根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.下面是小东探究的过程,请补充完整:.. .. ..x /cm y /cm0 0.25 0.47 1 2 3 4 5 61.43 0.66 0 1.312.59 2.76 1.66 0(2)在平面直角坐标系xOy 中,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;y43 2 1O1 2 3 4 5 6 7x(3)结合画出的函数图象,解决问题:当 BD =AC 时,AM 的长度约为 cm .25.如图,AB 是⊙O 的弦,半径 OE ^ AB ,P 为 AB 的延长线上一点,PC 与⊙O 相切于点 C ,CE 与 AB 交于点 F . (1)求证:PC =PF ;(2)连接 OB ,BC ,若 OB // PC , BC = 3 2 , t an P =A3 4 E,求 FB 的长.F B POC26.在平面直角坐标系 xOy 中,已知抛物线 G : y = 4 x 2 - 8ax + 4a 2 - 4 , A(-1,0), N (n,0) .(1)当a=1时,①求抛物线G与x轴的交点坐标;②若抛物线G与线段AN只有一个交点,求n的取值范围;(2)若存在实数a,使得抛物线G与线段AN有两个交点,结合图象,直接写出n的取值范围.y54321–5–4–3–2–1O–112345x–2–3–4–5△27.已知在ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.(1)如图1,①求证:点B,C,D在以点A为圆心,AB为半径的圆上.②直接写出∠BDC的度数(用含α的式子表示)为___________.(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tan FBC的值.D DA A DAB C lB CElB CF l图1图2图30) BD””28.在平面直角坐标系 xOy 中,已知点 A(0, a) 和点 B(b , ,给出如下定义:以 AB 为边,按照逆时针方向排列 A ,B ,C ,D 四个顶点,作正方形 ABCD ,则称正方形 ABCD 为点 A , B 的逆序正方形.例如,当 a = - 4 , b = 3 时,点 A , B 的逆序正方形如图 1 所示.y5 C43 21–5 –4 –3 –2 –1O 1 2 3 4 5–1 –2 –3 –4 A –5y5 4 3 2 1x –5 –4 –3 –2 –1O–1 –2 –3 –4 –51 2 3 4 5 x图 1 图 2(1)图 1 中点 C 的坐标为;(2)改变图 1 中的点 A 的位置,其余条件不变,则点 C 的坐标不变(填“横”或“纵), 它的值为;(3)已知正方形 ABCD 为点 A , B 的逆序正方形.①判断:结论“点 C 落在 x 轴上,则点 D 落在第一象限内. ______(填“正确”或 “错误”),若结论正确,请说明理由;若结论错误,请在图 2 中画出一个反例;②⊙ T 的圆心为 T (t,0) ,半径为 1.若 a = 4 , b0 ,且点 C 恰好落在⊙ T 上,直接y5 4 3 2 1–5 –4 –3 –2 –1O –1 –2 –3 –4 –51 2 3 4 5 x写出 t 的取值范围.备用图10. π11.2 12. k > 0 13. (12) 15. M ,N初三第一学期期末学业水平调研数学试卷答案及评分参考2019.01一、选择题(本题共 16 分,每小题 2 分)题号答案1A2C3C4A5B6B7C8A第 8 题:二次函数 a 的绝对值的大小决定图像开口的大小 ,︱a ︳越大,开口越小,显然a 1<a 2=a 3<a 4,,可知 a 1 最小。
2018-2019学年上 学期期末考试九年级数学试题(含答案)
![2018-2019学年上 学期期末考试九年级数学试题(含答案)](https://img.taocdn.com/s3/m/432302430b1c59eef8c7b42a.png)
2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省东莞市可园中学2018-2019学年度第一学期九年级数学期末考前检测卷一、选择题(每小题3分,共 30 分)1.下列方程中是一元二次方程的是()A.x2=0B.x2-5x=(x-2)2C.D.(a-1)x2+bx+c=02. 已知关于x的方程有实数根,则m的取值范围是( )A.m≥1B.m>1C.m≥1 且m≠2D.m>1且m≠23. 将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+34. 下列图形中既是轴对称图形又是中心对称图形的是( ) A.B.C.D.5. 在平面直角坐标系中,原点为O,点A的坐标是(4,4) ,点B与点A关于y轴对称,把线段OA绕点O逆时针旋转,使点A与点B重合,则旋转的角度应为( )A.90°B.45°C.60°D.135°6. 如图,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是( )A.19°B.38°C.52°D.76°7. 在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个8.已知如图,抛物线交x轴于A、B两点,顶点为C,CH⊥A B交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.9. 如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB.则△PAB面积的最大值是( )A.8B.12C.D.10.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).设四边形APFE的面积为y(cm2),则下列图象中,能表示y 与t的函数关系的图象大致是()二、填空题(每小题3分,共18分)11. 抛物线与x轴有两个公共点,请写出一个符合条件的表达式.12.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长为m.13. 已知函数,当时,,则实数的取值范围是.14. 如图,在△ABC中,∠C=90°,AC=BC=1,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=15. 如图所示,某学习小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,则小桥所在圆的半径为米.16. 如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三、解答题(共 72 题)17.(6 分)解方程:(1) (2)2x2-1=3x.18.(10 分)为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:(1)填空:a = ,b= ;(2)求这所学校平均每班贫困学生人数;(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.19.(6 分)某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.20.(8 分)小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的花圃围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为1米的通道(属于花圃一部分)及在左右花圃各留一个1米宽的门(其他材料).设花圃与围墙平行的一边长为x米,(1)花圃与围墙垂直的一边长为米(用x表示).(2)如何设计才能使花圃的面积最大?21.(8 分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.22.(8 分)如图,在边长为1的正方形网格中,已知点O和格点△ABC.(1)画出与△ABC关于点O成中心对称的△A′B′C′;(2)连接AC′、CA′,求四边形AC′A′C的面积.23.(12 分)如图,已知D,E是劣弧AB的三等分点,C是圆O外一点,连接AC,OC,和BD,若∠CAD=∠B.(1)求证:CA是圆O的切线;(2)连接CD,CD也是圆O的切线吗?说明理由;(3)若圆O的半径是3,AC=4,求弦AD,BD的长度(提示:在同圆或等圆中,等弧所对的弦相等).24.(14 分)抛物线与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)求点C、点D的坐标;(2)如图1,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是,当的值最大时,求四边形周长的最小值;(3)如图2,在(2)中的值最大时,作PH⊥AC,将△PHC绕点P旋转一周,在旋转的过程中,点H、C的对应点分别是点H1、C1,直线H1C1分别与直线AC,x轴交于点M,N.那么,在△PHC的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段HM的长;若不存在,请说明理由.参考答案:1.A2.A3.D4.C5.A6.B7.D8.D9.C10.D11.略12.713.14.15.516.﹣2<k<17. (1)(x﹣2) (x﹣2+2x)=0(x﹣2)(3x﹣2)=0x1=2,x2=(2)2x2﹣3x﹣1=0△=(﹣3)2﹣4×2×(﹣1)=17,18. 解:(1)填空:a=2,b=10;(2)答:这所学校平均每班贫困学生人数为2;(3)设有2名贫困家庭学生的2个班级分别记为A班和B班,树状图:准确画出树状图∴P(两名学生来自同一班级)=.19. (1)(2)即y因为提价前包房费总收入为100×100=10000.当x=50时,可获最大包房收入11250元,因为11250>10000.又因为每次提价为20元,所以每间包房晚餐应提高40元或60元.20. (1);(2)花圃面积为:S=∙x=∴当x<时S随x的增大而增大,∵0<x≤10,故当x=10时,花圃面积最大值为62.5m2.21. (1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又OA=OC,∴∠OAC=∠OCA=30°.∵AP=AC,∴∠P=∠ACP=30°∴∠OAP=∠AOC﹣∠P=90°.∴OA⊥PA.∵点A在⊙O上,∴PA是⊙O的切线.(2)解:在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=.∴⊙O的直径是.22. 解:(1)画△A′B′C′和△ABC关于点O成中心对称的图形如下:(2).23. (1)证明:∵E,D分别是弧AB的三等分点∴OC⊥AD,连接OA,有∠B=∠AOE又∵∠CAD=∠B∴∠CAD=∠AOE∵∠AOE+∠OAD=90°∴∠OAD+∠CAD=90°,即∠OAC=90°∴CA是圆O的切线(2)解:CD是圆O的切线,连接OD,∵OC垂直平分AD ∴CA=CD∴△CAO≌△CDO∴∠CDO=∠CAO=90°∴CD也是圆O的切线(3)解:由(1)(2)可知△CAO为直角三角形24.(1)∵对称轴,当时,∴∵当x=0时,∴(2)∵当时,解得:,∴A(-3,0),B(1,0),∵,易得直线AC的解析式为:设、,其中∴,Rt△ACO中,AO=3,OC=,∴AC=,∴∠CAO=30°,∴AE=2EF=,∴∴当的值最大时,,此时,∴PC∥AB,且..5分∵,∴要使四边形周长的值最小,只需的值最小即可.如图1,将点P向右平移1个单位长度得点,连接,则,再作点关于x轴的对称点,则,∴,∴连接与x轴的交点即为使的值最小时的点,此时∴四边形周长的最小值为.(3)在△PHC的整个旋转过程中,存在恰当的位置,使△AMN是以MN为腰的等腰三角形;HM的长为或或或。